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ABSTRACT 
Reducing total power consumption in high performance microprocessors 
can be achieved by limiting the amount of logic involved in decoding, 
scheduling and executing each instruction. One of the solutions to this 
problem involves the use of a microarchitecture based on an Execution 
Cache (EC) whose role is to cache already done work for later reuse.  

In this paper, we explore the design space for such a 
microarchitecture, looking at how the cache size, associativity and 
replacement algorithm affect the overall performance and power 
efficiency. We also look at the scalability of this solution across next 
process generations, evaluating the energy efficiency of such caching 
mechanisms in the presence of increasing leakage power. Over a 
spectrum of SPEC2000 benchmarks, an average of 35% energy reduction 
is achieved for technologies ranging from 130nm to 90nm and 65nm, at 
the expense of a negligible performance hit. 

Categories and Subject Descriptors 
C.1.1 [Computer Systems Organization]: Processor Architectures – 
single data streams architectures.  

General Terms 
Performance, Design, Measurement. 

 

1. INTRODUCTION 
Superscalar processor designers have traditionally given priority to per-
formance concerns over energy costs, power efficiency being addressed 
mainly at the technology level, through lower supply voltages, smaller 
transistors, etc. Nevertheless though, power dissipation is now the primary 
design constraints for modern processors, and thus microarchitecture 
designers must take it into consideration as well.  

In this paper, we study the concept of caching previously executed 
work for further reuse with the purpose of reducing power consumption of 
superscalar, out-of-order processors. We focus on the design space of 
such a microarchitecture, and study how its behavior scales for deep 
submicron process technologies. Specifically, we are focusing on the 
design space for such a microarchitecture. Our contribution is threefold: 

• Design space exploration. We study how the caching capacity 
impacts these designs, and how the trace replacement algorithm affect 
performance and power efficiency.  

• Eliminating or reducing performance bottlenecks. We propose 
an adaptive scheme for the register file to deal with potential capacity 
limitations. Furthermore, we show that in several cases performance 
penalty can be completely eliminated by simply throttling the trace 
generation process.  

• Impact of technology scaling on the power efficiency. While 
the concept of caching for power efficiency can be very successful in 
reducing dynamic power, it does not affect static power.  As process 

technology evolves and transistors get smaller, leakage becomes a 
significant part of the total power budget. We evaluate how the optimum 
design point shifts in this process, focusing on three process technologies: 
130nm, 90nm and 65nm.  

 

2. RELATED WORK 
Gating input transitions for logic blocks that are not needed during a 
specific computation has been proposed before [1] as a method for 
controlling dynamic power. While this can be easily done using clock or 
input gating [1], it is generally hard to predict when such blocks will not 
be in use. Thus, special techniques have been proposed that essentially 
rely on caching partial computation results that can potentially be reused 
for better power efficiency. 

Historically, on-chip caches have been used as a mechanism to 
reduce the average latency observed when accessing the main memory. 
Units like filter cache [3] or L-cache [4] function on essentially the same 
idea, servicing accesses locally as often as possible. 

An interesting microarchitectural innovation implemented by Intel in 
the Pentium 4 microprocessor is the use of a special cache that shortens 
the branch misprediction path [5][6]. By storing decoded instructions 
(uops) in the trace-cache, the whole decode stage can be shut down for 
significant periods of time while the rest of the pipeline continues to work. 
In [7], this microarchitecture is studied focusing on several techniques for 
filtering out infrequently used traces. 

Bringing the idea of caching for power efficiency one step further, an 
Execution Cache (EC) has been proposed [8] for storing instructions 
after they pass through the entire front-end of the pipeline. As this cache 
is placed after the Issue Stage, instructions that are fetched, decoded and 
have already had registers renamed can be stored in issue-order (and not 
in program-order) in the EC. Most of the time, instructions are fetched 
from the EC and fed directly to the execution engine.  

 

3. MICROARCHITECTURE OVERVIEW 
To achieve better power efficiency, the microarchitecture must be tuned 
to perform as little work as possible for each committed instruction. Using 
an EC placed after the Issue Stage, work performed by the front-end 
stages of the pipeline can be cached for later reuse. Instructions are 
fetched from the I-Cache, decoded, and physical registers are assigned to 
each logical register. The resulting instructions are placed in the Issue 
Window, waiting for their dependencies to be resolved. A number of 
independent instructions are issued to the functional units and, in parallel, 
added to a Fill Buffer in order to create program traces. When enough 
instructions are placed in this Fill Buffer, the entire program sequence is 
stored in the EC in issue order, for later potential reuse [8]. 
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Figure 1. Superscalar microarchitecture using an EC for reusing 
scheduled instruction streams 

 
In this microarchitecture, program execution can be split into two 

conceptual phases. Initially, when EC is empty, instructions are launched 
from the Issue Window, while a trace is built in parallel in the EC. This 

  



step is called the trace build phase. Upon a mispredict (or a trace comple-
tion condition), a search is performed to identify a possible next trace 
starting at that point, and should a hit occur, instructions continue to be 
executed from the EC. In this trace replay phase, the processor behaves 
essentially like a VLIW core with instructions being fetched from the EC 
and sent directly to the functional units (Figure 1). 

 

3.1. EC architecture overview 
When stored in issue order, instructions lose their original, logical order, 
so they can only be retrieved on a sequential basis. To allow for traces to 
be reused, each trace is labeled with the address of its first instruction. 
Instructions from two consecutive traces cannot be interleaved. To 
minimize the overall performance impact associated with very frequent 
trace changes, these sequences must be long, limited as much as possible 
only by events that naturally occur in the processor pipeline (i.e., branch 
misprediction).  

The EC structure consists of a Tag Array (TA) and a corresponding 
Data Array (DA). The TA is an associative cache, addressed using the 
translated program counter. When looking for a new trace, the TA is 
searched first and, if a tag is found, it is further used to access the DA. 
The DA can be either direct mapped or set associative, and is composed 
of multiple memory banks in order to reduce the energy per each access. 
While the address of the first access is dictated by information retrieved 
from TA, all subsequent accesses are made to sequential set addresses. By 
knowing beforehand which set will be accessed next, a new look-up for 
each DA read or write is avoided.  

 

3.2. An adaptive register file 
Since instructions come out of the Execution Cache without preserving 
their original, program order, registers cannot be renamed for such trace 
replays. For this microarchitecture, the Register Renaming operation is 
only performed in trace build mode. At the same time, operand values 
cannot be simply stored in the EC and reused, as they are generally 
different during each trace run. To handle this task, a special register file 
structure can be used [8] (Figure 2(a)). This structure employs a special 
pool of physical registers for renaming every logical register of the ISA. 
Unlike in a typical register file, where an architected register can be 
renamed to any physical register, here an architected register can be 
renamed to only physical registers of the corresponding pool.  

Each trace generation is started under the assumption that the correct 
value for a register can be obtained from the first logical entry of the pool. 
If such a condition is met, all subsequent replays of a trace can be 
performed without further renaming the registers. The caveat is that this 
requires a checkpoint to be performed when a trace execution ends: the 
logical ordering must be changed inside the circular buffer, so each time it 
starts with the latest value for that architected register.  

In this setup, the number of in-flight instructions that have the same 
logical destination is bounded by the number of physical registers 
available in the circular buffer. This limitation reduces the renaming 
capacity when compared against other register renaming schemes. 
However, we note that some registers are written very often (e.g., those 
holding local variables), while others are mostly read (e.g., Stack Pointer, 
Return Address, etc.). Following these guidelines, we can assign a 
different number of renaming registers for each architected register, thus 
alleviating the renaming capacity problem while also preventing the Reg-
ister File structure from becoming too large. 

We propose a simple, dynamic approach to solving this problem. A 
simple 16-bit counter (Stall Counter in Figure 2) is associated with every 
architected register, to keep track of capacity limitations. When a stall is 
introduced (due to the lack of available rename registers), the associated 
counter is incremented. During each specified interval, these counters are 
checked and register redistribution can be performed. Specifically, 
architected registers that have been detected to be bottlenecks are 
supplemented with additional physical entries, taken from other pools that 
are only infrequently accessed. 

As the redistribution of the physical registers requires significant 
amount of time, this operations cannot be performed often. In our 

experiments, we assumed that the counters are tested every 1 million 
cycles, and, if a redistribution is needed, this operation will require an 
additional 100 cycles. Our results show that only a small fraction of the 
total architected registers (typically 10 to 15%) need more than four 
physical entries. Furthermore, the best configuration is mostly dictated 
by the conventions used for register allocation, so the number of 
redistribution is fairly small and steady state can be rapidly reached. 

Figu
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re 2. Physical register file organization: (a) Pool-based register 
file [8] and (b) the adaptive Register File 

(a) (b) 

 

ESIGN TRADEOFFS  
 design decisions that need to be made impact both performance and 
r consumption. Furthermore, such decisions are affected by the 
sing leakage power, and this effect is getting worse as the process 

ology scales down.  
 

EC size 
ost obvious parameter in this microarchitecture is the EC size. 

 power savings can only be achieved when the processor uses the 
ative execution path and turn off the front-end, we would ideally 
to achieve very high hit rates for the EC.  
However, for trace-based storage this is much harder to achieve than 
or normal instruction caches. In an I-Cache, any instruction can be 
tially accessed directly if needed. In the EC, only the first instruction 
 trace can be a branch destination; all the rest can be accessed 
ntially, if the execution follows the same path as during trace build. 
 multiple copies of the same instruction can very easily reside in the 
, bringing the required size up. 
A larger EC requires significantly more power, but this problem can 
ntrolled with sub-banking. While the address of the first access is 
ed by information retrieved from TA and cannot be predicted, all 
quent accesses are made to sequential set addresses. By knowing 
ehand which set will be accessed next, only the wordlines in the 
ied block need to be precharged, saving power.   

While dynamic power can be controlled using sub-banking, as we 
 deep submicron process technologies the leakage power starts to 
e a problem as well. Unless this problem is controlled, it can offset 

 of the benefits of the large EC, as we show in Section 6. 
 

Trace build and replacement 
 creating a new trace, instructions are added until an end condition 
t. Such end conditions can occur when the trace grows beyond the 

um length that can be accommodated in the EC, when we 
nter hard to predict instructions (like function returns or indirect 
hes) or when a branch mispredict occurs and the execution must 
e from a different address. When fetching instructions from the EC, 
ecution is abandoned on trace-end or on a branch mispredict.  

If predictions made while creating a trace prove to be wrong during 
-execution, the trace must be declared invalid and another one 
d. The most straightforward strategy is to observe the number of 
h mispredicts generated by the trace. Thus, a trace is declared as 
d (and can be replaced) when M mispredicts are encountered in a 



row while executing the same trace. As M increases, more branch 
mispredictions are tolerated and the usage of the pipeline’s front-end 
decreases, leading to a better power efficiency.  

The main parameters of the microarchitecture under consideration 
are presented in Table 1. We have accounted for the difference in global 
clock power due to an increased number of pipeline registers that have to 
be clocked. To validate our results, we have used several SPEC2000 
benchmarks (both integer and floating point). All tests have been 
performed by fast forwarding over the first 500M instructions and then 
doing detailed simulation for the next 100M instructions. 

In our experimental results, we study how this parameter affects the 
performance and energy by testing two alternative configurations. First, 
we assume that traces are aggressively erased when two branch 
mispredictions are encountered in a row when executing the same trace 
[8]. The second case that we consider waits until the misprediction is 
encountered four times in a row, and only then it evicts the trace. 

Table 1. Microarchitecture parameters 
Parameter Value 

Pipeline Width Eight-way, out-of-order 
Instruction Window 128-entries 
Load Store Queue 64-entries 
Regfile MIPS-like baseline with 196 rename registers,  

64 architected registers with at most 8 rename 
registers per block for the EC version 

I-Cache 32K, 2 way, block size 32 bytes, LRU  
D-Cache 32K, 4 way, block size 32 bytes, LRU  
L2 Cache Unified, 256K, 4 way, block size 64 bytes, LRU  
L2 access time 10 cycles 
Memory access time 100 cycles 
Branch Predictor Gshare, 10 bits history, 1024 entries 
EC Data Array Variable size, 2 way, LRU replacement policy 
EC Tag Array 4K, 4 way, LRU replacement policy 
Max. Trace Length 512 instructions 
Trace Lookup Penalty 1 cycle 
Functional Units 8 Integer ALUs, 4 Integer MUL/DIV 

4 Memory address units 
4 FP Adders, 2 FP MUL/DIV 

Technology [9] 130nm - Vdd = 1.4V, Vt  = 0.22V 
90nm - Vdd = 1.2V, Vt  = 0.20V 
65nm - Vdd = 1.1V, Vt  = 0.18V 

Normalized leakage 
current per device [11] 

130nm – 80 nA 
90nm – 280 nA 
65nm – 280 nA 

 

4.3. Back-end throttling during trace-build 
One potential drawback of the EC-based microarchitecture is its inability 
to schedule instructions around a variable latency operation. When 
scheduling is fixed during trace build mode, the ability of the processor to 
adapt to such conditions is lost.  

However, this locked issue order can actually be turned into an 
advantage. If the Issue Window occupancy is sufficiently high, more 
independent instructions can be found and sent to execution. In our 
microarchitecture, in parallel with sending the instructions to execution 
they are captured and stored in the EC. If more instructions can be sent in 
parallel, a more parallel trace schedule will be captured and the replay 
will be characterized by higher performance. Thus, it might make sense to 
slow down the trace-build phase waiting to fill the Issue Window, since 
the performance penalty associated with it will be paid for just a fraction 
of the total execution time. 

The implementation of this method is very simple. During trace 
build, the back-end execution core is throttled (half the speed in our 
setting). To avoid possible performance penalty, this policy has been 
adopted only if the processor spends less than 20% of the execution time 
in trace build phase. As the adaptive Register File requires certain tests to 
be performed at specified intervals (1 million cycles), we used the same 
checkpoints to check the front-end cycle counter and decide whether the 
throttling policy should be applied or not.   

6. EXPERIMENTAL RESULTS  

4.4. Future process technologies Performance improves as the EC size is increased and the 128K 
version performs best with an average penalty of about 5%. The trace 
delete algorithm has only a minor influence in this case.  

Like all caching strategies, our method only reduces the active power, 
which is poised to become a smaller fraction of the total power budget. 
Following the 2003 ITRS guidelines [9], the leakage power will reach 40-
50% at 90nm and even higher at a 65nm process technology.  Performance
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As it only reduces active power, the EC mechanism becomes less 
efficient in such deep submicron process technologies. Furthermore, the 
microarchitecture is based on a fairly large cache structure and it also 
requires significantly more physical registers, so it can actually increase 
the leakage power. As it will be seen in Section 6, if not controlled, the 
increased leakage power can render any EC-based microarchitecture 
uninteresting for achieving energy efficiency. 

One possible solution to the leakage problem has been presented 
recently [2], and is based on gating the ground off when the memory cell 
is not in use. As it increases the cycle time only very slightly, this method 
can be attractive for controlling leakage power. In our experimental setup, 
we evaluate both the behavior of the microarchitecture in the presence of 
uncontrolled leakage current, as well as the effect of using gated ground 
to control static power. 

Figure 3. Normalized performance for EC-based microarchitecture, 
with varying EC size and replacement algorithms 

 
In terms of energy consumption, we notice a significant reduction 

when increasing the number of mispredictions that can be tolerated. In 
this case, the best configuration (128K, four mispredictions delete 
algorithm) offers both best performance and best energy efficiency.  

 

5. EXPERIMENTAL SETUP 
For our experiments we have used a modified version of the SimpleScalar 
microarchitectural simulator sim-outorder engine in order to support the 
adaptive Register File and EC models, a longer pipeline and an operating 
mode based on inter-stage buffers instead of the SimpleScalar architecture 
based on a Register Update Unit (RUU). For the baseline 
microarchitecture, the Register Renaming mechanism chosen is similar to 
the one used by the MIPS R10000 processor [10]. 
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The power models were based or similar to the ones used in Wattch 
[12]. For evaluating the leakage power we used the models proposed by 
Butts and Sohi [11]. The normalized leakage current per device was 
estimated using the ITRS 2003 guidelines [9]. Figure 4. Normalized EPI for EC-based microarchitecture, with 

varying EC size and replacement algorithms 
 



Looking at the adaptive Register File, our experiments show that it 
helps in 75% of the cases (6 out of 8 benchmarks), with differences of 
almost 8% for benchmarks like bzip2 or equake. On average, it 
improves performance by about 5% (Figure 5). For this test, we used 
the best configuration found so far, with a 128K DA, two way 
associative and four mispredictions delete algorithm. 
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Figure 5. EC-based microarchitecture with static vs. adaptive 

Register File configuration, compared against the baseline  
 
As we can see in Figure 6, the back-end throttling mechanism helps 

significantly in several cases, making the EC-based microarchitecture 
significantly faster (equake, parser, bzip2). On average, performance can 
be brought to the same level as the baseline. Increasing the EC size helps 
in this case as well, the only two benchmarks having a different behavior 
being bzip2 and gzip. For bzip2, the time spent in trace replay mode is 
very high even with a small EC, so when increasing its size we don’t see 
any real improvement.  For gzip, the time spent in replay mode increases 
with increasing EC size, but it also has a much higher data cache miss rate 
(almost 3%). In this case, the replay mode is not able to schedule around 
the variable latency loads, so the trace-execution mode actually hurts the 
performance. 
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Figure 6. Performance of the EC-based microarchitecture using 

50% back-end throttling, for various DA sizes 
 
As process technology evolves and transistors are getting smaller, 

dynamic power becomes a smaller fraction of the total power used by 
the processor. In Figure 7, we study the evolution of the achievable 
energy savings in 130nm, 90nm and 65nm process technologies. While 
at 130nm this configuration saves more than 30% of the total energy, at 
90nm it only saves around 13% and at 65nm this figure decreases even 
more, to 10% (first four bars in the three charts). 

The last two bars on each chart are named Low Leakage (marked 
LL), and are obtained assuming that a leakage control mechanism is in 
place. We used the mechanism described in [2], which can essentially 
reduce by half the leakage current for each memory cell. Using such a 
mechanism, the energy efficiency increases, bringing the savings up to 
19% at 65nm, 24% at 90nm and more than 40% at 130nm. 

 

7. CONCLUSIONS 
In this paper, we have studied an EC-based microarchitecture aimed at 
increasing the power efficiency of a superscalar out-of-order processor 
through reusing as much as possible from the work performed in the 
front-end of the pipeline. We have evaluated the design space available 
for such a processor, looking at different cache configurations and trace 
replacement algorithms, and we have proposed two mechanisms 
(adaptive Register File and back-end throttling) that can bring the 
performance to the same level offered by the superscalar out-of-order, 
no-EC, counterpart. We show that an average of up to 35% reduction in 
energy is possible, without sacrificing the overall performance. 

We have also evaluated the scalability of this solution in deep 
submicron process technologies, and we found that, without a leakage 
controlling mechanism, most of the savings will be offset by the increased 
static energy. When controlling the leakage using the gated ground 
method, we obtained a 23% and respective 19% energy reduction for 
90nm and 65nm process technologies. 
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Figure 7. Normalized EPI for the EC-based architecture at 130nm 
(top), 90 nm (middle) and 65 nm (bottom) (two way associative DA, 

four mispredictions delete algorithm, back-end throttling) 
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