skip to main content
10.1145/1012551.1012564acmconferencesArticle/Chapter ViewAbstractPublication PagesapgvConference Proceedingsconference-collections
Article

Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects

Published:07 August 2004Publication History

ABSTRACT

We introduce the concept of vision-realistic rendering -- the computer generation of synthetic images that incorporate the characteristics of a particular individual's entire optical system. Specifically, this paper develops a method for simulating the scanned foveal image from wavefront data of actual human subjects, and demonstrates those methods on sample images.First, a subject's optical system is measured by a Shack-Hartmann wavefront aberrometry device. This device outputs a measured wavefront which is sampled to calculate an object space point spread function (OSPSF). The OSPSF is then used to blur input images. This blurring is accomplished by creating a set of depth images, convolving them with the OSPSF, and finally compositing to form a vision-realistic rendered image.Applications of vision-realistic rendering in computer graphics as well as in optometry and ophthalmology are discussed.

References

  1. ADELSON, E., AND BERGEN, J. 1991. Computational Models of Visual Processing. The MIT Press, Cambridge, Mass.Google ScholarGoogle Scholar
  2. BARSKY, B. A., BARGTEIL, A. W., GARCIA, D. D., AND KLEIN, S. A. 2002. Introducing vision-realistic rendering. In Eurographics 2002 Poster Proceedings, Eurographics, 1--7. Held in Pisa, Italy 26--28 June 2002.Google ScholarGoogle Scholar
  3. BARSKY, B. A., HORN, D. R., KLEIN, S. A., PANG, J. A., AND YU, M. 2003. Camera models and optical systems used in computer graphics: Part I, object based techniques. In Proceedings of the 2003 International Conference on Computational Science and its Applications (ICCSA'03), Montreal, Second International Workshop on Computer Graphics and Geometric Modeling (CGGM'2003), Springer-Verlag Lecture Notes in Computer Science (LNCS), Berlin/Heidelberg, 246--255. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. BARSKY, B. A., HORN, D. R., KLEIN, S. A., PANG, J. A., AND YU, M. 2003. Camera models and optical systems used in computer graphics: Part II, image based techniques. In Proceedings of the 2003 International Conference on Computational Science and its Applications (ICCSA'03), Montreal, Second International Workshop on Computer Graphics and Geometric Modeling (CGGM'2003), Springer-Verlag Lecture Notes in Computer Science (LNCS), Berlin/Heidelberg, 256--265. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. BARSKY, B. A., TOBIAS, M. J., HORN, D. R., AND CHU, D. P. 2003. Investigating occlusion and discretization problems in image space blurring techniques. In First International Conference on Vision, Video, and Graphics, Bath, Peter Hall and Philip Willis (editors), 97--102.Google ScholarGoogle Scholar
  6. BENNETT, A. G., AND RABBETTS, R. B. 1998. Clinical Visual Optics. Butterworth-Heinemann Ltd.Google ScholarGoogle Scholar
  7. BOLIN, M. R., AND MEYER, G. W. 1998. A perceptually based adaptive sampling algorithm. In ACM SIGGRAPH 1998 Conference Proceedings, ACM, Orlando, SIGGRAPH, 299--309. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. CAMP, J. J., MAGUIRE, L. J., CAMERON, B. M., AND ROBB, R. A. 1990. A computer model for the evaluation of the effect of corneal topography on optical performance. Am. J. Ophthalmol. 109, 379--386.Google ScholarGoogle ScholarCross RefCross Ref
  9. CAMP, J. J., MAGUIRE, L. J., AND ROBB, R. A. 1990. An efficient ray tracing algorithm for modeling visual performance from corneal topography. In First Conference on Visualization in Biomedical Computing, IEEE Computer Society Press, The Institute of Electrical and Electronics Engineers, Inc., 279--285.Google ScholarGoogle ScholarCross RefCross Ref
  10. CHIU, K., HERF, M., SHIRLEY, P., SWAMY, S., WANG, C., AND ZIMMERMAN, K. 1993. Spatially non-uniform scaling functions for high contrast images. In Proceedings of Graphics Interface '93, Canadian Information Processing Society, 245--254.Google ScholarGoogle Scholar
  11. COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray tracing. In ACM SIGGRAPH 1984 Conference Proceedings, ACM, Minneapolis, SIGGRAPH, 137--145. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. DIPPE, M. A. Z., AND WOLD, E. H. 1985. Antialiasing through stochastic sampling. In ACM SIGGRAPH 1985 Conference Proceedings, ACM, San Francisco, SIGGRAPH, 69--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. FERWERDA, J. A., PATTANAIK, S. N., SHIRLEY, P., AND GREENBERG, D. P. 1996. A model of visual adaptation for realistic image synthesis. In ACM SIGGRAPH 1996 Conference Proceedings, ACM, New Orleans, SIGGRAPH, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. FINE, E. M., AND RUBIN, G. S. 1999. Effects of cataract and scotoma on visual acuity: A simulation study. Optometry and Vision Science 76, 7 (July), 468--473.Google ScholarGoogle ScholarCross RefCross Ref
  15. FINE, E. M., AND RUBIN, G. S. 1999. The effects of simulated cataract on reading with normal vision and simulated central scotoma. Vision Research 39, 25, 4274--4285.Google ScholarGoogle ScholarCross RefCross Ref
  16. GARCIA, D. D., BARSKY, B. A., AND KLEIN, S. A. 1998. CWhatUC: A visual acuity simulator. In Proceedings of Ophthalmic Technologies VIII, SPIE International Symposium on Biomedical Optics, SPIE, 290--298.Google ScholarGoogle ScholarCross RefCross Ref
  17. GARCIA, D. D., BARSKY, B. A., AND KLEIN, S. A. 1998. The OPTICAL project at UC Berkeley: Simulating visual acuity. Medicine Meets Virtual Reality: 6 (Art, Science, Technology: Healthcare (r)Evolution) (January 28--31).Google ScholarGoogle Scholar
  18. GARCIA, D. D. 2000. CWhatUC: Software Tools for Predicting, Visualizing and Simulating Corneal Visual Acuity. PhD thesis, Computer Science Division, University of California, Berkeley, California. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. 1996. The lumigraph. In ACM SIGGRAPH 1996 Conference Proceedings, ACM, SIGGRAPH, 43--54. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. GREIVENKAMP, J. E., SCHWEIGERLING, J., MILLER, J. M., AND MELLINGER, M. D. 1995. Visual acuity modeling using optical raytracing of schematic eyes. Am. J. Ophthalmol. 120, 227--240.Google ScholarGoogle ScholarCross RefCross Ref
  21. HE, J. C., BURNS, S. A., AND MARCOS, S. 2000. Monochromatic aberrations in the accommodated human eye. Vision Research 40, 41--48.Google ScholarGoogle ScholarCross RefCross Ref
  22. HEIDRICH, W., SLUSALLEK, P., AND SEIDEL, H.-P. 1997. An image-based model for realistic lens systems in interactive computer graphics. In Graphics Interface, Canadian Information Processing Society, 68--75. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. ISAKSEN, A., MCMILLAN, L., AND GORTLER, S. J. 2000. Dynamically reparameterized light fields. In Proceedings of ACM SIGGRAPH 2000, ACM, New Orleans, SIGGRAPH, 297--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. KEATING, M. P. 2002. Geometric, Physical, and Visual Optics, second edition. Butterworth-Heinemann Ltd.Google ScholarGoogle Scholar
  25. KLEIN, S. A. 1998. Optimal corneal ablation for eyes with arbitrary Hartmann-Shack aberrations. J. Opt. Soc. Am. A 15, 9, 2580--2588.Google ScholarGoogle ScholarCross RefCross Ref
  26. KOLB, C., MITCHELL, D., AND HANRAHAN, P. 1995. A realistic camera model for computer graphics. In ACM SIGGRAPH 1995 Conference Proceedings, ACM, SIGGRAPH, 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. LEE, M. E., REDNER, R. A., AND USELTON, S. P. 1985. Statistically optimized sampling for distributed ray tracing. In ACM SIGGRAPH 1985 Conference Proceedings, ACM, San Francisco, SIGGRAPH, 61-67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In ACM SIGGRAPH 1996 Conference Proceedings, ACM, New Orleans, SIGGRAPH, 31--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. LIANG, J. 1991. A New Method to Precisely Measure the Wave Aberrations of the Human Eye with a Hartmann-Shack Wavefront Sensor. PhD thesis, Department of Mathematics, Universität Heidelberg.Google ScholarGoogle Scholar
  30. LOOS, J., SLUSALLEK, P., AND SEIDEL, H.-P. 1998. Using wavefront tracing for the visualization and optimization of progressive lenses. In Computer Graphics Forum (Eurographics '98 Conference Proceedings, Eurographics, 255--266. held in Lisbon, Portugal, 02--04 September 1998.Google ScholarGoogle ScholarCross RefCross Ref
  31. LUBIN, J. 1995. A visual discrimination model for imaging system design and evaluation. In Vision Models for Target Detection and Recognition, E. Peli, Ed., vol. 2. World Scientific Publishing Co., Inc., Washington, DC, 245--357.Google ScholarGoogle Scholar
  32. MAGUIE, L. J., ZABEL, R. W., PARKER, P., AND LINDSTROM, R. L. 1991. Topography and raytracing analysis of patients with excellent visual acuity 3 months after excimer laser photorefractive keratectomy for myopia. Refract. Corneal Surg. 8 (March/April), 122--128.Google ScholarGoogle Scholar
  33. MAGUIRE, L. J., CAMP, J. J., AND ROBB, R. A. 1992. Informing interested parties of changes in the optical performance of the cornea caused by keratorefractive surgery --- a ray tracing model that tailors presentation of results to fit the level of sophistication of the audience. In SPIE Vol. 1808 Visualization in Biomedical Computing, SPIE, The International Society for Optical Engineering, 601--609.Google ScholarGoogle Scholar
  34. MARCOS, S., BURNS, S. A., MORENO-BARRIUSO, E., AND NAVARRO, R. 1999. A new approach to the study of ocular chromatic aberrations. Vision Research 39, 4309--4323.Google ScholarGoogle ScholarCross RefCross Ref
  35. MEYER, G. W., AND GREENBERG, D. P. 1988. Color-defective vision and computer graphics displays. IEEE Computer Graphics and Applications 8, 5 (September), 28--40. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. MEYER, G. W. 1990. Image synthesis and color vision. In Computer Graphics Techniques, D. F. Rogers and R. A. Earnshaw, Eds. Springer Verlag, New York, 45--77. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. MOON, P., AND SPENCER, D. E. 1944. On the Stiles-Crawford effect. J. Opt. Soc. Am. 34, 6, 319--329.Google ScholarGoogle ScholarCross RefCross Ref
  38. PATTANAIK, S. N., FERWERDA, J. A., FAIRCHILD, M. D., AND GREENBERG, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In ACM SIGGRAPH 1998 Conference Proceedings, ACM, SIGGRAPH, 287--298. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. PELI, E. 1996. Test of a model of foveal vision by using simulations. Journal of Optical Society of America 13, 6 (June), 1131--1138.Google ScholarGoogle Scholar
  40. PELLACINI, F., AND GREENBERG, D. P. 2000. Toward a psychophysically-based light reflection model for image synthesis. In ACM SIGGRAPH 2000 Conference Proceedings, ACM, New Orleans, SIGGRAPH, 55--64. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. PLATT, B. C., AND SHACK, R. V. 1971. Lenticular Hartmann-screen. Newsletter 5, 15, Optical Science Center, University of Arizona.Google ScholarGoogle Scholar
  42. POTMESIL, M., AND CHAKRAVARTY, I. 1982. Synthetic image generation with a lens and aperture camera model. ACM Transactions on Graphics, 1, 2 (April), 85--108. (Original version in ACM SIGGRAPH 1981 Conference Proceedings, Aug. 1981, pp. 297--305.). Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. REINHARD, E., STARK, M., SHIRLEY, P., AND FERWERDA, J. 2002. Photographic tone reproduction for digital images. In ACM SIGGRAPH 2002 Conference Proceedings, ACM, SIGGRAPH, 267--276. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. ROKITA, P. 1993. Fast generation of depth-of-field effects in computer graphics. Computers & Graphics 17, 5 (September), 593--595.Google ScholarGoogle ScholarCross RefCross Ref
  45. ROKITA, P. 1996. Generating depth-of-field effects in virtual reality applications. IEEE Computer Graphics and Applications 16, 2 (March), 18--21. Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. SHINYA, M. 1994. Post-filtering for depth of field simulation with ray distribution buffer. In Proceedings of Graphics Interface '94, Canadian Information Processing Society, 59--66.Google ScholarGoogle Scholar
  47. SPENCER, G., SHIRLEY, P., ZIMMERMAN, K., AND GREENBERG, D. P. 1995. Physically-based glare effects for digital images. In ACM SIGGRAPH 1995 Conference Proceedings, ACM, SIGGRAPH, 325--334. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. THIBOS, L. N., APPLEGATE, R., SCHWIEGERLING, J. T., WEBB, R., AND MEMBERS, V. S. T. 2000. Standards for reporting the optical aberrations of eyes. In Vision Science and its Application, V. Lakshminarayanan, Ed., vol. 35. Optical Society of America -- Trends in Optics and Photonics, 232--244.Google ScholarGoogle Scholar
  49. THIBOS, L. N. 2000. Principles of Hartmann-Shack aberrometry. In Vision Science and its Applications, vol. 15. Optical Society of America -- Trends in Optics and Photonics, 163--169.Google ScholarGoogle Scholar
  50. TUMBLIN, J., AND RUSHMEIER, H. E. 1993. Tone reproduction for realistic images. IEEE Computer Graphics and Applications 13, 6 (November), 42--48. Google ScholarGoogle ScholarDigital LibraryDigital Library
  51. UPSTILL, S. D. 1985. The Realistic Presentation of Synthetic Images: Image Processing in Computer Graphics. PhD thesis, Computer Science Division, University of California. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. WARD-LARSON, G., RUSHMEIER, H., AND PIATKO, C. D. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4 (Oct. -- Dec.), 291--306. Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. ZERNIKE, F. 1934. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1, 689--704.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Vision-realistic rendering: simulation of the scanned foveal image from wavefront data of human subjects

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        APGV '04: Proceedings of the 1st Symposium on Applied perception in graphics and visualization
        August 2004
        184 pages
        ISBN:1581139144
        DOI:10.1145/1012551

        Copyright © 2004 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 August 2004

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • Article

        Acceptance Rates

        Overall Acceptance Rate19of33submissions,58%

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader