
A BETTER QUEUE ~ DESIGN

Charles L. Silver
Department of Computer Science

Southeastern Louisiana University
Hammond, LA 70402

Some Data Structures textbooks present
the following scenario regarding queues:
First we implement a queue as an array
and make the Front of the queue coincide
with the first position of the underlying
array. We let the Rear of the queue be
the position of the array containing the
last element of the queue, like this:

[I] [2] [3] [4] ... [Maxq]

Front Rear

It is then then easy to add elements
to the queue by first incrementing Rear
by 1 and then storing the new element in
that position in the array. But, it is
not so easy to remove an element,
according to the scenario. The reason
for this is that fixing the Front of the
queue in position 1 of the array requires
us to shove everything down one whenever
we remove the first element. This
consumes processing time, especially if
the queue is long or contains complex
elements.

Another solution is to let the Front
float toward the Rear of the queue as
elements are removed. Then, to make use
of the available space vacated by the
removal of these elements, we create a
"wrap-around" or "circular" queue where
the Rear continues past the maximum size
of the queue ("Maxq") to position i, then
2, etc.:

Rear Front

This leads to a problem. The problem
is to distinguish an empty queue from a
full one. Suppose there is only one

element in a circular queue and Front =
Rear, as follows:

[I I l al I
Front
Rear

Then, when one element is removed, Front
= Rear + i. Now, suppose that the queue
is one element shy of being full, like
so:

l ieT T a1 i°t
Rear Front

Here, Front = Rear + 2. But then, when
an element is added, Rear is incremented
by 1 and Front = Rear + I, the same as
when the queue is empty. Thus, we have
the undesirable result that when Rear +
1 = Front the queue is both empty and
full.

The next step in the scenario is to
modify the design so that a full queue
and an empty one can be easily and
clearly distinguished.

One such modification requires two
changes. The first change is to consider
the queue full when all but one of the
cells are filled. Thus, the diagram
above would represent a full queue. The
second change is to consider the reserved
space before the first element to be the
Front. The ostensible reason for letting
the Front of the queue be the space
before the first element is the same
reason as above: to distinguish a full
queue from an empty one. This ends the
scenario, which justifies the resulting
queue design.

This final design is quite
unintuitive. A queue is supposed to be
like a line of shoppers at a check-out
stand in a supermarket or a line of

' S I G C ' S E v o l . 22 No. 3 S e p t 1990 6 3
" B U L L E T I N

http://crossmark.crossref.org/dialog/?doi=10.1145%2F101085.101103&domain=pdf&date_stamp=1990-08-01

people queuing up to buy tickets to a
movie or a line of cars at a toll booth.
These lines all must be thought of as
beginning one position in front of their
first elements if we are to satisfy the
present queue design. Students
encountering this design in their
textbooks are clearly disturbed by its
lack of intuitiveness, though they
eventually accept it as being forced on
them by the requirement that an empty
queue be clearly distinguishable from a
full one.

What is surprising, though, is that
this design is not forced on us at all.
Once an extra space has been added to the
original queue design, the problem of
distinguishing an empty queue from a full
one is solved, and there are no other
technical problems to resolve.

To show that this simple modification
works, we initialize the queue so that
Front = 1 and Rear = Maxq. This makes
Rear + 1 (wrapping around) = Front, which
is the case when the queue is empty. The
most unintuitive feature of this design
is the initial setting. But, we will see
shortly that this initial setting makes
the most sense.

When an element enters a queue, Rear
should be incremented by 1 to indicate
that the rear of a line moves back one
element. Thus, starting out with an

empty queue, where Front = 1 and Rear =
Maxq, the entry of one element makes
Front = 1 and Rear = 1 as well (Maxq + 1
= 1 when the queue wraps around). This
is as it should be: when there is a
single element in a line the front of the
line and the rear of the line are the
same, and both occupy the first
position. I This shows, I think, that it
makes most sense to initialize Front to
1 and Rear to the maximum length of the
queue.

There is no problem distinguishing a
full queue from an empty one, since 'Rear
+ 2 = Front' signifies a full queue.
This is also intuitive, or at least not
unintuitive, since the reserved space is
in between Rear and Front, making Front
two positions -- the space plus one
position more -- past Rear.

I have taught circular queues using
both queue designs, the one whgre Front
is before the first position and the one
where Front i_s the first position, and I
can say that the latter design is
accepted much more readily and grasped
more easily than the former one.

In the other queue design, Front = Maxq
and Rear = 1 when the first element
enters the queue. This seems highly
unnatural.

Now available through A C M - - high-quality videotapes
sponsored by your profession's corporate leaders...

)AN INGALL~

Introduction to Object-Oriented Programming
Sponsored by Apple Computer
"An excellent introduction to objecl-oriented programming by one of the
originators." - - Stephen Omohundro, International Com-
puter Science Institute
Discusses the principles of OOP, showing how this ap-
proach enhances software flexibility and reusability by
supplanting conventional procedure-calls with the mes-
sage-sending mechanism. 4.5 rain.

The Steiner Problem and NP-Completeness
Sponsored by AT&T Bell Laboratories
"Using some pretty mathematics, Graham illustrates how NP hard
problems should be attacked."-- Richard Karp, UC Berkeley
50 min.

History, Supercomputlng, and Gallium Arsenlde
Sponsored by Cray Research, LLNL, LANL
Insights on the history and evolution or supercom-
puting, Cray-I and Cray-2 development, and the new
role of gallium arsenide in the upcoming Cray-3 and
Cray-4. 73 mln.

~] ~ ~ , •

RISC Design and SPARC Architecture
Sponsored by Sun Microsystems
"Excellent...the right way to discuss industry products." - -
Daniel Duchamp, Columbia University
Shows three SPARC boards running at three clock rates.
each taking more power and board area. Covers histori-
cal perspective, business context, future directions.
62 mln.

University
Video

Communications Each tape $32.00 for ACM members, $35.00 for nonmembers, plus California sales tax where
applicable and $5.00/tape shipping and handling. Videos are part of UVC's Distinguished Lect ure ~ _ ~
Series, Vol. II. 1989/1990. VHS only. Others avai lable - - p lease inquire.

Order from ACM Press Publicat ions Manager, 11 W 42 Street, New York. NY 10036.

S I G C S E v o l 22 No 3 S e p t . 1990 6 4
B U L L E T I N " "

