
ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 1 9

WHY IS SOFTWARE ALWAYS LATE ?

J . L. Lawrenc e

ABSTRACT
Despite all of the advances in software engineering practice, despite all the newl y

developed languages and software tools, and despite case study after case study, software i s
almost always late . It does not seem to matter what the product is or what the industry is .
The cry of frustration is almost always the same : "Why is software always late? " In thi s
article, the author discusses the software development cycle and the LOC/day productivity
measure in an attempt to explore some of the reasons for failure and some of the factor s
contributing to success. The opinions expressed herein are solely those of the author and d o
not necessarily reflect views or procedures of the General Electric Company or it s
employees .

INTRODUCTIO N

An amazing amount of progress has been made in the computer field since the earl y
pioneering days of the 1950s, Desktop computers, realistic graphics, high level languages ,
artificial intelligence, computer vision, and many other advancements have been made i n
the space of only about 30 years . In addition to technology advancements, new applicatio n
areas are being discovered virtually every day . Some describe the still infant field as a
science while others call it an art and still others view the whole thing as black magic .
Almost everyone appreciates the power and flexibility that computers have added to ou r
lives . However, despite all the wonderful progress and potential, managers are invariabl y
frightened and frustrated by this new technology . Software is viewed as unpredictable i n
terms of development time and effort and is hence viewed as a management nightmare . The
universal cry is "Why is software always late? "

There is no simple answer to the question raised. There are in fact multiple factor s
contributing to the problem and it is easier to describe the factors than to formulate th e
solutions. It is unfortunate but true that most of the problems related to late software are
outside the domain of the software development team . But, software development is no t
always late and does not have to be a nightmarish managerial headache. As an example, th e
author 's companion article, The RC2000: A Software Success Story, describes a software
development effort that was consistently on time and under budget . In the article which
follows, the software development cycle and current productivity measures will be
discussed to point out some of the factors that lead to and guarantee disaster . At the end o f
the article, some suggestions are made for ways to improve the situation and plan for
success .

A TYPICAL SCENARIO

Before considering the problem in any detail, consider how many projects come about .
Marketing does an analysis of the existing product line, surveys the marketplace, and
decides that a new widget needs to be built . A preliminary schedule is thrown together to
sell the idea to upper management to justify the development effort . Once the idea has bee n
accepted, engineering is informed that they are to build a new widget with a certain set of
features. If engineering is fortunate, a product planning specification might be included
with the request . At this point, engineering goes off to write a functional specification o f
the new widget with inputs from the engineering staff and product planning . Meanwhile ,
marketing is out hustling up orders or doing more forecasting to see what the marketplac e
wants. Typically, there will be some normal changing of direction as marketing, product

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1012443.1012445&domain=pdf&date_stamp=1985-01-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 0

planning, and engineering struggle to determine what the new widget should be. Morale
and expectations are high because of the excitement over a new product that will be an
engineering marvel, that will make the company lots of money, and will provide th e
company with a leadership position in the marketplace .

When the functional specification writers are done, a response is sent back to produc t
planning and marketing which defines the new widget with the question, "Is this what you
meant by a widget ?" By this time, firm schedules have been generated and committed t o
and sales forecasts have been made with the schedules assumed . Marketing, after
deliberating over the contents of the functional specification, agree in principle but insis t
that certain new features must be added and the schedules must be pulled in by at least a
quarter to meet the marketing window . Engineering, to save time, begins the initial desig n
of the system using the "almost correct" functional specification . While some of engineering
is doing the design work, others are incorporating the newly requested features into th e
functional specification and still others are generating detailed schedules for the softwar e
team. The detailed schedules must allow for delivery of the entire feature set identified b y
marketing and must meet the delivery dates already committed to .

When the new functional specification is ready for release, the high level design i s
either complete or nearing completion . Marketing reviews the new feature set, make s
changes, and hands it back to engineering . "And by the way, engineering, if you could jus t
move the schedule in by 2 months, there is this really prime sales opportunity we ca n
capture that requires the new features we requested . We have already begun discussion s
with the customer, confident that you can deliver on time. In fact, we have scheduled a
demonstration of the basic features already, so could you skip over some of the design work
and begin writing code? " Meanwhile, the software development team has begun detaile d
design of a high level design that is based upon a functional specification that is at least tw o
iterations out of date and are struggling to meet schedules that were generated long befor e
the product was defined .

Generally speaking, several more iterations occur in which feature contents ar e
changed that require changing designs which require changing working code . If the code is
already in some form of testing, it may be decided that the system just does not " look " right
and hence spur a lot of other changes to the user interface to make it more "user friendly " .
To save time, documentation and design reviews are abbreviated or dropped so as to increase
the probability of meeting the delivery dates committed to .

As the delivery date nears, it becomes apparent that the software is going to be late .
So, in conjunction with product planning and marketing, a reduced feature set is arrived a t
that is at least marginally acceptable for a first release . Some sales may be lost, but this i s
better than not having any product . In fact, an opportunity is realized in that the product
can be cost reduced . This feat can be accomplished by merely taking out features that ar e
not part of the first release and hence reduce memory costs . Thus, software engineering is
told to restructure the product so as to make certain features easy to remove . In addition ,
more people are added to the project to insure its timely completion .

To cut the story short, the product is released late at higher cost than anticipated and
with poorer performance. Many desirable features are missing and the competition has jus t
come out with a new product that obsoletes or at least directly competes with many of th e
features in the new widget and to make matters worse, the competition's product is cheaper .
At this point, management decides that development costs have to be reduced . This i s
accomplished by reducing staff or funding or both . Further, to appease customers, promise s
are made and schedules are set for making everything right with the customer . Thus ,
engineering simply can not fail in meeting the new feature set and the new schedules . To
make sure that such a disaster never occurs again, a "witch hunt" is conducted to find th e
guilty parties and a reorganization is done to better align the organization to meet the new
challenge. Morale is low as people are disillusioned, there are rumors of more layoffs, there
are rumors that the project will be canned, and people begin to analyze the problem and

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 1

wonder what went wrong .

Meanwhile, product planning and marketing survey the market place and decide tha t
a new gadget is needed	

SOFTWARE DEVELOPMENT CYCLE

While the above scenario may be exaggerated a little and may not be completely fair
in some respects, it probably hits closer to home than one is willing to admit . In fact, i t
may make one somewhat uncomfortable . One difficulty in solving the "software problem " i s
in admitting and realizing that the above scenario is all too descriptive of the wa y
development work is done . The maintenance and feature enhancement cycle is not eve n
mentioned, but suffice it to say that these work efforts only add to the problem . To analyze
what went wrong and why software is late, one must begin with an understanding of th e
software development cycle .

Functional Specification Phas e

The software development cycle is a progressive cycle of design, inspection, an d
rework . Rework must be scheduled for, especially in the face of the reality that th e
product definition will be changed several times during the development cycle . A rough
rule of thumb is that at least 10% of the time should be scheduled for rework due to desig n
flaws or misunderstandings . Extra time must be scheduled in case of Functional
Specification or program direction changes . The amount of rework time required is difficul t
to predict beforehand .

The development cycle must begin with the Functional Specification Phase . Some
prefer the term Requirements Analysis, but regardless of the term used, the first step is t o
clearly identify what the software is to accomplish . The Functional Specification should be
viewed as engineering's response to the Product Planning Specification . More importantly ,
the Functional Specification is a " contract " between engineering and marketing which
describes what is being built . As such, it must be a joint effort between product plannin g
and engineering . All too often this step is omitted and design is begun based upon a produc t
planning document. This is undesirable because a Product Planning Specification, i f
properly done, will not be technical enough in content to resolve the many importan t
technical details that must be attended to . Frequently engineering is forced to develop a
Functional Specification without a Product Planning Specification and little or no inpu t
from marketing and product planning .

The Functional Specification Phase is the proper time to define, in engineering terms ,
what the product baseline is to be and to precisely define all features that are to be part o f
the product . in conjunction with product planning, the Functional Specification shoul d
define what the product releases are to be and what features are to be product options . The
product option packaging is important so that engineering can design features as options to
be easily removed or added in . Furthermore, the choice of which features are options an d
how the product is to be packaged has a tremendous impact upon how the software is to b e
designed, how manufacturing is to produce the product, how field updates are to b e
accomplished, and how configuration management is to be done . An additional benefit is
that an early option packaging provides marketing with inputs for product pricing .

An item that is frequently ignored or minimized during the Functional Specificatio n
Phase is the user interface . The user interface is a feature of the product as much a s
anything else and should be as completely specified as early as possible . To make matter s
worse, practically everyone has an opinion on how the user interface should operate .
Leaving this vital decision until coding begins or until marketing sees the final produc t
will create a disaster and needless friction . A section of the Functional Specification calle d
the Operator Scenarios is an appropriate place to describe in fairly great detail how the

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 2

product will look to the customer . This section of the document can later form the basis fo r
a user's manual . An important point to remember about the user interface, or any othe r
decision deemed too important for software to make, is that if is important it must b e
clearly spelled out in the Functional Specification .

It is critical that software engineering be adequately represented during this phase of
the development cycle . Too often the Functional Specification writers have little or n o
software background and frequently make poor decisions about how software will be done .
As products become more and more software intensive, the tendency to ignore softwar e
concerns at this stage will more and more guarantee failure .

Another frequent mistake that occurs at about or just before this phase is th e
development and commitment to "cast in concrete " schedules. During the Functional
Specification Phase, preliminary schedules only should be generated which give a roug h
indication of what features will be available at what time . In many cases, as in the scenario
depicted above, schedule generation and commitment is done long before there is any
understanding of what is being built .

The Functional Specification Document provides the engineering cornerstone for th e
entire development effort . It is the overall blueprint from which all other work is derived .
Proceeding with development without such a blueprint is a guaranteed way to creat e
unimaginable problems later on during the development effort . Engineering should refus e
to proceed with the development effort until the Functional Specification is approved
through a " sign—off " process. Still, in an attempt to speed up the process, proceedin g
without a clear functional specification is often mandated. When changes in the produc t
feature set are made, the Functional Specification must be updated to reflect the changes an d
all activities which are affected by the change (design, code, test) must be updated also.
Additionally, when feature sets change, schedules must be examined again to access th e
impact . Failure to do so guarantees problems later on . Dropping one feature to include
another or adding additional resources does not necessarily mean that the original schedule s
can be maintained . Frequently such changes are made with an acknowledgement of the
associated risk that is quickly forgotten later on .

High Level Design Phas e
Once the Functional Specification Document is completed, software engineering's tas k

really begins . While there is usually little software input into the Functional Specificatio n
process, there is frequently an abundance of "help" with the development of the high leve l
design. Although other engineering (not marketing nor product planning) functions shoul d
be represented during this phase, this task is primarily a software engineering exercise .

During the High Level Design Phase, the software design is decomposed into a
specification of major software subsystems, task definitions, and subsystem interfaces . It is
extremely important that interfaces be completely specified (actual code is preferable)
during this phase. Changing a subsystem interface amounts to a design change which wil l
be disastrous if postponed until the Module Design or Module Coding Phases .

The High Level Design Phase should include the identification of an overall software
design philosophy and methodology that will be followed throughout the software product
development. This assures consistency during the development process .

in conjunction with the Functional Specification writers (or whoever has ultimat e
engineering responsibility), the High Level Design developers establish
memory/performance/feature tradeoffs . With this clearly in mind, the software
engineering group can define a software baseline which may or may not coincide with th e
feature set for a product baseline . Once this is complete, a set of detailed schedules can be
generated and committed to . Changes to the product further upstream (Functiona l
Specification Phase) will necessitate some amount of rework in this phase and potentiall y
have a schedule impact .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 3

Subsystem Design Phase and Module Design Phas e

Once the High Level Design Document is complete, a set of software subsystems will
have been identified . These subsystems are designed in the Subsystem Design Phase b y
decomposing them into Modules . Notice that the High Level Design Document acts as a
requirements document for the Subsystem Design Phase . Based upon the Subsystem Desig n
Documents, modules are defined which are in turn designed during the Module Desig n
Phase. The Subsystem Design Document, in addition to defining what the modules are ,
should completely specify the intermodule interfaces .

The Module Design Document normally includes pseudo—code for the module . If
properly done and the tools are in place, it is possible to generate much of the code directly
from the pseudo—code .

Coding/Debugging Phase

When a Module Design Document is completed, actual coding can begin . Some amount
of testing is done in this phase, but the real testing is described below . The
Coding/Debugging Phase is no place to do design work . Problems may be encountere d
through the debugging process, but these should be resolved by going through the desig n
process (typically just the Module Design Phase) again .

Unit Test Phase

Once a module has been coded, testing begins . The Unit Test is a test of the module i n
isolation from the system . Its purpose is to ensure that for a set of inputs, a valid set o f
outputs are generated . It will usually be necessary to write software stubs and drivers to b e
able to adequately generate test cases for the Unit Test . Once the Unit Test has bee n
successfully completed, one has a high degree of confidence that the module itsel f
internally meets the requirements .

Integration Test Phas e

During the Integration Test Phase, modules which have successfully passed the Uni t
Test Phase are combined together into a "system ". Stubs and drivers are replaced by actua l
code. The Integration Test Phase is primarily directed towards testing out interfaces sinc e
logic tests have pretty much been completed during the Unit Test Phase . The Integration
Test is a "white box" testing approach in which tests are constructed by knowing what th e
interfaces are and what the results are supposed to be .

Functional/Acceptance Test Phas e

The last phase of testing is a series of "black box" tests . These tests are a rigorou s
comparison of the product with the original Functional Specification and Product Plannin g
Documents . To prevent bias, the Functional/Acceptance Test Phase should be conducted by
individuals other than the product developers .

Development Cycle Summar y

Whatever the actual terms used, software development projects go through the phase s
listed above. Maintenance and feature enhancements are not described because they ca n
essentially be thought of as new "products" being developed on top of an existing baselin e
(the current product) . Support activities such as computer facilities and configuration
management are also not mentioned in the development cycle . These activities ar e
important in the development cycle, but they are issues in their own right and are not as

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 24

pertinent to the immediate discussion .

Experience has shown that roughly 40% of the development effort is in th e
specification/design phase, 20% in the coding/debugging phase, and 40% in the testing phase .
Thus, it is clear that the actual software writing process occurs for a relatively short perio d
of time and that most of the work is in planning and testing . This is important to realiz e
because when one talks about productivity improvements, the amount of time spent i n
each phase of the development cycle must be considered . Given the above remarks abou t
the development cycle and where most of the time should be spent, it becomes clear wh y
changes in feature content can have such a tremendous impact upon software productivity .

The development cycle described depends upon individuals with appropriate skills a t
each level. The Functional Specification Phase must be done primarily by a system s
engineering component with heavy Marketing/Product Planning input and software inpu t
appropriate to the product . The High Level Design Phase is primarily a software
engineering function and should be conducted by a chief architect (or small team o f
architects) with appropriate consultation with the Functional Specification writers . The
Subsystem Design Phase is performed by a software engineer who consults with the chie f
architect as necessary . Module Design, Coding/Debugging, and Unit Test are performed b y
individual software engineers or programmers as appropriate for the complexity of th e
module under consideration . Integration Testing must be performed by the software tea m
itself. Finally, Functional/Acceptance testing is done by an independent team .
Functional/Acceptance testing is a good way to train field service personnel for the ne w
product .

It is important to emphasize again the impact of changes at any point during th e
development cycle . A change at any level may affect each level beneath it . Changes at the
Functional Specification level are among the most frequent and most undesirable because al l
levels are affected by it . It is also important that the objective of each level be kept i n
mind. Specifically, the testing phases are no place for design work to be done . An individua l
doing functional testing should certainly point out perceived weaknesses in the huma n
interface, but before changes are made at the module design or coding level, the Functiona l
Specification must be changed because a change to the human interface normally equates t o
a new feature .

CLASSIFICATION OF SOFTWARE PERSONNE L

Before diving into the question of software productivity, a few classifications are i n
order. While there is no general agreement on how to classify skill levels for software
personnel, the following titles are submitted as a representation of the range of skill levels .
A comparison (hopefully accurate) with hardware is also presented .

Software Engineer

A software engineer has the skill and experience to be able to design the software
portion of the product . The most experienced software engineers would be chief architects .
Less experienced software engineers would typically be responsible for subsystem desig n
and relatively complex module designs . An analogy with hardware is to compare the
software engineer with the hardware engineer who would design a computer down to th e
board level and would then turn the boards over to more junior engineers to design at th e
board level .

Programmer s

Programmers take over where the software engineer leaves off . That is, a programmer
would typically take a module and design it. The major differences between a programmer

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 5

and software engineer are in their experience level and the complexity of the design tas k
they are given. An analogy with hardware would be to liken a programmer to a hardwar e
engineer who takes a board description and does the circuit design for it, or who takes a
complicated board and does a circuit design for one part of the overall board .

Coder s

Coders take well defined, designed modules and turn them into actual code . The
information given to a coder might be in the form of a flow chart or some other detailed
specification. The coder is like the hardware technician who takes a schematic and solderin g
iron to build a board .

Classification Summar y

The classifications above are not exact and often overlap. Just as with hardware
engineers, there is often a gray line between skills . Experience and training are typicall y
the deciding factors in placing an individual in the categories above . The important thing
to note is the job responsibility for each classification and the training/experience leve l
required. Software engineers require quite a bit of training and experience to be able to
make intelligent decisions about design alternatives for large software systems. It is the
author 's view that software design is usually more complex than hardware design becaus e
of the large number of interfaces . (This view is certainly debatable.) As a result, trainin g
and experience level is of paramount importance . Few colleges and universities prepar e
" computer science " students to be software engineers upon graduation . Most graduatin g
students are really in the category of programmers . That is, they are able to take small, yet
significant, portions of a software project and do the design work . Finally, coders requir e
the least training and experience of all . Most people can make good coders and man y
colleges offer two year programs for just such jobs. Again, the categories presented are no t
clear cut but give a general idea of the range of skills present in a software project .

To add to the confusion, job duties often overlap during a project . For example, th e
author 's team does not include any coders because all of the software engineers and
programmers do their own coding tasks. The problem occurs when the qualifications do no t
match the task. Many times software engineers or programmers are hired by a company
and given only coding tasks to do. This leads to job dissatisfaction and a high turnover rate .
Likewise, companies often give individuals with minimal coding skills the software
engineering tasks. Of course, this is not done intentionally but happens nonetheless . The
difficulty occurs because of the mistaken idea that just because an individual has severa l
years experience with a product, they are qualified to do the software design . This leads to
frustration, overly complex software designs, and poor performance . Likewise, there is a
tendency to allow a software engineer with no product experience to define a product . Both
extremes will guarantee problems and must be avoided .

To rephrase the problem as a question that is frequently asked, "Why does the
software take so long when my 15 year old nephew can do it on his home computer? " The
obvious hardware analogy is "Why does hardware take so long when my 15 year ol d
nephew designs and builds crystal radio sets at home? " There is a world of difference i n
writing a program and producing a product . The electronic products produced by
professional engineers are far more sophisticated and complex than a simple crystal radi o
set . The same is true for software products . Another factor to keep in mind is that a simple
program being done at home for entertainment purposes is easier because there is little or n o
need to worry about quality, long term maintenance, or manufacturing concerns .
Furthermore, the feature content of a home program in general does not begin to approac h
that of a real product . There are certainly some good software products coming out of hom e
"garage shops", but most such developers really are in the category of coders .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 8

SOFTWARE PRODUCTIVIT Y

The above discussion described the software development cycle and the types of
individuals that are required for software development. Several pitfalls were pointed out
that can be avoided by proper discipline, planning, and management support . It is now tim e
to consider the central issue of software productivity .

Measuring Productivit y
The most commonly used measure of software productivity is lines of code per da y

(LOC/Day) . This measure is fairly easy to arrive at once the code is written and is used by
several planning models to predict software development costs . However, it is the author' s
opinion and experience that LOC/Day is a poor measure for several reasons . Before
elaborating upon this, consider how the LOC/Day measure is arrived at . The LOC/Day
figure is calculated by counting up all of the lines of source code that are in the product
delivered to a customer and dividing that by the number of man—days required to produc e
the product . Only delivered source code counts . Thus, software written as stubs, drivers, o r
as tools does not count in the LOC/Day number even though resources were required to d o
the work .

There is hardly universal agreement on how to measure several of the factors that ar e
part of the LOC/Day measure. What counts as a line of code? Do comments fo r
documentation purposes count or only executable statements? How should deleted lines o f
code or modified lines of code be counted? How does reusable code count? How does on e
account for assembly code versus high level language code? When does the counting start ?
Does it begin during the requirements phase, design phase, or coding phase? Who get s
included in the man—day count? Do managers, clerical support, and non—software engineer s
get counted or only those who actually produce code? These questions can be irrelevant fo r
a local group that is trying to measure gains in productivity . Unfortunately, that is no t
typically how such LOC/Day measures are used. They are frequently used to measure
productivity against other industries, other projects, or the Japanese . Thus, how th e
LOC/Day measure is arrived at becomes a critical issue because by judicious choices ,
productivity can be made to look extremely good or extremely poor .

As was already stated, it is the author's opinion that LOC/Day numbers are poo r
productivity measures. The major reason for this is that there is a great tendency t o
misinterpret the meaning of such numbers . For example, if it is stated that the
productivity of a particular group is 6 LOC/Day, management response is typically "Why i s
it so low? Get rid of those lousy programmers and hire some good ones . " Taken out o f
context, LOC/Day numbers are as easy to misunderstand and misrepresent as statistics . If
properly used to measure progress in productivity gains, much of this argument can b e
discounted. Furthermore, it is important to realize that the LOC/Day measure defined is a
project productivity measure, not just a software productivity measure .

A second reason for disagreeing with the LOC/Day measure is that by its very nature ,
there is a built in but unmeasured penalty for Functional Specification or program directio n
changes. Thus, there is a tendency to again misinterpret the results and see the whol e
problem as a software issue when in fact it may be a procedural and discipline problem .
Because only delivered lines of code count, much necessary work is often a penalizin g
factor . It is often the case that more code must be written to test a module than actuall y
comprises the module itself! Yet, the test code takes resources and is hence a negativ e
productivity factor! Examples of this situation abound in practically every development
effort . In one specific instance, this author developed and debugged 40K of code in one day
(much was reusable code), but since the code was not part of the product, that day was
"wasted " by LOC/Day measures . In another case, a major software module was rewritten a t
least three times due to fundamental changes in the Functional Specification Documen t
resulting in a low productivity number for that module .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 7

Perhaps the most dangerous aspect of the LOC/Day measure is that it attempts to
describe 100% of the development cycle by measuring only 20% of the effort . Recall from
the discussion earlier that actual coding is only about 20% of the total effort . Hence ,
documentation effort, design effort, tool development, configuration management, an d
testing are not adequately measured .

Because of the LOC/Day measure, code size estimates are often used to try an d
determine software effort . This seems perfectly reasonable but suffers from many of th e
same problems as the LOC/Day measure. The fundamental flaw is the derivation of th e
unknown (software development effort) from a series of unknowns . Code estimates
determined by inexperienced software people estimating code that has never been written
before for a product definition that is constantly changing are bound to be in error! To
make matters worse, such estimates are derived at or about the same time as the schedules —
before the Functional Specification is even written! While it is perfectly reasonable to wan t
to estimate effort and measure progress based upon LOC/Day, in practice it rarely work s
well because of misinterpretations, unmeasured factors, and events outside the control of
the development effort . If the code size estimates turn out to he accurate and schedules ar e
met, the claim is made that the schedules were too easy and not challenging enough . If the
code size estimates turn out to be wrong and schedules are not met, a "witch hunt " is sure to
follow .

A related and important difficulty with the LOC/Day measure is that measurement s
can be taken only during or after the Coding Phase. This means that 40—60% of the
development cycle is over before measurements are taken and if the project is in trouble ,
the proof comes too late . Used in this manner, LOC/Day becomes an autopsy report rathe r
than a health checkup .

Given the comments made concerning LOC/Day and code size estimates, should suc h
measures be abandoned? The answer is not a clear cut yes or no . It depends upon how th e
information is to be used . If the data is used as a planning guideline and measurement too l
because no other measurements are available, LOC/Day can be very valuable . This pretty
much means that the LOC/Day and code size measures should be used only for internal
monitoring . If the data is used as a test to determine "who's the witch ", inestimable damag e
has been done by the data collection . In reality, such measures are most likely presented t o
upper level management with the accompanying misinterpretation and more harm tha n
good is done .

It has been the author's experience that LOC/Day measures and code size estimates ca n
be valuable aids as long as schedules are met and immediate managers understand th e
validity of such measures . Still, LOC/Day is not the measurement of choice. What i s
preferable is to use measurements and estimation techniques that account for each phase o f
the development cycle . With this scheme, to take the Coding Phase as an example, code size
estimates would be made during the design phase to predict Coding Phase effort . An
LOC/Day measure at the end of the Coding Phase would measure the productivity an d
success of the effort .

More work is definitely needed in the areas of productivity measurement and
software planning tools . There are other ways to measure productivity that have bee n
suggested in the literature. It might be possible to measure and predict the Functiona l
Specification Phase on the basis of a technique called function point analysis . Metrics such
as the McCabe metric might be used to measure design complexity and hence indirectl y
indicate productivity and quality . Finally, during the testing phases, the number of error s
detected are probably a good starting point for measuring quality and productivity .

Factors Affecting Productivit y

Regardless of how one measures software productivity, it is apparent that softwar e
productivity must be increased . Fortunately, it can! Several factors affect software

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 8

productivity. The amount of code to write, the programming language chosen, th e
complexity of the software, and the use of modern programming practices all have a grea t
deal of effect upon the success of a software project . These factors have been explored
extensively in the literature and are almost to the point of being "motherhood". Factors
which have the most impact on productivity are often overlooked because they lie outsid e
the domain and authority of the development team . Some of these negative factors will be
considered now .

(1) Without a doubt, the single largest negative factor affecting software development i s
in attempting to build and design against a moving target . A frequently changing or
out of date Functional Specification Document is a guaranteed formula for failure . I t
need not be that way .

(2) Schedules that are generated and mandated are often unrealistic and incomplete .
Schedules defined and committed to without engineering input are not likely to b e
accurate . All too often such schedules are made up based strictly upon marketplace s
requirements without much consideration for what is doable . Incomplete schedules
lack sufficient time for proper documentation or rework and generally are not revise d
even when the feature set changes .

(3) The "Make it Work " syndrome puts on pressure to limit or even omit " nonproductive"
development phases . The pressure to "quit designing and start codin g " guarantees that
poor designs will be implemented and set the stage for ultimate failure . It is true that
one can not design forever or until the optimum solution is found, but the balanc e
seems to have swung too far in the opposite direction .

(4) The "Anyone Can Write Software" syndrome causes a skills mismatch that i s
frequently not realized until it is too late. Coders performing software engineering
tasks assure missed schedules, poor quality, and missed performance budgets . Assigning
coding tasks to software engineers guarantees low morale, high turnover rates, and
disillusionment .

(5) The "It 's Only Software" syndrome results in the legislation of how software is to b e
done. Rules governing software development are frequently made up by people wh o
have never done software development before or have limited exposure to moder n
programming practices . A common belief is that since software is so easy to write an d
change, anyone can do it and hence not only are all software developer s
interchangeable, procedures and rules developed for one type of software industr y
(such as data processing) are applicable to all types of software industry (such as rea l
time software) .

(6) Most development efforts suffer from the lack of adequate tools . Software
engineering may be in the " Bronze Age " but many are using only "Stone Age" tools or
"Bare Hands" . Unfortunately, few managers and software developers are aware o f
what tools are available or are trained in their use .

Improving Software Productivity

There are a lot of reasons why software productivity is low, why software i s
" always" late, and why software projects often fail . Eliminating or at least improving the
negative factors described above may well be enough to make the overwhelming majorit y
of the software projects successes . There are specific changes which are immediate hits .

(1) "Chill " the Functional Specification . It is generally impossible to completely " freeze " a
Functional Specification Document and guarantee that no further changes will b e
made. But, the amount of changing can be minimized by doing the upfront jo b
correctly and requiring a realistic schedule impact assessment as features are changed .

(2) To facilitate understanding by marketing and product planning, develop rapi d
prototypes during the Functional Specification Phase . Software prototypes . have
several advantages . First of all, they provide a concrete vehicle for communication
between engineering and product planning rather than some abstract document .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 2 9

Secondly, prototypes allow all concerned to see and evaluate alternatives at an early
stage when radical changes in direction are the least expensive to recover from .
Thirdly, prototypes give engineering valuable insight into the problem at hand an d
thus give potential direction for proceeding with design. Finally, prototypes give
everyone an early indication that the product is real and what it is going to look like .
It is perhaps heresy, but there is no less a need for prototypes in software than in an y
other discipline. Yet, while other disciplines develop throw away prototypes, softwar e
is expected to deliver correctly on the first attempt . This can lead to disasters .

(3) Improve up front planning by utilizing existing tools (COCOMO model o r
alternatives) to at least have a best guess estimate of the effort involved . Estimate s
should be made and reviewed by qualified software engineers. Management an d
marketing must understand the questionable validity of such estimates .

(4) Define a product and software baseline before design begins . By doing this, a stage d
implementation strategy can be used for software development . Designing all feature s
before any implementation begins is asking for trouble because time and patience wil l
likely run out before anything workable is produced . A staged implementatio n
strategy allows a base system to be built early and features added in stages in a
" layered " or "peeled onion " manner .

(5) Increase the software input into all planning phases from management to marketing
to product planning to systems engineering . This is required as products are more an d
more software oriented .

(6) Give software developers terminals to take home . The more access to a computer, th e
more work that will be accomplished . It is often the case that a developer will realiz e
the solution to a problem after he has left work and if computer access is immediatel y
available, he is likely to solve the problem then and there . Additionally, terminals a t
home allow engineers to submit batch jobs at the end of the day and monitor th e
progress from home .

(7) Let software people do their job . A software engineer is just as much an engineer a s
someone from another discipline and should be treated as such .

Most of the above "hits " can be accomplished reasonably quickly to improve
productivity and the chances of success immediately . They require management support ,
discipline, and initiative . There are also longer term investments that will pay off in 1— 2
years .

(1) Invest in tools . A programmer 's tool kit should be developed and made available .
Many tools are already available for systems with UNIX ® and other operating system s
while other tools may simply have to be developed in house . Great care must be take n
not to view tools as a panacea or cure all . Most tool kits are oriented towards th e
Coding Phase and as such only address 20 —30% of the development cycle .

(2) Automate testing. Test coverage tools can be generated fairly easily to assist in th e
testing phase . Such tools help determine if a module, subsystem, or system has bee n
tested adequately . Tools can be developed or already exist to measure desig n
complexity using some criteria such as the McCabe metric .

(3) Standardize development methodologies and procedures . "In order to form a more
perfect union ", this should be a "government by the people and for the people . " In
other words, methodologies and procedures should be developed by the people who are
going to use them and who are most qualified to establish them . Standardized
methodologies increase uniformity and make quality control problems easier . If
developed by software developers in conjunction with a QA organization, they ar e
more likely to be followed and succeed .

® UNIX is a trademark of AT&T Bell Laboratories .

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 1 Jan 1985 Page 3 0

(4) Automate configuration management . Manually controlling what software is required
for what feature set and for what release can quickly become and unwiedly task . I t
can easily decrease productivity and slow releases .

(5) Reuse code wherever possible. This statement is also very close to °motherhood " .
Almost everyone agrees with the concept, but little is done to design for reusable cod e
and little is done to make developers aware of what reusable modules might already
exist .

(6) Appoint a chief architect with the authority and responsibility to make decisions . The
chief architect concept is nothing new but it seems to be rarely used . A chief architect
(or small team) should understand the entire scope of the project at hand . He shoul d
interface to systems engineering, product planning, and the developers . His task is t o
provide a single point of contact for developers who have issues that need to b e
resolved. These issues might be technical in nature, or may be interpretations of th e
Functional Specification Document .

The ideas suggested above can all improve productivity fairly quickly . However ,
productivity improvement is an ongoing process . Software developers, and their managers ,
must keep current with new advances that are being made. Other productivit y
enhancement areas should actively be investigated . These include productivit y
measurement alternatives, workstations versus mainframes, software estimation/plannin g
tools, rapid prototyping tools, and machine independent compilers . The key is to establis h
an on going goal of improving productivity and a serious program for accomplishing th e
goal .

CONCLUSIO N
This article has discussed the central issue of late and unpredictable software b y

examining the software development cycle, measuring productivity, and factor s
contributing to low software productivity . It has been pointed out that many factor s
contributing to software disasters lie outside the domain of the software development team .
Several suggestions, both inside and outside the software development team, have been
given for improving the chances of software success .

ACKNOWLEDGEMENT S
The author is grateful to the past and present members of the Proffitt Road Gang fo r

their dedication and inspiration. Their success has proven many of the concepts describe d
above and validated many of the author's opinions. This development team is quite
possibly the most productive, talented, dedicated, and dependable in existence .

ABOUT THE AUTHO R
The author received his undergraduate degree in mathematics from Western Kentuck y

University in 1976 . His masters and doctorate degrees are both in computer science from th e
University of Missouri—Rolla and were granted in 1978 and 1980 respectively . The author
was a member of the Mathematics and Computer Science Department of Western Kentuck y
University until 1981 at which time he joined the General Electric Company . He is
presently the manager for Robotics Software and Software Engineering at General
Electric 's Charlottesville, Virginia facility .

