FORTRAN Error Detection Through Static Analysis

b

y
Irv K. Wendel and Richard L, Kleir

SWAK

P. 0. Box 1440
Oakland, California, 94604

Introduction

As software becomes the major computer
expense [1], the. consequences of program
malfunctions increase dramatically. Software

errors c¢can be traced from the original
concepts through the program's useful life
[2,3,61. Historical evidence suggests that
most programs are never completely debugged
since maintenance and extension efforts
contribute new problems [3].

Software failures beget both tangible
and intangible costs. Direct costs include
wasted human and computer time. Indirect

costs (consequential damage) such as schedule
slippage, unavailable results, lost confidence
in the system, and possible damage to customer
relationships, frequently exceed the direct
costs.

At the present time, there exists no
technique which can guarentee total certifica-

tion of sizable software systems. Techniques
have been developed which significantly
improve software reliability. These include

management methods [9], development dis-
ciplines [10,13] and automated tools [4,5,6,7,
81.
is an extremely valuable
examination tool. By automating many of the
time-honored manual 1inspections, software
errors can be discovered or avoided before
they become catastrophic program failures.
Using static analysis, a small team can
effectively deal with large programs at a
moderate cost.
Problem Sources in FORTRAN Software

To many, a program error is defined as
a mathematical deviation of results from a
known equation, With perfect hindsight, the
problem is described in terms of how the
program should have been created to avoid the
problem. While many errors can be circumvent-
ed in the design and initial implementation
stages, actual error sources are more perva-
sive; simply employing unusually astute
programmers or using a "more powerful" lan-
guage does not provide a complete solution.

The FORTRAN language. FORTRAN is one
of the most widely used and mature programming

Static analysis

languages., While some features could surely
be improved, the wealth of qualified program-
mers greatly influences selection of FORTRAN

for software implementation. The problem is
more often how to implethent reliable FORTRAN
programs rather than should FORTRAN be used,

A common complaint is, "If you restrict
the code to ANSI Standard constructions,
the program will be more reliable, transport-
able, understandable, etc." Why, then, 1is
there such massive deviation from "Standard
FORTRAN"? First, the standard document [11]
hardly qualifies as light bedtime reading
material. The standard is most understandable

to the computer population conversant with
compilation and language implementation
techniques rather than the practicing engineer
using FORTRAN for structural analysis of
buildings. The pure applications programmer
relies upon the compiler to inform him of
language deviations and acceptable construc-
tions; his reference is the FORTRAN User's
Guide rather than the ANSI Standard.

Most compilers are "compatible with
the ANSI Standard." That is, they accept ANSI
Standard constructions as well as dialectic
extensions. In many cases, extensions provide
access to unusual hardware features and
compact expression of computational procedures
Is it reasonable to exclude a labor saving
extension from the resident staff solely for
conformance to the standard? In point of
fact, many programmers experience serial
monogamy® with their installation; the
resident dialect 1is THE FORTRAN which 1is

acceptable. In numerous cases, compiled
code is tested to establish expected behavior.
Using these unspecified "curiosities" as

features sets the stage for future errors
simply by changing compilers [12].

The FORTRAN ANSI Standard is a consensus
document prepared to codify common usage and
extend the existing definition of FORTRAN
constructions. While the current document
represents a meritorious effort by numerous
contributors, some shortcomings are apparent:

1. The standard specifically addreses the

interpretation of FORTRAN constructions

and not their implementation [11 Section

1.2 1. Issues of compilation and

link-loading are not addressed; error

potential exists in the processes,

2. The standard does not prescribe "the

results when the rules for interpretation

fail to establish an interpretation for
such a program," That is, where dynamic
events in execution violate preconceived

conditions, program behavior is '"unde-
fined." For example, a file can be
marked using an "ENDFILE u" statement;

unfortunately, if the endfile records 1is
processed by a READ, "action is unde-
finea"™ [11 Section 7.1.3.3.3 1J.

3. As the language evolves, new versions
of the standard must maintain infrequent-
ly used constructions for backward
compatibility with existing systems.

#Serial monogamy is a form of polygamy in
which one 1s dutiful and faithful to one
spouse for a limited period of time. After
separation from one spouse, a new spouse is
adopted with honorable intentions.

Page 22

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1012319.1012323&domain=pdf&date_stamp=1977-04-01

Many programmers live long and happy

lives coding FORTRAN without ever using

(or understanding) VARIABLE FORMAT or

EXTERNAL statements.

It is not the purpose here to vilify the
FORTRAN Standard. Rather, we should realize
the utility limitations of any such document.
A. common, unified description of any language
is clearly desirable; work in progress on the
new draft proposal for FORTRAN 1is encourag-
ing {15]. We can expect slow steady progress
in this area as conflicts arise and are
resolved. In the meantime, we will likely
gain as little from blindly following "Stand-
ard FORTRAN" as from the arbitrary elimination
of the GOTO.

Operational Problems. Foibles of
FORTRAN coupled with the traditional compile/
link/load operations create an environment
conducive to undetected program errors, Since
the ANSI Standard does not address the issues
of compilation or link-loading, the programmer
is left to his own wits for a large class of
errors located at modulg interfaces.

FORTRAN requires each module to explicit-
ly specify interface components of COMMON data
and passed parameters. Normally, the compiler
is structured to process one module at a time;
thus, global scope 1is wusually lacking to
enforce interface compatability. Although the
ANSI Standard specifies that actual and dummy
parameter lists must agree in order, number,
and type [11 Section 3.4.2 1, this require-=
ment is rarely enforced by compilation or
loading routines. Similarly, the structure
and texture .6f. COMMON blocks may be ¢hanged
from routine to routine. With untested
interfaces, the programmer 1is required to
detect and correct these errors from execution
malfunction symptoms.

The ANSI Standard specifies 31 Intrinsic
Functions and 24 Basic External Functions;
additionally, most installations provide a
lengthly list of similar library routines
available to the programming population. Few
programmers are aware of all these names which
might have special significance; indeed, for a
given application, only a few of these
predefined routines are needed or desired.
This "convenience," however, 1s not without
complicating side effects.

For example, suppose on a large program-
ming project, two programmers are working in
concert., One programmer creates a module
called "ZARB" and another wishes to use the
library function "ZARB." When their code
sections are tested independently, both appear
to work correctly. When they are integrated,
however, the system fails because the second
programmer's references to ZARB are directed
to the first programmer's routine ZARB rather
than the desired library function. Since this
situation will usually not create any diagnos-
tie, the search for the error can be tedious
and frustrating; discovery may promote physi-
cal violence.

The preceding example is indicative
of a larger problem--human communications.
Computer programs express both human-machine
communications and human-human communications.
Unfortunately, programmers are more heavily
trained in expressing their desires to the
computer than coding for comprehension by
another programmer.

Much attention has been directed lately
to the problem of specifications. We hear

over and over how specifications are incom-
plete or ambiguous--much of this criticism is
Justified, Unfortunately, the specification,
as a document of functional intent, will
always require some level of interpretation by
individual programmers to convert the intent
into a functional reality. The broader the
specification, the more interpretation requir-
ed; the more detailed the specification, the
more program-like it becomes.

While the pursuit of error-proof program-
ming and documentation style is Jjust begin-
ning, it is clear that there is much to be
gained through reducing the arbitrary nature
of individual style. Poor documentation and
tricky coding sequences may not impact the
immediate " performance of a software systen,
but they lay the foundation for a host of
future errors in maintenance and extension.
Techniques are needed to surface obtuse coding
patterns before they can affect future relia-
bility.

Temporal Problems.

more reliable

Programs would
if they could

be implemented instantaneously. Unfortu-
nately, any sizable system comes into being
over a rather long period of time. Not only

must the detailed construction work be done,
but rarely does the user population really
know what 1is wanted until some experience is
gained in using the system.

During this extended creation period,
the programming staff is far from stable.
Programmers are promoted or leave for other
Jobs, errors are uncovered in the original
system, specifications are modified, and
sections of code are reworked to increase
efficiency. Programs which are changed by
personnel other then the original authors are
subject to "historical legacies" or "software
noise.M In the simplest form, these are
simply residual calculations or code sequences
having no current purpose. Maintenance
personnel are reluctant to remove these
sequences for fear that they might contribute
to some unknown mystery functions. For example,
one can cease to use the value of a COMMON
variable and calculate a new value locally,
but rarely will a value assignment to the
COMMON variable be deleted for fear it might
be used elsewhere. As a result, it is not
surprising in a modified system to find many
values computed for which there is no current
use.

Since these sequences appear to offend
little more than program efficiency, what
urgency should be attached to their removal?

Historical legacies confuse the main issues;
confused people make more mistakes. The
additional code bulk conceals major program

flow patterns. The inability to discover the
purpose of a calculation creates doubt in the
completeness of the documentation. Question-

able documentation is quickly discounted by
maintenance personnel and rarely updated.
Thus, historical 1legacies have a detrimental

cascade effect.

Clerical Errors. While clerical errors
are not as exciting as algorithm failures,
they are perhaps more common. While most of
the clerical errors are discovered during
compilation or unit test, they may creep in

after initial program creation. Clerical
errors include:
1. Keypunch errors (particularly those

which result in valid FORTRAN statements).

Page 23

2. Medium malfunctions. Grease spots and
pin holes in optically read cards or
magnetic parity errors, etc,
3. Modification errors. Cards inserted
in the wrong location, misdirections to
text editors which cause incorrect
deletion or insertion in existing modules
ete.
Once a clerical error passes the fine inspec~
tion of unit testing, 1t quickly, becomes
hidden in the source code bulk.

Efficiency.. Ironically, the pursuit of
efficiency is a common source of program
problems. Efficiency is the sacred goat of

the computing profession. Programmers are
pounded with the efficiency concept from their
first computer exposure. Unfortunately,
efficiency is normally expressed as a function
of compute time and memory space (about the
only two software attributes which can be
readily measured); rarely does the efficiency
formula include components of expended human
labor or cost/benefit trade~offs.

) The blind quest for efficiency often
leads to convoluted programming practices and
overbroad assumptions of +the computation
environment, Before a program is implemented,
we usually cannot predict where most of the
computing effort will be centered [17]; often
we are surprised to find where the effort is
actually expended. Similarly, we are often
surprised to find that convoluted routines are
sometimes slower than straightforward code
[161].

As we can see, the sources of FORTRAN
programming errors transcend the language
features to include both computer system
operations and software project work habits.
An effective strategy for early discovery and
error prevention must include these considera-
tions. We need to anticipate problenms,
incorporate past error history, and codify our
approach in an evolving fashion. Our purpose
then becomes the eradication of costly common-
place errors so that we will have sufficient
resources remaining to attack problematic
errors for which there are no simple current
solutions.

Static Analysis

Definition. Static analysis is the
automatic investigation of software without
code execution, Static analysis systems

are programming aids which produte repofts
indicating areas for human evaluation.

Static Analysis Systems and Compilers.
Static analysis systems and compilers both
require interpretation of source code syntax
and semantics. The primary purpose of a
compiler, however, is the production of
efficient object code; other processing 1is
incidental. Since compilation is a very
frequent activity, it is desirable to optimize
compiler performance. Including static
analysis activities in the compiler would
substantially s)low the compile process. In
order to maximize compilation speed, compil-
ers are constructed to "forget" source
code detalls as quickly as possible. Static
analysis, on the other hand, consciously
records as many source code features as
possible to facilitate anomaly discovery.

Diagnostic compilers, such as AID [14],
offer a middle ground alternative. These
systems can detect many FORTRAN errors as the
compilation process proceeds. To accomplish
this processing, certain germane source code

characteristics are maintainted along with the
output code. As references are made to
previously encountered modules, the character-
istic data base is examined for potential
hazards. Unfortunately, most diagnostic
compilers require simultaneous access to all
program modules for full error detection; they
normally do not maintain the diagnostic data
base beyond one compilation. Thus, previously
checked out routines must constantly be
resubmitted for compilation (diagnostic data
base creation) to achieve the desired diagnos-
tic effect.

Diagnostic features are usually deeply
imbedded in the compilation process. As a
result, it is difficult to adapt these checks
to a particular situation or incorporate new
investigations without fear of disrupting the
compile process.

Using a separate static analysis proce-
dure totally divorced from the compile process
permits independent and custom controlled
interrogations into software structures.
Since FORTRAN constructions may be subject to
differing interpretations, independent inter-
pretation may suggest possible trouble spots.
By maintaining a data base of previously
investigated routines, new modules can be
compared to existing modules without reparsing.

The most effective system appears to be
a combination of compile diagnostics, to the
extent they are available from resident
compilers, augmented by separate static
analysis investigations. Using this approach,
many of the existing cracks in the computa-
tional environment can be sealed by one system
or the other. Duplication of effort is
avoided while maintaining diagnostic coverage.

Application of Static Analysis. Static
analysis begins by determining if the source
code is legal, i.e., compilable. Here, static
analysis is quite similar to compilation in
purpose and function.

Static analysis tools locate unusual
source code constructions. These eccentric
language constructions may be manifestations
of actual errors or they may merely represent
weak programming practices. An example of the
latter is an wuninitialized variable. In
almost all instances, an uninitialized varia-
ble is an out-and-out program bug. Yet all
storage used by the program may be set ini-
tially through Jjob control language, thereby
initializing every variable in the program;
the variable is no longer uninitialized, and
the program may execute smoothly. This is "an
accident waiting to happen."

Perhaps the most important capability
of static analysis tools is their ability to
pinpoint anomalies that require inordinate
human effort to uncover. By using static
analysis, the debugging phase of program
development speeds up greatly, and the specter
of schedule slippages and cost overruns 1is
diminished.

Such systems can address a multitude of
debugging areas. The arducus human debugging
tasks involving path tracing can be reduced.
Intermodule boundaries can be effectively
examined for anomalies~-a difficult and time
consuming human task. An example of a bound-
ary problem is a subroutine with four parame-
ters, and a reference to that subroutine with
only three. Most compilers and link-loaders
will not sound the alarm, and the program may
execute to normal termination. By performing

Page 24

a checklist search for unusual language
constructions, static analysis tools easily
and cheaply uncover such anomalies.

Another aspect of static analysis 1is
its value during the maintenance phase of
a program's life cycle. Modifications often
leave historical 1legacies in their wake, as
well as creating the same type of errors
produced during the development phase.
Examples of historical legacies are variables
assigned values but never used, COMMON vari-
ables never referenced, unreferenced FORMAT
statements, unreferenced statement labels, and
unreachable code which has been "short-cir-

culted.” Historical legacies, at the very
least, cause confusion; confused people make
mistakes.

A very important static analysis capabil-
ity is automatic documentation. Cross-refer-
ence maps, calling hierarchy tables, COMMON
occurrence lists, etc., facilitate any human
interaction in a program's 1life cycle. Yet
computer-generated documentation has 1its
greatest 1mpact during maintenance. Often
maintenance personnel are not involved with
the development phase and therefore are
program novices, The maintenance staff needs

help, especially since the maintenance effort
often exceeds original program generation by
300%. During maintenance, new and different

tools are necessary to quickly determine the
ramifications of proposed modifications. For
example, in certain instances it would be
extremely useful to quickly find all locations
a given COMMON variable is used or to know at
a glance if a given parameter 1is an input,
output, or input/output parameter. This
valuable documentation can be generated by
hand, but 1s more quickly and accurately
produced by the computer.

Quality control is another forte of
static analysis. As a management tool, static
analysis systems can enforce in-~house program=
ming standards. A number of software divi-
sions currently use editors to search for
outiawed language constructions; unfortunate-
ly, editors often cannot achieve the desired
granularity available with static analysis.

Finally, the internal mechanisms of a
static analysis system can be extended to form
an extremely powerful software evaluation
system (4], including the base for dynamic
analysis.

Processing Sequence.

1. The static analysis system first

determines if the examined source code is

compilable and flags all non-conforming
source.

2. Compilable source code 1is separated

into its component parts which are in

turn placed into a data base. The data
base contains all relevant components of
the source as symbolic entities, record-
ing such vital information as flow of
control and intermodule relationships.

3. The static analysis system interro-

gates the data base, searching for source

code anomalies, information for automatic
documentation, etc.

4, Information gleaned from the data base

is reported to the user,.

Desired Traits, Productive

static

analysis tools share a number of character-
istiecs, without which the utility of such
tools may be severely restricted. These

traits are:

1. Ability to process standard language
features and common extensions, such as
the FORTRAN two-way branch logical IF and
IMPLICIT typing. Furthermore, processing
should not collapse due to any user
input., Ideally, a user should be able to
randomly select punch cards from a trash
can and input them as data without any
card or combination of cards forcing
processing to cease,.

2. Powerful, human-engineered control
mechanism. The mechanism should be
simple to use and allow the user granu-
larity of control. For example, the user
should be able to easily specify whether
a given module or an entire program is to
be processed, as well as which variable
is to be investigated. The user should
be able to expressly indicate which
anomaly types the static analysis tool is
to search for, as well as use a default
control mechanism. Moreover, the user
should have a measure of control over
the report format.

3. Human-engineered report format. A
straight forward, concise report 1is a
user's dream; an unintelligible report,

an albatross around a user's neck,
4, Expandability. Static analysis tools
should be readily modifiable, to react to
a changing environment, Examples are the
need to search for an unforseen anomaly,
to modify the report format, or to
process an unusual language extension,
such as Univac's FLD function (a FORTRAN
bit-manipulating routine).

5. Moderate processing cost. Static
analysis systems automate part of the
debugging, documentation, and maintenance
activities. If the dollar and time
benefits of such a system do not outweigh
those of strictly manual inspection, then
that system 1s not cost-effective.

Example

One static
in use is FACES

analysis system currently

(FORTRAN Automatic Code
Evaluation System) [4]. The initial applica=-
tion of FACES at NASA has unearthed approxi-
mately 1 error per 200 FORTRAN statements.
The user spent approximately 10 minutes
assessing each error.

Conservatively estimating the cost
of software construction at $10/statement,
a 20,000 statement program would cost $200,000.
Projecting the FACES error discovery rate
onto a 20,000 statement program, FACES could
be expected to reveal 100 errors. Conservative-
ly estimating the direct costs of manually
rectifying program bugs at $100/error results
in a minimum projected cost of $10,000, Since
current FACES processing costs are slightly
less than 104/statement at a commercial
service bureau, the aforementioned progran
could be examined for approximately $2,000,
This is a savings of approximately $8,000 over
strictly manual investigation. Indirect costs
are generally significantly higher than direct
costs and may easily force the actual debug-
ging costs to increase dramatically. Further-
more, there is no way of measuring the effect
on intangible assets, such as the loss of
customer confidence., The overall impact of
FACES can be immense.

Certain types of errors detected by
FACES are presented through the following
code sequences.

Page 25

Example 1)

SUBROUTINE SUB (A, B)

TILE = A * B

B = TILL

RETURN

END

This example displays an uninitialized

variable and its counterpart, a variable
assigned a value but never used. Such
anomalies are often created by keypunch
errors, and perpetually occur in software,
Of course, keypunch errors lead to other
types of debugging errors as well,
Example 2)

SUBROUTINE SUBT1

COMMON /COM/ A(10), B(8), C(10)

GO TO 200
J = I + K

SUBROUTINE 3UB2
COMMON /COM/ A(10), B(8), C(9)
GO TO 300
100 A(1) = 6.
300 RETURN
END
Certain errors are more likely to crop
up during the maintenance phase, where costs
can readily outgrow the original construction
cost or purchase price,. One such habitual
error 1s unreachable code. Another, COMMON
Block misalignment, occured in tested code
when every COMMON declaration was modified
but one,
Example 3) ,
SUBROUTINE 3SUB1
COMMON /COM/ A(2,5), B, C

SUBROUTINE SUB2
COMMON /COM/ A(5,2), C, B

Transposition errors, so apparent above,
can simply disappear in the labyrinth of
copious source code.

Example 4)
SUBROUTINE SUB
IMPLICIT INTEGER (A-Z)

D = DIST(FOOT, INCH)

FUNCTION DIST(X, I)
VzXa+o2

Type mismatching can be a subtle error,
especially when secreted in parameter lists.
Rare is the FORTRAN programmer who has not
referenced an integer function thinking
it had type real or vice versa. This mistake
is generally good for a week out of every
programmer's life. With a number of pro-
grammers assigned to a software systénm,
a lack of perfect cowmmunications increases
the possibility of the aforementioned mal-
function.

Benefits and Comparative Advantages of
Static Analysis

Principle Advantages of Static Analysis
Static analysis 1is a comparatively 1inexpen-
sive method for the detection of errors.
It is well suited to the current working

environment and requires no changes to the
work habits of professional programmers.
Among the advantages of static analysis
are:

Static
systems
code or

1. Minimal additional effort.
analysis can treat software
without modifying the source
requiring auxiliary directives. Test
data and driver/display code is not
neceded to obtain results. The programmer
is not distracted from his principle
duty--examination of the program under
investigation.

2. Treatment of unrunnable systems

code, Static analysis can be applied to
incomplete systems without the need for
stubs or dummy programs, A set of
programs which utilize common subroutines
can be analyzed as a single unit.
Errors can be detected in programs which
cannot be made to run or hang-up at
strategic points.

3. Multiple errors detected in single
run. Analysis 1is not thwarted by the
appearance of a single error. The
entire software system can be uniformly
analyzed in one run. Static analysis

users usually receive substancial "food
for thought" from one pass.

4. Adaption and extension. Static
analysis, at any point in time, includes
the investigations known to benefit the
inspection of software systems,. As new

hazards are found, the analysis features
can be extended 1in the investigation
repertory. The new hazards can be
quickly identified in previously pro-
cessed software systems.

While static analysis is a valuable technigue,

some problems persist in its application.
1. Limited interpretation of dynamic
events. Static analysis may indicate
a potential problem where dynamic
program events preclude actual errors.
Although source code is flagged, the
program 1s constrained from malfunction
by dynamics of operation. For exanple,
in Example 5a, a "possible path" is
found in which variable A is used but
not defined. In the equivalent code of
Example 5b, this problem would not
arise. Short of simulating program
operation or extensive logical analysis,
this problem cannot be avoided in static

analysis,
Example 5a)
R = 0
DO 50 I=1,100
C ON FIRST ITERATION, SET A.
IF (I.EQ.1) A=5
50 R = A*(I-1) + R
2. Uncertainty in diagnostics. For
maximum utility, static analysis should

inform the user when a potential prob-
lem is detected. In many cases, there
may be substantial question as to
whether a hard error exists. Suspicious

code 1s indicated by statlic analysis;
error judgment is left to the numan
investigator.

All error detection methods require
some level of human evaluation --
statiec analysis is no exception. The

Page 26

investigator must decide if the detected

event 1is an error, poor coding, or

application of a system nuance. This
evaluation is more rapidly achieved when

a specific condition is being evaluated

and participating source 1lines clearly

identified.

3. Sensitivity to coding style. The

quality of results obtained from static

analysis is in some measure dependent
upon the quality and consistency of
programming style. If programmers have
used convoluted sequences or misleading

FORTRAH techniques, static analysis can

be thwarted or only marginal value may

be obtained from copious problem indicat-
ors.

Comparison to Dynamic Analysis.
most programmers are familiar with software
testing through dynamic test cases, the
properties of static analysis are compared to
the features of dynamic analysis.

Since

Dynamic analysis [7] is the evaluation
of software systems by executing test cases
on an instrumented source code version,

Results of the test run are returned to the
user for evaluation and verification of
required program behavior,

Commonly 1implemented features in a
dynamic analysis system include capabilities
for:

1. Variable Value Tracing. Normally
this 1is accomplished by monitoring the
evaluation accomplished by each line of
source text. Typically, bounds are
returned to the user indicating the max,
min, and average values for the test
cases run.

2. Frequency of Execution. The frequen-

cy of execution of each program segment

is recorded to indicate routines and
lines within individual routines which
contribute to the execution profile.

With this information, the programer can

detect source lines not yet tested,

areas which will most impact efficiency
through faster operation, etc.

3. Flow of Control Monitors. Through

monitoring the direction of conditional

branches, logic errors and incomplete
program testing can be achieved.

4, Conditional Snapshots. The dynamic

monitoring facility can be used to

install sentries which report conditions

when specific events are detected in
execution, For example, preestablished
bounds on the values assigned to given

variables could

critical values.

Advantages of Dynamic Analysis over
Static Analysis, Dyanmic analysis provides
results not available through static analy-
sis, These include:

1. Detection of data value dependent

problems.

2. Utility for system tuning and effi-

ciency improvement,

trigger display of

3. Determination of test case coverage
in_software certification process.
b, Automation of recertification after

Some disadvantages are:
1. Runnable configuration. Dynamic
analysis requires a runnable configura-
tion of software modules.

2. Expense. Run costs of dynamic analy-
sis usually exceed those for static
analysis.

3. More evaluation effort. The wuser
spends more time determining if computed

values are correct,

4, Influence of instrumentation. The
overhead imposed by instrumenting the
source code may influence program
behavior. If an error source is related
to memory allocation, as for an unini-
tialized variable, the 1introduction of
additonal code may change the error
symptoms. The error may in fact disap-
pear entirely, only to reappear when the
instrumentation is removed.

A core limited program may expand
under instrumentation to the extent
that it cannot be loaded. A time
critical routine may not have sufficient
execution margin to accommadate the data
collection process.

5. Maximum benefit on well-behaved

programs. Useful results from dynamic
analysis may require orderly program

termination. Perpetual

execution interrupts may
termination prior to

statistics collected.

6. Intimate system knowledge required.
Since dynamic analysis is essentially a
data creation and collection process,
human attention 1is still required to
determine the meaning of c¢ollected
results, Correlation of expectations
with experience requires considerable
system knowledge.

7. Incomplete tests. Although progress
is being rapidly made, dynamic test
cases still constitute a collection of
necessary but not sufficient conditions
for software certificatrion. Clearly,
all program paths must be exercised to
certify the system; also, the simple
execution of all paths does not guarantee

loops or fatal
result in job
reporting the

proper performance for all data sets.
Slight changes 1in input data can still
cause system malfunctions, for example,

when an expression used as a divisor

evaluates to zero.
Conclusions

Static analysis cannot overcome the
myriad problems associated with computer
programming. Rather, static analysis 1is one

powerful tool in a toolbox
potent programming aids,
plines, and management
tools c¢an 1increase productivity and help
bring software costs under control,. Static
analysis 1is a current, cost-effective solu-
tion to current problems in today's program-
ming languages.

We foresee software evaluation systems
having major impact within the next few
years. We also anticipate static analysis
finding extensive use in the near future.

containing other
development disci-
methodologies; these

References
"Software and Its Impact: A
Quantitative Assessment,"
May 1973, pp. 48-59.
2. B, W. Boehm, R. K. McClean, and D. B, Ur=-
frig, "Some Experience with Automated
Aids to the Design of Large-Scale Reli-

1. B. W. Boehnm,

Page 27

albe Software," Proceedings of Interna-~
tional Conference on Reliable Software,
April 1975, pp. 105-113

3. J. C. Dickson, J. L. Hesse, A, C, Kientz,
and M. L. Shooman, "Quantitative Analy-
sis of Software. Reliability," Proceed-
ings of Annual Reliability Symposium,
IFFE, New York, January 1972.

4, C. V. Ramamoorthy and S. F. Ho, "Testing
Large Software with Automated Evalua-
tion Systems," Proceedings of Interna-
tional Conference on Reliable Software,
April 1975, pp. 382-393.

5. D. J. Reifer, "Automated Aids for Reliable
Software," Proceedings of International
Conference on Reliable Software, April
1975, pp. 131-142,

6. J. R. Brown and R. H. Hoffman, "Evaluating
the Effectiveness of Software Verifica-
tion--Practical Experience with an Auto-
mated Tool," AFIPS Fall Joint Computer
Conference, Anaheim, California,

December 1972, pp. 181-190.

7. R. G. Stucki, "A Prototype Automatic Pro-
gram Testing Tool," AFIPS Fall Joint
Computer Conference, Anaheim, Califor-
nia, December 1972, pp. 829-836.

8. E. F. Miller and R. A, Melton, "Automated
Generation of Testcase Datasets," Pro-
ceedings of International Conference on
Reliable Software, April 1975, pp. 51-58,

9. F. T. Baker, "Chief Programmer Team Manage-

ment of Production Programming," IBM
Systems Journal, Volume II, No. 1, 1972,
pp. 56-73

10. F. T. Baker, "Structural Programming in a
Production Programming Environment,"
Proceedings of International Conference
on_Reliable Software, April 1975,
pp. 172-183.

11. USA Standard FORTRAN, American National
Standards Institute, X3.9-1966,

March 1966.

12. F. P. Brooks, The Mythical Man-Month,
Addison-Wesley, 1975

13. H. D. Mills, Mathematical Foundations
for Structural Programming, Report HNo.
FSC-72-6012, IBM Corporation, Gaithers-
burg, Maryland, February 1972.

14, G. Dronek and K, Muehring, A Comprehensive
Intelligent Debugger (AID), University
of California, Berkeley, Report Ho.
L2-CAL-AID, L3-CAL-AID.

15, "Draft Proposal ANS FORTRAN, BSR X3.9,
X3J3/76," SIGPLAN Notice, Volume 1II,
No. 3, March 1976

16. B. W. Kernighan and P, J. Plauger, The
Elements of Programming Style,
McGraw-Hill, 1974,

17. D. E. Knuth, "An Empirical Study of
FORTRAN Programs," Software Practice
and Experience, Volume I, 1971.

Page 28

