
FORTRAN Error Detection Through Static Analysi s
b y

Iry K . Wendel and Richard L . Klei n
SWAK

P . O . Box 144 0
Oakland, California, 9460 4

Introductio n
As software becomes the major compute r

expense [1], the consequences of progra m
malfunctions increase dramatically . Software
errors can be traced from the origina l
concepts through the program's useful lif e
[2,3,6] . Historical evidence suggests tha t
most programs are never completely debugge d
since maintenance and extension effort s
contribute new problems [3] .

Software failures beget both tangibl e
and intangible costs .

	

Direct costs includ e
wasted human and computer time . Indirec t
costs (consequential damage) such as schedul e
slippage, unavailable results, lost confidenc e
in the system, and possible damage to custome r
relationships, frequently exceed the direc t
costs .

At the present time, there exists n o
technique which can guarentee total certifica -
tion of sizable software systems . Technique s
have been developed which significantl y
improve software reliability . These includ e
management methods [9], development dis-
ciplines [10,13] and automated tools [4,5,6,7 ,
8] .

Static analysis is an extremely valuabl e
examination tool . By automating many of th e
time-honored manual inspections, softwar e
errors can be discovered or avoided befor e
they become catastrophic program failures .
Using static analysis, a small team ca n
effectively deal with large programs at a
moderate cost .
Problem_ Sources in FORTRAN Softwar e

To many, a program error is defined a s
a mathematical deviation of results from a
known equation . With perfect hindsight, the
problem is described in terms of how th e
program should have been created to avoid th e
problem . While many errors can be circumvent-
ed in the design and initial implementatio n
stages, actual error sources are more perva-
sive ; simply employing unusually astut e
programmers or using a "more powerful" lan-
guage does not provide a complete solution .

The FORT_RAN_language .

	

FORTRAN is on e
of the most widely used and mature programmin g
languages . While some features could surel y
be improved, the wealth of qualified program-
mers greatly influences selection of FORTRA N
for software implementation . The problem i s
more often how to implefient reliable FORTRA N
programs rather than should FORTRAN be used .

A common complaint is, "If you restric t
the code to ANSI Standard constructions ,
the program will be more reliable, transport-
able, understandable, etc ." Why, then, i s
there such massive deviation from "Standar d
FORTRAN"? First, the standard document [11]
hardly qualifies as light bedtime readin g
material . The standard is most understandable

to the computer population conversant wit h
compilation and language implementatio n
techniques rather than the practicing enginee r
using FORTRAN for structural analysis o f
buildings . The pure applications programme r
relies upon the compiler to inform him o f
language deviations and acceptable construc -
tions ;

	

his reference is the FORTRAN User' s
Guide rather than the ANSI Standard .

Most compilers are "compatible wit h
the ANSI Standard ." That is, they accept ANS I
Standard constructions as well as dialecti c
extensions . In many cases, extensions provid e
access to unusual hardware features an d
compact expression of computational procedures .
Is it reasonable to exclude a labor savin g
extension from the resident staff solely fo r
conformance to the standard?

	

In point o f
fact, many programmers experience seria l
monogamy' with their installation ;

	

th e
resident dialect is THE FORTRAN which i s
acceptable . In numerous cases, compiled
code is tested to establish expected behavior .
Using these unspecified "curiosities" a s
features sets the stage for future error s
simply by changing compilers [12] .

The FORTRAN ANSI Standard is a consensu s
document prepared to codify common usage an d
extend the existing definition of FORTRA N
constructions .

	

While the current documen t
represents a meritorious effort by numerou s
contributors, some shortcomings are apparent :

1. The standard specifically addreses th e
interpretation of FORTRAN construction s
and not their implementation [11 Sectio n
1 .2] . Issues of compilation an d
link-loading are not addressed ; erro r
potential exists in the processes .
2. The standard does not prescribe "th e
results when the rules for interpretatio n
fail to establish an interpretation fo r
such a program ." That is, where dynami c
events in execution violate preconceive d
conditions, program behavior is "unde-
fined ." For example, a file can b e
marked using an "ENDFILE u" statement ;
unfortunately, if the endfile records i s
processed by a READ, "action is unde-
fined" [11 Section 7 .1 .3 .3 .3 J .
3. As the language evolves, new version s
of the standard must maintain infrequent -
ly used constructions for backwar d
compatibility with existing systems .

*Serial monogamy is a form of polygamy i n
which one is dutiful and faithful to on e
spouse for a limited period of time . Afte r
separation from one spouse, a new spouse i s
adopted with honorable intentions .

Page 22

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1012319.1012323&domain=pdf&date_stamp=1977-04-01

Many programmers live long and happ y
lives coding FORTRAN without ever usin g
(or understanding) VARIABLE FORMAT o r
EXTERNAL statements .

It is not the purpose here to vilify th e
FORTRAN Standard . Rather, we should realiz e
the utility limitations of any such document .
A . common, unified description of any languag e
is clearly desirable ; work in progress on th e
new draft proposal for FORTRAN is encourag -
ing [15] .

	

We can expect slow steady progres s
in this area as conflicts arise and ar e
resolved . In the meantime, we will likel y
gain as little from blindly following "Stand-
ard FORTRAN" as from the arbitrary eliminatio n
of the GOTO .

Operational Problems . Foibles o f
FORTRAN coupled with the traditional compile /
link/load operations create an environmen t
conducive to undetected program errors . Sinc e
the ANSI Standard does not address the issue s
of compilation or link-loading, the programme r
is left to his own wits for a large class o f
errors located at module interfaces .

FORTRAN requires each module to explicit-
ly specify interface components of COMMON dat a
and passed parameters . Normally, the compile r
is structured to process one module at a time ;
thus, global scope is usually lacking t o
enforce interface compatability . Although th e
ANSI Standard specifies that actual and dumm y
parameter lists must agree in order, number ,
and type [11 Section 3 .4 .2], this require :
ment is rarely enforced by compilation o r
loading routines . Similarly, the structur e

and texture of ._COMMON blocks may be change d
from routine to routine . With unteste d
interfaces, the programmer is required t o
detect and correct these errors from executio n
malfunction symptoms .

The ANSI Standard specifies 31 Intrinsi c
Functions and 24 Basic External Functions ;
additionally, most installations provide a
lengthly list of similar library routine s
available to the programming population . Few
programmers are aware of all these names whic h
might have special significance ; indeed, for a
given application, only a few of thes e
predefined routines are needed or desired .
This "convenience," however, is not withou t
complicating side effects .

For example, suppose on a large program-
ming project, two programmers are working i n
concert . One programmer creates a modul e
called "ZARB" and another wishes to use th e
library function "ZARB ."

	

When their cod e
sections are tested independently, both appea r
to work correctly . When they are integrated ,
however, the system fails because the secon d
programmer's references to ZARB are directe d
to the first programmer's routine ZARB rathe r
than the desired library function . Since thi s
situation will usually not create any diagnos -
tic, the search for the error can be tediou s
and frustrating ; discovery may promote physi-
cal violence .

The preceding example is indicativ e
of a larger problem--human communications .
Computer programs express both human-machin e
communications and human-human communications .
Unfortunately, programmers are more heavily
trained in expressing their desires to th e
computer than coding for comprehension b y
another programmer .

rluch attention has been directed latel y
to the problem of specifications .

	

We hear

over and over how specifications are incom-
plete or ambiguous--much of this criticism i s
justified . Unfortunately, the specification ,
as a document of functional intent, wil l
always require some level of interpretation by
individual programmers to convert the inten t
into a functional reality . The broader th e
specification, the more interpretation requir-
ed ; the more detailed the specification, th e
more program-like it becomes .

While the pursuit of error-proof program -
ming and documentation style is just begin-
ning, it is clear that there is much to b e
gained through reducing the arbitrary natur e
of individual style . Poor documentation and
tricky coding sequences may not impact th e
immediate performance of a software system ,
but they lay the foundation for a host o f
future errors in maintenance and extension .
Techniques are needed to surface obtuse codin g
patterns before they can affect future relia-
bility .

	 Programs woul d
probably be much more reliable if they coul d
be implemented instantaneously .

	

Unfortu-
nately, any sizable system comes into bein g
over a rather long period of time . Not onl y
must the detailed construction work be done ,
but rarely does the user population reall y
know what is wanted until some experience i s
gained in using the system .

During this extended creation period ,
the programming staff is far from stable .
Programmers are promoted or leave for othe r
jobs, errors are uncovered in the origina l
system, specifications are modified, an d
sections of code are reworked to increas e
efficiency . Programs which are changed b y
personnel other then the original authors ar e
subject to "historical legacies" or "softwar e
noise ."

	

In the simplest form, these ar e
simply residual calculations or code sequence s
having no current purpose . Maintenanc e
personnel are reluctant to remove thes e
sequences for fear that they might contribut e
to some unknown mystery functions . For example ,
one can cease to use the value of a COMMO N
variable and calculate a new value locally ,
but rarely will a value assignment to th e
COMMON variable be deleted for fear it migh t
be used elsewhere . As a result, it is no t
surprising in a modified system to find man y
values computed for which there is no curren t
use .

Since these sequences appear to offen d
little more than program efficiency, wha t
urgency should be attached to thei r , removal ?
Historical legacies confuse the main issues ;
confused people make more mistakes . Th e
additional code bulk conceals major progra m
flow patterns .

	

The inability to discover the
purpose of a calculation creates doubt in the
completeness of the documentation . Question-
able documentation is quickly discounted b y
maintenance personnel and rarely updated .
Thus, historical legacies have a detrimenta l
cascade effect .

Clerical Errors .

	

While clerical error s
are not as exciting as algorithm failures ,
they are perhaps more common .

	

While most of
the clerical errors are discovered durin g
compilation or unit test, they

	

may creep i n
after initial program creation .

	

Clerica l
errors include :

1 . Keypunch errors (particularly thos e
which result in valid FORTRAN statements) .

Page 23

2. Medium malfunctions . Grease spots an d
pin holes in optically read cards o r
magnetic parity errors, etc .
3. Modification errors . Cards inserte d
in the wrong location, misdirections t o
text editors which cause incorrec t
deletion or insertion in existing module s
etc .

Once a clerical error passes the fine inspec-
tion of unit testing, it quickly ; become s
hidden in the source code bulk .

Efficiency . .

	

Ironically, the pursuit o f
efficiency is a common source of progra m
problems .

	

Efficiency is the sacred goat o f
the computing profession .

	

Programmers ar e
pounded with the efficiency concept from thei r
first computer exposure . Unfortunately ,
efficiency is normally expressed as a functio n
of compute time and memory space (about th e
only two software attributes which can b e
readily measured) ; rarely does the efficienc y
formula include components of expended huma n
labor or cost/benefit trade-offs .

The blind quest for efficiency ofte n
leads to convoluted programming practices and
overbroad assumptions of the computatio n
environment . Before a program is implemented ,
we usually cannot predict where most of th e
computing effort will be centered [17] ; ofte n
we are surprised to find where the effort i s
actually expended . Similarly, we are ofte n
surprised to find that convoluted routines ar e
sometimes slower than straightforward cod e
[16] .

As we can see, the sources of FORTRA N
programming errors transcend the languag e
features to include both computer syste m
operations and software project work habits .
An effective strategy for early discovery an d
error prevention must include these considera-
tions . We need to anticipate problems ,
incorporate past error history, and codify ou r
approach in an evolving fashion . Our purpos e
then becomes the eradication of costly common -
place errors so that we will have sufficien t
resources remaining to attack problemati c
errors for which there are no simple curren t
solutions .
Static Analysi s

Definition .

	

Static analysis is th e
automatic investigation of software withou t
code execution . Static analysis systems
are programming -aids which produce report s
indicating areas for human evaluation .

Static Analysis Systems and Compilers .
Static analysis systems and compilers bot h
require interpretation of source code synta x
and semantics . The primary purpose of a
compiler, however, is the production o f
efficient object code ; other processing i s
incidental .

	

Since compilation is a ver y
frequent activity, it is desirable to optimiz e
compiler performance .

	

Including stati c
analysis activities in the compiler woul d
substantially slow the compile process .

	

I n
order to maximize

	

compilation speed, compil -
ers are constructed to "forget" sourc e
code details as quickly as possible . Stati c
analysis, on the other hand, consciousl y
records as many source code features a s
possible to facilitate anomaly discovery .

Diagnostic compilers, such as AID [14] ,
offer a middle ground alternative . Thes e
systems can detect many FORTRAN errors as th e
compilation process proceeds .

	

To accomplis h
this processing, certain germane source code

characteristics are maintainted along with th e
output code . As references are made t o
previously encountered modules, the character -
istic data base is examined for potentia l
hazards . Unfortunately, most diagnosti c
compilers require simultaneous access to al l
program modules for full error detection ; the y
normally do not maintain the diagnostic dat a
base beyond one compilation . Thus, previousl y
checked out routines must constantly b e
resubmitted for compilation (diagnostic dat a
base creation) to achieve the desired diagnos -
tic effect .

Diagnostic features are usually deepl y
imbedded in the compilation process . As a
result, it is difficult to adapt these check s
to a particular situation or incorporate ne w
investigations without fear of disrupting th e
compile process .

Using a separate static analysis proce-
dure totally divorced from the compile proces s
permits independent and custom controlle d
interrogations into software structures .
Since FORTRAN constructions may be subject t o
differing interpretations, independent inter-
pretation may suggest possible trouble spots .
By maintaining a data base of previousl y
investigated routines, new modules can b e
compared to existing modules without reparsing .

The most effective system appears to b e
a combination of compile diagnostics, to th e
extent they are available from residen t
compilers, augmented by separate stati c
analysis investigations . Using this approach ,
many of the existing cracks in the computa-
tional environment can be sealed by one syste m
or the other . Duplication of effort i s
avoided while maintaining diagnostic coverage .

Application of Static Analysis .

	

Stati c
analysis begins by determining if the sourc e
code is legal, i .e ., compilable . Here, stati c
analysis is quite similar to compilation i n
purpose and function .

Static analysis tools locate unusua l
source code constructions . These eccentri c
language constructions may be manifestation s
of actual errors or they may merely represen t
weak programming practices . An example of th e
latter is an uninitialized variable .

	

I n
almost all instances, an uninitialized varia-
ble is an out-and-out program bug . Yet al l
storage used by the program may be set ini-
tially through job control language, thereb y
initializing every variable in the program ;
the variable is no longer uninitialized, an d
the program may execute smoothly . This is "a n
accident waiting to happen . "

Perhaps the most important capabilit y
of static analysis tools is their ability t o
pinpoint anomalies that require inordinat e
human effort to uncover . By using stati c
analysis, the debugging phase of progra m
development speeds up_greatly, and the specte r
of schedule slippages and cost overruns i s
diminished .

Such systems can address a multitude o f
debugging areas . The arduous human debuggin g
tasks involving path tracing can be reduced .
Intermodule boundaries can be effectivel y
examined for anomalies--a difficult and tim e
consuming human task . An example of a bound-
ary problem is a subroutine with four parame-
ters, and a reference to that subroutine with
only three .

	

Most compilers and link-loader s
will not sound the alarm, and the program ma y
execute to normal termination .

	

By performing

Page 24

a checklist search for unusual languag e
constructions, static analysis tools easil y
and cheaply uncover such anomalies .

Another aspect of static analysis i s
its value during the maintenance phase o f
a program's life cycle . Modifications ofte n
leave historical legacies in their wake, a s
well as creating the same type of error s
produced during the development phase .
Examples of historical legacies are variable s
assigned values but never used, COMMON vari-
ables never referenced, unreferenced FORMA T
statements, unreferenced statement labels, an d
unreachable code which has been "short-cir -
cuited ." Historical legacies, at the ver y
least, cause confusion ; confused people mak e
mistakes .

A very important static analysis capabil -
ity is automatic documentation . Cross-refer-
ence maps, calling hierarchy tables, COMMO N
occurrence lists, etc ., facilitate any huma n
interaction in a program's life cycle .

	

Ye t
computer-generated documentation has it s
greatest impact during maintenance . Ofte n
maintenance personnel are not involved wit h
the development phase and therefore ar e
program novices . The maintenance staff need s
help, especially since the maintenance effor t
often exceeds original program generation b y
300% .

	

During maintenance, new and differen t
tools are necessary to quickly determine th e
ramifications of proposed modifications . Fo r
example, in certain instances it would b e
extremely useful to quickly find all location s
a given COMMON variable is used or to know a t
a glance if a given parameter is an input ,
output, or input/output parameter . Thi s
valuable documentation can be generated b y
hand, but is more quickly and accuratel y
produced by the computer .

Quality control is another forte o f
static analysis . As a management tool, stati c
analysis systems can enforce in-house program -
ming standards . A number of software divi-
sions currently use editors to search fo r
outlawed language constructions ; unfortunate-
ly, editors often cannot achieve the desire d
granularity available with static analysis .

Finally, the internal mechanisms of a
static analysis system can be extended to for m
an extremely powerful software evaluatio n
system [4], including the base for dynami c

analysis .
Processing Sequence .
1. The static analysis system firs t
determines if the examined source code i s
compilable and flags all non-conformin g
source .
2. Compilable source code is separate d
into its component parts which are i n
turn placed into a data base . The dat a
base contains all relevant components o f
the source as symbolic entities, record-
ing such vital information as flow o f
control and interrnodule relationships .
3. The static analysis system interro-
gates the data base, searching for sourc e
code anomalies, information for automati c

documentation, etc .
4. Information gleaned from the data bas e
is reported to the user .

	 aits .

	

Productive stati c
------analysis tools share a number of character -

istics, without which the utility of suc h
tools may be severely restricted . Thes e
traits are :

1. Ability to process standard language
features and common extensions, such as
the FORTRAN two-way branch logical IF an d
IMPLICIT typing . Furthermore, processin g
should not collapse due to any use r
input . Ideally, a user should be able t o
randomly select punch cards from a tras h
can and input them as data without an y
card or combination of cards forcin g
processing to cease .
2. Powerfu1 L_human-engineered contro l
mechanism .

	

The mechanism should b e
simple to use and allow the user granu -
larity of control . For example, the use r
should be able to easily specify whethe r
a given module or an entire program is t o
be processed, as well as which variabl e
is to be investigated . The user shoul d
be able to expressly indicate whic h
anomaly types the static analysis tool i s
to search for, as well as use a defaul t
control mechanism . Moreover, the use r
should have a measure of control ove r
the report format .
3. Human-engineered_ report format_ A
straight forward, concise report is a
user's dream ; an unintelligible report ,
an albatross around a user's neck .
4. Expandability . Static analysis tool s
should be readily modifiable, to react t o
a changing environment . Examples are th e
need to search for an unforseen anomaly ,
to modify the report format, or t o
process an unusual language extension ,
such as Univac's FLD function (a FORTRA N
bit-manipulating routine) .
5. Moderate—process....	cost . Stati c
analysis systems automate part of th e
debugging, documentation, and maintenanc e
activities . If the dollar and tim e
benefits of such a system do not outweig h
those of strictly manual inspection, the n
that system is not cost-effective .

Example	
One static analysis system currentl y

in use is FACES (FORTRAN Automatic Cod e
Evaluation System) [4] . The initial applica-
tion of FACES at NASA has unearthed approxi-
mately 1 error per 200 FORTRAN statements .
The user spent approximately 10 minute s
assessing each error .

Conservatively estimating the cos t
of software construction at $10/statement ,
a 20,000 statement program would cost $200,000 .
Projecting the FACES error discovery rat e
onto a 20,000 statement program, FACES coul d
be expected to reveal 100 errors . Conservative-
ly estimating the direct costs of manuall y
rectifying program bugs at $100/error result s
in a minimum projected cost of $10,000 . Since
current FACES processing costs are slightl y
less than 1U/statement at a commercia l
service bureau, the aforementioned progra m
could be examined for approximately $2,000 .
This is a savings of approximately $8,000 ove r
strictly manual investigation . Indirect cost s
are generally significantly higher than direc t
costs and may easily force the actual debug-
ging costs to increase dramatically . Further-
more, there is no way of measuring the effec t
on intangible assets, such as the loss o f
customer confidence . The overall impact o f
FACES can be immense .

Certain types of errors detected b y
FACES are presented through the followin g
code sequences .

Page 25

Example 1)
SUBROUTINE SUB (A, B)
TILE = A * B
B = TILL
RETURN
EN D

This example displays an uninitialize d
variable and its counterpart, a variabl e
assigned a value but never used . Suc h
anomalies are often created by keypunc h
errors, and perpetually occur in software .
Of course, keypunch errors lead to othe r
types of debugging errors as well .
Example 2)

SUBROUTINE SUB 1
COMMON

	

/COM/

	

A(10), B($), C(10)

GO TO 20 0
J

	

=

	

I

	

+ K

SUBROUTINE SUB2
COMMON

	

/COM/

	

A(10), B(8), C(9)
GO TO 300

100

	

A(1) = 6 .
300 RETUR N

EN D
Certain errors are more likely to cro p

up during the maintenance phase, where cost s
can readily outgrow the original constructio n
cost or purchase price .

	

One such habitua l
error is unreachable code . Another, COMMON
Block misalignment, occured in tested cod e
when every COMMON declaration was modifie d
but one .
Example 3)

SUBROUTINE SUB 1
COMMON /COM/ A(2,5), B, C

SUBROUTINE SUB2
COMMON /COM/ A(5,2), C, B

Transposition errors, so apparent above ,
can simply disappear in the labyrinth o f
copious source code .
Example 4)

SUBROUTINE SU B
IMPLICIT INTEGER (A-Z)

D :DIST(FOOT, INCH)

FUNCTION DIST(X, I)
V = X + 2

Type mismatching can be a subtle error ,
especially when secreted in parameter lists .
Rare is the FORTRAN programmer who has no t
referenced an integer function thinkin g
it had type real or vice versa . This mistak e
is generally good for a week out of ever y
programmer's life . With a number of pro-
grammers assigned to a software system ,
a lack of perfect communications increase s
the possibility of the aforementioned mal-
function .
Benefits and Comparative Advantages o f

Static Analysi s
Principle_Advantages_of Static Analysi s

Static analysis is a comparatively inexpen-
sive method for the detection of errors .
It is well suited to the current working

environment and requires no changes to th e
work habits of professional programmers .
Among the advantages of static analysi s
are :

1. Minimal additional effort . Stati c
analysis can treat software system s
without modifying the source code o r
requiring auxiliary directives . Tes t
data and driver/display code is no t
needed to obtain results . The programme r
is not distracted from his principl e
duty--examination of the program unde r
investigation .
2. Treatment of unrunnable system s_____ ------------------- ---code . Static analysis can be applied t o
incomplete systems without the need fo r
stubs or dummy programs . A set o f
programs which utilize common subroutine s
can be analyzed as a single unit .
Errors can be detected in programs whic h
cannot be made to run or hang-up a t
strategic points .
3. Multiple errors_	detected in singl e
run . Analysis is not thwarted by th e
appearance of a single error . Th e
entire software system can be uniforml y
analyzed in one run . Static analysi s
users usually receive substancial "foo d
for thought" from one pass .
4. Ada p tion— and extension .

	

Stati c

-	analysis, at any point in time, include s
the investigations known to benefit th e
inspection of software systems . As new
hazards are found, the analysis feature s
can be extended in the investigatio n
repertory . The new hazards can b e
quickly identified in previously pro-
cessed software systems .
Disadvantages_ of Static Analysis .
	While static analysis is a valuable technique ,

some problems persist in its application .
1. Limited_interpreta	
events .

	

mi c
Static analysis may indicat e

a potential problem where dynami c
program events preclude actual errors .
Although source code is flagged, th e
program is constrained from malfunctio n
by dynamics of operation . For example ,
in Example 5a, a "possible path" i s
found in which variable A is used bu t
not defined .

	

In the equivalent code o f
Example 5b, this problem would 'no t
arise . Short of simulating progra m
operation or extensive logical analysis ,
this problem cannot be avoided in stati c
analysis .

Example 5a)
R = 0
DO 50 1=1,100

C ON FIRST ITERATION, SET A .
IF (I .EQ .1) A= 5

50

	

R = A*(I-1) + R

2. Uncertainty— in_diagnostics . Fo r
maximum utility, static analysis shoul d
inform the user when a potential prob-
lem is detected . In many cases, ther e
may be substantial question as t o
whether a hard error exists . Suspiciou s
code is indicated by static analysis ;
error judgment is left to the huma n
investigator .

All error detection methods requir e
some level of' human evaluation - -
static analysis is no exception .

	

Th e

Page 2 6

investigator must decide if the detecte d
event is an error, poor coding, o r
application of a system nuance . Thi s
evaluation is more rapidly achieved whe n
a specific condition is being evaluate d
and participating source lines clearl y
identified .
3 . Sensitivity _ to_ coding_ style . Th e
quality of results obtained from stati c
analysis is in some measure dependen t
upon the quality and consistency o f
programming style . If programmers hav e
used convoluted sequences or misleadin g
FORTRAN techniques, static analysis ca n
be thwarted or only marginal value ma y
be obtained from copious problem indicat -
ors .
Comparison— to_Dynamic—Analysis . Sinc e

most programmers are familiar with softwar e
testing through dynamic test cases, th e
properties of static analysis are compared t o
the features of dynamic analysis .

Dynamic analysis [7] is the evaluatio n
of software systems by executing test case s
on an instrumented source code version .
Results of the test run are returned to the
user for evaluation and verification o f
required program behavior .

Commonly implemented features in a
dynamic analysis system include capabilitie s
for :

1. Variable Value Tracing . Normall y
this is accomplished by monitoring th e
evaluation accomplished by each line o f
source text . Typically, bounds ar e
returned to the user indicating the max ,
min, and average values for the tes t
cases run .
2. Frequency of Execution . The frequen-
cy of execution of each program segmen t
is recorded to indicate routines an d
lines within individual routines whic h
contribute to the execution profile .
With this information, the programer ca n
detect source lines not yet tested ,
areas which will most impact efficienc y
through faster operation, etc .
3. Flow of Control Monitors . Throug h
monitoring the direction of conditiona l
branches, logic errors and incomplet e
program testing can be achieved .
4. Conditional Snapshots . The dynami c
monitoring facility can be used t o
install sentries which report condition s
when specific events are detected i n
execution . For example, preestablishe d
bounds on the values assigned to give n
variables could trigger display o f
critical values .
Advantages_ofDnamic_Anallsis_ove r

Static Analysis . Dyanmic analysis provide s
results not available through static analy -
sis .

	

These include :
1. Detection of_data value dependent_
problems .
2. Utility_for system	 tuning and effi-
ciency improvement .
3. Determination of test case coverag e
in — software certification_Erocess .
-- ---------------------- -----

4. Automationof recertification afte r
program_ mod ification_and/or extension .
Disadvantaes_f — Dynamc_Anal1sis .
	Some disadvantages are :

1 . Runnable configuration .

	

Dynami c
--------------analysis requires a runnable configura -

tion of software modules .

2. Expense . Run costs of dynamic analy-
sis usually exceed those for stati c
analysis .
3. More _evaluation effort . The use r
spends more time determining if compute d
values are correct .
4. Influence of instrumentation . Th e
overhead imposed by instrumenting th e
source code may influence progra m
behavior . If an error source is related
to memory allocation, as for an unini-
tialized variable, the introduction o f
additonal code may change the erro r
symptoms . The error may in fact disap-
pear entirely, only to reappear when th e
instrumentation is removed .

A core limited program may expan d
under instrumentation to the exten t
that it cannot be loaded . A tim e
critical routine may not have sufficien t
execution margin to accommadate the dat a
collection process .
5. Maximum benefit on well-behave d

------------------------------ -programs .

	

Useful results from dynami c
analysis may require orderly progra m
termination . Perpetual loops or fatal
execution interrupts may result in job
termination prior to reporting th e
statistics collected .
6. Intimate system —knowledge	 required .
Since dynamic analysis is essentially a
data creation and collection process ,
human attention is still required t o
determine the meaning of collecte d
results . Correlation of expectation s
with experience requires considerabl e
system knowledge .
7. Incomplete tests . Although progres s
is being rapidly made, dynamic tes t
cases still constitute a collection of
necessary but not sufficient condition s
for software certificatrion . Clearly ,
all program paths must be exercised t o
certify the system ; also, the simpl e
execution of all paths does not guarante e
proper performance for all data sets .
Slight changes in input data can stil l
cause system malfunctions, for example ,
when an expression used as a diviso r
evaluates to zero .

Conclusion s
Static analysis cannot overcome th e

myriad problems associated with compute r
programming . Rather, static analysis is on e
powerful tool in a toolbox containing othe r
potent programming aids, development disci-
plines, and management methodologies ; thes e
tools can increase productivity and hel p
bring software costs under control . Stati c
analysis is a current, cost-effective solu-
tion to current problems in today's program-
ming languages .

We foresee software evaluation systems
having major impact within the next fe w
years . We also anticipate static analysi s
finding extensive use in the near future .

Reference s
1 . B . W . Boehm, "Software and Its Impact : A

Quantitative Assessment," Datemation ,
May 1973, pp . 48-59

. 2. B . W . Boehm, R . K . McClean, and D . B . Ur-
frig, "Some Experience with Automate d
Aids to the Design of Large-Scale Reli -

Page 27

albe Software," Proceedings of Interna-
tional_Conference_on Reliable Software ,
April 1975, pp . 105-11 3

3 . J . C . Dickson, J . L . Hesse, A . C . Kientz ,
and M . L . Shoornan, "Quantitative Analy-
sis of Software . Reliability," Proceed-
ings of Annual Reliability Symposiu m

	

_

	

,
IFFE, New York, January 1972 .

4 . C . V . Ramamoorthy and S . F . Ho, "Testin g
Large Software with Automated Evalua-
tion Systems," Proceedings of Interna-
tional Conference on Reliable Software ,
April 1975, pp 382-393 .

5 . D . J . Reifer, "Automated Aids for Reliabl e
Software," Proceedings of Internationa l
Conference on Reliable Software,

	

Apri l
1975, pp . 131-142

. 6. J . R . Brown and R . H . Hoffman, "Evaluatin g
the Effectiveness of Software Verifica-
tion--Practical Experience with an Auto -
mated Tool," AFIPS Fall Joint Compute r
Conference, Anaheim, California ,
December 1972, pp . 181-190 .

7 . R . G . Stucki, "A Prototype Automatic Pro-
gram Testing Tool," AFIPS Fall Join t
Computer	 Conference,

	

Anaheim,

	

Califor-
nia, December 1972, pp . 829-836 .

8 . E . F . Miller and R . A . Melton, "Automate d
Generation of Testcase Datasets," Pro-
ceedings of International 	 Conference on
Reliable Software, April 1975, pp . 51-58 .

9 . F . T . Baker, "Chief Programmer Team Manage -
ment of Production Programming," IBM_
Systems Journal, Volume II, No . 1, 1972 ,
pp . 56-73 .

10. F . T . Baker, "Structural Programming in a
Production Programming Environment, "
Proceedings of International Conferenc e
'on Reliable Software, April 1975 ,----------- --------pp . 172-183 .

11. USA Standard FORTRAN, American Nationa l
Standards Institute, X3 .9-1966 ,
March 1966 .

12. F . P . Brooks, The Mythical Man-Month ,
Addison-Wesley, 197 5

13. H . D . Mills, Mathematical Foundation s
for Structural Programming, Report No .
FSC-72-6012, IBM Corporation, Gaithers-
burg, Maryland, February 1972 .

14. G . Dronek and K . Muehring, A Comprehensive
Intelligent Debugger (AID), Universit y
of California, Berkeley, Report No .
L2-CAL-AID, L3-CAL-AID .

15. "Draft Proposal ANS FORTRAN, BSR X3 .9 ,
X3J3/76," SIGPLANNotice, Volume II ,
No . 3, Marcn197 6

16. B . W . Kernighan and P . J . Plauger, Th e
Elements of Programming Style ,
McGraw-Hill, 1974 .

17. D . E . Knuth, "An Empirical Study o f
FORTRAN Programs," Software Practic e
and Experience, Volume I, 1971 .

—

Page 28

