
ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 28

PROGRAMMING WITH small BLOCKS

Mark K Joseph

System Development Corporatio n
A Burroughs Company

Santa Monica, CA.

ABSTRAC T

Programming style is a highly personalized characteristic of
programs . Modular and block structured programming technique s
provide many standards for good programming . These techniques
are used to develop well designed but only marginally readable
code . Similar organizational techniques are not typically applied t o
code inside subroutines, which is either too small or too specific t o
be further broken down into subroutines . The result is ofte n
obscure subroutine code that makes the maintenanc e
programmer's job extremely difficult . Presented here is a styling
technique for intra-subroutine code that groups program state-
ments into "small BLOCKS" of function or conditional constraints .
It is shown that this style of formating subroutine code can greatl y
improve the readability of the average program . The technique is
demonstrated in Pascal, C, and Lisp .

Key Terms and Phrases : Software Engineering, program readabil-
ity, and programming style .

1 . Introduction
Structured programming, modu-

lar programming, and data encapsu-
lation [3, 4, 5] are the current
software engineering techniques use d
in developing software . If used prop-
erly these techniques can lead to wel l
designed systems . Such softwar e
systems will be understandable at
the module and subroutine level,
because these techniques use th e
logical structure of the problem t o
provide a clear design .

However, these techniques do
not guarantee readability of cod e
inside a subroutine . Confusing sub-
routine code is due partly to the fact
that programming style is very per-
sonalized, and that at this level no
good formating guidelines exist .

Structured programming does deal
with code inside subroutines, how -
ever, it does not provide enoug h
guidelines to make a whole subrou-
tine readable .

A clear understanding of subrou-
tine internals is needed in order to
be able to modify subroutine code .
Thus it is desirable to have a tech-
nique to make subroutine code mor e
readable by ensuring that its format
convey its logical structure . This
paper presents a formating tech-
nique, called small BLOCKS, that
solves this problem .

Many of the foundations and
justifications of small BLOCKS can be
found in [6, p .177-191]. However ,
small BLOCKS goes much further b y
enlarging the scope of what small

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1010941.1010950&domain=pdf&date_stamp=1984-10-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 2 9

segments of code to separate and on
how to do the actual separation. It
does this by clearly defining the ide a
of separating function and contro l
flow, as well as pointing out aestheti c
in addition to logical statement
groupings . The last major differenc e
is that small BLOCKS frequently
separates the code of a "progra m
unit " , i .e. a construct of a program-
ming language such as IF-THEN-ELSE ,
where in [6] this is not done. The
small BLOCKS technique follows th e
suggestion given in [6, p .182] : "A pro-
gram is well-presented if its struc-
ture is clearly and quickly apparen t
to the reader " .

The rest of this paper consists o f
four sections. Section two define s
the small BLOCKS concept . Section
three describes how this techniqu e
increases the readability of pro -
grams. Section four explains ho w
small BLOCKS can be used as a
development tool . Lastly in section
five, several examples of code befor e
and after the use of small BLOCKS
are presented. It is hoped that these
examples will solve many of the prob-
lems that the reader has encoun-
tered in trying to make his/her pro-
grarns more readable .

2. What are small BLOCKS?
Small BLOCKS are used in sub-

routines, that are approximately 3 0
to 150 lines long . This range provide s
the degree of detail in which th e
internal workings of a subroutine ca n
become confusing. These lines can
contain subroutine calls, but the
remainder are either too small or to o
specific to be grouped into subrou-
tines themselves. Further, it should
be noted that some applications can -
not afford the overhead of many sub-
routine calls . This may lead to the
use of macros, but can still result i n
complex code. The small BLOCK
technique can be applied to man y
programming languages .

A small BLOCK is defined to be a
grouping of program statements ,
which have some logical action or

aesthetic quality associated with
them. "Aesthetic" is used here to
mean that grouping certain state-
ments together will increase the rea-
dability of the code from the con-
cerned author's point of view . Thes e
statement groupings are made int o
small BLOCKS by using several blan k
lines both before and after, a begin-
ning comment describing its func-
tion, and indentation when needed .
This is shown in Figure 5.2. Th e
grouped statements are separate d
from the surrounding code, so that
upon looking at the whole subroutine
at once the viewer can see severa l
separate block-like structures o f
code .

The size of a small BLOCK is no t
a fixed value. It depends upon the
amount of complexity that it con-
tains. Very simple but long action s
can be a single small BLOCK, yet a
few program statements may need to
be separated in order to be
comprehensible. If a small BLOCK is
not easily understandable, then it i s
probably too long . In general, the
programmer's judgement will need t o
be used here .

There are two forms of logica l
action which make natural smal l
BLOCK groupings . The first is a
sequence of simple program state-
ments which together accomplis h
one logical function . The other is a
nesting or clustering of control con-
structs such as IF-THEN-ELSE, WHIL E
loops, and FOR iteration loops . Small
BLOCKS may nest, and thus these tw o
forms can be contained within each
other . These two forms introduce the
idea of separating control flow and
function by placing each into
different small BLOCKS . Control flow
small BLOCKS deal with the control of
execution between small BLOCKS no t
individual language statements .
Such organization allows the program
reader to concentrate on the contro l
flow and functions separately as the
program is read. It is the author' s
opinion that this will increase the
comprehension of programs .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 0

Determine if action A is to be performe d
This small BLOCK is a nesting of IF-THEN-ELSE s

IF condition C l
THEN some actio n

IF condition C2

	

<CONTROL >
THEN some actio n

IF condition C 3
THEN Perform action A :

Action A is —"---NNNNNN/VNN

}BEGIN
IF condition C4

THEN M1 A NNN NN

	

<FUNCTION >
ELSE rMI ra-dr- V '

some action s
EN D

i What to do if action A is not don e
ELSE NNn.1r n.,n/ fV

ELSE f,J NN IV /V

	

<FUNCTION >
ELSE N N I,J INJ V M1!

Figure 3 .1-A CODE TEMPLATE I Control Flow VS . Function
Each box represents a small BLOCK. The "<control>" ,
and " <function>" symbols indicate the action of a
small BLOCK . The boxes are used here for emphasis .

Before showing some concret e
code examples, several code tem-
plates which exhibit the concepts. in
the above paragraphs are shown i n
Figures 3.1A-C. These represent real
code examples extracted from som e
of the author's past programming
projects. The templates are
presented in a Pascal-like pseudo-
language .

3. Increases Rea.dabtlity
One typical impediment to rea-

dability of a piece of code is complex-
ity. Small BLOCKS can greatly
improve the readability of the aver -
age program by breaking up the
details of a subroutine into smal l
understandable units . The reader
can then examine the code at several
levels of abstraction .

The reader first examines wha t
each small BLOCK does by its heading
comment, then how each bloc k
interacts with the others, and lastly
how each works at the statment level .
This is very similar to how modular
programming makes software sys-
tems readable at the module Level .
First, each module's function i s
determined, then how each wor k
together by their interfaces, an d
finally how each is organized inter-
nally .

Look at code template I, in Fig-
ure 3.1-A, for an example of how thi s
works. First, a program reader looks
at the heading comments of eac h
small BLOCK. Next, by concentratin g
on the first small BLOCK the progra m
reader learns under what condition s
action A is to be performed. The

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 1

Are initial conditions met ?
This small BLOCK is a clustering of IF-THEN-ELSE s
IF conditional C l

THEN RETURN error

	

<CONTROL >
IF conditional C 2

THEN RETURN erro r

i - Perform the first sequential action
IF conditional C 3

THEN action Al

	

<FUNCTION >
ELSE action A 2

Swap A and D
temp <- A
A

	

<- B
B

	

<- temp <FUNCTION >

Figure 3 .1-B CODE TEMPLATE I I
A sequence of small BLOCKS, where eac h
perform an individual logical action .

reader is not bothered with ho w
action A works, but instead is jus t
aware of its basic function from its
heading comment.

Next, the program reader deci-
phers the second small BLOCK, whic h
is action A itself . While determinin g
how this does the stated function he
no longer has to worry about all the
details of the previous small BLOCK .
The program reader knows how i t
works and will abstract away th e
details as he turns his attention
toward action A. However, the reader
will occasionally need to refer bac k
to previous small BLOCKS in order t o
check on important inter -
relationships, such as a commo n
variable being assigned the prope r
value .

By trying to understand the
internals of only one small BLOCK at
a time the reader has limited the
amount of detail that it is necessar y
to deal with at any one time. It is the
separation of the small BLOCKS o f
code which allows a reader to con-

centrate on a function, for example ,
without having distracting condition-
als immediately around it . The con-
ditionals are instead several line s
above separated by enough blank
lines to make it seem like an unre-
lated piece of code .

Finally, the reader gets to the
last small BLOCK in Figure 3 .1-A .
Now, he ignores how action A i s
implemented, and determines what
the subroutine does when action A i s
not performed .

4. Use small BLOCKS From The
Beginning

Small BLOCKS can be added onto
programs which are already in a tar -
get language (as is done in the next
section) . However, using them from
the beginning of pseudo coding will
result in readable and well organized
pseudo-code . Later translation into
real code will be much easier .

An exception is that aestheti c
small BLOCKS are created both dur-
ing and after pseudo or real coding .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 2

search for the element in the lis t
FORI<- Lto K

some action

	

<FUNCTION >

EN D

Figure 3 .1-C CODE TEMPLATE II I
An IF-THEN-ELSE language construct can b e
broken up into several small BLOCKS in
order to emphasize separate logical actions .

The conditional takes several line s
IF complex conditional

where Cl is TRUE
THEN some small actio n
ELSE BEGIN

<CONTROL >

some action
IF conditional C2 is TRUE

BEGIN
some action1
some actionn

END

<FUNCTION >

Aesthetic small BLOCKS are fre-
quently added when a programmer i s
reviewing subroutine code and finds
that it's still too complex with th e
current small BLOCKS . Also, the pro-
grammer might have missed a logical
action small BLOCK and could ad d
that on while reviewing it .

The translation of pseudo-code
into a target language can be a com-
plex task with many distracting
details. To help simplify this task the
programmer can code one small
BLOCK of pseudo-code at a time . This
will allow him to concentrate on onl y
a few program statements, whil e
ignoring all the remaining pseudo -
code yet to do . The programmer will
undoubtedly make frequent refer-
ences to the target code that ha s
already been produced . But now ,
making these inter-block reference s
should be more manageable .

It is important to notice that
more small BLOCKS will appear in the

target language program than in th e
pseudo-code . This occurs because
the translation process will expan d
one pseudo-code statement into pos-
sibly several target language state-
ments . In this added detail mor e
subfunctions and/or control truc-
tures will appear, thus warrantin g
additional small BLOCKS .

Translating pseudo-code into a
target language can also be a ver y
tiring endeavor . Programmers are
more prone to make mistakes as
they get tired. However, stopping i n
the middle of coding a subroutine, in
order to take a break, can cause a
programmer to lose his train of
thought. Small BLOCKS provid e
natural stopping places since they
are organized around one basic func-
tion. Now, a programmer will not b e
in the middle of coding a complex
action when getting up from his des k
to take a break, but may still be in
the middle of a subroutine .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 33

5. A Few Examples
Presented here are four exam-

ples of the small BLOCK technique
used in Pascal, C, and Lisp . The first
example demonstrates the use of
aesthetic small BLOCKS . The remain -
ing three examples are presented i n
their reformated and original forms .
This is done so the reader can make
a comparison as to which form is pre-
ferred .

In preparing these examples, no
variable names were changed and i n
most cases only the original com-
ments were used . It was necessary t o
add a few comments since they wer e
needed for any added small BLOCKS .
Overall, the changes to the original
code were kept to a minimum, i n
order to show only the effects o f
adding small BLOCKS .

In Figure 5.1 the first small
BLOCK is an aesthetic grouping . In
standard formating techniques the
second "WHILE" statment would be
connected with the rest of its loop.
Here we instead want to emphasize
the functions of the two smal l
BLOCKS inside the loop . This exam-
ple is just one of many varied situa-
tions in which aesthetic grouping s
can be used. This aspect of smal l
BLOCKS is more of an art than a
method.

If the separated "WHILE" state-
ment contained a complicated condi-
tional then it would basically be a
variant of code template III, Figure
3.1-C. It would therefore, more
strongly represent a separation of
control flow and function .

Now looking at Figure 5 .2, the
first thing that strikes the reader i s
all that white space . Small BLOCKS
spreads complexity out and gives the
code some structure . The reader is
not scared off when he first looks a t
Figure 5.2, but he is when he sees i t
in its original form, shown in Figur e
5.3! At a glance to Figure 5.2, the
reader sees two major components o f
"PROCEDURE Underfiow" . These are
two small BLOCKS head by the corn-

ments : b := page to the right of a
1", and 1 b := page to the left of a ;" .
Next, it is easily seen that each i s
composed of two internal smal l
BLOCKS, and their functions ar e
clear .

It is not an easy task to see this
code's structure from its original for-
mating style . In general, "the more
white space the better" [9] .

Turning attention to Figure 5 .4 ,
we notice that some comments star t
with an upper-case letter while oth-
ers start with an arrow and a lower -
case letter . This convention is use d
to help distinguish the heading com-
ment of a small BLOCK from all of it s
internal subcomments. In some
sense, the heading comment is simi-
lar to that of a procedure since i t
describes a high-level function .
Whereas, the internal comment s
describe how that high-level functio n
is accomplished . A minor point i s
that a blank line or two may appear
inside a small BLOCK, as in the las t
small BLOCK in Figure 5 .4. This ca n
be helpful when a reader is focusin g
on statement-level actions .

An interesting observation can
be made after a programme r
develops a program using stepwis e
decomposition [5,6] . First, he breaks
a problem into subproblems whic h
tend to become small BLOCKS, when
at the subroutine level . However, in
the final code he tends to cram al l
the program statments together and
the previously derived Logical separa -
tion disappears . By using small
BLOCKS from the beginning, the logi-
cal structure inside subroutines ca n
be preserved, aided by the ideas of
separation of control flow and func-
tion and aesthetic groupings.

It is interesting to study th e
reformated Lisp code in Figure 5.6 .
It is essentially the combination o f
small BLOCK groupings from cod e
templates II & III, shown in Figur e
3.1-B&C .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 4

Function, Control Flow, and Aesthetic Grouping s

* * *
i Produce a cross reference for the input file i
WHILE NOT eof(f) D O

BEGI N
IFn=c4

THEN n := 0 ;
n .=n+ 1 ;
WRITE(n:c3) ;
WRITE(' ') ;
WHILE NOT eoln(f) D O

BEGI N

i scan non-empty lin e
IF f^ IN ['A' . .'Z'] THEN

BEGI N
k .=0;
REPEAT

IFk<c l
THEN BEGI N

k

	

=k+1 ;
a[k] = f^ ;

END ;
WRITE(f^) ; GET(f)

UNTIL NOT(f^ IN ['A' . .'Z', '0' . .'9']) ;

EN D

i check for quote or comment
ELSE BEGIN

IF f^ = "" THE N
REPEAT

WRITE(f^) ; GET(f)
UNTIL f^ = " "

ELSE IF f^ = 'i' THE N
REPEAT

WRITE(f) ; GET(f)
UNTIL f- = 1' ;

WRITE(f^) ; GET(f)
EN D

END

FIG 5.1 [7, p .271]

END

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 5

small BLOCKS in Pascal

PROCEDURE Underflow(c,a : ref; s: IN'T'EGER; VAR h: BOOLEAN) ;
a = Underflow page, c ancestor pag e

VAR b : ref ;
i,k,mb,mc : INTEGER ;

BEGIN h = TRUE, a'- .m = n- 1

b := page to the right of a i
IF s <mc

THEN BEGI N
s :=s+1 ;
b := c^ .e[s] .p ;
mb : b^ .m;
k :_(mb-n+1) DIV 2 ;

k = no. of items available on adjacent page b
a^.e[n] := c^.e[s] ;
a^.e[n] .p := b^ .pO ;

Move k items from b to a
IFk> 0

THEN BEGI N
FOR i := 1 TO k-1 D O

a^ .c[i+n] := b^ .e[i] ;
c^.e[s] := b^ .e[k] ;
c^ .e[s] .p b ;
b^.pO := b^.e[k] .p ;
mb :=rnb-k ;
FOR i := 1 TO mb D O

b^ .e[i] := b ' .e[i+k] ;
b^.m . mb;
a^ .m := n-l+k;
h

	

: = FALSE ;
END ;

1 Merge pages a and b
ELSE BEGIN

FOR i := 1 TO n D O
a^ .e[i+n] := b^.e[i] ;

FOR i := s TO me-1 D O
C" .e[i] := c^ .e[i+ 1] ;

a^ .rn := nn ;
c~ .m := me-1; dispose(b)

EN D
END

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 6

b := page to the left of a i
ELSE BEGIN

IF s = 1
THEN b := c^ .p0
ELSE b := c^.e[s-1] .p ;

mb := b- .m + 1;
k :_ (mb-n) DIV 2;

i Move k items from page b to a
IF k > 0

THEN BEGI N
FOR i := n-1 DOWNTO 1 D O

a^ .e[i+k] :
a^.e[k]

	

.= c^.e[s] ;
a^.e[k] .p := a^.p0 ;
mb

	

:= mb-k;
FOR i := k-i DOWNTO 1 D O

a^.e[i] := b^ .e[i+mb] ;
a^.p0

	

.= b^ .e[mb] .p ;
c^.e[s] := b^.e[mb] ;
c^.e[s] .p := a ;
b^.m := mb-1;
a^.m .= n-l+k;
h

END
:= FALSE

Merge pages a and b
ELSE BEGI N

b^.e[mb] .= c^.e[s] ;
b^.e[mb].p := a^.p0;
FOR i := 1 TO n-1 D O

b^ .e[i+mb] := a^ .e[i] ;
b^.m := nn ;
c^ .m := me-1 ;

	

dispose(a)
END

END
END; Underflow

FIG 5.2 [7, p.254]

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 7

procedure underflow(c,a : ref; s: integer; var h: boolean) ;
a = Underflow page, c = ancestor page i

var b: ref ; i,k,mb,rnc : integer;
BEGIN me := c^.m; h = true, a•- .m = n-1 3

IF s < me THE N
BEGIN Fb :=page totheright ofa ; s :=s+1;

b := c^ .e[s] .p; mb := b^ .m; k :_ (mb-n+l) DIV 2 ;
ik = no. of items available on adjacent page b i
a^.e[n] := c^.e[s] ; a^e[n] .p := b^ .pO ;
IF k> U THE N
BEGIN imove k items from b to a l

FOR i

	

1 TO k-1 DO a^ .e[i+n] := b^.e[i] ;
c- .e[s] := b^.e[k]; c^.e[s] .p := b ;
b^ .p0 := b^ .e[k] .p; mb := mb - k ;
FOR I. := 1 TO mb DO b^ .e[i] := b^ .e[i+k] ;
b^ .m := mb; a^.m .= n-i+k; h := FALSE ;

END ELSE
BEGIN i merge pages a and b ;

FOR i := 1 TO n DO a- .e[i+n] := b^.e[i] ;
FOR i := s TO me-1 DO c^ .e[i] = c^ .e[i+l] ;
a^ .m := nn; c^.m := me-1 ; idispose(b)

EN D
END ELSE
BEGIN ib := page to the left of a i

IF s = 1 THEN b := c^ .pO ELSE b := c^.e[s-1].p;
mb := b^ .m + 1 ; k :_ (mb-rn) DIV 2 ;
IF k>OTHEN
BEGIN imove k items from page b to a i

FOR i := n-i DOWNTO 1 DO a^ .e[i+k] := a- .e[i] ;
a^.e[k] .= c^ .e[s]; a^.e[k] .p := a^.p0 ; mb := mb-k ;
FOR i := k-1 DOWNTO 1 DO a^ .e[i] := b^.e[i+rnb] ;
a^.p0 := b^ .e[mb] .p ;
c —.e[s] := b^.e[mb] ; c^ .e[s] .p := a ;
b^.m := mb-1 ; a- .m := n-l+k; h := FALS E

END ELSE
BEGIN merge pages a and b j

b^.e[mb] := c^.e[s] ; b^.e[mb].p := a^ .pO;
FOR i := 1 TO n-1 DO b^.e[i+mb]

	

a^.e[i] ;
b^ .m := nn; c^ .m := me-1; idispose(a)

EN D
EN D

END Underflow i ;

Figure 5 .3 [7, p .254] The original formating style of Figure 5 .2.

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 8

small BLOCKS in C

#include <stdio . .h >

/* Allocate and fill input buffer * /
Jlllbuf(fp)
register FILE *fp;

static char smallbuf[NFILE] ; /* for unbuffered I/O */
char *calloc() ;

/* Is the file open for reading? */
if ((fp-7 flag&B,EAD) == 0 II (fp->flag&(EOF ! ERR)) != 0)

return(EOF) ;

/* Find a buffer to perform buffered I/O */
while (fp->base == NULL)

-> perform unbuffered I/O * /
if (fp-7 flag & UNBUF)

fp-> base = &smallbuf[fp-> fd] ;_
/* -> try to get a big buffer */
else if ((fp-> base = calloc(BUFSIZE, 1)) == NULL)

fp->flag I= UNBUF ;
/* -> got a big buffer

	

*/
else

	

fp-7 flag I= BIGBUF;

/* Fill in the buffer and set up the count and pointers */
fp->_ptr = fp-7 _base ;
fp-7 cnt = read(fp-> fd, fp->,ptr ,

fp->flag & UNBUF ? 1 : BUFSIZE) ;

/* -7 hit eof while reading in the last buffer? * /
if (--fp-> cnt < 0)

if (fp->cnt == -1)
I= EOF ;fp-7 _flag

else fp->flag j= ERR ;
fp->cnt = 0;
return(EOF) ;

return(*fp->, ptr++ & 0377) ; /* make char positive */

FIG 5.4 [2, p .168]

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 3 9

#include <stdio . .h >

fillbuf(fp)

	

/* allocate and fill input buffer * /
register FILE *fp ;

static char smallbuf[J FIT,E] ; /* for unbuffered I/O */
char *calloc() ;

if ((fp-> flag& READ) _= 0 II (fp->flag&(EOF I ERR)) != 0)
return(EOF) ;

while (fp-> base == NULL) /* find buffer space */
if (fp-> flag & UNBUF) /* unbuffered * /

fp-> base = &smallbuf[fp->fd] ;
else if ((fp-> base = calloc(_pUFSIZE, 1)) _= NULL)

fp->flag I= UNBUF; /* can't get big buf */

fp-> flag 1= BIGBUF ; /* got big one */
fp->_ptr = fp-> base ;
fp-> cnt = read(fp-> fd, fp->_ptr ,

fp->fiag & UNBUF ? 1 : 3UFSIZE) ;
if (--fp->ent < 0)

if (fp-> cnt

	

-1)
fp->flag I= EOF ;

else
fp-> flag 1= ERR ;

fp-> cnt = 0;
return(EOF) ;

els e

return(*fp->.ptr++ & 0377) ; /* make char positive */

Figure 5 .5 [2, p.168] The original formating style of Figure 5 .4 .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 4 0

small BLOCKS in LISP

(DEFUN inf-to-pre (ae)
(PROG (OPERANDS OPERATORS)

	

; The two list s
Test beginning parameters
(COND ((ATOM ae) (RETURN ae)))
(SETQ OPERATORS (LIST 'dummy))

Scan for operand, ends on operato r
stuff
(COND ((NULL as) (RETURN 'unexpected-end)))
(SETQ OPERAND S

(CONS (COND ((ATOM (CAR ae)) (CAR ae))
(t (inf-to-pre (CAR ae))

OPERANDS)
ae (CDR ae)

)

Scan for operato r
scan
(COND ((AND (NULL ae)

(EQUAL (CAR OPERATORS) 'dummy)

	

; ae & list empty
) (RETURN (CAR OPERANDS)))

)

End of ae or nesting orde r
(COND ((OR (NULL ae)

(NOT (GREATERP (weight (CAR ae))
(weight (CAR OPERATORS)))))

; Construct code
(SETQ OPERANDS

(CONS (UST (OPCODE (CAR OPERATORS))
(CADR OPERANDS)
(CAR OPERANDS))

(CDDR OPERANDS)

	

; POP two operands

; Look for operato r
(GO scan)

)
OPERATORS (CDR OPERATORS)

	

; POP operator

)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 4 1

; Push operator, peel off operato r
(t (SETA OPERATORS

(CONS (CAR ae) OPERATORS)
ae (CDR as))

(GO stuff)

))
FIG 5.6 [8, p.158]

(DEFUN inf-to-pre (ae)
(PROG (OPERANDS OPERATORS)

	

;The two list s
(COND ((ATOM ae) (RETURN ae)))

	

;Special case
(SETQ OPERATORS (LIST 'dummy))

	

;Dummy terminator
stuff
(COND ((NULL as)

	

;Scan for operan d
(RETURN 'unexpected-end)))

	

;Ends on operator
(SETQ OPERANDS (CONS (COND ((ATOM (CAR ae)) (CAR ae))

(t (inf-to-pre (CAR ae)))

	

;Recurs e
OPERANDS)

	

;PUSH operand
ae (CDR ae))

	

;Peel off operand
scan
(COND ((AND (NULL ae)

	

;Scan for operator
(EQUAL (CAR OPERATORS) 'dummy)) ;ae & list empt y

(RETURN (CAR OPERANDS))))

	

;Return resul t
(COND ((OR (NULL ae)

		

;End of ae o r
(NOT (GREATERP (weight (CAR ae)) ;nesting orde r

(weight (CAR OPERATORS)))))

(SETQ OPERANDS

	

;Construct code
(CONS (LIST (OPCODE (CAR OPERATORS))

(CADR OPERANDS)
(CAR OPERANDS))

(CDDR OPERANDS))

	

;POP two operand s
OPERATORS (CDR OPERATORS))

	

;POP operato r
(GO scan))

		

;Look for operato r
(t (SETQ OPERATORS (CONS (CAR ae)

OPERATORS) ;PUSH operator
ae (CDR as))

	

;Peel off operator
(GO stuff)))))

	

;Look for operand

FIG 5.7 [8, p.158] The original forrnating style of Figure 5 .6.

)

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 9 No 5 Oct 1984 Page 4 2

Lastly, there are no hard and
fast rules in using small BLOCKS .
Which small BLOCK organization is
used depends upon what the code
looks like and what the programme r
wants to emphasize . This paper has
presented the general principles o f
this formating technique .

6. Conclusion
Program readability is a require-

ment for good programming . The
current tools used to accomplish thi s
are meaningful comments and vari-
able names, as well as structured and
modular programming . However ,
none of these directly addresses th e
problem of complex straight-line sub -
routine code . This paper has
presented a new formating technique
which solves this problem .

Many existing formating tech-
niques work at too low a level . They
are concerned only with making a
small sequence of language state-
ments easier to read, for exampl e
reformating nested IF-THEN-ELSE s
into a CASE-like statement . [1,
p.146-148] Such techniques ar e
necessary, but do not convey the
statements ' higher level function i n
the subroutine . Small BLOCKS
bridges this gap by grouping state-
ments by logical action, while als o
allowing aesthetic groupings of code .
It has also been shown how smal l
BLOCKS are useful in organizing cod e
to make programming easier.

As with all formating technique s
experience and experimentation i s
needed to perfect them. The reader
should not expect small BLOCKS t o
be easy to use at first . However ,
after some practice the programme r
will notice the difference in his code ,
and will get a feel for how to proceed .

Programmers need to take pro -
gram formating more seriously, an d
not only be concerned with makin g
their programs work. An unreadabl e
program only works until a
modification is required . Many pro-
grammers unknowingly use concepts

from small BLOCKS already . They do
so because they seem natural to use .

References

[1] B .W. Kernigham and P .J. Plauger ,
The Elements of Programming
Style, Second Edition . McGraw-
Hill, New York, 1978 .

[2] B.W. Kernighan and D .M. Ritchie ,
The C Programming Language .
Prentice-Hall, New Jersey, 1978 .

[3] G.J. Myers, Composite / Struc-
tured Design . Van Nostrand
Reinhold, New York, 1978 .

[4] B. Liskov and S. Zilles, "Pro-
gramming With Abstract Dat a
Types". Proc . of a Symposiu m
on Very High Level Languages ,
SIGPLAN Notes 9, 4 (April 1974) ,
p .50-59 .

[5] C .L. McGowan and J .R. Kelly,
Top-Down Structured Program-
ming Techniques . Van Nostrand
Reinhold, New York, 1975 .

[6] R. Conway, D. Cries, and C.E .
Zimmerman, A Primer On. Pas-
cal, Winthrop, Mass, 1976 .

[7] N. Wirth, Algorithms + Data
Structures =Programs .
Prentice-Hall, New Jersey, 1976 .
P.H. Winston and B .K.P. Horn,
LISP. Addison-Wesley, Mass,1981 .
M.J. Bennett, Conversation o n
program readability, SDC, Sant a
Monica, CA. June 1984 .

[8]

[9]

