
ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 4 4

B .W.BOEHM SOFTWARE ENGINEERING ECONOMIC S

A REVIEW ESSA Y

A .Bryant* and J .A .Kirkham +

The current tendency for software costs to exceed hardware costs is the effec t
of both an absolute increase in the former and decrease in the latter .
Software development is now the major cost factor for any project concerned wit h
the introduction or enhancement of electronic data-processing (EDP) equipment :
it is also the most difficult for which to produce acceptably accurate estimates
- both in terms of monetary cost and development schedule . In response to the
growing dissatisfaction caused by the all-too-frequent tendency for fina l
software development costs and schedules grossly to exceed initial estimates ,
attempts have been made to perfect estimating methods and models which can clai m
at least a reasonable degree of accuracy, providing a realistic basis for
budget planning and labour allocation .

If the prime impulse behind these efforts can be termed that of 'budgetary
credibility', there is also another, broader but less precise, impulse whic h
stems from the non-budgetary effects of the adoption of EDP techniques. Some
cost models ignore this second aspect, others seek to account for it through a
wider concept of 'cost' derived from the field of 'cost-benefit analysis' . An
example from the latter category is provided by the Constructive Cost Mode l
developed by Barry W . Boehm and explicated in his recent book "Softwar e
Engineering Economics", Prentice Hall, 1981 .

The reception accorded to Boehm's work has been little short of rapturous, some
have described it as a sort of data processing managers' bible which should b e
on hand whenever software budgets are being decided and allocated .

The current authors, however, must demur from any such approval in the light o f
a careful study of Boehm's text and an implementation of the first two version s
of his model . This is not to undermine the importance of the questions to whic h
Boehm's argument is addressed, but instead to temper the praise which it ha s
evoked .

Boehm introduces his argument by stating that the objective of the book is t o
'equip you to deal with software engineering problems from the perspective o f
human economics as well as from the perspective of programming' (p .1) . The
intention then is to claim a wider perspective for Software Engineerin g
Economics (SEE), which will be implemented in the COCOMO approach .

Initially Boehm illustrates his concept of this new approach with two examples.
In the first, a case study of the development of an information processin g
system for Scientific American, the point is made that what at first sigh t
appears to be a perfectly acceptable and well-programmed system may, onc e
implemented, lead to disastrous results due to neglect of certain ke y
operational elements . This can be avoided by considering not merely the
immediately obvious 'programming' aspects of the implementation, but othe r
facets such as those concerned with 'operational problems ; budget problems ;
schedule problems ; problems in determining the relative priorities of users '
needs' (p .8).

------------------- -

* MFT Computers Ltd ., Charles House, Low Lane, Horsforth, Leeds LS18 5DE .
+ Postgraduate School of Studies in Computing, University of Bradford,Bracffor d

West Yorkshire, BD7 1DP .

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010891.1010897&domain=pdf&date_stamp=1983-07-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 4 5

The second case study further stresses the necessity of expanding the purporte d
limits of orthodox perspectives in the light of the experience of the effects o f
the introduction of electronic data processing (EDP) to an urban schoo l
attendance system in USA . In this instance the programming and economic goal s
were both achieved, but to the disadvantage of the attendance clerks who woul d
be made redundant upon implementation of the system . These clerks were for th e
most part women, with school-age children, from the poorer sections of the city ,
often relying upon such employment both in terms of the income and the advantag e
that the situation and hours of work coincided with their children's schoo l
hours . Once denied this opportunity, they would either have to seek work whic h
afforded neither of the latter expediencies or claim welfare .

Boehm, having himself been part of the team involved in the second example ,
urges that not only must software development encompass non-programming aspect s
of system implementation, but that this wider perspective must not be restricte d
to what he terms the 'material-economics approach' ; instead the 'human-economic s
approach' must be considered (p .12) . Unfortunately Boehm gives neither an
indication of how this objective is to be achieved, nor what it would entail .
He somehow believes that the development away from 'a primarily production -
oriented economy toward a primarily service-oriented economy' (p .12) represents
the substance of such a transition . Yet this seems more than questionable give n
the following observations . The growth of the tertiary (service) sector and th e
decline of primary (agriculture) and secondary (manufacture) sectors is no t
particularly straight-forward in advanced economies, and is not applicable t o
third-world and many non-capitalist ones . Moreover, within economies which d o
exhibit this tendency in some respects, the concept of a commodity has expande d
to include an ever wider range of goods and services .

	

Consequently th e
constraints of 'material-economics' (whether Keynesian, monetarist, or other)
continue to apply .

	

Finally, given the large, and increasing, proportion o f
computer personnel -- of all levels and abilities - engaged in military project s

offering neither service nor product in the usual sense - Boehm's suggestion s
seem misdirected and incomplete . His grasp of economics is clearly deficient ,
what then remains to be seen is whether or not the concept of softwar e
engineering economics and the cost model offered are of relevance and use in a
more limited sense .

The approach to software engineering is termed the GOALS approach : 'Goal -
Oriented Approach to Life-cycle Software' . Fundamentally this embodies a
'control loop which involves periodic review and iteration of the programmin g
products with respect to a more general goal structure' (p .15) . At the genera l
level this includes the recommendation that all projects should establish a ful l
range of objectives and thus of constraints involved . Each objective then form s
all or part of a subgoal, the solutions for which must be developed in the ligh t
of the constraints imposed by all other goals ; the process to include iteratio n
where necessary . Summarizing his argument to this point, Boehm offers th e
following definition of software engineering : 'the application of science an d
mathematics by which the capabilities of computer equipment are made useful t o
man (sic) via computer programs, procedures and associated documentation '
(p .16) .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 4 8

Boehm's widening of perspective does not then in detail amount to a qualitativ e
advance upon those more restricted ones concerned solely with compute r
implementation ; the predominant focus rests on programs, procedures an d
documentation . This assessment is further supported by the statement that th e
major challenges for the software engineering profession are those of increase d
software development productivity and increased efficiency of softwar e
maintenance (p .18) . However much he may appear to wish to includ e
'humanitarian' aspects in the field of software engineering economics, it i s
clear that the basis of Boehm's position, and of COCOMO itself, emanates from a
more limited set of concerns, more immediately connected with softwar e
development in the orthodox sense of the term . The discussion of 'conflictin g
objectives' and of Weinberg's experiments (1) give exclusive consideration t o
orthodox software factors such as development effort, program clarity and memor y
requirements . This is not to deny that COCOMO may well prove to be of use, but
only in a far more localized sense than that promised in Boehm's introduction .
(Indicative of this is that none of the factors incorporated in COCOMO relate s
to the 'humanitarian' aspect seemingly of such central concern to the author .)

In turning to consider Boehm's model in this more limited light the initia l
problem concerns the accuracy and reliability which is claimed The rational e
behind any software estimating model derives from the indeterminate nature o f
software development and maintenance, together with the demonstrable tendenc y
for actual expenditure to outstrip initial estimates, often by a factor of te n
or more . Given the well established observation that software costs ar e
increasing both in terms of overall proportion of total EDP costs, and as a n
overall proportion of gross domestic product (see Boehm, ppl7-l8), it i s
understandable that there is a good deal of interest in the perfection o f
methods for producing initial cost-estimates that prove to have a high degree o f
reliability . No cost estimating model, in whatever field, can ever guarante e
complete accuracy, but merely claim a degree high enough to ensure that initia l
figures bear some close relationship to final expenditure . The current noun for
software models is, according to Boehm, to be within 20% of actual costs, 70% o f
the time (p32) . Often even this degree of accuracy is only achieved with regar d
to a specific category of projects . Boehm, however, claims that th e
'Intermediate' and 'Detailed' versions of COCOMO in achieving this level o f
reliability for a wide range of applications 'provide a good deal of help i n
software engineering economic analysis and decisionmaking' (p32) . A clai m
seemingly accepted unquestioningly by reviewers of the book . The assumptions
and limitations behind the claim, however, need to be clarified before an y
conclusion can be reached .

-------------------- -

1 . This experiment consisted of giving different directions to fiv e
programming teams regarding the optimum aspects of the same task . For
instance one team was required to complete the project with a minimu m
amount of effort, another was told to optimize output clarity . Four of the
five achieved top rating for their particular primary objective - the othe r
achieved second from top - but all failed to perform consistently well wit h
regard to other teams' primary objectives . From this Boehm concludes tha t
successful software development needs to encompass a range of possibl y
conflicting goals . (See pp .20ff and references listed there) .
G .M .Weinberg and E .L .Schulman, "Goals and Performance in Compute r
Programming" Human Factors, 1974, 16(1), 70-77 .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 4 7

COCOMO consists of three upwardly compatible versions of the model : 'Basic' ,
'Intermediate', and 'Detailed' . The basic level is designed to do no more tha n
return initial order of magnitude estimates derived solely from project size an d
development mode (see below) . The other two models are more complex i n
introducing a range of 'cost-drivers' (i .e . factors which influence developmen t
and maintenance effort and duration) which, depending upon the way they are set ,
increase or decrease the nominal values for the number of labour units ,
development schedule and so on . The nominal values are merely dependent upon
project size .

For a project to be amenable to COCOMO cost-estimating its size must b e
calculated in terms of 'delivered source instructions' (hereafter DSI) ,
expressed in units of 1000 (hereafter KDSI) . This forms the basis for al l
further results and analyses .

The concept of 'delivered source instructions' is defined as follows : -

Delivered . This term is generally meant to exclude nondelivered suppor t
software such as test drivers . However, if these are developed with the sam e
care as delivered software, with their own reviews, test plans, documentation ,
etc ., then they should be counted .

Source Instructions .

	

This term includes all program instructions created b y
project personnel and processed into machine code by some combination o f
preprocessors, compilers, and assemblers .

	

It excludes comment cards an d
unmodified utility software .

	

It includes job control language, forma t
statements, and data declarations .

	

Instructions are defined as lines of cod e
or card images . Thus, a line containing two or more source statements counts a s
one instruction ; a five-line data declaration counts as five instructions

	

(pp
58-9) .

As it stands this definition and the context in which it is meant to apply ar e
strangely contradictory . For the Basic version of the model the project size ,
in KDSI, is the prime variable, and is meant to provide the basis for earl y
order of magnitude estimates . Yet the calculation of KDSI would appear to rel y
upon fairly detailed knowledge of the project which at that stage would no t
necessarily be easily and readily available . Boehm fails to consider this
matter, and neglects to explain how at the very least some estimate of projec t
size in these terms can be ascertained from an initial outline of the form an d
nature of system implementation and objectives . Even within the more limite d
sense within which COCOMO is being considered this is a major flaw . In none of
the examples of COCOMO calculations does the author indicate any method fo r
calculation of project size in KDSI, the number is simply stated or introduce d
as the result of 'an initial study' (eg see p63) . If the alleged reliability o f
the model is reassessed in the light of a fairly optimistic estimate of the
inexactitude of the initial figures for project size (20% in either direction)
this must severely undermine any claims to 'reasonable accuracy' . The following

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 4 8

figures illustrate this :-

Basic Estimates for Project of 32 .0 KDSI accuracy of 20%

Organic Development Mode

Size

	

Labour

	

Schedule

	

Staffing
Units

	

Levels

KDSI

	

Lab

	

Months

	

Personne l
Month s

25 .6

	

72.24

	

12 .71

	

5.69
32 .0

	

91 .34

	

13 .90

	

6.57
38 .4

	

110.56

	

14 .95

	

7.40

On the face of it this may be an acceptable range of values, although sinc e
Boehm himself later costs a labour month at $5000-$6000 at 1980 labour price s
this would produce estimates ranging from $361,200-$552,E300 at $5K per labou r
month and $433,400-$666,400 at $6K per labour month .

This range is even larger for the other development modes .

Embedded Mode

Size

	

Labour

	

Schedule

	

Staffin g
Units

	

Levels

KDSI

	

Lab

	

Months

	

Personnel
Months

25 .6

	

176.26

	

13 .08

	

13 .48
32.0

	

230.54

	

14 .26

	

16 .1 7
38 .4

	

286 .74

	

14 .134

	

19 .3 2

At $5K per labour month the estimate ranges from $880,000-$1,444,000 ; at $6K
from $1,050,000-$1,720,000 .

It might, however, be argued that despite appearances this is still a
substantial improvement upon previous estimates, and that, in common with al l
economic models, a certain - and appreciable - degree of inaccuracy i s
inevitable . Since Intermediate and Detailed models are constructed to produce
multipliers which alter nominal values by factors as high as 11, such earl y
initial inaccuracies can only be further exacerbated : on the other hand, if th e
effort multipliers only alter nominal values by a fraction then any effect woul d
fail to balance initial inaccuracies . All the 'sophistication' outlined in th e
second and third levels must be seen to rest upon possibly intolerably crud e
foundations .

All this is not to deny that the concept of delivered source instructions ma y
well be useful, particularly when considering adaptation or maintenance of
existing software (although even here application is not straightforward - se e
below); or perhaps when the size of the project to be developed can be estimated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 4 9

from a large store of information concerning existing similar projects . As
presented by Boehm, however, there is no obvious method by which it can b e
rendered applicable to the early stages of development of an entirely ne w
project . The COCOMO approach to software engineering economics must then b e
judged further deficient both in its own terms and those of what would generall y
be required of a cost-estimating model . Claims for the novelty of the approach ,
together with its applicability, are rendered severely questionable .

It is, however, worth persevering with the discussion of COCOMO for at leas t
two reasons . The primary one derives from software engineering economic model s
in general, the other - of far more limited import - relates to the possibl e
utility of the specific model itself . Currently in almost all advanced socio -
economic formations software development is taking place in a contex t
characterized by general economic contraction and the expansion of application s
of EDP techniques . Consequently there is great interest in developing th e
ability to predict and control software expenditure . Crises in profitability ,
inflation, and the current attempts to manage fiscal matters by application o f
'supply-side' economics preclude many previously possible options open to selle r
or purchaser to counteract discrepancies between initial and final budge t
figures . Assuredly, whatever the failings and lacunae of COCOMO and other cos t
models, there will be an increasing number of attempts to produce satisfactor y
ones . In spite of the severe and disabling criticisms made of COCOMO, Boehm' s
book does seek to analyse and clarify many aspects of the software developmen t
and maintenance processes ; possibly a contribution in itself to the developmen t
of the field of software engineering economics . The major part of what follow s
is devoted to this matter . It need merely be added, as the second reason
alluded to above, that, if Boehm's discussion is found to offer a useful mode o f
analysis, it may be worthwhile devising some means of overcoming the problem o f
producing an initial estimate for project size in terms of DSI .

As was mentioned above, COCOMO is divided into three upwardly compatibl e
versions ; the distinctions between the three can be described as follows . Basic
COCOMO returns initial estimates based solely on project size - in KDSI - and o n
development mode (see below) . These items of data then form the basis fo r
calculating the number of labour months; development schedule ; number of full -
time equivalent software personnel ; productivity : the equations used being
derived from the COCOMO database . In addition figures are presented in terms o f
'effort' and 'schedule such that the duration and number of personnel require d
for each phase can be estimated . These figures are calculated via interpolatio n
from sets of results for standard-sized projects . Intermediate COCOMO build s
upon this . Project size and development mode are presented as before ; initia l
equations are of the same form, albeit using different factors . Since effort
and schedule figures are solely dependent upon project size these are no
different from those produced using the simpler model for the same project size .
The values for labour months, development schedule, and so on, are, however ,
nominal ; later adjusted to final values according to the resulting figure for
the overall 'effort adjustment factor' (EAF) . This factor is the product o f
fifteen 'effort multipliers' each representing a 'cost-driver' which, initiall y
set to a nominal value of 1 .0, can be altered by the user depending upon desire d
enhancements or tolerable deficiencies in specific aspects of the softwar e
product . Finally Detailed COCOMO takes into account these effort multiplier s
not simply as overall effects on the project, as in the Intermediate form, bu t
as producing specific and varying results on each individual phase for bot h
development and maintenance . (The Detailed model will not be considered furthe r
in this discussion .)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 0

All the COCOMO estimating equations are derived from analysis of the COCOM O
database . This consists of details for 63 projects covering a wide variety o f
different applications and development contexts . Nearly 75% of the project s
were developed in the period 1975-79 ; 50% were implemented on mainframes (se e
Boehm, p83 for a summary of project characteristics, pp494-99 for a mor e
detailed report) .

Plotting the actual figures for each of the projects against the estimate s
produced by each version of COCOMO provides the basis for the claimed level o f
accuracy . (The present authors are unable to comment on the methodologica l
intricacies involved in using the same set of data both for deriving the set o f
estimating equations and establishing their degree of accuracy . Boehm includes
no justification for this step .)

The model itself derives from a specific account of 'the software life-cycle '
which consists of nine subgoals each linked to a particular phase o f
development . The inter-relationships between the phases are characterized b y
the term 'waterfall model' in which 'as much as possible iterations of earlie r
phase products are performed in the next succeeding phase' (p36). The ninth
phase 'phaseout', concerns the 'clean transition of the functions performed b y
the product to its successors (if any)' (p37) . In addition, two further
subgoals are sought during each phase of the software life-cycle : 'verificatio n
and validation', and 'configuration management" .

Quoting several studies in support, Boehm argues that the subgoals are bot h
necessary and sufficient for developing any software product ; furthermore th e
proposed sequence is the most effective and successful (pp38-41) . COCOMO i s
then designed to enable estimates to be obtained of the proportion of effor t
spent in each phase of the life-cycle . In addition each phase can be furthe r
analysed in terms of eight major project activities as follows :-

1 Requirement Analysis
2 Product Desig n
3 Programming
4 Test Planning
5 Verification & Validatio n
6 Project Office Functions
7 Configuration Management/Quality Assurance
8 Manuals

The reader must be warned at this juncture that the 'Plans and Requirements '
phase has a somewhat peculiar status . For all levels of COCOMO, 'P&R' i s
assumed to form an independent stage of production prior to development . The
values for this phase are not included in total product figures : their process
of derivation is not elucidated, but it can be inferred that they are attained
by extrapolation backwards from figures for completed projects (pp46-52) .

Apart from dealing with the development of software products, COCOMO also cover s
the ensuing maintenance . Maintenance is defined as 'the process of modifyin g
existing operational software while leaving its primary functions intact' (p54) .
This includes both updating and repairing activities, but specifically exclude s
major redesign and redevelopment (ie more than 50% of new software produc t
performing functions ; design and development of sizeable software interfaces ;
'data processing system operations, data entry, and modification of values i n
the data base' (p54)) .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 1

An additional factor in the development of a software project is its mode o f
development . Boehm offers three ; organic, semi-detached, embedded . The organi c
mode is characterized by 'relatively small software teams' developing 'softwar e
in a highly familiar, in-house environment' (p78) . This results in lower
communications overheads for the duration of the project, and also only a
comparatively small loss in productivity due to these overheads as project siz e
increases .

With regard to embedded mode 'the major distinguishing feature . . . is a need to
operate within tight constraints' (p79) . Such projects need constant an d
extensive verification and validation, as well as rigorous configuratio n
management and quality assurance, to ensure that development maintain s
compatibility with the existing 'strongly coupled complex of hardware, software ,
regulations, and operational procedures' (p79) . Being concerned to a fa r
greater extent with entirely new projects than development in organic mode ,
communications overheads are proportionately greater at every stage . The labou r
distribution curve is more pronounced than that for organic mode . In the earl y
stages a small team of analysts would be used to complete product design ,
followed by introduction of a far larger team of programmers to carry out
detailed design, coding, and unit testing .

Serni-detached mode is an intermediate one between organic and embedded . A
project may be intermediate in one of two respects . Either it falls between th e
other two modes in terms of its overall characteristics, or it may be a mixtur e
of components of different mode .

Boehm's model also attempts to account for the diseconomies of scale inherent i n
software development . Taking the foregoing discussion as whole it would be
expected that Basic COCOMO would be designed to produce the following values :-

I Total number of labour unit s
2 Expected development schedul e
3 Number of personnel required
4 Phase distribution in terms o f

a labour unit s
b development schedul e
c effor t
d personnel require d

The basic unit of labour expended is the 'labour month' (hereafter LM)
consisting of 152 hours of working time (Boehm, p59) . The Basic COCOM O
equations for number of labour months are as follows :-

Organic

	

l_M=2 .4(KDSI)**1 .05
Semidetached

	

LM=3 .0(KDSI)**1 .1 2
Embedded

	

LM=3 .6(KDSI)**1 .20

The development period (TDEV) is then given in terms of the number of labou r
units as follows: -

Organic TDEV=2 .5(LM)**0 .3 8
Semidetached TDEV=2 .5(LM)**0 .3 5
Embedded TDEV=2 .5(LM)**0 .32

(For derivation of these equations see Boehm, chapter 29 .)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 2

The number of personnel is then obtained from the ratio of number of labou r
units : development schedule - (LM/TDEV) . This produces a value termed 'full -
time equivalent software personnel' (hereafter FSP) .

Productivity can then be estimated from the ratio of project size : number of
labour units - (KDSI/LM) .

For each development mode Boehm then produces values for standard produc t
sizes: -

Basic Project Profile s
Medium-Size Project s

Quantity
Org

Mode
Sem Emb

Total Effort (LM) 91 146 230
P&R 5 10 1 8
Design 15 25 42
Programming 56 85 124

Detailed Design 22 37 6 0
Code/Unit Test 34 48 64

I&T 20 36 6 4

Total Schedule (Months) 14 14 1 4
P&R 1.7 2 .8 4 . 5
Design 2.7 3 .6 4. 8
Programming 7.7 6 .8 5 . 6
I&T 3 .6 3 .6 3 . 6

Average Personnel (FSP) 6 .5 10.4 16 . 4
P&R 2 .9 3 .6 4 . 0
Design 5 .6 6 .9 8 . 8
Programming 7 .3 12.5 22 . 1
I&T 5 .6 10.0 17 . 8

Percent of Average Personne l
P&R 45 35 24
Design 84 66 54
Programming 113 120 135
I&T 85 96 10 8

Productivity (DSI/LM) 352 219 139
Code/Unit Test 941 667 500

(Figures taken from Boehm, p92)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 3

The following observations are pertinent . The estimated effort (1) increase s
between organic and semidetached modes, and between semidetached and embedde d
modes . Moreover, as project size increases there is an accompanying 'diseconom y
of scale' (p76); the rate of decline in productivity increases . Developmen t
schedule varies with product size independent of development mode, hence
development in embedded mode requires most effort for a given project size ;
organic mode requires least . Again there is a diseconomy of scale, the rate o f
increase in FSP increases with product size .

Analyzing these figures with respect to the software life-cycle produces a
further set of standard tables . Boehm does not seek to offer separate value s
for each of the nine phases mentioned above, instead he amalgamates them unde r
four headings; 'Plans and Requirements' ; 'Product Design' ; 'Programming' ;
'Integration and Test' - the third is subdivided into 'Detailed Design' and
'Code and Unit Test' .

For each standard sized project there is provided a breakdown in terms of thes e
categories for both effort and schedule values . These reflect the basic labou r
distribution for the specific mode . For all three modes there is an increase i n
effort between the start of product development and completion of 50-60% o f
development schedule, after which there is a corresponding decrease . For any
given product size a set of values for all these features can be obtained b y
interpolation based on relevant standard values . In practice these also
include the proportion of each of the eight major activities for each phase .

Maintenance values are calculated on the basis of 'annual change traffic' : 'the
fraction of the software product's source instructions which undergo (sic)
change during a typical year, either through addition or modification ' (p7l) .
The maintenance effort is then given by the product of this fraction and th e
number of labour units for development : the annual requirement for maintenance
staff will then be this figure divided by twelve .

(1) With regard to effort values, the embedded mode requires 'considerabl y
greater effort' in terms of the proportion devoted to 'Integration and Test'
phase (p89) . This is a result of the greater care demanded in adhering to an d
rectifying software requirements . It should be noted that because developmen t
schedule increases markedly between organic and embedded modes, the proportion
of effort spent in any particular phase of the latter may be less than in th e
corresponding phase of the former :

	

the actual effort, expressed in labou r
months, will, however, be greater .

Similar remarks apply to different phases for schedule values . For embedde d
projects a larger proportion of time will be spent in 'Plans and Requirements '
and 'Design' phases, since they require high levels of validation and
specification, but use a smaller number of personnel than later phases . (If th e
number were to be increased, the communications overheads would become a majo r
factor - see Boehm,pBO .) Since the number of personnel increases for th e
'programming' phase, a lower part of the estimated development schedule will b e
spent at this juncture .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 4

The major limitation of Basic COCOMO, to which Boehm admits, is that it onl y
takes account of DSI - and annual change traffic for maintenance . Other factor s
relating to hardware constraints, personnel, and so on are neglected . In
addition, the estimates for full-time software personnel are for average staf f
levels for each phase, giving rise to discontinuities at boundaries .
Intermediate COCOMO is designed to deal with most of these aspects .

Intermediate COCOMO provides a 'compatible extension' (p114) of the Basic model ,
providing greater accuracy and more detailed control by the interested user .
This facility arises as a result of the incorporation of '15 predicto r
variables' (p114) or cost drivers . Boehm claims that this effects a level o f
accuracy of 'within 20% of the project actuals 68% of the time' (p115) .

Previous models, such as those based on the System Development Corporatio n
studies in the 1960s (see p155 and references there cited), sought to encompas s
as many as 104 different factors including type of application, expertise leve l
of analysts and programmers, program complexity, language used and amount o f
travelling required . Boehm offers a set of 15 cost-drivers which he considers

RELY

	

Required software reliability
DATA Database size
CPLX Product Complexity

Computer Attributes

TIME

	

Execution time constrain t
STOR

	

Main storeage constrain t
TURN Computer turnaround tim e

Personnel Attributes

ACAP Analyst capabilit y
AEXP

	

Applications experienc e
PCAP Programmer capabilit y
VEXP

	

Virtual machine experienc e
LEXP

	

Programming language experienc e

Project Attributes

MODP Modern programming practices
TOOL Use of software tool s
SCED

	

Required development schedul e

After due consideration of the nature of a specific project, the user can se t
each cost-driver to a desired rating - lower or higher than an initial nomina l
rating . In total there are six possible ratings - very low, low, nominal, high ,
very high, extra high - although in practice no more than five are applicable t o
any single cost-driver : for example the cost-driver 'Analyst Capability' canno t
be set to a rating of 'extra high' . The effect of altering a cost-driver rating

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 5

from nominal is to alter its corresponding 'effort multiplier' from a value o f
1 .0 . For example the effort multiplier for a 'high' rating of required softwar e
reliability is given as 1 .15 ; for a 'low' rating it is 0 .88 . The implicatio n
is that to develop a software product of high reliability will take longer an d
require more labour units than will the same product if developed with a nomina l
level of reliability .

Initially, in similar fashion to that for Basic COCOMO, project size and mode
are ascertained and then used to produce values for effort (LM) and schedul e
(TDEV), etc . In this case, however, the estimating equations are not exactl y
the same for calculating LM .

Organic LM=3 .2(KDSI)**1 .0 5
Semidetached LM=3 .0(KDSI)**1 .12
Embedded LM=2 .8(KDSI)**1 .20

The equations for calculating TDFV are the same as before . These values ar e
merely nominal ones ; the final ones being dependent upon the product of th e
effort multipliers for each of the 15 cost-drivers -- the 'effort adjustmen t
factor' or EAF .

For a project of 128 KDSI, to be developed in embedded mode, the nominal effor t
value will be 945.8 LM . If all cost-drivers are left at nominal ratings, the n
this would be the final estimate for number of labour units ; development
schedule would be 22.4 months; average full-time software personnel 42 .2 ;
productivity 135 DSI per month . Should it be decided to develop the sam e
product with high reliability, then the effort multiplier of the cost-drive r
'RELY' would be set to 1 .15 and the effort adjustment factor ('LAP') would h e
1 .15 . As a result the value for LM will be altered from 945 .8 to 1087.7, givin g
adjusted values for TDEV (23 .4), FSP (46.5), and PROD (118) .

Intermediate COCOMO is designed to allow users to specify the nature of th e
project in more detail, and further to perform sensitivity analyses by alterin g
cost-driver ratings and noting the resulting effect on LM,TDEV, etc . A brief
glance at the values relating to individual cost-drivers shows that for th e
first two categories - Product and Computer attributes - setting the cost-drive r
to a rating above nominal increases the total effort required (effor t
multiplier is greater than 1 .0); while setting it to a lower rating has th e
opposite effect . Two of the Computer attributes, however, - 'TIME' and 'STOR' -
cannot be rated lower than nominal . For the last two categories - Personne l
and Project attributes - for all but the last cost-driver the converse applies :
increasing the rating lowers the total effort required, and vice-versa . For
'SCED' any alteration from nominal will increase the total effort required .

Apart from presenting a table of what each rating for each cost-driver entails ,
Boehm for the most part only deals specifically with 'RELY' and some of th e
personnel attributes . The ramifications of altering some of the others are lef t
wholly or partially unexamined .

The 'RELY' cost-driver is set according to the nature of the project . It wil l
be set to 'very high' if system failure would present a risk to human life e g
a nuclear reactor control system (p121), and to 'high' if heavy financial los s
would be incurred . Lower ratings would depend upon acceptable levels of failur e

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 8

and the benefit obtained from decreased development costs as a result of th e
need for fewer labour units . Once developed, however, the system must b e
maintained, and it would seem obvious that if the software has been developed t o
a certain degree of reliability it would be maintained at a similar level .
Moreover the effort to maintain a system developed with a 'low' or 'very low '
Ievel of reliability would be expected to be greater than if it had bee n
developed at a nominal level ; COCOMO allows for this by incorporating a
different set of values for this cost-driver for the maintenance phase . Fro m
these it can be seen that Boehm adjudges maintenance effort for 'low' and 'ver y
low' projects to exceed that even for 'very high' ones . Once recognized, thi s
would seem to militate against any user deciding to lower the rating below th e
nominal level . (More details of the ramifications of altering this cost-drive r
are given by Boehm in table 8-5,p123 .)

Database size and 'CPLX' cost-drivers are more straightforward, and the relevan t
ratings are easier to ascertain from the details given . Boehm fails to poin t
out that 'TIME' and 'STOR' cannot be rated lower than nominal . If for instance
'STOR' has been set at nominal this would imply that any increase in memory
would have no effect on development or maintenance effort . This may well b e
true, and the limit of w=50% use may accurately reflect this ; but Boehm neglect s
to justify this constraint .

Personnel attributes are the most directly cost-sensitive category, and the boo k
covers some examples of the ways in which sensitivity analyses can be use d
(pp125ff) . Thus the decrease in EAF resulting from a 'high' or 'very high '
rating for 'ACAP','AEXP', or 'PCAP' will in turn lead to an increase in uni t
labour costs ; an analyst with six or twelve years' experience being paid mor e
than one with only three years' experience . This increase may not, however ,
lead to an increase in total development costs : on the contrary, since th e
number of LMs will decrease, the total labour costs may decrease . From th e
scale of values given, employing analysts and programmers with the highest
possible levels of expertise would reduce the number of labour units t o
approximately 35% of nominal values . Whether or not this leads to decrease d
costs overall would depend upon prevailing pay and overhead differentials, an d
availability .

Finally to turn to the category of Project attributes . MODP refers to such
factors as structured code and top-down design (p130) . If applied to the entir e
project for routine use, these practices are estimated to reduce developmen t
labour units by 18% . Once developed, the effect on maintenance becomes
dependent upon project size ; so, similar to RELY, a separate set of values is
required . This arises for two reasons ; the greater extent of application o f
modern programming practices (MPPs) the less maintenance will be required, an d
the lower are the effects of the diseconomies of scale for larger projects .
Cost-driver TOOL refers to the range of compilers, assemblers and loaders - a s
well as diagnostic aids - available . Clearly if these are primitive an d
unreliable they will increase nominal values ; if they are highly developed and
efficient they will decrease the values .

SCED only applies to development phase . Any alteration from nominal wil l
increase the final EAF . None of the examples given deal with ratings other tha n
nominal, and it is unclear how these would operate in practice . For instance i f
SCED is to be 75% of nominal this will increase nominal values by 23% . So a

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 7

project requiring 10 LM would then need 12 .3: the value of TDEV being reduce d
from 5 .22 to 3 .92 months . Using this value of TDEV gives 3 .14 FSP as opposed t o
the initial value of 1 .92 . If, however, SCED were set at 'very high', thi s
would produce a 10% increase, giving TDEV of 8 .35 and 1 .32 FSP . It is not clear
why any alteration of this cost-driver will increase EAF . Obviously if th e
project is to be completed within a shorter time, an increased effort will be
required . But if the project can be planned to take longer then there seems t o
be no obvious reason why overall effort should increase . In his later
discussion of Detailed COCOMO, Boehm mentions that in 'schedule-stretchou t
situations (sic!) . . . there is more time for thorough planning, specification ,
and validation' in the earlier phases (pp466ff) . This, however, seems to hav e
no in-built positive effect on, for instance, maintainability : so it would
appear to be a wasted expenditure of of fort - at any rate Boehm takes the matte r
no further .

In implementing Intermediate COCOMO, it became clear that although there ma y
well be a strong case for considering all 15 cost-drivers as independen t
factors, some attention should have been given to specific combinations an d
their ramifications . Setting MODP to 'very high', TOOL to 'very low', and PCA P
to 'very low' would seem rather impractical ; and although the corresponding EA F
of 1 .44 ought to underline this, it would disguise the fact that had MODP been
left at nominal the EAF would have been 1 .76 . It does not seers clear why
routine use of MPPs reduces the EAF even when programmers with less than on e
month's experience are used . It might be suggested that, on the contrary, the
EAF should increase as a result of such a combination . It might be contended
that such amalgams would be ruled out. as a matter of course by knowledgeable
project planners, but this would fail to satisfy the criticism that perhaps th e
15 factors are not entirely independent variables .

So far little has been said about adaptation . In the discussion of the
estimation of DSI it was observed that with respect to the adaptation o f
existing software the concept may be more readily applicable . Adaptation,
however, is not without specific problems itself . As Boehm notes 'no quantitie s
are as easy to under-estimate as are the estimates of how much one will have to
change an existing piece of software to set it to work successfully in a ne w
product environment' (p138) . A good deal of effort will need to be expended o n
redesign, reworking of sections of code, and integration and testing . To this
end Intermediate COCOMO incorporates a technique for quantifying these tasks an d
thereby arriving at an 'Adaptation Adjustment. Factor' (AAF) which, normally ,
scales down the project size of the existing software . AAF is dependent upo n
'percent design modified' (DM), 'percent code modified' (CM) 'percent o f
integration required for modified software' (IM) as follows :-

AAF = 0 .4(DM) + 0 .3(CM) + 0 .3(IM)

Equivalent project size is then given a s

EDSI = (ADSI)AAF/l0 0

where EDSI is the equivalent size in DST and ADSI is the size of the software t o
be adapted .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul _1983 Page 5 8

For a simple conversion, such as that required when adapting a program to run o n
a different installation, typical figures might b e

DM = 0 no design chang e
CM = 15 15% code change
IM = 5

	

small effort needed
AAF = 0 .4(0) + 0 .3(15) + 0 .3(5) = 6
If ADSI = 50,00 0
EDSI = 50,000(0 .06) = 3000 DS I

(Boehm,pp134-5)

The coefficients for the three factors are derived from the 'general averag e
fractions of effort devoted to design, code, and integration and testing' give n
by COCOMO values for standard size projects (p137) . In practice it may be
desirable to alter them slightly to reflect changing COCOMO values acros s
project size and development mode, but since the calculation of AAF is not ver y
sensitive to such differences, Boehm recommends adhering to average values .

The second form of Intermediate COCOMO is concerned with a more detailed leve l
of estimates pertaining to individual components of a software product . Boehm
considers that the macro model will be used in earlier stages of a project, an d
the micro model applied to the more detailed stages later in development .

Although not expressly described as such, the reader is lead to assume that each
component forms a clearly demarcated subsection of the overall product, an d
attains an independent existence in terms of development . This must be the case
given that any component may be a piece of adapted software or a newly develope d
program . Also the purpose of applying Intermediate COCOMO to individua l
components is to aid in assessing the effect of distinguishing between differen t
groups of people with differing levels of capability to various components
depending upon their complexity . In the light of this, a major aspect of thi s
version of Intermediate COCOMO seems questionable as presented by Boehm . In
producing figures for component level estimates, Boehm adds all component size s
together and produces an overall nominal set of figures for number of labou r
months, schedule and productivity . The number of labour months for an y
individual component is then calculated on the basis that the ratio of componen t
size to total project size is identical with that between number of labou r
units. Such an assumption overrides two other, related assumptions made wit h
some force by Boehm . The first concerns the diseconomy of scale inherent in al l
software projects . The second derives from the functional modularity whic h
allows components to be distinguished and treated as separate entities . In
other words splitting a project into discrete parts should lead to a decrease i n
the total effort required for two reasons : each component will be smaller tha n
the total, and hence diseconomies of scale will be less marked ; functiona l
modularity will further reduce this . Boehm gives as an example a project o f
three components, respectively 7000, 5000, 10000 DSI (pp146ff - NB for n o
apparent reason Boehm uses DSI rather than KDSI in this chapter) . The total
size is then 22000 EDSI - no component being adapted from existing software . For
a project of this total size, developed in organic mode, the effort will be 82
LM . Using Boehm's method, the effort for each component will be given b y
(component size/total size)*82 : Producing values of 26, 19, 37 respectively . If
instead of this the effort for each component is calculated separately such that

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 5 9

effort is given by 3 .2(size)**l .05 the figures are 24 .69, 17 .34, 35 .9 0
respectively . This yields a total of 77.93 LM, 5% lower than the value of a
project of total size 22000 DSI . Whether or not this is in any way an accurate
reflection of the effects of reduced diseconomies of scale and modularity i s
both beyond the scope of this review as well as the ability of the presen t
authors . At first glance it seems no more or less questionable than do othe r
aspects of COCOMO as presented by Boehm, and the justification behind it s
derivation certainly seems more firmly grounded than does Boehm's unexplaine d
use of straightforward proportions . For the remainder of this discussion, an d
in the implementation of component level estimating, the 'revised' derivation o f
individual component effort value has been substituted for that offered i n
Software Engineering Economics (pp146ff) .

Boehm suggests that 'it is highly useful to collect and record intermediat e
level software cost estimating information on a standard form organized for th e
purpose' (p146) . This is called a 'Component Level Estimating Form' (hereafte r
CLEF) . A CLEF allows any software product to be divided into a maximum of te n
components each of which can be analyzed and adjudged in terms of the 15 cost -
drivers of Intermediate COCOMO - for both development and maintenance phases .
(Should details for more than 10 components be required, the present, author s
would suggest that users develop a hierarchy of components and produce CLEFS fo r
each structured subsection) .

For instance a system may consist of a control component which must be develope d
and maintained at a very high level of reliability, and to which are to b e
allocated programmers and analysts of a corresponding high level of expertise .
Another component may be concerned with I/0, adapted from existing software an d
not requiring ratings above nominal for any cost-drivers . Implementation o f
Intermediate COCOMO-micro would then result in each component having all 1 5
cost-drivers set, then producing 15 individual EAFs . The nominal number o f
labour units for each would then be altered accordingly, and the total would h e
the sum of all adjusted values . For maintenance each component would b e
allocated a value for ACT, and adjusted values would be similarly calculated .

The above discussion has sought to demonstrate the major deficiencies in Boehm's
approach, without simultaneously undermining or undervaluing the concept o f
software engineering economics or the development of cost-estimating models . On
the contrary, by pointing out the flaws in COCOMO the present authors hope t o
contribute to a developing area of work .

With respect to COCOMO itself the main criticisms can be considered in thre e
groups .

	

First there are those concerned with Boehm's intention o f
incorporating a 'wider' perspective in his approach . As was pointed out, the
assumptions behind this 'humanitarian' framework are highly questionable, an d
Boehm spends no time explicating them in any satisfactory way . Furthermore
they do not appear to play any significant part in the development of the mode l
itself . It is interesting to note that reviewers talked of the book as a data
processing managers' bible ; indicating a far narrower readership and range o f
application than might have been expected given the intention of a wider
approach . As it stands the reader can merely fantasize upon what sort of mode l
it would he that could in some way take account of Boehm's intentions .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 3 Jul 1983 Page 6 0

If the first group of criticisms concerns what is to be encompassed in th e
'economics' of software engineering economics, the second refers to the model o f
software engineering or software development itself . Here the fundamenta l
failing, possibly a fatal one, is the neglect of any discussion of the method
for producing the initial figures for project size - the basis for all othe r
estimates .

	

If Boehm wishes to argue that this represents a specific proble m
prior to application of the model itself, then he must supply the reader wit h
the rationale and guidelines for this phase .

	

As presented in his accoun t
project sizes seem to appear from nowhere in particular : the 'Plans and
Requirements' phase of software development is granted an ex post facto
existence .

Finally there are a number of points which apply to the presentation o f
Intermediate COCOMO . These concern the 'independent' status of the 15 cost -
drivers, and the ramifications of their different ratings . In addition there
is the peculiar way in which the micro version makes use of proportions ,
ignoring the diseconomies of scale and functional modularity stressed by Boeh m
himself . Taken together these criticisms would seem to put in doubt much o f
the sophistication, accuracy and usefulness claimed for COCOMO . If they can be
remedied then perhaps other aspects of the approach - the concept an d
description of the software life-cycle, the analysis of the phases an d
activities emanating from this ; the sensitivity analyses and component leve l
estimations - can be more fully utilised and their value estimated . In the
meantime healthy scepticism rather than religious fervour would appear to be
more suitable .

[I made a call to Barry Boehm concerning the foregoing review, and he offered the following comment .
PGN]

I think the authors have indeed made a reasonably careful study of the first 9 of the book 's
33 chapters, but their review does not seem to cover any material in the rest of the boo k
-- which discusses many of the questions that they raise. B .W. Boehm

