Check for
Updates

ACM SIGSOFT

SOFTWARE ENGINEERING NOTES, Vol 7 No 3, July 1982

Page 16

USE OF DATA ABSTRACTION IN PROCESS SPECIFICATION

Franklyn T. Bradshaw, George W. Ernst and Raymond J. Hookway
Computer Engineering and Science Department
Case Western Reserve University
Cleveland, OH 44106

Abstract

Processes in computer systems are often
intimately involved with various data
abstractions that occur in the systems. The
specification of such processes should state
the nature of this involvement. This note
focuses on a special kind of process, called
a realization process, and its specification
because it appears to capture the interplay
between concurrency and abstraction in a
natural way. A realization process has two
important properties: it is transparent to
the abstract space and it is serializable
with processes at the abstract level. Tran-
sparency and serializability are the main
specifications of realization processes.
These concepts are illustrated by an example
of the kind of realization processes found in
actual computer systems which serves to
motivate the discussion.

1. Introduction

Contemporary computer systems contain a
variety of concurrent processes; some are
quite different in nature from others. One
kind of process 1is very similar to a pro-
cedure in the sense that an activation of the
process causes some computation to start.
When the computation finishes, this activa-
tion of the process is destroyed. For exam-
ple, when a user requests that a program be
loaded, typically a separate process is
created for this purpose which does the
link-editing and relocation, and then des-
troys itself, returning control to the user.
Floyd/Hoare assertions seem to be a good
method for specifying such processes. Hookway
(1980) has used this method in developing
complete formal specifications for a simple
linking-loader.

Some processes appear to be quite dif-
ferent from those described above because
they are designed to never terminate, but
rather to loop forever. Unlike the procedure
case, pre and post-conditions do not appear
to be useful in the specification of such
processes. They are usually created at system
generation time which makes preconditions
meaningless and since they never terminate
post-conditions are not relevant.

These issues surfaced when we started
doing research on formal verification of con-
current processes, several vyears ago. It
since became obvious to us that such research
could not make meaningful progress until we
had a better understanding of what is
involved in the specification of concurrent

process. The reason is that formal verifica-
tion 1is, by definition, proving that an
implementation meets ies specification.
Hence, the kind of specification that is used
can have a major impact on the verification
rules, This note is only concerned with for-
mal s8pecification o©f concurrent processes
even though our real goal is formal verifica-
tion. The purpose of this note is to
describe our approach at the intuitive level
8o that the basic concepts are not buried in
technical details. The reader is referred to
Ernst (1982) for a more technical treatment
of the concepts in this note and formal
verification.

2. Data Abstraction and Concurrency

Often processes in actual computer sys-
tems are intimately involved with various
data abstractions that occur in the systems.
The specification of such processes should
state the nature of this involvement. Fre-
gquently, a process manipulates the respresen-
tation of certain abstract objects but has no
vigible effect on them at the abstract level;
i.e., the abstract values of the objects
remain unchanged. Usually, such processes are
of the non-terminating variety described in
Sec.l.

For example, a front-end process takes
input data and assembles it into blocks of an
appropriate size before passing it on to the
processes for which it is intended. But at a
more abstract level, the front-end process is
invisible because 1t has no effect on the
values computed at the abstract 1level but
only on the way data is passed between
processes. This paper is primarily concerned
with the specification of such processes.

To be more explicit, suppose that some
abstract objects, al, a2,... have been
created and that these objects are collec-
tively represented by objects rl, r2,... in
the realization space. That is, the values of
the r”“s determine the values of the a’s. As
usual some of the r”“s may themselves be
abstract objects created by some lower level
of abstraction, but all of the r“s are used
in the representation of one or more of the
a’s. We also assume that there are some pro-
cedures pl, p2,... that can access and modify
the abstract objects. Of course, the p’s
accomplish this by accessing and modifying
the r’s which represent the a’s.

The kind of process described at the
beginning of this section has direct access

to the realization objects and hence we will

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010904.1010908&domain=pdf&date_stamp=1982-07-01

ACM SIGSOFT

call it a realization process. 1t manipu-
lates the r°s concurrently with processes
that manipulate the a’s. Of course, the
latter is accomplished by calling the p’s
which in turn access and modify the r’s.
Hence, both the realization process and a
process at the abstract 1level may be con-
currently processing the r’s.

The realization process 1is aware that
one or. more processes at the abstract level
may be manipulating the a“s by calling the
p“s. Of course, the realization process knows
nothing about the nature of the abstract com-
putation, but assumes that any sequence of
legal calls on the p“s can occur. A process
at the abstract level, however, knows nothing
about the realization process which must be
transparent to the abstract space. In fact,
usually there is a different implementation
of the same abstract space in which there is
no realization process. In such an implemen-
tation the a“s remain the same as do the
abstract specification of the p’s, but d4if-
ferent r”s may be used and the p”s manipulate
them differently. Finally, there is no reali-
zation process manipulating the r“s in the
alternative implementation of the abstract
space.

We have purposely avoided describing the
concept of a realization process in terms of
a particular language like Euclid or Ada so
that the concept does not become entangled
with the idiosyncracies of a language. We
believe that any good concurrent programming
language must have facilities for implement-
ing abstractions and realization processes.
This, of course, includes constructs 1like
synchronization primitives but they do not
appear to be the primary issue, at least not
at this level of detail. Later in this note
we will describe how realization processes
fit into our concurrent programming language
which is a derivative of Modula. But, next,
we will give a concrete example of the kind
of realization process that occurs in actual
computer systems, This example will also
clarify the roles of the a’s, r’s and p’s.

3. An Example of a Realization Process

This example is a level of abstraction
in the implementation of a file system. It
allows a process to initiate a file operation
and then continue with its execution. At a
latter time the process can obtain the result
of the file operaticn. This allows a process
to overlap its execution with the exectuion
of the file operations. Such file operations
are a fairly low level of abstraction because
a file read is split into two parts. However,
it is definitely an abstraction because it
does not deal with disk sector numbers, etc.
Many systems have such file operations, e.g.,
the I0$ of the BSperry Univac 1100 Series
Operating System (EXEC-8). Of course, our
example will be much simpler than the Univac
system, but it is based on the same basic
idea.

SOFTWARE ENGINEERING NOTES, Vol 7 No 3, July 1982 - Page 17

Each file is an abstract object indexed
by 1integers. The only other kind of abstract
object in this example is a channel which is
used in reading and writing files. To operate
on a file a process must connect a channel to
the file because the procedures which manipu-
late files have a channel as one of their
parameters. For example, write(c,i,e) writes
element e in the ith position of the file
connected to channel c.

The realization space also has files and
channels. A realization file is very similar
to an abstract file, but a realization chan-
nel is quite different than an abstract chan-
nel. Intuitively, a realization channel is a
buffer whose elements are read and write
requests. For example, the procedure
write(c,i,e) merely records a request for
this write operation in the realization chan-
nel c¢ which has a buffer for such requests.
After the request has been put into the
buffer, write returns to the process which
called it. This process then continues even
though the actual file update has not been
made, In fact, at the abstract level it
appears that the file has been updated
because the abstract file has element e in
position i after the call on write.

The implementation of this abstraction
contains a realization process whose function
is to update the realization files. This pro-
cess continually cycles through the realiza-
tion channels. Whenever it finds one that
contains an outstanding request, it removes
the request from the buffer in the channel
and performs the actual operation on the
realization file. '

File reads are done in a manner similar
to writes. A process requests a file read by
executing readreqg(c,i). This procedure call
puts a request to read element i from the
file connected to channel ¢ in the request
buffer of ¢, and returns to the calling pro-
cess which then continues. At a later time
the realization process performs the read on
the realization file and puts the result in a
special read buffer in the realization chan-
nel. The read operation is completed by exe-~
cuting readcomp{c,e). This procedure call
removes the result of the actual file read
from the read buffer of c and assigns it to
e.

Fig.l summarizes this example of data
abstraction. The correspondence between the
abstract and realization values of a file is
that the realization file will become identi-
cal to the abstract file after all the out-
standing updates are made on the realization
file., These updates are stored in the request
buffer of the realization channel connected
to the file. Only one channel can be con-
nected to a file at any time. If no channel
is connected to a file its abstract value is
the same as its realization value.

The read queue of a realization channel
is the initial segment of the queue in the
abstract channel. The remainder of the

ACM SIGSOI'T

Abstract Objects

files: Each file is a vector of elements
of some predetermined type.

channels: Each channel contains the name of
the file to which it is connected
and a queue of the -elements that
have been read requested,

Realization Objects

files: Each file is a vector of elements
of some predetermined type.

channels: Each channel contains

1. the name of the file to which it
is connected;

2. a gueue of the outstanding read
and write requests;

3. a gqueue of the elements which
have been read from the realiza-
tion file.

Abstract Procedures

l, write(c,i,e) writes element e to the
ith position of the file connected to
channel c.

2, readreq(c,i) reads the ith element
from the file connected to channel ¢
and puts the result in the read queue
of c.

3, resdcomp(c,i) removes an element from
the read queue of channel ¢ and as-
signs it to e.

4, connect{c,f) connects channel ¢ to
file £.

5. disconnect(c) removes the connection
between channel ¢ and its file.

Figure 1, A summary of data abstraction in
the file example.

abstract queue is the sequence of elements
whose read requests are stored in the request
buffer of the channel. The results of read
requests occur in a channel’s read queue in
the order of their execution.

In presenting this example, we attempted
to suppress as much detail as possible
without 1losing its essential nature. An
implementation of this example is reasonably
involved, perhaps more so than the above
description implies, Complete formal specifi-
cations for this example are given in
Bradshaw and Ernst (1979) together with an
implementation. The kind of detail suppressed

SOFTWARE ENGINEERING NOTES, Vol 7 No 3, July 1982

Page 18

in this note is that there must be a way to
connect channels to files (given in Fig.l),
and a way to create new files (not given in
Fig.l). Processes must be synchronized. For
example, the readcomp procedure must "wait"
when the read queue is empty. This in turn
causes the calling process to wait until the
realization process performs the actual file
read. The reader is referred to Bradshaw and
Ernst (1979) for this kind of detail.

OQur interest in this example is that it
clearly 1illustrates the kind of realization
processes found in computer systems. Usually
they serve a very practical purpose. In our
example, the realization process allows disk
access time to be overlapped with the compu-
tation of processes at the abstract level.
Fig.l is a concrete example of the a“s, r’s
and p’s of Sec.2 (i.e., the abstract objects,
realization objects and abstract procedures
in Fig.l, respectively). The example clearly
shows the involvement of the realization pro-
cess with data abstraction. The next section
discusses the nature of this involvement and
its formal specification. From an intuitive
point of view we know that the function of
the realization process in the above example
is to perform the actual file reads and
writes. But how do we formally specify this
intuitive idea?

4. Bpecification of Realization Processes

This section assumes that the a“s, r”’s
and p“s are defined as in Sec.2. The general
form of a realization process 1is B; while
true do C, where B is a sequence of declara-
tions followed by some statements which ini-
tialize variables. After "executing” B, the
process executes C over and over again, never
terminating. Since the realization process
manipulates the realization objects rl,
r2,..., they are global to B and C.

Typically, a realization process has two
functions: (1) it must be transparent to the
abstract space and (2) it must apply some
transformation to the realization objects.
The latter is usually related to some aspect
of system performance. For example, often it
is the responsibility of the realization pro-
cess to remove and process entries in
buffers. If it fails to do this, the buffers
will become full which will block processes
that add entries to the buffers., For this
reason {2) is primarily concerned with termi-
nation. This note only deals with partial
correctness (correct results when and if
results are produced), and hence we will only
consider (1) above.

To simplify matters, consider a single
execution of C, the body of the unending
cycle, This execution must satisfy the fol-
lowing property:

For each abstract object al, a2,...
its value after executing C must be
the same as its value before the
execution,

ACM SIGSOFT

We call this property transparency because it
states that C has no visible effect at the
abstract level, To see what this property
entails, note that the wvalues of the r’s
determine the values of the a’s. The specifi-
cation of the abstraction describes this
relationship between the a”s and the r“s. An
execution of C modifies the values of some of
the r”"s8 and these new values of the r”’s
determine the new values of the a’s. Tran-
sparency requires the new and the old values
of the a’s to be the same.

We assume that a process at the abstract
level can execute concurrently with a reali-
zation process; hence, both can concurrently
process the r”s. This implies that there must
be some kind of synchronization between the
two processes 8o that, for example, they
don”t attempt to simultaneously modify the
same component of the same r. The usual kind
of synchronization primitives should be quite
adequate for this purpose.

A more subtle problem is that manipulat-
ing abstract objects concurrently may produce
intermediate states whose values are not well
defined. Consider 1invoking one of the p’s
with abstract object ai as an actual parame-
ter. The input and output values of ai will
satisfy the specifications of the procedure,
assuming that its implementation is correct.
However, half way through the execution of
the procedure, the r“s will have intermediate
values whose correspondence to the abstract
value of ai may be undefined, or at least
different than either its input or output
value. At this point, the body C of the real-
ization process may concurrently satart to
manipulate one of the r”s which is part of
the representation of ai. The difficulty is
that transparency requires C to preserve this
intermediate value of ai which from an intui-
tive point is uncomfortable at best.

Due to this difficulty we require that
the body C of the realization process must be
serializable with processes at the abstract
level. A set of processes is gerializable if
any concurrent execution of them is
equivalent to some sequential execution. This
concept is based on the notion of sgerializa-
bility in data base systems research where it
has become an important concept; see, for
example, Ullman (1980). Our interest in seri-
alizability is that it appears to be a pro-
perty of realization processes. Hence, in
addition to the usual kind of process syn-
chronization, a realization process must con-
tain sufficient additional synchronization to
satisfy serializability. Of course, processes
at the abstract level must also be serializ-
able but this should be a result of the data
encapsulation provided by abstraction. That
is, processes at the abstract level can only
manipulate the realization objects by calling
the p“s. Consequently, we require that the
bodies of the p“s and the body C of the real-
ization process be serializable. This causes
the realization process to be serializable
with all processes at the abstract level,

SOFTWARE ENGINEERING NOTES, Yol 7 No 3, July 1982

Page 19

Transparency and serializability consti-
tute the major portion of the specification
of a realization process. The remaining
specifications have to do with invariants of
the realization objects. We will not deal
with this agspect of s8pecification here
because it is widely discussed in the litera-
ture (e.g., see the module invariant in Ernst
and Ogden, 1980).

So far we have only considered a single
realization process, but several of them may
be concurrently manipulating the same r’s.
The bodies of these realization processes
must be transparent to the abstract space,
and together with the bodies of the p’s, they
must be serializable.

Again we emphasize that the above com-
ments only address the issue of partial
correctness; deadlock and other kinds of
non-termination are considered outside the
scope of this note.

5. Realization Processes in Modula

This section describes how realization
processes can be incorporated into Modula
(Wirth, 1977). This serves to make the ideas
in the previous sections more concrete and
also points out some of the ways that reali-
zation processes interact with other language
mechanisms.

We have extended Modula by adding a
facility for formal specifications to the
language (Ernst and Ogden, 1980). Fig.2 is a
module 1in our extended Modula which contains
a realization process. In the following,
Modula refers to our extension of the
language. The module in Fig.2 implements an
abstract object M of type T0. It also defines
an abstract type AT and a procedure ¢, all of
which can be referenced from outside the
module. MPost (M) specifies the initial wvalue
of M which is computed when the module is
declared. Our convention is that the vari-
ables referenced by specifications are
enclosed in parenthesis after the identifier
which names the specification.

The local module variable 1lv is used to
represent the abstract object M, and CM(M,1lv)
specifies the relationship between M and its
representation.

There are 5 major components to the
declaration of an abstract type like AT. The
second line in the declaration of AT speci-
fies what an instance as of AT looks like
abstractly. Such an abstract object is
represented by a variable rs of type T3 which
is allocated when an instance of AT |is
declared. Although rs is used exclusively for
the representation of as, part of lv may also
be used in the representation of as. (Usually
lv is a 1large structured variable.) The
correspondence of as to its representation is
given by CT{as,rs,lv), 1ITDec and CTDec are
procedures which are executed when an
instance of AT 1is allocated or deallocated,

ACM SIGSOT'T

module M:TO;

define AT,q;
exit assertion MPost (M);

var lv:Tl;
correspondence CM(M,1lv);
invariant IM(1v);

abstract type AT:
abstract structure as:T2;
realization structure rs:T3;
correspondence CT(as,rs,lv);
invariant IT(rs);
initialization ITDec;

cleanup CTDec;
end AT;

procedure gq(var vp:AT);
use var M;
use realization var lv;
entry assertion Qpre(vp,M);
exit assertion QPost(vp,M,#vp,#M);
Qbody
end g

realization process rp;
use var lv;
By
while true do C;
end rp;

MBody; rp

end M;

Figure 2. A module that contains a realiza-
tion process.

respectively.

The procedure g has an instance of AT as
its only parameter, but it alsoc modifies the
abstract global variable M as specified by
the second line in the declaration of g. Its
body can access and modify the realization
object 1lv as well an object of type T3 used
in the representation of vp. The exit asser-
tion specifies the 1/0 relation of the pro-
cedure. In this statement $vp refers to the
input value of the parameter while vp refers
to its output value., Similarly, # is used to
differentiate between the input and output
values of M.

The realization process rp has access to
the global wvariable 1lv as indicated by the
second line in the declaration of rp. The
remainder of rp is as described in the last
section,

The body of the module is executed when
the module is declared. The.call on rp after
MBody causes its execution to commence con-
currently with the process in which the
module is declared.

SOFTWARE ENGINEFRING NOTES, Yol 7 No 3, July 1982 Yage 20

This very brief description of Fig.2 is
not intended to describe the module in detail
but rather to point out some of the major
components of the module so their interaction
can be discussed. We also note that the
module in Fig.2 1is not intended to be gen-
eral, For example, usually there will be more
variables 1local to the module. However, all
such variables can be used in the same way as
lv, and thus 1lv is intended to typify local
module variables. Similarly, a module can
define more abstract types and procedures,
and a module can also contain several reali-
zation processes. The purpose of g, AT and rp
in Fig.2 is to typify all instances of these
constructs.

One of the most important features of
the kind of data abstraction in Fig.2 is that
several different abstract objects can use a
single wvariable as part of their representa-
tions. For example, lv is used to represent
the abstract object M. But lv can also be
used as part of the representation of the
different instances of AT. Of course, the
procedures that manipulate abstract objects
must be able to access their representations.

The ability to have the representations
of several abstract objects "share" a single
variable is important because certain imple-
mentation techniques apparently rely on this
capability. As usual there is a price for
such flexibility. Procedures which manipulate
one abstract object have access to the
representation of others and hence can
"side-effect" them while otherwise operating
correctly. For example, a call on g may
correctly manipulate M and its parameter, but
may side-effect a different instance of AT
because QBody has access to lv which may be
used in the representation of all instances
of AT.

Hookway (1980} has developed verifica-
tion rules which prohibit such side-effects.
Using these rules to verify a procedure 1like
qg in Fig.2, one must prove that no instance
of AT except vp is modified by gq. The absence
of such side-effects must explicitly be pro-
ven because it 1is not enforced by other
mechanisms like scoping rules.

The realization process 1in Fig.2 has
access to 1lv but not to the unigue instance
of T3 assocliated with an instance of AT. 1In
general, realization processes can only
access that part of the representation of
abstract objects which is stored in local
module variables. However, modifying these
variables may modify the abstract objects
which they represent,

For the reasons given in the last sec-
tion the realization process should possess
the transparency property. To verify this
requires a proof because the realization pro-
cess has the ability to modify abstract
objects. Such modifications would be con-
sidered undesirable side-effect similar to
those that procedures like g might produce.
In fact, in many respects the body C of the

ACM SIGSOFT

unending loop 1looks 1like a procedure that
manipulates no abstract object and has no
side-effects either. The point of this dis-
cussion is that a good data abstraction
facility must allow representations to share
memory. The specification and verification of
such abstractions provides almost all of the
mechanisms that are needed for specifying and
verifying the transparency of a realization
process,

The realization process, unlike the rest
of the module, has no explicit specifications
associated with it., The reason is that all
realization processes have the same specifi-
cation, i.e., transparency. This is similar
to the absence of side-effects in procedures
which 1is an implicit specification whose
verification requires an explicit proof.
Serializability is a requirement of all
module , procedures as well as the realization
process and hence is an implicit specifica-
tion. In fact our specification language is
not strong enough to express transparency and
serializability, explicitly. But logically
sound verification rules will reguire all
modules to possess these properties.

6. Conclusions

The main contribution of this note 1is
the concept of a realization process which
possesses the property that it has no visible
effect on abstract objects even though it
manipulates their realizations {i.e.,
representations). In addition to this tran-
sparency property, a realization process is
serializable in the sense that any concurrent
execution of its body with the bodies of pro-~
cedures that manipulate abstract objects, is
equivalent to some sequential execution of
them. Transparency and serializability are
the major specifications of realization
processes and any implementation of them that
meets these (and other minor) specifications
are considered to be correct. A more formal
development of these ideas can be found in
Ernst (1982).

We believe that it is important to iso-
late realization processes as a special sub-
class of processes because they possess some
common properties which other Kkinds of
processes do not possess. An additional com-
plication is that transparency and serializa-
blity are "meta-properties" in the sense that
they cannot be expressed in our specification
language. This implies that verification
rules must deal with them in a special way.

Some processes look much more like pro-
cedures than realization processes, as dis-
cugssed in Sec.l. Floyd/Hoare assertions
appear to be a good way to specify such
processes. However, this method does not seem
to be at all appropriate for realization
processes. Our studies indicate that the
processes in many computer systems fall into
one of these two categories. There may be
other classes of processes, but we have not
been able to isolate any, yet.

SOFTWARE ENGINEERING NOTES, Yol 7 No 3, July 1982 Page 21

Our focus on realization processes is
the thing that differentiates our research
from other research in this area. For exam-
ple, Owicki and Gries (1976) and Apt, et al
(1980) both develop verification rules for ~a
very general class of concurrent processing.
Hence, their rules cannot focus on the
interaction between abstraction and con-
currency like this note does. The research
that appears to be most similar to ours is
Owicki (1979) because it also focuses on the
interaction of abstraction and concurrency.
Even so, it is very different from this note
because it does not isolate realization
processes as possessing special properties
but rather deals with a more general kind of
concurrency.

References

1. Apt, K.R., Francez, N. and de Roever,
W.P., A Proof System for Communicating
Sequential Processes, ACM Trans. on Pro-

gramming Languages and Systems, July,
1980, pp.359-386.

2, Bradshaw, F.T. and Ernst, G.W., Formal
Specifications of a Layer in a File Sys-
tem, Report No. ESCI-79%-1, Computer
Engineering and Science Dept., Case
Western Reserve Univ., 1979.

3. Ernst, G.W., A Method for Verifying Con-
current Processes, Report HNo. CES-82-1,
Computer Engineering & Science Dept., Case
Western Reserve Univ,, 1982,

4. Ernst, G.W. and Ogden, W.F., Specification
of Abstract Data Types in Modula, ACM
Trans. on Programming Languages and 8ys-
tems, Oct., 1980, pp.522-543.

5. Hookway, R.J., Verification of BAbstract
Data Types whose Representations Share
Storage, Report CES~80-2, Computer
Engineering and Science Dept., Case
Western Reserve Univ., 1980.

6. Owicki, 8.8,, Specifications and Proofs
for Abstract Data Types in Concurrent Pro-
grams, Program Constructigﬂ, Lecture Notes
in Computer Sclence, Vol. 69, 1979,
Pp.174-198.

7. Owicki, S.8. and Gries, D., Verifying Pro-
perties of Parallel Programs: An Axiomatic
Approach, Communications of the ACM, 1976,
pp.279-284,

8. Ullman, J.D., Principles of Database Sys-
tems, Computer Science Press, 1980.

9. Wirth,N., Modula: A Language for Modular
Multiprogramming, Software--Practice and

Experience, Jan., 1977, pp.3-35.

