
ACM SIGSOET

	

SOFTWARE ENGINEERING NOTES, Vol 7 No 3, July 1982

	

Page 16

USE OF DATA ABSTRACTION IN PROCESS SPECIFICATIO N

Franklyn T . Bradshaw, George W . Ernst and Raymond J . Hookway
Computer Engineering and Science Departmen t

Case Western Reserve Universit y
Cleveland, OH 4410 6

Abstrac t

Processes in computer systems are ofte n
intimately involved with various dat a
abstractions that occur in the systems . The
specification of such processes should stat e
the nature of this involvement . This note
focuses on a special kind of process, calle d
a realization process, and its specificatio n
because it appears to capture the interplay
between concurrency and abstraction in a
natural way . A realization process has tw o
important properties : it is transparent to
the abstract space and it is serializable
with processes at the abstract level . Tran-
sparency and serializability are the mai n
specifications of realization processes .
These concepts are illustrated by an exampl e
of the kind of realization processes found i n
actual

	

computer systems which serves t o
motivate the discussion .

1 . Introduction

Contemporary computer systems contain a
variety of concurrent processes ; some ar e
quite different in nature from others . One
kind of process is very similar to a pro-
cedure in the sense that an activation of th e
process causes some computation to start .
When the computation finishes, this activa-
tion of the process is destroyed . For exam-
ple, when a user requests that a program b e
loaded, typically a separate process i s
created for this purpose which does th e
link-editing and relocation, and then des-
troys itself, returning control to the user .
Floyd/Hoare assertions seem to be a goo d
method for specifying such processes . Hookway
(1980) has used this method in developing
complete formal specifications for a simpl e
linking-loader .

Some processes appear to be quite dif-
ferent from those described above becaus e
they are designed to never terminate, bu t
rather to loop forever . Unlike the procedur e
case, pre and post-conditions do not appea r
to be useful in the specification of suc h
processes . They are usually created at system
generation time which makes preconditions
meaningless and since they never terminat e
post-conditions are not relevant .

These issues surfaced when we starte d
doing research on formal verification of con -
current processes, several years ago . I t
since became obvious to us that such researc h
could not make meaningful progress until w e
had a better understanding of what i s
involved in the specification of concurrent

process . The reason is that formal verifica-
tion is, by definition, proving that a n
implementation meets its specification .
Hence, the kind of specification that is use d
can have a major impact on the verification
rules . This note is only concerned with for-
mal specification of concurrent processes
even though our real goal is formal verifica -
tion . The purpose of this note is to
describe our approach at the intuitive leve l
so that the basic concepts are not buried i n
technical details . The reader is referred t o
Ernst {1982) for a more technical treatmen t
of the concepts in this note and forma l
verification .

2 . Data Abstraction and Concurrency

Often processes in actual computer sys-
tems are intimately involved with variou s
data abstractions that occur in the systems .
The specification of such processes shoul d
state the nature of this involvement . Fre-
quently, a process manipulates the respresen-
tation of certain abstract objects but has n o
visible effect on them at the abstract level ;
i .e ., the abstract values of the object s
remain unchanged . Usually, such processes ar e
of the non-terminating variety described in
Sec .l .

For example, a front-end process take s
input data and assembles it into blocks of an
appropriate size before passing it on to th e
processes for which it is intended . But at a
more abstract level, the front-end process i s
invisible because it has no effect on th e
values computed at the abstract level bu t
only on the way data is passed between
processes . This paper is primarily concerned
with the specification of such processes .

To be more explicit, suppose that some
abstract objects, al, a2, . . . have been
created and that these objects are collec-
tively represented by objects rl, r2, . . . in
the realization space . That is, the values o f
the is determine the values of the as . As
usual some of the is may themselves be
abstract objects created by some lower leve l
of abstraction, but all of the is are used
in the representation of one or more of the
as . We also assume that there are some pro-
cedures pl, p2, . . . that can access and modif y
the abstract objects . Of course, the p ' s
accomplish this by accessing and modifyin g
the is which represent the as .

The kind of process described at the
beginning of this section has direct acces s
to the realization objects and hence we will

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010904.1010908&domain=pdf&date_stamp=1982-07-01


ACM SIGSOFT

	

SOFTWARE 1NGINEERING NOTES, Vol '1 No 3, July 1982

	

Page 17

call it a realization 2rocess . It manipu-
lates the r ' s concurrently with processe s
that manipulate the as . Of course, the
latter is accomplished by calling the p ' s
which in turn access and modify the r ' s .
Hence, both the realization process and a
process at the abstract level may be con -
currently processing the r ' s .

The realization process is aware tha t
one or . more processes at the abstract leve l
may be manipulating the a ' s by calling the
p' s . Of course, the realization process know s
nothing about the nature of the abstract com-
putation, but assumes that any sequence o f
legal calls on the p's can occur . A proces s
at the abstract level, however, knows nothin g
about the realization process which must b e
transparent to the abstract space . In fact ,
usually there is a different implementation
of the same abstract space in which there i s
no realization process . In such an implemen-
tation the a ' s remain the same as do th e
abstract specification of the p ' s, but dif-
ferent r's may be used and the p's manipulat e
them differently . Finally, there is no reali-
zation process manipulating the r ' s in the
alternative implementation of the abstrac t
space .

We have purposely avoided describing the
concept of a realization process in terms o f
a particular language like Euclid or Ada so
that the concept does not become entangle d
with the idiosyncracies of a language . We
believe that any good concurrent programmin g
language must have facilities for implement-
ing abstractions and realization processes .
This, of course, includes constructs lik e
synchronization primitives but they do no t
appear to be the primary issue, at least no t
at this level of detail . Later in this note
we will describe how realization processe s
fit into our concurrent programming languag e
which is a derivative of Modula . But, next ,
we will give a concrete example of the kin d
of realization process that occurs in actua l
computer systems . This example will also
clarify the roles of the a ' s, is and p ' s .

3 . An Example of a Realization Process

This example is a level of abstraction
in the implementation of a file system . I t
allows a process to initiate a file operation
and then continue with its execution . At a
latter time the process can obtain the resul t
of the file operation . This allows a proces s
to overlap its execution with the exectuio n
of the file operations . Such file operation s
are a fairly low level of abstraction becaus e
a file read is split into two parts . However ,
it is definitely an abstraction because i t
does not deal with disk sector numbers, etc .
Many systems have such file operations, e .g . ,
the 10$ of the Sperry Univac 1100 Serie s
Operating System (EXEC-8) . Of course, ou r
example will be much simpler than the Univa c
system, but it is based on the same basi c
idea .

Each file is an abstract object indexe d
by integers . The only other kind of abstrac t
object in this example is a channel which i s
used in reading and writing files . To operate
on a file a process must connect a channel to
the file because the procedures which manipu-
late files have a channel as one of thei r
parameters . For example, write(c,i,e) write s
element e in the ith position of the fil e
connected to channel c .

The realization space also has files an d
channels . A realization file is very simila r
to an abstract file, but a realization chan-
nel is quite different than an abstract chan-
nel . Intuitively, a realization channel is a
buffer whose elements are read and writ e
requests . For example, the procedur e
write(c,i,e) merely records a request fo r
this write operation in the realization chan-
nel c which has a buffer for such requests .
After the request has been put into th e
buffer, write returns to the process whic h
called it . This process then continues eve n
though the actual file update has not bee n
made . In fact, at the abstract level i t
appears that the file has been update d
because the abstract file has element e i n
position i after the call on write .

The implementation of this abstraction
contains a realization process whose functio n
is to update the realization files . This pro-
cess continually cycles through the realiza-
tion channels . Whenever it finds one tha t
contains an outstanding request, it removes
the request from the buffer in the channe l
and performs the actual operation on th e
realization file ,

File reads are done in a manner simila r
to writes . A process requests a file read by
executing readreq(c,i) . This procedure cal l
puts a request to read element i from th e
file connected to channel c in the reques t
buffer of c, and returns to the calling pro-
cess which then continues . At a later time
the realization process performs the read o n
the realization file and puts the result in a
special read buffer in the realization chan-
nel . The read operation is completed by exe-
cuting readcomp(c,e) . This procedure cal l
removes the result of the actual file rea d
from the read buffer of c and assigns it to
e .

Fig .l summarizes this example of dat a
abstraction . The correspondence between th e
abstract and realization values of a file i s
that the realization file will become identi-
cal to the abstract file after all the' out -
standing updates are made on the realizatio n
file . These updates are stored in the reques t
buffer of the realization channel connected
to the file . Only one channel can be con-
nected to a file at any time . If no channe l
is connected to a file its abstract value i s
the same as its realization value .

The read queue of a realization channe l
is the initial segment of the queue in th e
abstract channel . The remainder

	

of

	

the



ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES, Vol 7 No 3, July 1982

	

Page 18

Abstract Objects

files : Each file is a vector of element s
of some predetermined type .

channels : Each channel contains the name o f
the file to which it is connecte d
and a queue of the elements tha t
have been read requested .

Realization Object s

files : Each file is a vector of element s
of some predetermined type .

channels : Each channel contain s

1 . the name of the file to which i t
is connected ;

2 . a queue of the outstanding rea d
and write requests ;

3 . a queue of the elements whic h
have been read from the realiza-
tion file .

Abstract Procedures

1. write(c,i,e) writes element e to th e
ith position of the file connected t o
channel c .

2. readreq(c,i) reads the ith elemen t
from the file connected to channel c
and puts the result in the read queu e
of c .

3. rc,5comp(c,i) removes an element fro m
the read queue of channel c and as -
signs it to e .

4. connect(c,f) connects channel c to
file f .

5. disconnect(c) removes the connectio n
between channel c and its file .

Figure 1 . A summary of data abstraction i n
the file example .

abstract queue is the sequence of element s
whose read requests are stored in the reques t
buffer of the channel . The results of read
requests occur in a channel's read queue in
the order of their execution .

In presenting this example, we attempte d
to

	

suppress as much detail as possible
without losing its essential nature . An
implementation of this example is reasonabl y
involved, perhaps more so than the abov e
description implies . Complete formal specifi -
cations for this example are given i n
Bradshaw and Ernst (1979) together with a n
implementation . The kind of detail suppressed

in this note is that there must be a way to
connect channels to files (given in Fig .l) ,
and a way to create new files (not given i n
Fig .l) . Processes must be synchronized . For
example, the readcomp procedure must "wait "
when the read queue is empty . This in tur n
causes the calling process to wait until th e
realization process performs the actual fil e
read . The reader is referred to Bradshaw an d
Ernst (1979) for this kind of detail .

Our interest in this example is that i t
clearly illustrates the kind of realizatio n
processes found in computer systems . Usuall y
they serve a very practical purpose . In our
example, the realization process allows dis k
access time to be overlapped with the compu-
tation of processes at the abstract level .
Fig .l is a concrete example of the as, i s
and p ' s of Sec .2 (i .e ., the abstract objects ,
realization objects and abstract procedure s
in Fig .l, respectively) . The example clearl y
shows the involvement of the realization pro-
cess with data abstraction . The next sectio n
discusses the nature of this involvement an d
its formal specification . From an intuitive
point of view we know that the function o f
the realization process in the above exampl e
is to perform the actual file reads an d
writes . But how do we formally specify thi s
intuitive idea?

4 . Specification of Realization Processe s

This section assumes that the as, i s
and p ' s are defined as in Sec .2 . The genera l
form of a realization process is B ; while
true do C, where B is a sequence of declara-
t ofns followed by some statements which ini-
tialize variables . After "executing" B, th e
process executes C over and over again, neve r
terminating . Since the realization proces s
manipulates the realization objects rl ,
r2, . . ., they are global to B and C .

Typically, a realization process has tw o
functions : (1) it must be transparent to the
abstract space and (2) it must apply som e
transformation to the realization objects .
The latter is usually related to some aspec t
of system performance . For example, often it
is the responsibility of the realization pro-
cess to remove and process entries i n
buffers . If it fails to do this, the buffer s
will become full which will block processes
that add entries to the buffers . For thi s
reason (2) is primarily concerned with termi-
nation . This note only deals with partia l
correctness (correct results when and i f
results are produced), and hence we will onl y
consider (1) above .

To simplify matters, consider a singl e
execution of C, the body of the unendin g
cycle . This execution must satisfy the fol-
lowing property :

For each abstract object al, a2, . . .
its value after executing C must b e
the same as its value before the
execution .



ACNE SIGSOFT

	

SOFTWARE ENGINEEIUNG NO'T'ES, Vol 7 No 3, July 1982

	

Page 19

We call this property transparency because i t
states that C has no visible effect at th e
abstract level . To see what this propert y
entails, note that the values of the i s
determine the values of the as . The specifi-
cation of the abstraction describes thi s
relationship between the a ' s and the r 's . An
execution of C modifies the values of some o f
the is and these new values of the i s
determine the new values of the as . Tran-
sparency requires the new and the old value s
of the a ' s to be the same .

We assume that a process at the abstrac t
level can execute concurrently with a reali-
zation process ; hence, both can concurrently
process the r's . This implies that there mus t
be some kind of synchronization between th e
two processes so that, for example, the y
don't attempt to simultaneously modify th e
same component of the same r . The usual kin d
of synchronization primitives should be quit e
adequate for this purpose .

A more subtle problem is that manipulat-
ing abstract objects concurrently may produc e
intermediate states whose values are not wel l
defined . Consider invoking one of the p ' s
with abstract object ai as an actual parame-
ter . The input and output values of ai wil l
satisfy the specifications of the procedure ,
assuming that its implementation is correct .
However, half way through the execution o f
the procedure, the r ' s will have intermediat e
values whose correspondence to the abstract
value of ai may be undefined, or at leas t
different than either its input or outpu t
value . At this point, the body C of the real-
ization process may concurrently start to
manipulate one of the r ' s which is part of
the representation of ai . The difficulty i s
that transparency requires C to preserve thi s
intermediate value of ai which from an intui-
tive point is uncomfortable at best .

Due to this difficulty we require tha t
the body C of the realization process must b e
serializable with processes at the abstrac t
level . A set of processes is serializable i f
any concurrent execution of t ei1m i s
equivalent to some sequential execution . Thi s
concept is based on the notion of serializa-
bility in data base systems research where i t
has become an important concept ; see, fo r
example, Ullman (1980) . Our interest in seri-
alizability is that it appears to be a pro-
perty of realization processes . Hence, i n
addition to the usual kind of process syn-
chronization, a realization process must con-
tain sufficient additional synchronization t o
satisfy serializability . Of course, processes
at the abstract level must also be serializ-
able but this should be a result of the dat a
encapsulation provided by abstraction . Tha t
is, processes at the abstract level can onl y
manipulate the realization objects by callin g
the p' s . Consequently, we require that the
bodies of the p ' s and the body C of the real-
ization process be serializable . This causes
the realization process to be serializabl e
with all processes at the abstract level .

Transparency and serializability consti-
tute the major portion of the specification
of a realization process . The remaining
specifications have to do with invariants o f
the realization objects . We will not dea l
with this aspect of specification here
because it is widely discussed in the litera-
ture (e .g ., see the module invariant in Erns t
and Ogden, 1980) .

So far we have only considered a singl e
realization process, but several of them ma y
be concurrently manipulating the same r's .
The bodies of these realization processe s
must be transparent to the abstract space ,
and together with the bodies of the p' s, they
must be serializable .

Again we emphasize that the above com-
ments only address the issue of partia l
correctness ; deadlock and other kinds o f
non-termination are considered outside th e
scope of this note .

5 . Realization Processes in Modul a

This section describes how realizatio n
processes can be incorporated into Modul a
(Wirth, 1977) . This serves to make the idea s
in the previous sections more concrete and
also points out some of the ways that reali-
zation processes interact with other languag e
mechanisms .

We have extended Modula by adding a
facility for formal specifications to th e
language (Ernst and Ogden, 1980) . Fig .2 is a
module in our extended Modula which contain s
a realization process . In the following ,
Modula refers to our extension of the
language . The module in Fig .2 implements a n
abstract object M of type TO . It also define s
an abstract type AT and a procedure q, all o f
which can be referenced from outside th e
module . MPost(M) specifies the initial value
of M which is computed when the module i s
declared . Our convention is that the vari -
ables referenced by specifications are
enclosed in parenthesis after the identifie r
which names the specification .

The local module variable lv is used t o
represent the abstract object M, and CM(M,ly )
specifies the relationship between M and it s
representation .

There are 5 major components to th e
declaration of an abstract type like AT . The
second line in the declaration of AT speci-
fies what an instance as of AT looks lik e
abstractly . Such an abstract object i s
represented by a variable rs of type T3 whic h
is allocated when an instance of AT i s
declared . Although rs is used exclusively fo r
the representation of as, part of lv may als o
be used in the representation of as . (Usuall y
lv is a large structured variable .) The
correspondence of as to its representation i s
given by CT(as,rs,lv) . ITDec and CTDec ar e
procedures

	

which

	

are

	

executed when a n
instance of AT is allocated or deallocated,



ACM SIGSOFT

	

SOFTWARE ENGINEERING NOTES, Vol 7 No 3, July 1982

	

Page 20

module M :TO ;

define AT,q ;
eexit assertion MPost(M) ;

var lv :Tl ;
correspondence CM(M,lv) ;
invariant IM(lv) ;

abstract type AT ;
abstract structure as :T2 ;
realization structure rs :T3 ;
correspondence CT(as,rs,lv) ;
invariant IT(rs) ;
initialization ITDec ;
cleanup CTDec ;

end AT ;

procedure q(var vp :AT) ;
use var M;
use realization var lv ;
entry assertion Qpre(vp,M) ;
exit assertion QPost(vp,M,#vp,#M) ;
Qbody

end q ;

realization process rp ;
use var lv ;
B ;
while true do C ;

end rp ;

MBody; r p

end M ;

Figure 2 . A module that contains a realiza-
tion process .

respectively .

The procedure q has an instance of AT as
its only parameter, but it also modifies th e
abstract global variable M as specified b y
the second line in the declaration of q . Its
body can access and modify the realizatio n
object lv as well an object of type T3 use d
in the representation of vp . The exit asser-
tion specifies the I/O relation of the pro-
cedure . In this statement #vp refers to th e
input value of the parameter while vp refer s
to its output value . Similarly, # is used t o
differentiate between the input and outpu t
values of M .

The realization process rp has access t o
the global variable lv as indicated by th e
second line in the declaration of rp . The
remainder of rp is as described in the las t
section .

The body of the module is executed whe n
the module is declared . The call on rp afte r
MBody causes its execution to commence con-
currently with the process in which th e
module is declared .

This very brief description of Fig .2 i s
not intended to describe the module in detai l
but rather to point out some of the majo r
components of the module so their interactio n
can be discussed . We also note that the
module in Fig .2 is not intended to be gen-
eral . For example, usually there will be mor e
variables local to the module . However, all
such variables can be used in the same way a s
lv, and thus lv is intended to typify loca l
module variables . Similarly, a module ca n
define more abstract types and procedures ,
and a module can also contain several reali-
zation processes . The purpose of q, AT and r p
in Fig .2 is to typify all instances of these
constructs .

One of the most important features of
the kind of data abstraction in Fig .2 is that
several different abstract objects can use a
single variable as part of their representa-
tions . For example, lv is used to represen t
the abstract object M . But lv can also be
used as part of the representation of th e
different instances of AT . Of course, the
procedures that manipulate abstract object s
must be able to access their representations .

The ability to have the representation s
of several abstract objects "share" a singl e
variable is important because certain imple-
mentation techniques apparently rely on thi s
capability . As usual there is a price fo r
such flexibility . Procedures which manipulat e
one abstract object have access to

	

the
representation of others and hence ca n
"side-effect" them while otherwise operatin g
correctly . For example, a call on q may
correctly manipulate M and its parameter, bu t
may side-effect a different instance of A T
because QBody has access to lv which may be
used in the representation of all instance s
of AT .

Hookway (1980) has developed verifica-
tion rules which prohibit such side-effects .
Using these rules to verify a procedure lik e
q in Fig .2, one must prove that no instanc e
of AT except vp is modified by q . The absenc e
of such side-effects must explicitly be pro-
ven because it is not enforced by othe r
mechanisms like scoping rules .

The realization process in Fig .2 ha s
access to lv but not to the unique instance
of T3 associated with an instance of AT . I n
general, realization processes can only
access that part of the representation o f
abstract objects which is stored in loca l
module variables . However, modifying thes e
variables may modify the abstract object s
which they represent .

For the reasons given in the last sec-
tion the realization process should posses s
the transparency property . To verify thi s
requires a proof because the realization pro-
cess has the ability to modify abstract
objects . Such modifications would be con-
sidered undesirable side-effect similar t o
those that procedures like q might produce .
In fact, in many respects the body C of the



ACM SIGSOF 1'

	

SOITWVAII E ENGINEERING NOTES, Vol 7 No 3, July 1982

	

Page 2 1

unending loop looks like a procedure tha t
manipulates no abstract object and has n o
side-effects either . The point of this dis-
cussion is that a good data abstraction
facility must allow representations to shar e
memory . The specification and verification o f
such abstractions provides almost all of th e
mechanisms that are needed for specifying an d
verifying the transparency of a realization
process .

The realization process, unlike the res t
of the module, has no explicit specification s
associated with it . The reason is that al l
realization processes have the same specifi-
cation, i .e ., transparency . This is simila r
to the absence of side-effects in procedure s
which is an implicit specification whos e
verification

	

requires an explicit proof .
Serializability is a requirement of al l
module . procedures as well as the realization
process and hence is an implicit specifica-
tion . In fact our specification language i s
not strong enough to express transparency an d
serializability, explicitly . But logically
sound verification rules will require al l
modules to possess these properties .

6 . Conclusions

The main contribution of this note is
the concept of a realization process whic h
possesses the property that it has no visibl e
effect on abstract objects even though i t
manipulates their realizations (i .e . ,
representations) . In addition to this tran-
sparency property, a realization process is
serializable in the sense that any concurren t
execution of its body with the bodies of pro-
cedures that manipulate abstract objects, i s
equivalent to some sequential execution o f
them . Transparency and serializability ar e
the major specifications of realization
processes and any implementation of them tha t
meets these (and other minor) specification s
are considered to be correct . A more formal
development of these ideas can be found i n
Ernst (1982) .

We believe that it is important to iso-
late realization processes as a special sub-
class of processes because they possess some
common properties which other kinds o f
processes do not possess . An additional com-
plication is that transparency and serializa-
blity are "meta-properties" in the sense tha t
they cannot be expressed in our specificatio n
language . This implies that

	

verificatio n
rules must deal with them in a special way .

Some processes look much more like pro-
cedures than realization processes, as dis-
cussed in Sec .l . Floyd/Hoare assertion s
appear to be a good way to specify suc h
processes . However, this method does not see m
to be at all appropriate for realizatio n
processes . Our studies indicate that the
processes in 'many computer systems fall into
one of these two categories . There may be
other classes of processes, but we have no t
been able to isolate any, yet .

Our focus on realization processes i s
the thing that differentiates our researc h
from other research in this area . For exam-
ple, Owicki and Gries {1976) and Apt, et a l
(1980) both develop verification rules for a
very general class of concurrent processing .
Hence, their rules cannot focus on

	

the
interaction between abstraction and con -
currency like this note does . The research
that appears to be most similar to ours i s
Owicki (1979) because it also focuses on th e
interaction of abstraction and concurrency .
Even so, it is very different from this not e
because it does not isolate realizatio n
processes as possessing special propertie s
but rather deals with a more general kind o f
concurrency .

References

1. Apt, K .R ., Francez, N . and de Roever ,
W .P ., A Proof System for Communicatin g
Sequential Processes, ACM Trans . on Pro-
gramming Languages and Systems, July ,
1980, pp .359-386 .

2. Bradshaw, F .T . and Ernst, G .W ., Forma l
Specifications of a Layer in a File Sys-
tem, Report

	

No .

	

ESCI-79-1,

	

Compute r
Engineering

	

and

	

Science

	

Dept ., Cas e
Western Reserve Univ ., 1979 .

3. Ernst, G .W ., A Method for Verifying Con -
current Processes, Report No . CES-82-1 ,
Computer Engineering & Science Dept ., Cas e
Western Reserve Univ ., 1982 .

4. Ernst, G .W . and Ogden, W .F ., Specificatio n
of Abstract Data Types in Modula, AC M
Trans . on Programming Languages and Sys-
tems, Oct ., 1980, pp .522-543 .

5. Hookway, R.J ., Verification of Abstrac t
Data Types whose Representations Shar e
Storage,

	

Report

	

CES-80-2,

	

Compute r
Engineering

	

and

	

Science

	

Dept ., Case
Western Reserve Univ ., 1980 .

6. Owicki, S .S ., Specifications and Proof s
for Abstract Data Types in Concurrent Pro -
grams, Program_ Construction, Lecture Note s
in Computer Science, Vol . 69, 1979 ,
pp .174-198 .

7. Owicki, S .S . and Gries, D ., Verifying Pro-
perties of Parallel Programs : An Axiomati c
Approach, Communications of the ACM, 1976 ,
pp .279-284 .

8. Ullman, J .D ., Principles of Database Sys-
tems, Computer Science Press, 1980 .

9. Wirth,N ., Modula : A Language for Modula r
Multiprogramming, Software--Practice and
Experience, Jan ., 1977, pp .3-35 .


