ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1885 Page 95

Check for
Updates

UNIX as an environment for non—~UNIX software development
A case history

Jean Renard Ward, Pencept, Inc.
39 Green Street Waltham, MA 02154

ABSTRACT:

Many of the back issues of SEN contain articles about software
development environments and software tools. UNIX has historically been
cited as an example of a good software development environment. For
many developers still struggling with the offspring of MSE-DOG, REX-11M,
05-370 and the like, UNMIX still represents a dreamed—-of state-of-the-
art. Many of the more enhanced environments actually sit on top of UNIX
or a UNIX-like system, especially for graphics—based environments like
those offered by Sun Microsystems, Apolla, and Masscomp.

Pencept’s business is real-time character recognition for hand-

"geribbled! text. Our products run in & completely non-UNIX
environment, but all of our development is done on UNIX. This presented
a wunique opportunity to find out how good “standard” UNIX is for

developing non-UNIX products.

Based on our experience. we have come to the conclusion that
UNIX is a good software development environment for the kinds of
applications that are traditionmally run on UNIX, if UNIX is <the target
environment. UNIX (and most of its derivatives) do NOT address many of
the more general needs of non-UNIX software engineering projects.

UNIX is a powerful system. partly because it comes with a8 large
assortment of socftware development tools. Some of the deficiencies and
problems we had to resoclve were:

+ Certain UNMIX and vendor software had to be modified, because it did
not have all the functions we absolutely needed

+ Several UNIX utilities did poorly for this big a project

+ Some UNIX features were poorly designed for non-UNIX development.

+ Some tools for our particular project are not part of UNIX.

Qur particular vendor is Masscomp, which competes in the high-
performance graphics workstation market with compenies such as Apollo,

Sun Microsystems, and Digital Equipment Corporation. We believe that
our experience is generally applicable to UNIX systems, regardless of
vendor: and across a variety of UNIX versions (System III, System V,

Berkeley 4.2, etc.}

Pencept, Incorporated

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1012483.1012494&domain=pdf&date_stamp=1985-07-01

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 96

1. What we were developing: the PENPAD (R)

Pencept has developed and now markets an interactive

character~-recognition device, the Penpad (R), for reading hand-printed
characters. It performs the functions of:

i data input (& keyboard).

2. graphical input (digitizer or “mouse").

3. function selection/control (function keys or menus).

4, pointing (touch-screen, or a8 mouse).

The design of the product is the largest micre-processor based
commevrcial product running multi-tasking code entirely out of PROM, with
all code written in a high~level programming language. that any of us
have encountered. A total of four bugs in the product code have been
reported in the first 18 months from the field

1.1 DCR (R) = Dynamic character recognition

The dynamic character recognition technology (R) is quite

complex, and has been under constant development since January of 1977
In itself, this technology constitutes a radical breakthrough in its own
field of character Trecognition, since no competing technology exists

which can read untrained, unrestricted hand-printed characters with even
a modest level of accuracy, much less in real-time, interactively.

The major portion of the recognition algorithms are written in

an applicative language of pur own design, which we execute
interpretively in the product. The rational for this is strictly code
size: we achieve a 10:1 compression of code size for that portion of

our algorithms over programming in “C" (or any other compiled language)
for the 68000 instruction set.

Figure 1 shows some of the hand-printing the PENPAD reads:
compare this with Figure 2, the ANSI standard for machine-readable
hand-print, The major differences between our DCR (R} technology and
static character recognition, such as OCR, are:

1. We read "unconstrained” hand-print: if it’s not too sloppy for a
human to read it out of context, we need to recognize it, too

(R)Y UNIX is a Registered Trademark of A T.T.

(R ADA is a Registered Trademark of the Department of Defence.

(R} DCR, PENMPAD., and Dynamic Character Recognition are Registered
Trademarks of Pencept, Incorporated.

Pencept: Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 97

2. Our device follows the motion of the pen while writing, rather
than scanning a static image.
3. The results are delivered interactively in real-time.

1.2 Hardware -~ M6BO0OO-based design
The electronics vuse a 10MHz M680O00 micro-processor with
19&4Kbytes of PROM and 64Kbytes of RAM. The RAM memory size is partly

due to the need for a real-time heap management package %o hold
variable-sized descriptors for the menuing and block-mode functions.

2, Why would anyone need a large UNIX system for micro-~processor
development?

Unlike most applications using dedicated micro-pracessors,

pur code is very large. Over two—-thirds of the code in the product is
strictly for recognizing hand-printed characters. We also make heawvy
uge of multi-taking to control several asynchronous activities:

recognition, buffering and image-processing on the digitizer input,
full-duplex host communications on two ports at 19 2Kbaud. and graphics
operations, This presented us with several more orders of magnitude of
complexity in debugging our code than with, say, a graphics terminal
emuylator using a 8- or 1lé-bit microprocessor running one process

Some people say the cost of computing "iron" is droapping. We
think it‘s more accurate to say that for a given application cost, the
hardware is increasing in power. However, there is & lag in the

development tools for micro-processor projects: they were all developed
when an embedded micro-processor typically had less than BKbytes of

memory, and everything wss written by hand in assembly language. To
develop the software for this next generation af embedded
applications, the engineers on the project now need all the development

tools ever found on large system projects, not just the low-level tools
used on small hardware projects

Given the complexity of the character rtecognition code, and the
difficulties debugging anything of that size an most in-circuit-
emulators, we wrote all our code to run:

1. as co—operating tasks running wnder UNIX, with modules added to
make it & suitable test and development system for character
recognition development. This is where we do all our

recognition debugging, and most of our system development

R

identical to-ogperating tasks in a PROMmed wversion of the code,
compiled from the same sources

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Ju! 1985 Page 98

The inter—task communications use UNIX’s "named pipes"”. All the
data control information is passed with non-blocking writes and blocking
reads. This approach solves all our task—-synchronization problems

For development. we add a large body of code (over 10,000 lines)
conditioned on ‘“#ifdef" statements. The bulk of it is conditionally-—
compiled "assertion checks"® that ctheck for bad wvalues in
internal variables {similar to array-bounds checks that are generated
by other compilers) (%), The second part is a complete set of debugging
and development tools zo we can develop our recognition algorithms. The
benefits are:

1. Since all the code is the same, from the same sources and the same
compiler, if it runs on our UNIX system we are extremely confident
it will run in the product

2. Likewise, if there is a bug on the product, we can always
reproduce it in the development system on UNIX.

3. We have all the tools for high—level language debugging, not Just
an absolute—assembler debugger.

4. Since we use named pipes for inter—task communication, we can get
copies of all task messages into files for examination.

2.1 What’s important in picking a UNIX (R) for a development system?

UNIX and "C" are touted as guaranteeing "portable"
software. This is +true, but only relatively so. Moving software from
one vendor’s UNIX to another will probably be much easier than moving
from Data General’s ADS to DEC‘s VAX/VME, but not all UNIX systems are
the same.

The reasons for picking a &£B8000-based UNIX (R) system, and for
picking one vendor over all other vendors were:

1. We needed & large—address machine for our development: the
development version of the recognition code is over 700 Kbytes,
and must vun in real time. Real-time performance meant we

could not run with disk overlays (such as on a PDP~11), and the
fact that "C" could not deal with segmentation of our large (over

(#) (We have found that automatically—generated array-bounds and pointer
checks from a debugging "C" compiler were too simple—-minded to catch
many of our errors: and that the "assert" option in cur vendor’s "C"
compiler could not do a "graceful" recovery after an error. Dur
run~time checks are all written specifically for the code segment
they are in. There is a limit to how much an avtomatic tool can
substitute for human judgement,)

Pencept: Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 99

G4Kbytes) recognition tables meant we could not run easily on a
segmented machine (such as an 8086).

2. We needed to support a number of co-~operating software engineers
who worked together on the code: most microprocessor development
systems support one user.

3. We needed high real-time performance: we typically run eight
users on our UNIX (R) system at once, each collecting and
processing data on disk from tablets that generate 700 interrupts
a second over serial-line interfaces. Writing speeds can be

about 0.5 seconds per character for hand-printing, and it takes us
0.2 seconds CPU time on the average to process and recognize a
character.

4. Qur application is sufficiently complex that we needed the full
set of general software development tools available on UNIX
(R} systems, rather than the limited set available on most
microprocessor development systems.

5. We could not afford the risk of cross—compilation: A VAX system,
for example, would have been viable for system development, except

that the bugs from the use of two separate compilers and Tun-
time environments {(such as VAX native, and &4B0O0O0 crosg-—
tompilation) had almost made us unable to meet cur product

commitments once before.

6. ROMable code: most “"C" compilers do MNOT produce ROMable code. The
common problems include:

+ Run—time routines {(typically not all are written in "CHy
are not sharable in PROM because of some static data buffer
that cannot be shared.

+ "C" code from the compiler is re—entrant, but not sharable in
PROM (separate code and data segments).

+ The initial values of variables are set by pre-loading the
data segment, which does not exist when you power up a PROM-~
hased system.

+ The actual "C" code is not ROMable because constants are put
in the data segment, not the text segment.

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 100

3. Our development environment

Our particular project differs both from more ordinary
micro—-processor projects and from other large software systems projects,
and also shares most of the rTequirements of both of these. One way of
looking at it is +that we have all the best headaches from both
environments.

3.1 UNIX

The product code is some 44000 lines (10400 statements) of
hen code, not dincluding some 22000 lines (3300 statements) of
recognition code written in & proprietary applicative language we
execute interpretively in the product (the interpreter is written in
"C"y. Other parts of our project that are not part of the run~time code,
such as the compiler for the applicative language, add about 30000 more
lines of code to our total.

The code is much topo large and complex to ever develop and debug
in assembly language ~-- at the same time, the product requires us to
minimize memory size (which is a large part of our product cost), and
maximize execution speed.

The software in the product is designed as a set of +Ffive co-
operating tasks for managing wvarious activities asynchronously. For
example, the tablet we use interrupts continuously 100 times per second
with seven bytes each time over a serial line, and the terminal must
support communications simultaneously at 19.2 HWKbaud +to and from the
host. The recognition activity must occur in parallel with both of
these, since the recognition is always buffered behind the incoming
tablet data, and the communications activity is asynchronovus.

Due to the sheger size of the code going into an embedded
environment where ALL errors are fatal -— you cannot re—~boot -— we have
had to use every conceivable method to find and prevent bugs. We check
for proper vange on all the arguments at the start of every routine, and
for proper Tange on the return value at the end. We also check for
proper values between all major sections of the code in-between. Our
Trule of thumb has been "when in doubt, put more debugging checks in",
since ¢they are conditioned oeut of the product code, and give us no
performance penalty where it would hurt.

3.2 HNon-UNIX

The UNIX kernel 1is not really suitable for embedded

microprocessor systems, since it was never designed with this in mind.
Instead, we purchased a "C" kernel from JMI Software, Inc.., in source
form, which we ported +from the original Whitesmith’s "C" to more
standard "C". We chose this one kernel over other vendor offerings

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 101

because it offered by far the most compatibility with UNIX +features
This kernel gave us the following facilities:

1. Asynchronous multi-tasking in PROM. In our case, the number of
tasks is fixed, which simplified the use of the kernel

2. Inter~task communication wusing read/write queues. This is
functionally the same as using named pipes in UNIX, which let us
use identical source code in the development version of our
code,

3. ROMable run—time support for heap management. We wuse a large
heap to hold wvarying—length ryun~-time degcriptors for the
graphics, forms, and block-mode features of our terminal product
The heap 1is shared among the control and processing tasks in our
code.

4, ROMable versiong of "C" libravry +functions, Many UNIX library

functions either c¢rash on an error and give you a core dump, or
pull in a large part of the I/0 library for the error messages

4. Some problems with UNIX and theiv solutions

Qur particular design is dictated by the requirements for
the character—-recognition technology, which is wunique, and guite
complex. However, many of the practical problems we encountered are of
interest to anyone who is now starting to do development with
the M&6BO00O microprocessor.

4.1 Compiler technology —— what our vendor’s C compiler does well

Since our code is written entirely in "C¥, and must meet
extreme Teal-~time requirements. we are very dependent on the technology
of the "C" compiler we use. Qur vendor uses a compiler that traces it’‘s
history $o the M. I.T. "C" compiler. There are several optimizations we
found in this "C" compiler that were of great benefit, compared to other
compilers available on competitive systems:

1. 16~bit “"short" operations: The M&BOOO does mnot support 32-bit
multiply and divide operations in its instruction set. Most "C"
compilers evaluate all expressions in the "natural word length" of
the machine, regardless of whether that is the type of the result
that is needed. In this case it would be J32-bits, and the code
speed would suffer needlessly

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1885 Page 102

2. Additional "register" wvariables: The original "C" vcompiler for
the PDP-11 could wonly wuse the three Temaining registers on the
PDP-11 architecture: this restrictions has been perpetuated in
many "portable C" compilers, including many of the cross-
compilers.

3. Efficient run—time support for 32-bit integer operations: we
re—designed the image-processing part of our code which cleans up
the low-resolution image frem our tablets to wuse no floating-
point operations. Using 232-bit integers instead, and only when
needed to protect against overflow saved us considerable
execution time and code space.

4. Efficient pointer arithmetic in pointer expressions: subscript
array references in YC¢" are wusvally un-optimized, unlike
optimizing compilers for FORTRAN-77 and RATFOR. Our vwvendor’s

compiler produced shorter code than many other compilers for the
pointer expressions we used instead.

9. ROMable run-time routines for mathematical and string
operations: our vendor had written some of these in assembly-—
language to get greater code efficiency.

4.2 What didn‘t come with UNIX (R} or from our vendor, but we could do
purselves

In any large software engineering project, there iz always
some need to adapt the tools to get the maximum performance for the
particular design you are working on: a good tool will work well for the
general case, and must also allow you to take care of the special
trade~offs in a particular project. For example, "C" is nice, but you
will never manage to do completely without assembly language for a
real—-time project.

The particuvlar facilities we added to the available toels were
as follows:

4.2 1 C compiler and linker

On UNIX, the "cc" command automatically calls the separate
linker "1d" to put object modules together into an executable file. Code
and data segmentation is & combined feature of these two utilities

i. B85 data segment: the original "C" language had no clear way to
say which module actually set up the data storage for a static
variable. Most "C" compilers now say that whichever module gives
it an initial wvalue sets up the storage. However, if no module
gives it an initial value, the linker sets it up automatically in
the "BSS" segment, which is SEPARATE from the initialized data

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 103

segment.

On most systems (other than UNIX), having uninstantiated
data items is an error. For our application, it is fatal -~ we
have to tell the linker the starting address and total length of
data to match the RAM addresses in our product board, and the BSS
data messes this up.

For our own code, we initialize all data. Our problem is
the existence of BSES data items in the vendor‘s run—-time routines,
for which we have no sources.

p3

ata tables in PROM: There was no way to put data tables into the
text segment with the vendor’s "C" compiler. (This may be added to
the "C" standard in the future.) We got an unsupported copy of the
M. I.T. M&6BOOC assembler from the vendor, and used a combination of
"sed" editing macros on the assembly—-language output from the ¢
compiler %o force the entire contents of selected source modules
into the text segment.

3. Floating-point constants and string constants in PROM: For
historical reasons, most "C" compilers do NOT put constants in the
text segment, but in the data segment. This was the source of
several bugs in our product code.

We separated all constants into PROM-only modules. After
repeated support problems with every major release of UNIX from
our vendor, our vendor ended up giving us the sources for the math
and I/0 libraries so we could make the changes ourselves. Faor
others, we either used the UNIX (R) debugger to dis—assemble the
code and find the offending data references, or reverse-~-engineered
the routines from the user documentation.

4. The vendor’s "C" did not paess all parameters as full~word values,
as the “C" standard states: The exception case is the return
value of a functian. Since (for efficiency) we declared almost
all values to be 146 bits ("short"), we had to re-declare all these
functions so that our code did not fail because of trash in
the high 16 bits of the return wvalue.

S, Pointer arithmetic: Our vendor’s “C" always did 32~bit operations.
and did not convert divisions by powers of 2 into shifts, when
taking the difference between two pointers. We re-~wrote all
the routines affected to wupdate a parallel integer variable in
parallel with the updates to the two pointers, instead of taking
the difference between the two pointers at the end of the loop

b. Formated I/0 routines ~- type-dependence and portability: The
M. I.T. and Derkeley "C" compilers assume that all format
control characters refer to "int"s, and the vresult is that you
cannot do a formated read ("scant") into a short integer on

Pencept, Incoerporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 104

these compilers -~ you get a pointer addressing error
4. 2.2 Gystem utilities - getting arocund the hiccups
Since our code was so large, we Tan into several problems

with system uvtilities which we were able to overcome.

i. "1d" and "ar" could not handle extremely large libraries:

We have over 700 object modules in our code. since like
most well-written "C" programs, there are a relatively large
number of smaller modules. We broke a8ll our code somewhat
arbitrarily dinto 15 separate libraries:. ran "tsort' on them by
hand instead of with the switch to "ar", and put the libraries
multiple times on the command line to "1d"

R

The vendor did not provide documentation on how to write a
device driver:

This may be common knowledge among UNIX
systems programmers, but there were not many of those around at
the time. This was especially annoying to us. since (by chance)

every one of us had experience writing terminal and disk device
drivers for much more awkward systems than UNIX. The only hang=-up
was the total lack of documentation. {Note: the vendor did supply
all the necessary header files under license, and now offers a
device—-driver course.)

We did pur own search and hired an overly-expensive UNIX
tonsultant for one day gJust to show us what the integration
procedure was.

4. 2.3 Hardware debugging support
No hardware micro-processor vender, to our knowledge, sells
an efficient multi-user software development system integrated with a
tompatible in~circuit-emulator (ICE). We have had good success with our
ICE, and the set of absclutely-required support tools from ocur vendor.
The most necessary, of course, is some way to transfer executable code
to the ICE and to a PROM blaster.
However, there are several things we would have appreciated if
there were a vendor who provided more integrated support:

1. Compatible assemblers:

The assembler syntax on our UNIX (R) system and any ICE

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 105

we found use different mnemonics, and usuvally radically different
instruction syntax. (In fact, on our UNIX system, the "adb"
debugger wuses incompatible gyntax with the assembler!) This
continuves to be a source of some confusion and annoyance.

P

Obgyect module and debugger support:

There is no way we can get the symbol values from
the UNIX (R} object and load modules over to the debugger for our
I1CE. With such a large program, debugging in absolute assembly-
language is excruciatingly inconvenient

Part of the problem is that not even Motorola has
standardized these facilities for the MO6BOOOD.

3. UNIX terminal I/0 is very slow:

Our tablets generate 700 characters a second each
over serial lines. We estimate the terminal driver on our system
can handle no more than about 250 characters per second aggregate
data rate on all the terminals on the system before the
system crashes or starts dropping characters. (This is slow
enough that the function keys on a VT-100 terminal. for example,
cannot be used at 9400 baud.) There were tweo places where this
problem was much more than just an inconvenience, and we had to do
some UNIX engineering.

We designed and installed our own serial interfaces for
the tablets, for which we wrote our own driver. In order to get
adegquate throughput to our digitizers under UNIX (R), we used
"ioctl" calls rather than character reads and writes. (I10CTL
ctalls generally don‘t work across a networked +file-system since
they can be written wusing physically shared memory, not just
copyin/copyout trensfers

We have to transfer data from the system to our ICE over
the system console port, which runs faster. For transferring data
to the system from the ICE, we must run at a slow baud Tate (45
characters per second) or set very long delays after X-0OFF signals
{longer than 150 milliseconds) to keep the system from crashing
when its input buffers are flooded. This means an up~-load or
down—load takes at least 4D minutes

4. 2.4 Gystem vutilities that we wigsh we could have used, but couldn’t

There are also utilities for code development that we
found were much more difficult to use on our large body of code than on
a more normal—-sized development effart. The problems were mainly
logistical: it is too much work to set them up and to maintain them by
hand for large systems.

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 108

MAK

SCCS:

LINT:

Our code is in some 700 "C" source +files: which are
inter~dependent as you would expect. In addition, we decided to
pick up the definitions of all external data items via some 400

separate header files. We found that we tended to re-design many
of our data-structures in the course of development: we did not
want to have to edit an arbitrary number of references in a large
number of “C" source files Jjust because we modified one

“typedet" or changed the value of one "#define" symbol.

Finding and setting up all the interdependencies for
MAK would have been a laborious and error-prone task for us:
there would be a high likelyhood that we would be unable to keep
the interdependency list +that MAK wuses up to date. For large
projects, some avtomated tool for establishing the
interdependencies is a practical necessity

Similar to the problems with MAK, S5CCS works less well
with a system undergoing rapid evolution: the total number of SCCH
deltas produced by rapid development and modification to the
source code makes it impractical to use, unless you have a LOT of
file~space to burn. (We currently have some 500 Mbytes
of file—space on—line for a community of 16 users.)

SCCS seems to be targeted to projects that have already
reached considerable stability, where changes are relatively
localized within single source files

We have solved this practical problem for the time being
by:

+ Re-compiling ALL our sources frequently as a weekend batch
Job with Mat" to aveoid version skews. The process takes
about 26 hours.

+ We have a simple set of shell scripts to do check—~in/check-
out of single source files. This way two people do not
inadvertently edit the same file in conflict with each other.
This system is easy to bypass, and requires everybody’s co-
operation to work.

+ We release our code "internally" every couple of months by
blowing new PROMs for all the in-house users of our product
This way we get frequent feedback on user problems.

“Lint" has several deficiencies that make the people in
our development team reluctant to use it:

+ Spurious error messages on 1lé~bit operations:

Since we are very concerned with code size, and since
the &£8000 processor requires you to do out~of-line
subroutines for 32-bit multiplies and divides, we declare
almost all our wvalues to be "short" 16~bit items. We get

Pencept, Incorporated

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1885 Page 107

spurious warnings about loss of significance on any pointer
(32-bit) dereferencing for a 1lé4é-bit gquantity. We theorize
that this is a historical bug in "lint" +#rom when it was
developed for a lé-bit machine (the PDP-11).

+ Lint assumes that all spurces are presented to it at once:

Dur sources are too large to feed to "lint" in one
pass, We get many spurious warnings about differences in
parameter lists, returned values, and external data items

because the other information "lint" needs is in some file
what we left aut.

We theorize that either "C" needs support of external
modules like that of ADA (R) or Modula—-Z, or that "lint" and
"*mak" should be supplanted by & more powerful combined
utility that would avtomatically check for all inter—module
dependencies.

5. In summation

This paper relates our experiences using a multi-user UNIX
(R} system for the development of an extremely large body of code
for an embedded MAGBOOO micro-processor running out of 140Kbytes of PROM.

For our application, there was significant benefit from doing
our development on a large, multi-~user UNIX (R) system. Among UNIX (R)
vendors, there were aleo real differences in terms of usability and
system support for our application.

Combined with certain other tools, such as din-circuit-emviators
and the rvelated software, the system has made it possible for us to
produce a product of exceeding complexity in a short time, with few
bugs. We would rate our overall experience as favorable

We expect large, embedded micro-processor applications to become
increasingly common in the future. We would vecommend the
practical benefits of our experience %o any engineering group
contemplating a large progect of this type for the M&BO0O. We hope that
UNIX (R) developers in the industry will address the problems that we
have encountered.

Pencept, Incorporated

v

4

1
Latter Lattar Latter Lattar
6 H

b F I d
Lattar Latzar Latcar Lattar Lateer Lattar Lagtar Lattar
L ¢ P d R S

K L n
M\NXYT&'}"’“
&
4
Lattar Lattar Lattar Lattar Lactar Lattar flus Hyphen
u v L] X Y z {Minus} Parioa

Huabar Huabar Nuspbar Husbar Humbher Humbar Numbar Humbar Huabar Huaber
2 k]] § . ? 4

0 i
tatlar Lattaer Lacta, Letzar Lattar Lettar
L] < E

L~
[

ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 108

T — g 109 T 0D
D A g A g Y e o
ﬂ}tﬂw\jb@x/b/ﬁﬂ/dﬁq

NI N S
= A E xox Nes x FOW
N> Qo< o NOE e R T

LN 200 I3 b
/\xmwNOooO»th(
v < > QNTX

=3 VN ANUR TR S
@Y Oy Yy T =
XS)P Q- F >

