
ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 9 5

UNIX as an environment for non—UNIX software developmen t
A case histor y

Jean Renard Ward, Pencept, Inc .
39 Green Street Waltham, MA 02154

ABSTRACT :

Many of the back issues of SEN contain articles about softwar e
development environments and software tools .

	

UNIX has historically bee n
cited as an example of a good software development environment . For
many developers still struggling with the offspring of MS —DOS, RSX—1IM,
OS—370 and the like, UNIX still represents a dreamed —of state—of—the
art . Many of the more enhanced environments actually sit on top of UNI X
or a UNIX — like system, especially for graphics —based environments lik e
those offered by Sun Microsystems, Apollo, and Masscomp .

Pencept's business is real—time character recognition for hand —
"scribbled"

	

text .

	

Our

	

products

	

run in a completely non—UNI X
environment, but all of our development is done on UNIX . This presente d
a unique opportunity to find out how good "standard" UNIX is fo r
developing non—UNIX products .

Based on our experience, we have come to the conclusion tha t
UNIX is a good software development environment for the kinds o f
applications that are traditionally run on UNIX, if UNIX is the targe t
environment . UNIX (and most of its derivatives) do NOT address many o f
the more general needs of non—UNIX software engineering projects .

UNIX is a powerful system, partly because it comes with a larg e
assortment of software development tools . Some of the deficiencies an d
problems we had to resolve were :

+ Certain UNIX and vendor software had to be modified, because it di d
not have all the functions we absolutely needed .

+ Several UNIX utilities did poorly for this big a project .
+ Some UNIX features were poorly designed for non--UNIX development .
+ Some tools for our particular project are not part of UNIX .

Our particular vendor is Masscomp, which competes in the high —
performance graphics workstation market with companies such as Apollo ,
Sun Microsystems, and Digital Equipment Corporation .

	

We believe tha t
our experience

	

is generally applicable to UNIX systems, regardless o f
vendor, and across a variety of UNIX versions

	

(System III,

	

System V ,
Berkeley 4 .2, etc . )

Pencept, Incorporated

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1012483.1012494&domain=pdf&date_stamp=1985-07-01


ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 98

1 .

	

What we were developing : the PENPAD (R )

Pencept has developed and now markets an interactiv e
character-recognition device,

	

the Penpad (R), for reading hand-printe d
characters .

	

It performs the functions of :

1. data input (a keyboard) .
2. graphical input (digitizer or "mouse") .
3. function selection/control (function keys or menus) .
4. pointing (touch-screen, or a mouse) .

The design of the product is the largest micro-processor base d
commercial product running multi-tasking code entirely out of PROM, wit h
all code written in a high-level programming language, that any of u s
have encountered .

	

A total of four bugs in the product code have bee n
reported in the first 18 months from the field .

1 . 1 DCR (R) - Dynamic character recognitio n

The dynamic character recognition technology (R)

	

is quit e
complex,

	

and has been under constant development since January of 1977 .
In itself, this technology constitutes a radical breakthrough in its ow n
field of character recognition, since no competing technology exist s
which can read untrained, unrestricted hand-printed characters with eve n
a modest level of accuracy, much less in real-time, interactively .

The major portion of the recognition algorithms are written i n
an

	

applicative

	

language

	

of

	

our own design,

	

which we execut e
interpretively in the product .

	

The rational for this is strictly cod e
size : we achieve a 10 :1 compression of code size for that portion o f
our algorithms over programming in "C" (or any other compiled language )
for the 68000 instruction set .

Figure 1 shows some of the hand-printing the PENPAD reads :
compare this with Figure 21 the ANSI standard for machine-readabl e
hand-print . The major differences between our DCR (R) technology an d
static character recognition, such as OCR, are :

1 .

	

We read "unconstrained" hand-print : if it's not too sloppy for a
human to read it out of context, we need to recognize it, too .

(R) UNIX is a Registered Trademark of A .T .T .
(R) ADA is a Registered Trademark of the Department of Defence .
(R) DCR, PENPAD, and Dynamic Character Recognition are Registere d

Trademarks of Pencept, Incorporated .

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 9 7

Our device follows the motion of the pen while writing,

	

rathe r
than scanning a static image .

3 .

	

The results are delivered interactively in real-time .

1 .2 Hardware - M68000-based desig n

The electronics use a 10MHz M68000 micro-processor wit h
196Kbytes

	

of PROM and 64Kbytes of RAM . The RAM memory size is partl y
due to the need for a real-time heap management package to

	

hol d
variable-sized descriptors for the menuing and block-mode functions .

Why would anyone need a large UNIX system for micro-processo r
development ?

Unlike most applications using dedicated micro-processors ,
our code is very large .

	

Over two-thirds of the code in the product i s
strictly for recognizing hand-printed characters .

	

We also make heav y
use

	

of

	

multi-taking to control

	

several asynchronous activities :
recognition, buffering and

	

image-processing on the digitizer

	

input ,
full---duplex host communications on two ports at 19 .2Kbaud, and graphic s
operations .

	

This presented us with several more orders of magnitude o f
complexity

	

in debugging our code than with, say, a graphics termina l
emulator using a 8- or 16-bit microprocessor running one process .

Some people say the cost of computing "iron"

	

is dropping .

	

W e
think

	

it's more accurate to say that for a given application cost, th e
hardware is increasing in power. However, there is a lag in th e
development tools for micro-processor projects : they were all develope d
when an embedded micro-processor typically had less than 8Kbytes o f
memory,

	

and everything was written by hand in assembly language .

	

T o
develop the software for

	

this

	

next

	

generation

	

of

	

embedde d
applications, the engineers on the project now need all the developmen t
tools ever found on large system projects, not just the low-level tool s
used on small hardware projects .

Given the complexity of the character recognition code, and

	

th e
difficulties debugging anything of that size on most

	

in-circuit -
emulators, we wrote all our code to run :

1 .

	

as co-operating tasks running under UNIX, with modules added

	

t o
make

	

it a suitable test and development system for characte r
recognition development .

	

This is where we

	

do

	

all

	

ou r
recognition debugging, and most of our system development .

G .

	

identical co-operating tasks in a PROMmed version of the code ,
compiled from the same sources .

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 9 8

The inter—task communications use UNIX's "named pipes" . All th e
data control information is passed with no n — blocking writes and blockin g
reads .

	

This approach solves all our task—synchronization problems .

For development, we add a large body of code (over 10,000 lines )
conditioned on "#ifdef" statements .

	

The bulk of it is conditionally
compiled

	

"assertion

	

checks"

	

that

	

check

	

for

	

bad values

	

i n
internal

	

variables (similar to array—bounds checks that are generate d
by other compilers)(*) .

	

The second part is a complete set of debuggin g
and development tools so we can develop our recognition algorithms .

	

Th e
benefits are :

1. Since all the code is the same, from the same sources and the sam e
compiler, if it runs on our UNIX system we are extremely confiden t
it will run in the product .

2.

	

Likewise, if there is a bug

	

on the product,

	

we can alway s
reproduce it in the development system on UNIX .

3.

	

We have all the tools for high—level language debugging, not jus t
an absolute—assembler debugger .

4.

	

Since we use named pipes for inter — task communication, we can ge t
copies of all task messages into files for examination .

2.1 What's important in picking a UNIX (R) for a development system ?

UNIX and "C" are touted as

	

guaranteeing

	

"portable "
software . This is true, but only relatively so . Moving software fro m
one vendor's UNIX to another will probably be much easier than movin g
from Data General's ADS to DEC's VAX/VMS, but not all UNIX systems ar e
the same .

The reasons for picking a 68000—based UNIX (R) system, and fo r
picking one vendor over all other vendors were :

	

1 .

	

We needed a large —address machine for our development :

	

th e
development

	

version of the recognition code is over 700 Kbytes ,
and must run in real time . Real —time performance meant w e
could not run with disk overlays (such as on a PDP—11), and th e
fact that "C" could not deal with segmentation of our large (ove r

(*) (We have found that automatically—generated array—bounds and pointe r
checks from a debugging "C" compiler were too simple—minded to catc h
many of our errors, and that the "assert" option in our vendor's "C "
compiler could not do a "graceful" recovery after an error .

	

Ou r
ru n — time checks are all written specifically for the code segmen t
they are in .

	

There is a limit to how much an automatic tool ca n
substitute for human judgement . )

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 9 9

64Kbytes) recognition tables meant we could not run easily on a
segmented machine (such as an 8086) .

2. We needed to support a number of co-operating software engineer s
who worked together on the code : most microprocessor developmen t
systems support one user .

3.

	

We needed high real-time performance :

	

we typically run eigh t
users on our UNIX (R) system at once,

	

each collecting an d
processing data on disk from tablets that generate 700 interrupt s
a second over serial-line interfaces. Writing speeds can b e
about 0 .5 seconds per character for hand-printing, and it takes u s
0 .2 seconds CPU time on the average to process and recognize a
character .

4. Our application is sufficiently complex that we needed the ful l
set of general software development tools available on UNI X
(R) systems, rather than the limited set available on mos t
microprocessor development systems .

5. We could not afford the risk of cross-compilation : A VAX system,
for example, would have been viable for system development, excep t
that the bugs from the use of two separate compilers

	

and

	

run-
time

	

environments

	

(such

	

as VAX native, and 68000 cross -
compilation) had almost made us unable to meet

	

our

	

produc t
commitments once before .

6.

	

ROMable code : most "C" compilers do NOT produce ROMable code .

	

Th e
common problems include :

+ Run--time routines (typically not all are written in "C" )
are not sharable in PROM because of some static data buffe r
that cannot be shared .

+ "C" code from the compiler is re-entrant, but not sharable i n
PROM (separate code and data segments) .

+ The initial values of variables are set by pre-loading th e
data segment, which does not exist when you power up a PROM -
based system .

+ The actual "C" code is not ROMable because constants are pu t
in the data segment, not the text segment .

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 0

3 .

	

Our development environmen t

Our particular project differs both from more ordinar y
micro—processor projects and from other large software systems projects ,
and also shares most of the requirements of both of these . One way o f
looking at it is that we have all the best headaches from bot h
environments .

3. 1 UNIX

The product code is some 46000 lines (10400 statements) o f
"C" code, not including some 22000 lines (5300 statements) o f
recognition code written in a proprietary applicative language w e
execute interpretively in the product (the interpreter is written i n
"C") . Other parts of our project that are not part of the run-time code ,
such as the compiler for the applicative language, add about 30000 mor e
lines of code to our total .

The code is much too large and complex to ever develop and debu g
in assembly language -- at the same time, the product requires us t o
minimize memory size (which is a large part of our product cost),

	

an d
maximize execution speed .

The software in the product is designed as a set of five co —
operating tasks for managing various activities asynchronously . Fo r
example, the tablet we use interrupts continuously 100 times per secon d
with seven bytes each time over a serial line, and the terminal mus t
support communications simultaneously at 19 .2 (baud to and from th e
host . The recognition activity must occur in parallel with both o f
these, since the recognition is always buffered behind the incomin g
tablet data, and the communications activity is asynchronous .

Due to the sheer size of the code going into an embedde d
environment where ALL errors are fatal -- you cannot re—boot -- we hav e
had to use every conceivable method to find and prevent bugs . We chec k
for proper range on all the arguments at the start of every routine, an d
for proper range on the return value at the end .

	

We also check fo r
proper values between all major sections of the code in—between . Ou r
rule of thumb has been "when in doubt, put more debugging checks in" ,
since they are conditioned out of the product code, and give us n o
performance penalty where it would hurt .

3 .2 Non—UNIX

The UNIX kernel is not really suitable for embedde d
microprocessor systems,

	

since it was never designed with this in mind .
Instead, we purchased a "C" kernel from UMI Software,

	

Inc .,

	

in sourc e
form,

	

which we ported from the original Whitesmith's "C" to mor e
standard "C" .

	

We chose this one kernel over other vendor offering s

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 1

because

	

it offered by far the most compatibility with UNIX features .
This kernel gave us the following facilities :

1.

	

Asynchronous multi — tasking in PROM. In our case,

	

the number o f
tasks is fixed, which simplified the use of the kernel .

2. Inter — task communication using read/write queues . This i s
functionally the same as using named pipes in UNIX, which let u s
use identical source code in the development version of ou r
code .

3.

	

ROMable run— time support for heap management .

	

We use a

	

larg e
heap to hold varying — length run—time descriptors for th e
graphics, forms, and block—mode features of our terminal product .
The heap is shared among the control and processing tasks in ou r
code .

4. ROMable versions of "C" library functions . Many UNIX librar y
functions either crash on an error and give you a core dump, or
pull in a large part of the I/O library for the error messages .

4 .

	

Some problems with UNIX and their solution s

Our particular design is dictated by the requirements fo r
the character —recognition technology, which is unique, and quit e
complex . However, many of the practical problems we encountered are o f
interest

	

to

	

anyone

	

who is now starting to do development wit h
the M68000 microprocessor .

4 .1 Compiler technology -- what our vendor's C compiler does wel l

Since our code is written entirely in "C",

	

and must mee t
extreme real—time requirements, we are very dependent on the technolog y
of the "C" compiler we use .

	

Our vendor uses a compiler that traces it' s
history to the M .I .T . "C" compiler . There are several optimizations we
found in this "C" compiler that were of great benefit, compared to othe r
compilers available on competitive systems :

	

1 .

	

16—bit "short" operations :

	

The M68000 does not support 32—bi t
multiply and divide operations in its instruction set . Most "C "
compilers evaluate all expressions in the "natural word length" o f
the machine, regardless of whether that is the type of the resul t
that is needed . In this case it would be 32—bits,

	

and

	

the

	

cod e
speed would suffer needlessly .

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 2

2. Additional "register" variables : The original "C" compiler for
the PDP — 11 could only use the three remaining registers on th e
PDP--11 architecture : this restrictions has been perpetuated

	

i n
many

	

"portable C" compilers,

	

including many of the cross--
compilers .

3. Efficient run—time support for 32—bit integer operations :

	

w e
re — designed the image-processing part of our code which cleans u p
the low—resolution image from our tablets to use no

	

floating
point operations .

	

Using 32—bit integers instead, and only whe n
needed to protect against overflow,

	

saved

	

us

	

considerabl e
execution time and code space .

4. Efficient pointer arithmetic in pointer expressions :

	

subscrip t
array

	

references

	

in

	

"C" are usually un—optimized,

	

unlik e
optimizing compilers for FORTRAN —77 and RATFOR. Our vendor' s
compiler produced shorter code than many other compilers for th e
pointer expressions we used instead .

5. ROMable run— time

	

routines

	

for

	

mathematical

	

and

	

strin g
operations :

	

our vendor had written some of these in assembly —
language to get greater code efficiency .

4.2 What didn't come with UNIX (R) or from our vendor, but we could d o
ourselves

In any large software engineering project, there is alway s
some need to adapt the tools to get the maximum performance for th e
particular design you are working on : a good tool will work well for th e
general case,

	

and must also allow you to take care of the specia l
trade—offs in a particular project . For example, "C" is nice, but yo u
will never manage to do completely without assembly language for a
real—time project .

The particular facilities we added to the available tools wer e
as follows :

4 .2 . 1 C compiler and linker

On UNIX, the "cc" command automatically calls the separat e
linker "Id" to put object modules together into an executable file . Cod e
and data segmentation is a combined feature of these two utilities .

1 . 1iS5 data segment : the original "C" language had no clear way t o
say which module actually set up the data storage for a stati c
variable . Most "C" compilers now say that whichever module give s
it an initial value sets up the storage . However, if no modul e
gives it an initial value, the linker sets it up automatically

	

i n
the "BSS" segment,

	

which is SEPARATE from the initialized dat a

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 3

segment .

On most systems (other than UNIX),

	

having uninstantiate d
data items is an error . For our application, it is fatal -- w e
have to tell the linker the starting address and total length o f
data to match the RAM addresses in our product board, and the AS S
data messes this up .

For our own code, we initialize all data .

	

Our problem i s
the existence of BSS data items in the vendor's run—time routines ,
for which we have no sources .

2 . Data tables in PROM : There was no way to put data tables into th e
text segment with the vendor's "C" compiler . (This may be added t o
the "C" standard in the future . ) We got an unsupported copy of th e
M.I .T . M68000 assembler from the vendor, and used a combination o f
"sed" editing macros on the assembly—language output from the "C "
compiler to force the entire contents of selected source module s
into the text segment .

3. Floating—point constants and string constants in PROM : For
historical reasons, most "C" compilers do NOT put constants in th e
text segment, but in the data segment . This was the source o f
several bugs in our product code .

We separated all constants into PROM — only modules . After
repeated support problems with every major release of UNIX fro m
our vendor, our vendor ended up giving us the sources for the mat h
and I/O libraries so we could make the changes ourselves . Fo r
others, we either used the UNIX (R) debugger to dis—assemble th e
code and find the offending data references, or reverse—engineere d
the routines from the user documentation .

4.

	

The vendor's "C" did not pass all parameters as full—word values ,
as the "C" standard states :

	

The exception case is the retur n
value of a function . Since (for efficiency) we declared almos t
all values to be 16 bits ("short"), we had to re—declare all thes e
functions so that our code did not fail because of trash i n
the high 16 bits of the return value .

5. Pointer arithmetic : Our vendor's "C" always did 32—bit operations ,
and did not convert divisions by powers of 2 into shifts, whe n
taking the difference between two painters . We re—wrote al l
the routines affected to update a parallel integer variable i n
parallel with the updates to the two pointers, instead of takin g
the difference between the two pointers at the end of the loop .

6.

	

Formated I/O routines -- type—dependence and portability :

	

Th e
M. I . T . and Berkeley "C" compilers assume that all forma t
control characters refer to "int"s, and the result is that yo u
cannot do a formated read ("scanf") into a short integer o n

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 4

these compilers -- you get a pointer addressing error .

4 .2 .2 System utilities — getting around the hiccup s

Since our code was so large, we ran into several

	

problem s

with system utilities which we were able to overcome .

1.

	

"Id" and "ar" could not handle extremely large libraries :

	

We have over 700 object modules in our code,

	

since lik e
most well —written "C" programs,

	

there are a relatively larg e

number of smaller modules .

	

We broke all our code somewha t

arbitrarily into 15 separate libraries, ran "tsort" on them b y

hand instead of with the switch to "ar",

	

and put the librarie s

multiple times on the command line to "ld" .

2.

	

The vendor did not provide documentation on how to

	

write

	

a

device driver :

This

	

may

	

be

	

common

	

knowledge

	

among

	

UNI X

systems programmers,

	

but there were not many of those around a t

the time . This was especially annoying to us, since (by chance )

every one of us had experience writing terminal and disk devic e

drivers for much more awkward systems than UNIX . The only hang —u p

was the total lack of documentation .

	

(Note : the vendor did suppl y

all the necessary header files under license,

	

and now offers a

device—driver course . )

We did our own search and hired an overly—expensive UNI X

consultant for one day just to show us what the integratio n

procedure was .

4.2 .3 Hardware debugging suppor t

No hardware micr o —processor vender, to our knowledge, sell s

an efficient multi—user software development system integrated with a

compatible in—circuit—emulator (ICE) . We have had good success with ou r

ICE, and the set of absolutely—required support tools from our vendor .

The most necessary, of course, is some way to transfer executable cod e
to the ICE and to a PROM blaster .

However, there are several things we would have appreciated i f
there were a vendor who provided more integrated support :

	

1 .

	

Compatible assemblers :

The assembler syntax on our UNIX (R) system and any ICE

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 5

we found use different mnemonics, and usually radically differen t
instruction syntax . (In fact, on our UNIX system, the "adb "
debugger uses incompatible syntax with the assembler!) Thi s
continues to be a source of some confusion and annoyance .

2.

	

Object module and debugger support :

There is no way we can get

	

the

	

symbol

	

values

	

fro m
the UNIX (R) object and load modules over to the debugger for ou r
ICE .

	

With such a large program, debugging in absolute assembly —
language is excruciatingly inconvenient .

Part of the problem is that not even Motorola ha s
standardized these facilities for the M68000 .

3.

	

UNIX terminal I/O is very slow :

Our tablets generate 700 characters

	

a

	

second

	

eac h
over serial lines .

	

We estimate the terminal driver on our syste m
can handle no more than about 250 characters per second aggregat e
data

	

rate on

	

all

	

the

	

terminals on the system before th e
system crashes or starts dropping characters, (This is slo w
enough that the function keys on a VT—100 terminal, for example ,
cannot be used at 9600 baud .) There were two places where thi s
problem was much more than just an inconvenience, and we had to d o
some UNIX engineering .

We designed and installed our own serial interfaces fo r
the tablets,

	

for which we wrote our own driver .

	

In order to ge t
adequate throughput to our digitizers under UNIX

	

(R),

	

we use d
"ioctl" calls rather than character reads and writes .

	

(IOCTL
calls generally don't work across a networked file—system, sinc e
they can be written using physically shared memory, not jus t
copy in/copyout transfers .

We have to transfer data from the system to our ICE ove r
the system console port, which runs faster . For transferring dat a
to the system from the ICE, we must run at a slow baud rate (4 5
characters per second) or set very long delays after X —OFF signal s
(longer than 150 milliseconds} to keep the system from crashin g
when its input buffers are flooded . This means an up—load o r
down—load takes at least 45 minutes .

4.2 .4 System utilities that we wish we could have used, but couldn' t

There are also utilities for code development that w e
found were much more difficult to use on our large body of code than o n
a more normal—sized development effort .

	

The problems were mainl y
logistical :

	

it is too much work to set them up and to maintain them b y
hand for large systems .

Pencept .. Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 6

MAR: Our code is in some 700 "C" source files, which ar e

inter—dependent as you would expect . In addition, we decided t o

pick up the definitions of all external data items via some 400
separate

	

header files . We found that we tended to re—design man y
of our data — structures in the course of development :

	

we did

	

no t

want to have to edit an arbitrary number of references in a larg e
number of "C" source files just because

	

we

	

modified

	

on e
"typedef" or changed the value of one "*define" symbol .

Finding and setting up all the interdependencies fo r
MAK would have been a laborious and error—prone task for us :
there would be a high likelyhood that we would be unable to kee p
the interdependency list that MAK uses up to date .

	

For larg e
projects,

	

some

	

automated

	

tool

	

for

	

establishing

	

th e
interdependencies is a practical necessity .

SCCS : Similar to the problems with MAK, SCCS works less wel l

with a system undergoing rapid evolution : the total number of SCC S
deltas produced by rapid development and modification to th e

source code makes it impractical to use, unless you have a LOT o f

file—space to burn .

	

(We currently have

	

some

	

500

	

Mbyte s
of file—space on—line for a community of 16 users . )

SCCS seems to be targeted to projects that have alread y
reached considerable stability, where changes are relativel y
localized within single source files .

We have solved this practical problem for the time bein g

+ Re—compiling ALL our sources frequently as a weekend batc h

job with "at" to avoid version skews . The process take s

about 26 hours .
+ We have a simple set of shell scripts to do check—in/check -

out of single source files. This way two people do no t

inadvertently edit the same file in conflict with each other .

This system is easy to bypass, and requires everybody's co —

operation to work .
+ We release our code "internally" every couple of months b y

blowing new PROMs for all the in—house users of our product .

This way we get frequent feedback on user problems .

LINT :

		

"Lint" has several deficiencies that make the people i n
our development team reluctant to use it :

+ Spurious error messages on 16— bit operations :

Since we are very concerned with code size, and sinc e
the

	

68000

	

processor

	

requires

	

you to do out—of—lin e

subroutines for 32—bit multiplies and divides,

	

we declar e

almost all our values to be "short" 16—bit items .

	

We ge t

by :

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 107

spurious warnings about loss of significance on any pointe r
(32-bit) dereferencing for a 16-bit quantity . We theoriz e
that this is a historical bug in "lint" from when it wa s
developed for a 16-bit machine (the PDP -ii) .

+ Lint assumes that all sources are presented to it at once :

Our sources are too large to feed to "lint" in on e
pass .

	

We get many spurious warnings about differences i n
parameter lists, returned values, and external data item s
because the other information "lint" needs is in some fil e
what we left out .

We theorize that either "C" needs support of externa l
modules like that of ADA (R) or Modula--2, or that "lint" and
"mak" should be supplanted by a more powerful combine d
utility that would automatically check for all inter-modul e
dependencies .

5 .

	

In summation .

This paper relates our experiences using a multi-user UNI X
(R) system for the development of an extremely large body of cod e
for an embedded M68000 micro-processor running out of 16ORbytes of PROM .

For our application, there was significant benefit from doin g
our development on a large, multi-user UNIX (R) system . Among UNIX (R )
vendors, there were also real differences in terms of usability an d
system support for our application .

Combined with certain other tools, such as in-circuit-emulator s
and the related software,

	

the system has made it possible for us t o
produce a product of exceeding complexity in a short time,

	

with fe w
bugs .

	

We would rate our overall experience as favorable .

We expect large, embedded micro-processor applications to becom e
increasingly

	

common

	

in

	

the

	

future .

	

We

	

would recommend th e
practical benefits of our experience to

	

any

	

engineering

	

grou p
contemplating a large project of this type for the M66000 . We hope tha t
UNIX (R) developers in the industry will address the problems that w e
have encountered.

Pencept, Incorporated



ACM SIGSOFT SOFTWARE ENGINEERING NOTES Vol 10 No 3 Jul 1985 Page 10 8

Hu.b .r

	

Nu .b .r

	

Nu.b .r

	

Nu.b .r

	

Nu .b . r
1

	

2

	

3

	

v

	

5
Nu .bor

	

Nu .b .r

	

Hu .bor

	

Nu .b . r
7

	

d

	

INu .b .r

r

Latter L .tt .r

	

L .tt .r

	

Latte r
3

	

E

	

f
L .tt .r

	

lette r
N

	

I
L .tt .r L .tt .rLOLL . .Latte r

Latta',

	

L .tt . r
t

	

L
L .tt .r L .tt .r

	

L .tt .r Lettar

	

Lac . ,
P

	

a
L .tt .r

	

Lett . ',
R

	

S

	VWXYz +

	

/

.attar

	

Latt .r

	

Letter

	

Lett .r

	

Letter

	

Letter

	

Plui

	

Hyphen
y

	

y

	

y

	

%

	

Y

	

Z

	

(Minus) PRNiod

	

Caeca


