ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 28

Check for
Updates

PROGRAMMING WITH small BLOCKS
Mark K Joseph

System Development Corporation
A Burroughs Company
Santa Monica, CA.

ABSTRACT

Programming style is a highly personalized characteristic of
programs. Modular and block structured programming techniques
provide many standards for good programming. These techniques
are used to develop well designed but only marginally readable
code. Similar organizational techniques are not typically applied to
code inside subroutines, which is either too small or too specific to
be further broken down into subroutines. The result is often
obscure subroutine code that makes the maintenance
programmer's job extremely difficult. Presented here is a styling
technique for intra-subroutine code that groups program state-
ments into ‘‘small BLOCKS" of function or conditional constraints.
It is shown that this style of formating subroutine code can greatly
improve the readability of the average program. The technique is
demonstrated in Pascal, C, and Lisp.

Key Terms and Phrases: Software Engineering, program readabil-
ity, and programming style.

1. Introduction

Structured programming, modu-
lar programmming, and data encapsu-

Structured programming does deal
with code inside subroutines, how-
ever, it does not provide enough
guidelines to make a whole subrou-

lation [3, 4, 5] are the current
software engineering techniques used
in developing software. If used prop-
erly these techniques can lead to well
designed systems. Such software
systems will be understandable at
the module and subroutine level,
because these techniques use the
logical structure of the problem to
provide a clear design.

However, these techniques do
not guarantee readability of code
inside a subroutine. Confusing sub-
routine code is due partly to the fact
that programming style is very per-
sonalized, and that at this level no
good formating guidelines exist.

tine readable.

A clear understanding of subrou-
tine internals is needed in order to
be able to modify subroutine code.
Thus it is desirable to have a tech-
nique to make subroutine code more
readable by ensuring that its format
convey its logical structure. This
paper presents a formating tech-
nique, called small BLOCKS, that
solves this problem.

Many of the foundations and
justifications of small BLOCKS can be
found in [6, p.177-191]. However,
small BLOCKS goes much further by
enlarging the scope of what small

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010941.1010950&domain=pdf&date_stamp=1984-10-01

segments of code to separate and on
how to do the actual separation. It
does this by clearly deflning the idea
of separating function and control
flow, as well as pointing out aesthetic
in addition to logical statement
groupings. The last major difference
is that small BLOCKS frequently
separates the code of a "program
unit", i.e. a construct of a program-
ming language such as IF-THEN-ELSE,
where in [6] this is not done. The
small BLOCKS technique follows the
suggestion given in [6, p.182]: "A pro-
gram is well-presented if its struc-
ture is clearly and quickly apparent
to the reader”.

The rest of this paper consists of
four sections. Section two defines
the smalli BLOCKS concept. Section
three describes how this technique
increases the readability of pro-
grams. Section four explains how
small BLOCKS can be used as a
development tool. Lastly in section
five, several examples of code before
and after the use of small BLOCKS
are presented. It is hoped that these
examples will solve many of the prob-
lems that the reader has encoun-
tered in trying to make his/her pro-
grams more readable.

2. What are small BLOCKS?

Small BLOCKS are used in sub-
routines, that are approximately 30
to 150 lines long. This range provides
the degree of detail in which the
internal workings of a subroutine can
become confusing. These lines can
contain subroutine calls, but the
remainder are either toc small or too
specific o be grouped into subrou-
tines themselves. Further, it should
be noted thal some applications can-
not afford the overhead of many sub-
routine calls. This may lead to the
use of macros, but can still result in
complex code. The small BLOCK
technique can be applied to many
programining languages.

A small BLOCK is defined to be a
grouping of program statements,
which have some logical action or

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No § Oct 1984 Page 29

aesthetic quality associated with
them. ‘‘Aesthetic’ 1s used here to
mean that grouping certain state-
ments together will increase the rea-
dability of the code from the con-
cerned author’'s point of view. These
statement groupings are made into
small BLOCKS by using several blank
lines both before and after, a begin-
ning comment describing its func-
tion, and indentation when needed.
This is shown in Figure 5.2. The
grouped statements are separated
from the surrounding code, so that
upon looking at the whole subroutine
at once the viewer can see several
separate block-like structures of
code.

The size of a small BLOCK is not
a fixed value. It depends upon the
amount of complexity that it con-
tains. Very simple but long actions
can be a single small BLOCK, yet a
few program statements may need to
be separated in order to be
comprehensible. If a small BLOCK is
not easily understandable, then it is
probably too long. In general, the
programmer's judgement will need to
be used here.

There are two forms of logical
action which make natural small
BLOCK groupings. The first is a
sequence of simple program state-
ments which together accomplish
one logical function. The other is a
nesting or clustering of control con-
structs such as IF-THEN-ELSE, WHILE
loops, and FOR iteration loops. Small
BLOCKS may nest, and thus these two
forms can be contained within each
other. These two forms introduce the
idea of separating control flow and
function by placing each into
different small BLOCKS. Control flow
small BLOCKS deal with the control of
execution between small BLOCKS not
individual language statements.
Such organization allows the program
reader to concentrate on the control
flow and functions separately as the
program is read. It is the author's
opinion that this will increase the
comprehension of programs.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 30

{ Determine if action A is to be performed
{ This small BLOCK is a nesting of IF-THEN-ELSEs |

IF condition C1
THEN some action
{F condition C2
THEN some action
IF condition C3

<CONTROL>

THEN { Perform action A: |

BEGIN

END

IF condition C4
some actions

<FUNCTION>

{ What to do if action A is not done }
ELSE rvrsmromimuran
ELSE rvrrvrimriron

<FUNCTION>

Figure 3.1-A CODE TEMPLATE I Control Flow VS. Function
Fach box represents a small BLOCK. The "<controi>",
and "<function>" symbols indicate the action of a
small BLOCK. The boxes are used here for emphasis.

Before showing some concrete
code examples, several code tem-
plates which exhibil the concepts in
the above paragraphs are shown in
Figures 3.1A-C. These represent real
code examples extracted from some
of the author’s past programming
projects. The templates are
presented in a Pascal-like pssudo-
language.

3. Increases Readability

One typical impediment to rea-
dability of a piece of code is complex-
ity. Small BLOCKS can greatly
improve the readability of the aver-
age program by breaking up the
details of a subroutine into small
understandable units. The reader
can then examine the code at several
levels of abstraction.

The reader first examines what
each small BLOCK does by its heading
comment, then how each block
interacts with the others, and lastly
how each works at the statment level.
This is very similar to how modular
programming makes software sys-
tems readable at the module level.
First, each module’s function is
determined, then how each work
together by their interfaces, and
finally how each is organized inter-
nally.

Look at code template 1, in Fig-
ure 3.1-A, for an example of how this
works. First, a program reader looks
at the heading comments of each
small BLOCK. Next, by concentrating
on the first small BLOCK the program
reader learns under what conditions
action A is to be performed. The

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 6 Oct 1984 Page 31

{ Are initial conditions met?

IF conditicnal C1
THEN RETURN error

IF conditional C2
THEN RETURN error

{ This small BLOCK is a clustering of IF-THEN-ELSEs

<CONTROL>

{‘Perform the first sequential action |
IF conditional C3

THEN action A1
ELSE action A2

<FUNCTION>

{ Swap A and B}
temp <- A
A <-B

B <- temp <FUNCTION>

Figure 3.1-B CODE TEMPLATE 11

A sequence of small BLOCKS, where each
perform an individual logical action.

reader is not bothered with how
action A works, but instead is just
aware of its basic function from its
heading comment.

Next, the program reader deci-
phers the second small BLOCK, which
is action A itself. While determining
how this does the stated function he
no longer has to worry about all the
details of the previous small BLOCK.
The program reader knows how it
works and will abstract away the
details as he turns his attention
toward action A. However, the reader
will occasionally need to refer back
to previous small BLOCKS in order to
check on important inter-
relationships, such as a common
variable being assigned the proper
value.

By trying to understand the
internals of only one small BLOCK at
a time the reader has limited the
amount of detail that il is necessary
to deal with at any one time. It is the
separation of the small BLOCKS of
code which allows a reader to con-

centrate on a function, for example,
without having distracting condition-
als immediately around it. The con-
ditionals are instead several lines
above separated by enough blank
lines to make it seem like an unre-
lated piece of code.

Finally, the reader gets to the
last small BLOCK in Figure 3.1-A.
Now, he ignores how action A is
implemented, and determines what
the subroutine does when action A is
not performed.

4. Use small BLOCKS From The
Beginning

Small BLOCKS can be added onto
programs which are already in a tar-
get language (as is done in the next
section). However, using them from
the beginning of pseudo coding will
result in readable and well organized
pseudo-code. Later translation into
real code will be much easier.

An exception is that aesthetic
small BLOCKS are created both dur-
ing and after pseudo or real coding.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 32

§{ The conditional takes several lines }
IF complex conditional
where C1 is TRUE
THEN some small action
ELSE BEGIN

<CONTROL>

ORI <-LtoK
some action

{ search for the element in the list |

<FUNCTION>

some action
IF conditional C2 is TRUE
BEGIN
some actionl
some actionn
END

<FUNCTION>

END

Figure 3.1-C CODE TEMPLATE III

An IF-THEN-ELSE language construct can be
broken up into several small BLOCKS in
order Lo emphasize separate logical actiorns.

Aesthetic small BLOCKS are fre-
quently added when a programmer is
reviewing subroutine code and finds
that it's still too complex with the
current small BLOCKS. Also, the pro-
grammer might have missed a logical
action small BLOCK and could add
that on while reviewing it.

The translation of pseudo-code
into a target language can be a com-
plex task with many distracting
details. To help simplify this task the
programmer can code one small
BLOCK of pseudo-code at a time. This
will allow him to concentrate on only
a few program statements, while
ignoring all the remaining pseudo-
code yet to do. The programmer will
undoubtedly make frequent refer-
ences to the target code that has
already been produced. But now,
making these inter-block references
should be more manageable,

It is important to notice that
more small BLOCKS will appear in the

target language program than in the
pseudo-code. This occurs because
the translation process will expand
one pseudo-code statement into pos-
sibly several target language state-
ments. In this added detail more
subfunctions and/or control struc-
tures will appear, thus warranting
additional small BLOCKS.

Translating pseudo-code into a
target language can also be a very
tiring endeavor. Programmers are
more prone to make mistakes as
they get tired. However, stopping in
the middle of coding a subroutine, in
order to take a break, can cause a
programmer to lose his train of
thought. Small BLOCKS provide
natural stopping places since they
are organized around one basic func-
tion. Now, a prograrnmer will not be
in the middle of coding a complex
action when getting up from his desk
to take a break, but may still be in
the middle of a subroutine.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 5 Oct 1984 Page 33

5. AFew Examples

Presented here are four exam-
ples of the small BLOCK technique
used in Pascal, C, and Lisp. The first
example demonstrates the use of
aesthetic small BLOCKS. The remain-
ing three examples are presented in
their reformated and original forms.
This is done so the reader can make
a comparison as to which form is pre-
ferred.

In preparing these examples, no
variable names were changed and in
most cases only the original com-
ments were used. It was necessary to
add a few comments since they were
needed for any added small BLOCKS.
Overall, the changes to the original
code were kept to a minimum, in
order to show only the effects of
adding small BLOCKS.

In Figure 5.1 the first small
BLOCK is an aesthetic grouping. In
standard formating techniques the
second "WHILE" statment would be
connected with the rest of its loop.
Here we instead want to emphasize
the functions of the two small
BLOCKS inside the loop. This exam-
ple is just one of many varied situa-
tions in which aesthetic groupings
can be used. This aspect of small
BLOCKS is more of an art than a
method.

If the separated “WHILE" state-
ment contained a complicated condi-
tional then it would basically be a
variant of code template III, Figure
3.1-C. It would therefore, more
strongly represent a separation of
control flow and function.

Now looking at Figure 5.2, the
first thing that strikes the reader is
all that white space. Small BLOCKS
spreads complexity out and gives the
code some structure. The reader is
not scared off when he first looks at
Figure 5.2, but he is when he sees it
in its original form, shown in Figure
5.31 At a glance to Tigure 5.2, the
reader sees two major components of
"PROCEDURE Underfiow”. These are
two small BLOCKS head by the com-

ments: "{ b := page to the right of a
}", and "{ b := page to the left of a }".
Next, it is easily seen that each is
composed of two internal small
BLOCKS, and their functions are
clear.

It is not an easy task to see this
code's structure from its original for-
mating style. In general, "the more
white space the better” [9].

Turning attention to Figure 5.4,
we notice that some comments start
with an upper-case letter while oth-
ers start with an arrow and a lower-
case letter. This convention is used
to help distinguish the heading com-
ment of a small BLOCK from all of its
internal subcomments. In some
sense, the heading comment is simi-
lar to that of a procedure since it
describes a high-level function.
Whereas, the internal comments
describe how that high-level function
is accomplished. A minor point is
that a blank line or two may appear
inside a small BLOCK, as in the last
small BLOCK in Figure 5.4. This can
be helpful when a reader is focusing
on statement-level actions.

An interesting observation can
be made after a programmer
develops a program using stepwise
decomposition [5,6]. First, he breaks
a problem into subproblems which
tend to become small BLOCKS, when
at the subroutine level. However, in
the final code he tends to cram all
the program statments together and
the previously derived logical separa-
tion disappears. By using small
BLOCKS from the beginning, the logi-
cal structure inside subroutines can
be preserved, aided by the ideas of
separation of control flow and func-
tion and aesthetic groupings.

It is interesting to study the
reformated Lisp code in Figure 5.6.
It is essentially the combination of
small BLOCK groupings from code
templates 11 & 11, shown in Figure
3.1-B&C.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No § Oct 1984 Page 34

Function, Control Flow, and Aesthetic Groupings

LI]

{ Produce a cross reference for the input file |
WHILE NOT eof(f) DO

BEGIN
IFn=c4
THEN n:= 0O
ni=n+1;
WRITE(n:c3);
WRITE(');
WHILE NOT eoln(f) DO
BEGIN
{ scan non-empty line |
IF £~ IN ['A’..’Z'] THEN
BEGIN
k:=0;
REPEAT
Fk<cl
THEN BEGIN
k =k+1;
a[k]:= f~;
END;
WRITE{f~); GET(f)
UNTIL NOT{ £~ IN [’A"..'Z',°0..9']);
L B
END
{ check for quote or comment }
ELSE BEGIN
IF i~ = " THEN
REPEAT
WRITE(f~); GET(f)
UNTIL f~ = "
ELSE IF f~ = ’{' THEN
REPEAT
WRITE(f~); GET(f)
UNTIL £~ = '},
WRITE(f~); GET(f)
END
END
END

FIG 5.1 (7, p.271]

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 35

small BLOCKS in Pascal

PROCEDURE Underflow(c,a: ref; s: INTEGER; VAR h: BOOLEAN);
{ a = Underflow page, ¢ = ancestor page }
VAR b: ref;
i,k,mb,mc: INTEGER,
BEGIN { h =TRUE, a~.m = n-1}

me = ¢~.m,;

{ b:= page to the right of a }
IFs <mc
THEN BEGIN

s :=s+ 1;
b :=c~.e[s].p;
mb = b~.m;
k :=(mb-n+1) DIV 2
{ k = no. of items available on adjacent page b |
a~.e[n] :=c~.g[s];
a~.e[nl.p := b~.p0;

{ Move k items from b to a {

k>0
THEN BEGIN

FOR i:=1 TO k-1 DO
a~.eli+n] := b~.e[i];

c~.e[s] :=b~.ek];

c~.e[s]l.p:=b;

b~.p0 :=b~elklp;

mb = mb - k;

FOR i:=1 TO mb DO
b~.e[i] := b~.e[i+k];

b~.m := mb;

a~.m = n-1+k;

h 1= FALSE:

END;

{ Merge pages a and b }
ELSE BEGIN

FOR i:=1 TO n DO
a~.e[i+n] := b~.e[i];

FOR i:=s TO mc-1 DO
c~.eli] := c~.efi+1];

a~.m := nn;

c~.m := me-1; $dispose(b)}

END
END

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 368

{ b:= page to the left of a }
ELSE BEGIN
IFs=1
THEN b := ¢c~.p0
ELSE b := c~.e[s-1].p;
mb :=b~.m+ 1;
k :=(mb-n) DIV 2

{ Move k items from page btoa |

IPk>0
THEN BEGIN

FOR i:=n-1 DOWNTO 1 DO
a~.efi+k] = a~.e[i};

a~.e[k] :=c~.e[s);

a~.e[k].p := a~.p0;

mb 1= mb-k;

FOR i:= k-1 DOWNTO 1 DO
a~.e[i] := b~.eli+mb};

a~.p0 :=b~.e[mbl.p;

c~.e[s] :=b~e[mb);

c~.els]lpi= g

b~.am = mb-1;

a~.m = n-1+k;

h 1= FALSE

END

§ Merge pages aand b}
ELSE BEGIN
b~e[mb] :=c~.els];
b~.e[mb].p := a~.p0;
FOR i:=1 TO n-1 DO
b~.e[i+mb] := a~.efi);
b~.m := nn;
c~.m :=me-1; {dispose(a)}
END
END
END; §{ Underflow }

FIG 5.2 [7, p.254]

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No § Oct 1984 Page 37

procedure underflow{ c,a: ref;, s: integer; var h: boolean);
{ a = Underflow page, c = ancestor page }
var b: ref; i,k,mb,mec: integer;
BEGIN mc :=c~.m; §h=true, a~.m =n-1}
IF s < me THEN
BEGIN { b := page to the right of a} s:=s+ 1;
b:= c~.e[s].p; mb := b~.m; k := (mb-n+1) DIV 2;
{k = no. of items available on adjacent page bj
a~.e[n]:= c~.e[s]; a~e[n].p := b~.p0;
IF k > 0 THEN
BEGIN fmove k items from b to a}
FOR i:= 1 TO k-1 DO a~.e[i+n]:= b~.e[i];
c~.e[s] := b~.e[k]; c~.e[s].p:= b;
b~.p0 := b~.e[k].p; mb := mb - k;
FOR i:= 1 TO mb DO b~.e[i] := b~.e[i+k];
b~.m := mb; a~.m := n-1+k; h := FALSE;
END ELSE
BEGIN {merge pages a and b}
FOR i:=1 TO n DO a~.e[i+n]}:= b~.e[i];
FOR i:=s TO mc-1 DO c~.¢efi] := c~.e[i+1];
a~.m := nn; c~.m := mec-1; }dispose(b}}
END
END ELSE
BEGIN {b := page to the left of a}
IFs=1THENDb := ¢~.pO ELSE b := c~.e[s-1].p;
mb := b~.m + 1; k := {mb-n) DIV 2
IF k > 0 THEN
BEGIN {move k items from page b to a }
FOR i:= n-1 DOWNTO 1 DO a~.eli+k]:= a~.e[i};
a~.e[k] := c~.e[s]; a~.e[k].p := a~.p0; mb := mb-k;
FOR i:= k-1 DOWNTO 1 DO a~.efi}:=b~.e[i+mb};
a~.p0 := b~.e[mb].p;
c~.e[s] := b~.e[mb]; c~.e[s]p:=a;
b~m := mb-1; a~.m := n-1+k; h := FALSE
END ELSE
BEGIN {merge pages a and b}
b~.e[mb] := c~.e[s]; b~.e[mb].p := a~.p0;
FOR i:=1 TO n-1 DO b~.e[i+mb]:= a~.e[i];
b~.m := nn; c~.m := me-1; {dispose(a)}
END
END
END { Underflow §;

Figure 5.3 [7, p.254] The original formating style of Figure 5.2.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 38

small BLOCKS in C
#include <stdio..h>

/* Allocate and flll input bufter */

_fillbuf(fp)

register FILE *fp;

{
static char smallbuf[_NFILE]; /* for unbuffered 1/0 */
char *calloc();

/* Is the file open for reading? */
if ({fp->_flag&_READ) == 0 || (fp->flag&(_EOF | _ERR)}) != 0)
return{EOF);

/* Find a buffer to perform buffered 1/0 */
while (fp->_base == NULL)
/* -> perform unbuffered I/0 */
if (fp->_flag & _UNBUF)
fp->_base = &smallbuf[fp->_fd];
/*-> try to get a big buffer */
else if ((fp->_base = calloc(_BUFSIZE, 1)) == NULL)

fp->_flag |= _UNBUF;
/*-> got a big buffer */
else fp->_flag |= _BIGBUF;

/* Fill in the buffer and set up the count and pointers */
fp->_ptr = fp->_base;
fp->_ent = read(fp->_fd, fp->_ptr,

fp->_flag & _UNBUF ? 1 : _BUFSIZE);

/* -> hit eof while reading in the last buffer? */
if (~fp->_¢cnt < 0)}§
if (fp->_ent == -1)
fp->_flag |= _EOF;
else fp->_flag |= _ERR;
fp~->.cent = 0;
return(EOF);

|
return(*p->_ptr++ & 0377); /* make char positive */

FIG 5.4 [2, p.168]

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 39

#include <stdio..h>

fillbuf(fp) /* allocate and fill input buffer */
register FILE *fp:

E

static char smallbuf[_NFILE]; /* for unbuffered 1/0 */
char *calloc();

it ((fp->_flag& _READ) == 0 || (fp->flag&(_EOF| _ERR)) != 0)
return(EOF);
while {fp->_base == NULL) /* find buffer space */
if (fp->_flag & _UNBUF) /*unbuffered */
fp->_base = &smallbuf{fp->_fd];
else if ((fp->_base = calloc{_BUFSIZE, 1)) == NULL)

fp->_flag |= _UNBUF; /* can’t get big buf */
else

fp->_flag |= _BIGBUF; /* got big one */
fp->_ptr = fp->_base;
fp->_ent = read(fp->_fd, fp->_ptr,

fp->_flag & _UNBUF ? 1 : _BUFSIZE);
if (~fp->_gnt < 0)§

if (fp->_cnt == -1)
fp->_flag |= _FOF;
else
fp->_flag |= _ERR;
fp->_ecnt = 0;
return{EQF);

return(*fp->_ptr++ & 0377); /* make char positive */

Figure 5.5 [2, p.168] The original forrnating style of Figure 5.4

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 6 Oct 1984 Page 40

small BLOCKS in LISP

{DEFUN inf-to-pre (ae)
(PROG (OPERANDS OPERATORS) : The two lists
; Test beginning parameters
{(COND ({ATOM ae) (RETURN ae)))
(SETQ OPERATORS (LIST 'dummy))

; Scan for operand, ends on operator
stuff
(COND ((NULL as) (RETURN ’unexpected-end)))
(SETQ OPERANDS
(CONS (COND ({ATOM (CAR ae)) (CAR ae))
{t (inf-to-pre (CAR ae))

)
OPERANDS)
ae (CDR ae)

; Scan for operator
scan
(COND ({AND {NULL ae)
(EQUAL (CAR OPERATORS) 'durmmy) ; ae & list empty
} (RETURN (CAR OPERANDS)))

; End of ae or nesting order
{COND ((CR (NULL ae)
(NOT (GREATERP (weight {CAR ae))
(weight (CAR OPERATORS)))))

; Construct code
(SETQ OPERANDS
(CONS (LIST (OPCODE (CAR OPERATORS))
(CADR OPERANDS)
(CAR OPERANDS))
(CDDR QPERANDS) ; POP two operands

)
OPERATORS (CDR OPERATORS) ; POP operator

; Look for operator
(GO scan)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 5 Oct 1984 Page 41

: Push operator, peel off operator

(t (SETQ OPERATORS
(CONS (CAR ae) OPERATORS)

ae (CDR as))
(GO stuff)

)
FIG 5.8 [8, p.158]

(DEFUN inf-to-pre {ae)

(PROG (OPERANDS OPERATORS) :The two lists
(COND ((ATOM ae) (RETURN ae))) ;Special case
(SETQ OPERATORS (LIST 'dummy)) ;Dummy terminator
stuff
(COND ((NULL as) ;Scan for operand

(RETURN 'unexpected-end))) :Ends on operator
(SETQ OPERANDS (CONS (COND ((ATOM (CAR ae)) (CAR ae))
{t (inf-to-pre (CAR ae))) ;Recurse
OPERANDS) ;PUSH operand
ae (CDR ae)) ;Peel off operand
scan
{COND ((AND (NULL ae) ;Scan for operator
(EQUAL (CAR OPERATORS) ’'dummy)) ;ae & list empty
(RETURN (CAR OPERANDS)))) ;Return result
{(COND ((OR (NULL ae) ;End of ae or

(NOT (GREATERP (weight (CAR ae)) ;nesting order
(weight (CAR OPERATORS)))))

(SETQ OPERANDS :Construct code
(CONS (LIST (OPCODE (CAR OPERATORS))
(CADR OPERANDS)
(CAR OPERANDS))

{CDDR OPERANDS)) ;POP two operands
OPERATORS {CDR OPERATORS)} ;POP operator
(GO scan)) :Look for operator

(t (SETQ OPERATORS (CONS (CAR ae)
OPERATORS) ;PUSH operator
ae {CDR as)) iPeel off operator
(GO stuff))))) ;Look for operand

FIG 5.7 [8, p.158] The original formating style of Figure 5.8.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 8 No 5 Oct 1984 Page 42

Lastly, there are no hard and
fast rules in using small BLOCKS.
Which small BLOCK organization is
used depends upon what the code
looks like and what the programmer
wants to emphasize. This paper has
presented the general principles of
this formating technique.

6. Conclusion

Program readability is a require-
ment for good programming. The
current tools used to accomplish this
are meaningful comments and vari-
able names, as well as structured and
modular programming. However,
none of these directly addresses the
problem of complex straight-line sub-
routine code. This paper has
presented a new formating technique
which solves this problem.

Many existing formating tech-
niques work at too low a level. They
are concerned only with making a
small sequence of language state-
ments easier to read, for example
reformating nested I[F-THEN-ELSEs
into a CASE-like statement. [1,
p.146-148] Such techniques are
necessary, but do not convey the
statements’ higher level function in
the subroutine. Small BLOCKS
bridges this gap by grouping state-
ments by logical action, while also
allowing aesthetic groupings of code.
It has also been shown how small
BLOCKS are useful in organizing code
to make programming easier.

As with all formating techniques
experience and experimentation is
needed to perfect them. The reader
should not expect small BLOCKS to
be easy to use at first. However,
after some practice the programmer
will notice the difference in his code,
and will get a feel for how to proceed.

Programmers need to take pro-
gram formating more seriously, and
not only be concerned with making
their programs work. An unreadable
program only works until a
modification is required. Many pro-
grammers unknowingly use concepts

from small BLOCKS already. They do
so because they seem natural to use,.

References

[1] B.W. Kernigham and P.J. Plauger,
The FElements of Programming
Style, Second Edition. McGraw-
Hill, New York, 1978.

{2] B.W. Kernighan and D.M. Ritchie,
The C Programming Language.
Prentice-Hall, New Jersey, 1978.

[8] G.I. Myers, Composite / Struc-
tured Design. Van Nostrand
Reinhold, New York, 1978.

[4] B. Liskov and S. Zilles, “Pro-
gramming With Abstract Data
Types”. Proc. of a Symposium
on Very High Level Languages,
SIGPLAN Notes 9, 4 (April 1974),
p.50-59.

[8] C.L. McGowan and J.R. Kelly,
Top-Down Structured Program-
ming Techniques. Van Nostrand
Reinhold, New York, 1975.

[8] R. Conway, D. Gries, and C.E.
Zimmerman, A Primer On Pas-
cal. Winthrop, Mass, 18786.

[7] N. Wirth, Algorithms + Data
Structures=Frograms.
Prentice-Hall, New Jersey, 1978.

[8] P.H. Winston and B.K.P. Horn,
LISP. Addison-Wesley,Mass, 1981,

[9] M.J. Bennett, Conversation on

program readability, SDC, Santa
Monica, CA. June 1984.

