ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 44

B.W.BOEHM SOFTWARE ENGINEERING ECONOMICS

A REVIEW ESSAY

Check for
Updates

A.Bryant* and J.A.Kirkham™*

The current tendency for software costs to exceed hardware costs is the effect
of both an absolute increase in the former and decrease in the latter.
Software development is now the major cost factor for any project concerned with
the introduction or enhancement of electronic data-processing (EDP) equipment:
it is also the most difficult for which to produce acceptably accurate estimates
- both in terms of monetary cast and development schedule. In response to the
growing dissatisfaction caused by the all-too-frequent tendency for final
software development costs and schedules grossly to exceed initial estimates,
attempts have been made to perfect estimating methods and models which can claim
at least a reasonable degree of accuracy, providing a realistic basis for
budget planning and labour allocation.

If the prime impulse behind these efforts can be termed that of 'budgetary
credibility', there is also another, broader but less precise, impulse which
stems from the non-budgetary effects of the adoption of EDP techniques. Some
cost models ignore this second aspect, others seek to account for it through a
wider concept of 'cost' derived from the field of 'cost-benefit analysis'. An
example from the latter category is provided by the Constructive Cost Model
developed by Barry W. Boehm and explicated in his recent book "Software
Engineering Economics", Prentice Hall, 1981.

The reception accorded to Boehm's work has been little short of rapturous, some
have described it as a sort of data processing managers' bible which should be
on hand whenever software budgets are being decided and allocated.

The current authors, however, must demur from any such approval in the light of
a careful study of Boehm's text and an implementation of the first two versions
of his model. This is not to undermine the importance of the questions to which
Boehm's argqument is addressed, but instead to temper the praise which it has
evoked.

Boehm introduces his argument by stating that the objective of the book is to
‘equip you to deal with software engineering problems from the perspective of
human economics as well as from the perspective of programming' (p.1). The
intention then is to claim a wider perspective for Software Engineering
Economics (SEE), which will be implemented in the COCOMO approach.

Initially Boehm illustrates his concept of this new approach with two examples.
In the first, a case study of the development of an information processing
system for Scientific American, the point is made that what at first sight
appears to be a perfectly acceptable and well-programmed system may, once
implemented, lead to disastrous results due to neglect of certain key
operational elements. This can be avoided by considering not merely the
immediately obvious 'programming' aspects of the implementation, but other
facets such as those concerned with 'operational problems; budget probtems;
schedule problems; problems in determining the relative priorities of users'
needs' (p.8).

5 e e e e 40 g et e ot 2 e

* MFT Computers Ltd., Charles House, l.ow Lane, Horsforth, Leeds L.518 5DE.
+ Postgraduate School of Studies in Computing, University of Bradford,Bradford
West Yorkshire, BD7 1DP.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010891.1010897&domain=pdf&date_stamp=1983-07-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 45

The second case study further stresses the necessity of expanding the purported
limits of orthodox perspectives in the light of the experience of the effects of
the introduction of electronic data processing (EDP) to an urban school
attendance system in USA. In this instance the programming and economic goals
were both achieved, but to the disadvantage of the attendance clerks who would
be made redundant upon implementation of the system. These clerks were for the
most part women, with school-age children, from the poorer sections of the city,
often relying upon such employment both in terms of the income and the advantage
that the situation and hours of work coincided with their children's school
hours. Once denied this opportunity, they would either have to seek work which
afforded neither of the latter expediencies or claim welfare.

Boehm, having himself been part of the team involved in the second example,
urges that not only must software development encompass non-programming aspects
of system implementation, but that this wider perspective must not be restricted
to what he terms the 'material-economics approach’'; instead the 'human-economics
approach' must be considered (p.l12). Unfortunately Boehm gives neither an
indication of how this objective is to be achieved, nor what it would entail.
He somehow believes that the development away from 'a primarily production-
oriented economy toward a primarily service-oriented economy' (p.12) represents
the substance of such a transition. Yet this seems more than questionable given
the following observations. The growth of the tertiary (service) sector and the
decline of primary (agriculture) and secondary (manufacture) sectors is not
particularly straight-forward in advanced economies, and is not applicable to
third-world and many non-capitalist ones. Moreover, within economies which do
exhibit this tendency in some respects, the concept of a commaodity has expanded
to include an ever wider range of goods and services., Consequently the
constraints of 'material-economics' (whether Keynesian, monetarist, or other)
continue to apply. Finally, given the large, and increasing, proportion of
computer personnel - of all levels and abilities - engaged in military projects
- offering neither service nor product in the usual sense - Boehm's suqgestions
seem misdirected and incomplete. His grasp of economics is clearly deficient,
what then remains to be seen is whether or not the concept of software
engineering economics and the cost model offered are of relevance and use in a
more limited sense,

The approach to software engineering is termed the GOALS approach: 'Goal-
Oriented Approach to Life-cycle Software'. Fundamentally this embodies a
'control loop which involves periodic review and iteration of the programming
products with respect to a mare general goal structure' (p.15). At the general
level this includes the recommendation that all projects should establish a full
range of objectives and thus of constraints involved. Each objective then forms
all or part of a subgoal, the solutions for which must be developed in the light
of the constraints imposed by all other goals; the process to include iteration
where necessary. Summarizing his argument to this point, Boehm offers the
following definition of software engineering: 'the application of science and
mathematics by which the capabilities of computer equipment are made usefu!l to
man (sic) via computer programs, procedures and associated documentation’

(p.16).

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 48

Boehm's widening of perspective does not then in detail amount to a qualitative
advance upon those more restricted ones concerned solely with computer
implementation; the predominant focus rests on programs, procedures and
documentation. This assessment is further supported by the statement that the
major challenges for the software engineering profession are those of increased
software development productivity and increased efficiency of software
maintenance (p.18). However much he may appear to wish to include
'numanitarian' aspects in the field of software engineering economics, it is
clear that the basis of Boehm's position, and of COCOMO itself, emanates from a
more limited set of concerns, more immediately connected with software
development in the orthodox sense of the term. The discussion of 'conflicting
objectives' and of Weinberg's experiments (1) give exclusive consideration to
orthodox software factors such as development effort, program clarity and memary
requirements. This is not to deny that COCOMO may well prove to be of use, but
only in a far more localized sense than that promised in Boehm's introduction.
(Indicative of this is that none of the factors incorporated in COCOMO relates
to the 'humanitarian' aspect seemingly of such central concern to the author.)

In turning to consider Boehm's model in this more limited light the initial
problem concerns the accuracy and reliability which is claimed The rationale
behind any software estimating model derives from the indeterminate nature of
software development and maintenance, together with the demonstrable tendency
for actual expenditure to outstrip initial estimates, often by a factor of ten
or more. Given the well established observation that software costs are
increasing both in terms of overall proportion of total EDP costs, and as an
overall proportion of gross domestic product (see Boehm, ppl7-18), it is
understandable that there is a good deal of interest in the perfection of
methods for producing initial cost-estimates that prove to have a high degree of
reliability. No cost estimating model, in whatever field, can ever guarantee
complete accuracy, but merely claim a degree high enough to ensure that initial
figures bear some close relationship to final expenditure. The current norm for
saftware models is, according to Boehm, to be within 20% of actual costs, 70% of
the time (p32). Often even this degree of accuracy is only achieved with regard
to a specific category of projects. Boehm, however, claims that the
Intermediate’ and 'Detailed' versions of COCOMO in achieving this level of
reliability for a wide range of applications 'provide a good deal of help in
software engineering economic analysis and decisionmaking' (p32). A claim
seemingly accepted unquestioningly by reviewers of the book. The assumptions
and limitations behind the claim, however, need to be clarified before any
conclusion can be reached.

1. This experiment consisted of giving different directions to five
programming teams regarding the optimum aspects of the same task. For
instance one team was required to complete the project with a minimum
amount of effort, another was told to optimize output clarity. Four of the
five achieved top rating for their particular primary objective - the other
achieved second from top - but all failed to perform consistently well with
regard to other teams' primary objectives. From this Boehm concludes that
successful software development needs to encompass a range of possibly
conflicting goals. (See pp.20ff and references listed there).
G.M.Weinberg and E.L.Schulman, "Goals and Performance in Computer
Programring" Human Factors, 1974, 16(1), 70-77.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 47

COCOMO consists of three upwardly compatible versions of the model: 'Basic',
'Intermediate’, and 'Detailed'. The basic level is designed to do no more than
return initial order of magnitude estimates derived solely from project size and
development mode (see below). The other two models are more complex in
introducing a range of 'cost-drivers' (i.e. factors which influence development
and maintenance effort and duration) which, depending upon the way they are set,
increase or decrease the nominal values for the number of labour units,
development schedule and so on. The nominal values are merely dependent upon
project size.

For a project to be amenable to COCOMO cost-estimating its size must be
calculated in terms of ‘'delivered source instructions' (hereafter DSI),
expressed in units of 1000 (hereafter KDSI). This forms the basis for all
further results and analyses.

The concept of 'delivered source instructions' is defined as follows:-

Delivered. This term is generally meant to exclude nondelivered support
software such as test drivers. However, if these are developed with the same
care as delivered software, with their own reviews, test plans, documentation,
etc., then they should be counted.

Source Instructions. This term includes all program instructions created by
project personnel and processed into machine code by some combination of
preprocessors, compilers, and assernblers. It excludes comment cards and
unmodified utility software. It includes job control language, format
statements, and data declarations. Instructions are defined as lines of code
or card images. Thus, a line containing two or more source statements counts as
one instruction; a five-line data declaration counts as five instructions (pp
58-9).

As it stands this definition and the context in which it is meant to apply are
strangely contradictory. For the Basic version of the model the project size,
in KDSI, is the prime variable, and is meant to provide the basis for early
order of magnitude estimates. Yet the calculation of KDSI would appear to rely
upon fairly detailed knowledge of the project which at that stage would not
necessarily be easily and readily available. Boehm fails to consider this
matter, and neglects to explain how at the very least some estimate of project
size in these terms can be ascertained from an initial outline of the form and
nature of system implementation and objectives. Even within the more limited
sense within which COCOMO is being considered this is @ major flaw. In none of
the examples of COCOMO calculations does the author indicate any method for
calculation of project size in KDSI, the number is simply stated or introduced
as the result of 'an initial study' (eg see p63). If the alleged reliability of
the model is reassessed in the light of a fairly optimistic estimate of the
inexactitude of the initial figures for project size (20% in either direction)
this must severely undermine any claims to 'reasonable accuracy'. The following

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 48

figures illustrate this:-

Basic Estimates for Project of 32,0 KDSI accuracy of 20%

Organic Development Mode

Size Labour Schedule Staffing
Units Levels

KDSI Lab Months Personnel
Months

25.6 72.24 12.71 5.69

32.0 91.34 13.90 6.57

38.4 110.56 14.95 7.40

On the face of it this may be an acceptable range of values, although since
Boehm himself later costs a labour month at $5000-$6000 at 1980 labour prices
this would produce estimates ranging from $361,200-$552,800 at $5K per labour
month and $433,400-$666,400 at $6K per labour month.

This range is even larger for the other development modes.

Embedded Mode

Size Labour Schedule Staffing
Units Levels

KDSI l_ab Months Personnel
Months

25.6 176.26 13.08 13.48

32.0 230.54 14.26 16.17

38.4 286.74 14,84 19.32

At $5K per labour month the estimate ranges from $880,000-$1,444,000; at $6K
from $1,050,000-%1,720,000.

It might, however, be argued that despite appearances this is still a
substantial improvement upon previous estimates, and that, in common with all
economic models, a certain - and appreciable -~ degree of inaccuracy is
inevitable. Since Intermediate and Detailed models are constructed to produce
multipliers which alter nominal values by factors as high as 1l, such early
initial inaccuracies can only be further exacerbated: on the other hand, if the
effort multipliers only alter nominal values by a fraction then any effect would
fail to balance initial inaccuracies. All the 'sophistication' outlined in the
second and third levels must be seen to rest upon possibly intolerably crude
foundations.

All this is not to deny that the concept of delivered source instructions may
well be useful, particularly when considering adaptation or maintenance of
existing software (although even here application is not straightforward - see
below); or perhaps when the size of the project to be developed can be estimated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 49

from a large store of information concerning existing similar projects. As
presented by Boehm, however, there is no obvious method by which it can be
rendered applicable to the early stages of development of an entirely new
project. The COCOMOQO approach to software engineering economics must then be
judged further deficient both in its own terms and those of what would generally
be required of a cost-estimating model. Claims for the novelty of the approach,
together with its applicability, are rendered severely questionable.

It is, however, worth persevering with the discussion of COCOMO for at least
two reasons. The primary one derives from software engineering economic models
in general, the other - of far more limited import - relates to the possible
utility of the specific model itself. Currently in almost all advanced socio-
economic formations software development is taking place in a context
characterized by general economic contraction and the expansion of applications
of EDP techniques. Consequently there is great interest in developing the
ability to predict and control software expenditure., Crises in profitability,
inflation, and the current attempts to manage fiscal matters by application of
'supply-side' economics preclude many previously possible options open to seller
or purchaser to counteract discrepancies between initial and final budget
figures. Assuredly, whatever the failings and lacunae of COCOMQO and other cost
models, there will be an increasing number of attempts to produce satisfactory
ones. In spite of the severe and disabling criticisms made of COCOMOQ, Boehm's
book does seek to analyse and clarify many aspects of the software development
and maintenance processes; possibly a contribution in itself to the development
of the field of software engineering economics. The major part of what follows
is devoted to this matter. It need merely be added, as the second reason
alluded to above, that, if Boehm's discussion is found to offer a useful mode of
analysis, it may be worthwhile devising some means of overcoming the problem of
producing an initial estimate for project size in terms of DSI.

As was mentioned above, COCOMO is divided into three upwardly compatible
versions; the distinctions between the three can be described as follows. Basic
COCOMO returns initial estimates based solely on project size - in KDSI - and on
development mode (see below). These items of data then form the basis for
calculating the number of labour months; development schedule; number of full-
time equivalent software personnel; productivity: the equations used being
derived from the COCOMO database. In addition figures are presented in terms of
'‘effort' and 'schedule such that the duration and number of personnel required
for each phase can be estimated. These figures are calculated via interpolation
from sets of results for standard-sized projects. Intermediate COCOMO builds
upon this. Project size and development mode are presented as before; initial
equations are of the same form, albeit using different factors. Since effort
and schedule figures are solely dependent upon project size these are no
different from those produced using the simpler model for the same project size.
The values for labour months, development schedule, and so on, are, however,
nominal; later adjusted to final values according to the resulting figure for
the overall 'effort adjustmenrt factor' (EAF). This factor is the product of
fifteen ‘effort multipliers' each representing a 'cost-driver' which, initially
set to a nominal value of 1.0, can be altered by the user depending upon desired
enhancements or tolerable deficiencies in specific aspects of the software
product. Finally Destailed COCOMO takes into account these effort multipliers
not simply as overall effects on the project, as in the Intermediate form, but
as producing specific and varying results on each individual phase for both
development and maintenance. (The Detailed model will not be considered further
in this discussion.)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 50

All the COCOMO estimating equations are derived from analysis of the COCOMO
database. This consists of details for 63 projects covering a wide variety of
different applications and development contexts. Nearly 75% of the projects
were developed in the period 1975-79; 50% were implemented on mainframes (see
Boehm, p83 for a summary of project characteristics, pp494-99 for a more
detailed report).

Plotting the actual figures for each of the projects against the estimates
produced by each version of COCOMO provides the basis for the clairned level of
accuracy. (The present authors are unable to comment on the methodological
intricacies involved in using the same set of data both for deriving the set of
estimating equations and establishing their degree of accuracy. Boehm includes
no justification for this step.)

The model itself derives from a specific account of 'the software life-cycle'
which consists of nine subgoals each linked to a particular phase of
development. The inter-relationships between the phases are characterized by
the term 'waterfall model' in which 'as much as paossible iterations of earlier
phase products are performed in the next succeeding phase' (p36). The ninth
phase 'phaseout!, concerns the 'clean transition of the functions performed by
the product to its successors (if any)' (p37). In addition, two further
subgoals are sought during each phase of the software life-cycle: 'verification
and validation', and 'configuration management!'.

Quoting several studies in support, Boehm argues that the subgoals are both
necessary and sufficient for developing any software product; furthermore the
proposed sequence is the most effective and successful (pp38-41). COCOMO is
then designed to enable estimates to be obtained of the proportion of effort
spent in each phase of the life-cycle. In addition each phase can be further
analysed in terms of eight major project activities as follows:-

1 Requirement Analysis

2 Product Design

3 Programming

4 Test Planning

5 Verification & Validation

6 Project Office Functions

7 Configuration Management/Quality Assurance
8 Manuals

The reader must be warned at this juncture that the 'Plans and Requirements'
phase has a somewhat peculiar status. For all levels of COCOMQO, 'P&R' is
assumed to form an independent stage of production prior to development. The
values for this phase are not included in total product figures: their process
of derivation is not elucidated, but it can be inferred that they are attained
by extrapolation backwards from figures for completed projects (pp46-52).

Apart from dealing with the development of software products, COCOMO also covers
the ensuing maintenance. Maintenance is defined as 'the process of modifying
existing operational software while leaving its primary functions intact' (p54).
This includes both updating and repairing activities, but specifically excludes
major redesign and redevelopment (ie more than 50% of new software product
perforiming functions; design and development of sizeable software interfaces;
'‘data processing systern operaticns, data entry, and modification of values in
the data base' (p54)).

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 51

An additional factor in the development of a software project is its mode of
development. Boehm offers three; organic, semi-detached, embedded. The organic
mode is characterized by 'relatively small software teams' developing 'software
in a highly familiar, in-house environment' (p78). This results in lower
communications overheads for the duration of the project, and also only a
comparatively small loss in productivity due to these overheads as project size
increases.

With regard to embedded mode 'the major distinguishing feature ... is a need to
operate within tight constraints' (p79). Such projects need constant and
extensive verification and validation, as well as rigorous configuration
management and quality assurance, to ensure that development maintains
compatibility with the existing 'strongly coupled complex of hardware, software,
reqgulations, and operational procedures' (p79). Being concerned to a far
greater extent with entirely new projects than development in organic mode,
communications overheads are proportionately greater at every stage. The labour
distribution curve is more pronounced than that for organic mode. In the early
stages a small teamn of analysts would be used to complete product design,
followed by introduction of a far larger team of programmers to carry out
detailed design, coding, and unit testing.

Semi-detached mode is an intermediate one between organic and embedded. A
project may be intermediate in one of two respects. Either it falls between the
other two modes in terms of its overall characteristics, or it may be a mixture
of components of different mode.

Boehm's model also attermnpts to account for the diseconomies of scale inherent in
software development. Taking the foregoing discussion as whole it would be
expected that Basic COCOMO would be designed to produce the following values:-

I Total number of labour units
2 Expected development schedule
3 Number of personnel required
4 Phase distribution in terms of
a labour units
b development schedule
c effort
d personnel required

The basic unit of labour expended is the ‘'labour month' (hereafter LM)
consisting of 152 hours of working time (Boehm, p59). The Basic COCOMO
equations for number of labour months are as follows:-

Organic |LM=2,4(KDSI)**].05
Sernidetached LM=3.0(KDSI)**],12
Embedded LM=3.6(KDSI)**],20

The development period (TDEV) is then given in terms of the number of labour
units as follows:-

Organic TDEV=2.50_M)**0,38
Semidetached TDEV=2.5(LM)**0.35
Embedded TDEV=2.5(LM)**(,32

(For derivation of these equations see Boehm, chapter 29.)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 52

The number of personnel is then obtained from the ratio of number of labour
units: development schedule - (LM/TDEV). This produces a value termed *full-
time equivalent software personnel' (hereafter FSP).

Productivity can then be estimated from the ratio of project size: number of
labour units - (KDSI/LLM).

For each development mode Boehm then produces values for standard product
sizes:-

Basic Project Profiles
Medium-Size Projects

Quantity Mode
Org Sem Emb
Total Effort (LM) 91 146 230
P&R 5 10 18
Design 15 25 42
Programming 56 85 124
Detailed Design 22 37 60
Code/Unit Test 34 48 64
1&T 20 36 64
Total Schedule (Months) 14 14 14
P&R 1.7 2.8 4.5
Design 2.7 3.6 4.8
Programming 7.7 6.8 5.6
1&T 3.6 3.6 3.6
Average Personnel (FSP) 6.5 10.4 16.4
P&R 2.9 3.6 4.0
Design 5.6 6.9 8.8
Programming 7.3 12,5 22.1
&T 5.6 10.0 17.8
Percent of Average Personnel
P&R 45 35 24
Design 84 66 54
Programming 113 120 135
I&T 85 96 108
Productivity (DSI/LLM) 352 219 139
Code/Unit Test 941 667 500

(Figures taken from Boehm, p92)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 53

The following observations are pertinent. The estimated effort (1) increases
between organic and semidetached maodes, and between semidetached and embedded
modes. Moreover, as project size increases there is an accompanying 'diseconomy
of scale' (p76); the rate of decline in productivity increases. Development
schedule varies with product size independent of development maode, hence
development in embedded mode requires most effort for a given project size;
organic mode requires least. Again there is a diseconomy of scale, the rate of
increase in F3P increases with product size.

Analyzing these figures with respect to the software life-cycle produces a
further set of standard tables. Boehm does not seek to offer separate values
for each of the nine phases mentioned above, instead he amalgamates them under
four headings; 'Plans and Requirements'; 'Product Design'; 'Programming';
'Integration and Test' - the third is subdivided into 'Detailed Design' and
'Code and Unit Test!'.

For each standard sized project there is provided a breakdown in terms of these
categories for both effort and schedule values. These reflect the basic labour
distribution for the specific mode. Faor all three modes there is an increase in
effort between the start of product development and completion of 50-60% of
development schedule, after which there is a corresponding decrease. For any
given product size a set of values for all these features can be obtained by
interpolation based on relevant standard values. In practice these also
include the proportion of each of the eight major activities for each phase.

Maintenance values are calculated on the basis of 'annual change traffic': 'the
fraction of the software product's source instructions which undergo (sic)
change during a typical year, either through addition or modification ' (p7l).
The maintenance effort is then given by the product of this fraction and the
number of labour units for development: the annual requirement for maintenance
staff will then be this figure divided by twelve.

(1) With regard to effort values, the embedded mode requires 'considerably
greater effort' in terms of the proportion devoted to 'Integration and Test'
phase (p89). This is a result of the greater care demanded in adhering to and
rectifying software requirements. It should be noted that because develapment
schedule increases markedly between organic and embedded mades, the proportion
of effort spent in any particular phase of the latter may be less than in the
corresponding phase of the former: the actual effort, expressed in labour
months, will, however, be greater.

Similar remarks apply to different phases for schedule values. For embedded
projects a larger proportion of time will be spent in 'Plans and Requirements'
and 'Design' phases, since they require high levels of validation and
specification, but use a smaller number of personnel than later phases. (If the
number were to be increased, the communications averheads would become a major
factor - see Boehm,p80.) Since the number of personnel increases for the
‘orogramming' phase, a lower part of the estimated development schedule will be
spent at this juncture.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 54

The major limitation of Basic COCOMQ, to which Boehm admits, is that it only
takes account of DSI - and annual change traffic for maintenance. Other factors
relating to hardware constraints, personnel, and so on are neglected. In
addition, the estimates for full-time software personnel are for average staff
levels for each phase, giving rise to discontinuities at boundaries.
Intermediate COCOMO is designed to deal with most of these aspects.

Intermediate COCOMO provides a 'compatible extension’ (p114) of the Basic model,
providing greater accuracy and more detailed control by the interested user.
This facility arises as a result of the incorporation of 'l5 predictor
variables' (pl1l4) or cost drivers. Boehm claims that this effects a level of
accuracy of 'within 20% of the project actuals 68% of the time' (p115).

Previous models, such as those based on the System Development Corporation
studies in the 1960s (see pl55 and references there cited), sought to encompass
as many as 104 different factors including type of application, expertise level
of analysts and programmers, program complexity, language used and amount of
travelling required. Boehm offers a set of 15 cost-drivers which he considers

RELY Required software reliability
DATA Database size
CPLX Product Complexity

Computer Attributes

TIME Execution time constraint
STOR Main storeage constraint
TURN Computer turnaround time

Personnel Attributes

ACAP Analyst capability

AEXP Applications experience

PCAP Programmer capability

VEXP Virtual machine experience

LEXP Programming language experience

Project Attributes

MODP Modern programming practices
TOOL Use of software tools
SCED Required development schedule

After due consideration of the nature of a specific project, the user can set
each cost-driver to a desired rating - lower or higher than an initial nominal
rating. In total there are six possible ratings - very low, low, nominal, high,
very high, extra high - although in practice no more than five are applicable to
any single cost-driver: for example the cost-driver 'Analyst Capability' cannot
be set to a rating of 'extra high'. The effect of altering a cost-driver rating

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 55

from nominal is to alter its corresponding 'effort multiplier' from a value of
1.0. For example the effort multiplier for a ‘'high' rating of required software
reliability is given as l.15; for a 'low' rating it is 0.88. The implication
is that to develop a software product of high reliability will take longer and
require more labour units than will the same product if developed with a nominal
level of reliability.

Initially, in similar fashion to that for Basic COCOMO, project size and mode
are ascertained and then used to produce values for effort (LM) and schedule
(TDEV), ete. In this case, however, the estimating equations are not exactly
the same for calculating LM.

Organic LM=3.2(KDSD**1.05
Semidetached LM=3.0(KDSD**L,]12
Embedded L.M=2.8(KDSI)**1,20

The equations for calculating TDFV are the same as before. These values are
merely nominal ones; the final ones being dependent upon the product of the
effort multipliers for each of the 15 cost-drivers - the 'effort adjustment
factor' or EAF.

For a project of 128 KDSI, to be developed in embedded mode, the norninal effort
value will be 945.8 LM. If all cost-drivers are left at nominal ratings, then
this would be the final estimate for number of labour units; developrnent
schedule would be 22.4 months; average full-time software personnel 42.2;
productivity 135 DSI per month. Should it be decided to develop the same
product with high reliability, then the effort multiplier of the cost-driver
'RELY' would be set to 1.15 and the effort adjustment factor (FAF') would be
1.15. As a result the value for LM will be altered from 945.8 to 1087.7, giving
adjusted values for TDEV (23.4), FSP (46.5), and PROD (118).

Intermediate COCOMQ is designed to allow users to specify the nature of the
project in more detail, and further to perform sensitivity analyses by altering
cost-driver ratings and noting the resulting effect on LM,TDEV, etc. A brief
glance at the values relating to individual cost-drivers shows that for the
first two categories - Product and Computer attributes - setting the cost-driver
to a rating above nominal increases the total effort required (effort
multiplier is greater than 1.0); while setting it to a lower rating has the
opposite effect. Two of the Computer attributes, however, - 'TIME" and 'STOR' -
cannot be rated lower than nominal. For the last two categories - Personnel
and Project attributes - for all but the last cost-driver the converse applies:
increasing the rating lowers the total effort required, and vice-versa. For
'SCED! any alteration from nominal will increase the total effort required.

Apart from presenting a table of what each rating for each cost-driver entails,
Boehm for the most part only deals specifically with 'RELY' and some of the
personnel attributes. The ramifications of altering some of the others are left
wholly or partially unexamined.

The 'RELY' cost-driver is set according to the nature of the project. It will
be set to 'very high' if system failure would present a risk to human life - eg
a nuclear reactor control system (pl2l), and to 'high' if heavy financial loss
would be incurred. lLower ratings would depend upon acceptable levels of failure

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 58

and the benefit obtained from decreased development costs as a result of the
need for fewer labour units. Once developed, however, the system must be
maintained, and it would seem obvious that if the software has been developed to
a certain degree of reliability it would be maintained at a similar level.
Moreover the effort to maintain a system developed with a 'low' or 'very low'
level of reliability would be expected to be greater than if it had been
developed at a nominal level; COCOMO allows for this by incorporating a
different set of values for this cost-driver for the maintenance phase. From
these it can be seen that Boehm adjudges maintenance effort for 'low' and 'very
low' projects to exceed that even for 'very high' ones. Once recognized, this
would seem to militate against any user deciding to lower the rating below the
nominal level. (More details of the ramifications of altering this cost-driver
are given by Boehm in table 8-5,pl23.)

Database size and 'CPLX' cost-drivers are more straightforward, and the relevant
ratings are easier to ascertain from the details given. Boehm fails to point
out that 'TIME' and 'STOR' cannot be rated lower than nominal. If for instance
'STOR' has been set at nominal this would imply that any increase in memory
would have no effect on development or maintenance effort. This may well be
true, and the limit of £=50% use may accurately reflect this; but Boehm neglects
to justify this canstraint,

Personnel attributes are the most directly cost-sensitive category, and the book
covers some examples of the ways in which sensitivity analyses can be used
(ppl25ff). Thus the decrease in EAF resulting from a ‘high' or 'very high'
rating for 'ACAP\AEXP', or 'PCAP' will in turn lead to an increase in unit
labour costs; an analyst with six or twelve years' experience being paid more
than one with only three years' experience. This increase may not, however,
lead to an increase in total developrnent costs: on the contrary, since the
number of LMs will decrease, the total labour costs may decrease. From the
scale of values given, employing analysts and programmers with the highest
possible levels of expertise would reduce the number of labour units to
approximately 35% of nominal values. Whether or not this leads to decreased
costs overall would depend upon prevailing pay and overhead differentials, and
availability.

Finally to turn to the category of Project attributes. MODP refers to such
factors as structured code and top-down design (pl30). If applied to the entire
project for routine use, these practices are estimated to reduce development
labour units by 18%. Once developed, the effect on maintenance becomes
dependent upon project size; so, similar to RELY, a separate set of values is
required. This arises for two reasons; the greater extent of application of
modern programming practices (MPPs) the less maintenance will be required, and
the lower are the effects of the diseconomies of scale for larger projects.
Cost-driver TOOL refers to the range of compilers, assemblers and loaders - as
well as diagnostic aids - available. Clearly if these are primitive and
unreliable they will increase nominal values; if they are highly developed and
efficient they will decrease the values.

SCED only applies to development phase. Any alteration from nominal will
increase the final EAF. None of the examples given deal with ratings other than
nominal, and it is unclear how these would operate in practice. For instance if
SCED is to be 75% of nominal this will increase nominal values by 23%. So a

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 57

project requiring 10 LM would then need 12.3: the value of TDEV being reduced
from 5.22 to 3.92 months. Using this value of TDEV gives 3.14 FSP as opposed to
the initial value of 1.92. If, however, SCED were set at 'very high', this
would produce a 10% increase, giving TDEV of 8.35 and 1.32 FSP. It is not clear
why any alteration of this cost-driver will increase EAF. Obviously if the
project is to be completed within a shorter time, an increased effort will be
required. But if the project can be planned to take longer then there seems to
be no obvious reason why overall effort should increase. In his later
discussion of Detailed COCOMQO, Boehm mentions that in 'schedule-stretchout
situations (sic!)... there is more time for thorough planning, specification,
and validation' in the earlier phases (pp466ff). This, however, seems to have
no in-built positive effect on, for instance, maintainability: so it would
appear to be a wasted expenditure of effort - at any rate Boehm takes the matter
no further.

In implementing Intermediate COCOMQ, it became clear that although there may
well be a strong case for considering all 15 cost-drivers as independent
factors, some attention should have been given to specific combinations and
their ramifications. Setting MODP to 'very high', TOOL to 'very low', and PCAP
to 'very low' would seem rather impractical; and although the corresponding EAF
of 1.44 ought to underline this, it would disguise the fact that had MODP been
left at nominal the EAF would have been 1.76. It does not seem clear why
routine use of MPPs reduces the EAF even when programmers with less than one
month's experience are used. It might be suggested that, on the contrary, the
EAF should increase as a result of such a combination. It might be contended
that such amalgams would be ruled out as a matter of course by knowledgeable
project planners, but this would fail to satisfy the criticism that perhaps the
15 factors are not entirely independent variables.

So far little has been said about adaptation. In the discussion of the
estimation of DSl it was observed that with respect to the adaptation of
existing software the concept may be more readily applicable. Adaptation,
however, is not without specific problems itself. As Boehm notes 'no quantities
are as easy to under-estimate as are the estirnates of how much one will have to
change an existing piece of software to set it to work successfully in a new
product environment' (pl38). A good deal of effort will need to be expended on
redesign, reworking of sections of code, and integration and testing. To this
end Intermediate COCOMO incorporates a technique for quantifying these tasks and
thereby arriving at an 'Adaptation Adjustment Factor' (AAF) which, normally,
scales down the project size of the existing software. AAF is dependent upon
'percent design modified' (DM), 'percent code modified" (CM) ‘percent of
integration required for modified software' (IM) as follows:-

AAF = 0.4(DM) + 0.3(CM) + 0.3(IM)
Equivalent project size is then given as
EDSI = (ADSI)AAF /100

where £DS! is the equivalent size in DSI and ADSI is the size of the software to
be adapted.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 58

For a simple conversion, such as that required when adapting a program to run on
a different installation, typical figures might be

DM =0 no design change

CM =15 15% code change

IM=5 small effort needed
AAF = 0.4(0) + 0.3(15) + 0.3(5) = 6
If ADSI = 50,000

EDSI = 50,000(0.06) = 3000 DSI

(Boehm,ppl34-5)

The coefficients for the three factors are derived from the 'general average
fractions of effort devoted to design, code, and integration and testing' given
by COCOMO values for standard size projects (pl37). In practice it may be
desirable to alter them slightly to reflect changing COCOMO values across
project size and development mode, but since the calculation of AAF is not very
sensitive to such differences, Boehm recommends adhering to average values.

The second form of Intermediate COCOMO is concerned with a more detailed level
of estimates pertaining to individual components of a software product. Boehm
considers that the macro model will be used in earlier stages of a project, and
the micro model applied to the more detailed stages later in development.

Although not expressly described as such, the reader is lead to assume that each
component forms a clearly demarcated subsection of the overall product, and
attains an independent existence in terms of development. This must be the case
given that any component may be a piece of adapted software or a newly developed
program. Also the purpose of applying Intermediate COCOMO to individual
components is to aid in assessing the effect of distinquishing between different
groups of people with differing levels of capability to various components
depending upon their complexity. In the light of this, a major aspect of this
version of Intermediate COCOMO seems questionable as presented by Boehm. In
producing figures for component level estimates, Boehm adds all component sizes
together and produces an overall nominal set of figures for number of labour
months, schedule and productivity. The number of labour months for any
individual component is then calculated on the basis that the ratio of component
size to total project size is identical with that between number of labour
units. Such an assumption overrides two other, related assumptions made with
some force by Boehm. The first concerns the diseconomy of scale inherent in all
software projects. The second derives from the functional modularity which
allows components to be distinguished and treated as separate entities. In
other words splitting a project into discrete parts should lead to a decrease in
the total effort required for two reasons: each component will be smaller than
the total, and hence diseconomies of scale will be less marked; functional
modularity will further reduce this. Boehm gives as an example a project of
three components, respectively 7000, 5000, 10000 DSI (ppl46ff - NB for no
apparent reason Boehm uses DSI rather than KDSI in this chapter). The total
size is then 22000 EDSI - na component being adapted from existing software. For
a project of this total size, developed in organic mode, the effort will be 82
LLM. Using Boehm's method, the effort for each component will be given by
(component size/total size}*82: Producing values of 26, 19, 37 respectively. If
instead of this the effort for each component is calculated separately such that

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 59

effort is given by 3.2(size)**].05 the figures are 24.69, 17.34, 35.90
respectively. This yields a total of 77.93 LM, 5% lower than the value of a
project of total size 22000 DSI. Whether or not this is in any way an accurate
reflection of the effects of reduced diseconomies of scale and modularity is
both beyond the scope of this review as well as the ability of the present
authors. At first glance it seems no more or less questionable than do other
aspects of COCOMO as presented by Boehm, and the justification behind its
derivation certainly seems more firmly grounded than does Boehm's unexplained
use of straightforward proportions. For the remainder of this discussion, and
in the implementation of component level estimating, the 'revised' derivation of
individual component effort value has been substituted for that offered in
Software Engineering Economics (ppl46ff).

Boehm suggests that 'it is highly useful to collect and record intermediate
level software cost estimating information on a standard form organized for the
purpose' (pl46). This is called a 'Component Level Estimating Form' (hereafter
CLEF). A CLEF allows any software product to be divided into a maximum of ten
components each of which can be analyzed and adjudged in terms of the 15 cost-
drivers of Intermediate COCOMO - for both development and maintenance phases.
(Should details for more than 10 components be required, the present authors
would suggest that users develap a hierarchy of components and produce CLEFs for
each structured subsection).

For instance a system may consist of a control component which must be developed
and maintained at a very high level of reliability, and to which are to be
allocated programmers and analysts of a corresponding high level of expertise.
Another component may be concerned with 1/0, adapted from existing software and
not requiring ratings above nominal for any cost-drivers. Implementation of
Intermediate COCOMO-micro would then result in each component having all 15
cost~drivers set, then producing 15 individual EAFs. The nominal number of
labour units for each would then be altered accordingly, and the total would be
the sum of all adjusted values. For maintenance each component would be
allocated a value for ACT, and adjusted values would be similarly calculated.

The ahove discussion has sought to demonstrate the major deficiencies in Boehm's
approach, without simultaneously undermining or undervaluing the concept of
software engineering economics or the development of cost-estimating rmodels. On
the contrary, by pointing out the flaws in COCOMO the present authors hope to
contribute to a developing area of work.

With respect to COCOMO itself the main criticisms can be considered in three
groups. First there are those concerned with Boehm's intention of
incorporating a 'wider' perspective in his approach. As was pointed out, the
assumptions behind this 'humanitarian' framework are highly questionable, and
Boehm spends no time explicating them in any satisfactory way. Furthermore
they do not appear to play any significant part in the development of the model
itself. It is interesting to note that reviewers talked of the book as a data
processing managers' bible; indicating a far narrower readership and range of
application than might have been expected given the intention of a wider
approach. As it stands the reader can merely fantasize upon what sort of model
it would be that could in some way take account of Boehm's intentions.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 60

If the first group of criticisms concerns what is to be encompassed in the
'economics' of software engineering economics, the second refers to the model of
software engineering or software development itself. Here the fundamental
failing, possibly a fatal one, is the neglect of any discussion of the method
for producing the initial figures for project size - the basis for all other
estimates. If Boehm wishes to argue that this represents a specific problern
prior to application of the model itself, then he must supply the reader with
the rationale and guidelines for this phase. As presented in his account
project sizes seem to appear from nowhere in particular: the 'Plans and
Requirements' phase of software development is granted an ex post facto
existence.

Finally there are a number of points which apply to the presentation of
Intermediate COCOMO. These concern the ‘'independent' status of the 15 cost-
drivers, and the ramifications of their different ratings. In addition there
is the peculiar way in which the micro version makes use of proportions,
ignoring the diseconomies of scale and functional modularity stressed by Boehm
himself. Taken together these criticisms would seem to put in doubt much of
the sophistication, accuracy and usefulness claimed for COCOMO. If they can be
remedied then perhaps other aspects of the approach - the concept and
description of the software life-cycle, the analysis of the phases and
activities emanating from this; the sensitivity analyses and component level
estimations - can be more fully utilised and their value estimated. In the
meantime healthy scepticism rather than religious fervour would appear to be
more suitable.

[l made a call to Barry Boehm concerning the foregoing review, and he offered the following comment.
PGN]

I think the authors have indeed made a reasonably careful study of the first 9 of the book’s

33 chapters, but their review does not seem to cover any material in the rest of the book

-- which discusses many of the questions that they raise. B.W. Boehm

