
Impact of Technology Scaling on Energy Aware
Execution Cache-based Microarchitectures

Emil Talpes
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, 15213
Phone: (412) 268-4275

etalpes@ece.cmu.edu

Diana Marculescu
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, 15213
Phone: (412) 268-1167

dianam@ece.cmu.edu

ABSTRACT
Reducing total power consumption in high performance microprocessors
can be achieved by limiting the amount of logic involved in decoding,
scheduling and executing each instruction. One of the solutions to this
problem involves the use of a microarchitecture based on an Execution
Cache (EC) whose role is to cache already done work for later reuse.

In this paper, we explore the design space for such a
microarchitecture, looking at how the cache size, associativity and
replacement algorithm affect the overall performance and power
efficiency. We also look at the scalability of this solution across next
process generations, evaluating the energy efficiency of such caching
mechanisms in the presence of increasing leakage power. Over a
spectrum of SPEC2000 benchmarks, an average of 35% energy reduction
is achieved for technologies ranging from 130nm to 90nm and 65nm, at
the expense of a negligible performance hit.

Categories and Subject Descriptors
C.1.1 [Computer Systems Organization]: Processor Architectures –
single data streams architectures.

General Terms
Performance, Design, Measurement.

1. INTRODUCTION
Superscalar processor designers have traditionally given priority to per-
formance concerns over energy costs, power efficiency being addressed
mainly at the technology level, through lower supply voltages, smaller
transistors, etc. Nevertheless though, power dissipation is now the primary
design constraints for modern processors, and thus microarchitecture
designers must take it into consideration as well.

In this paper, we study the concept of caching previously executed
work for further reuse with the purpose of reducing power consumption of
superscalar, out-of-order processors. We focus on the design space of
such a microarchitecture, and study how its behavior scales for deep
submicron process technologies. Specifically, we are focusing on the
design space for such a microarchitecture. Our contribution is threefold:

• Design space exploration. We study how the caching capacity
impacts these designs, and how the trace replacement algorithm affect
performance and power efficiency.

• Eliminating or reducing performance bottlenecks. We propose
an adaptive scheme for the register file to deal with potential capacity
limitations. Furthermore, we show that in several cases performance
penalty can be completely eliminated by simply throttling the trace
generation process.

• Impact of technology scaling on the power efficiency. While
the concept of caching for power efficiency can be very successful in
reducing dynamic power, it does not affect static power. As process

technology evolves and transistors get smaller, leakage becomes a
significant part of the total power budget. We evaluate how the optimum
design point shifts in this process, focusing on three process technologies:
130nm, 90nm and 65nm.

2. RELATED WORK
Gating input transitions for logic blocks that are not needed during a
specific computation has been proposed before [1] as a method for
controlling dynamic power. While this can be easily done using clock or
input gating [1], it is generally hard to predict when such blocks will not
be in use. Thus, special techniques have been proposed that essentially
rely on caching partial computation results that can potentially be reused
for better power efficiency.

Historically, on-chip caches have been used as a mechanism to
reduce the average latency observed when accessing the main memory.
Units like filter cache [3] or L-cache [4] function on essentially the same
idea, servicing accesses locally as often as possible.

An interesting microarchitectural innovation implemented by Intel in
the Pentium 4 microprocessor is the use of a special cache that shortens
the branch misprediction path [5][6]. By storing decoded instructions
(uops) in the trace-cache, the whole decode stage can be shut down for
significant periods of time while the rest of the pipeline continues to work.
In [7], this microarchitecture is studied focusing on several techniques for
filtering out infrequently used traces.

Bringing the idea of caching for power efficiency one step further, an
Execution Cache (EC) has been proposed [8] for storing instructions
after they pass through the entire front-end of the pipeline. As this cache
is placed after the Issue Stage, instructions that are fetched, decoded and
have already had registers renamed can be stored in issue-order (and not
in program-order) in the EC. Most of the time, instructions are fetched
from the EC and fed directly to the execution engine.

3. MICROARCHITECTURE OVERVIEW
To achieve better power efficiency, the microarchitecture must be tuned
to perform as little work as possible for each committed instruction. Using
an EC placed after the Issue Stage, work performed by the front-end
stages of the pipeline can be cached for later reuse. Instructions are
fetched from the I-Cache, decoded, and physical registers are assigned to
each logical register. The resulting instructions are placed in the Issue
Window, waiting for their dependencies to be resolved. A number of
independent instructions are issued to the functional units and, in parallel,
added to a Fill Buffer in order to create program traces. When enough
instructions are placed in this Fill Buffer, the entire program sequence is
stored in the EC in issue order, for later potential reuse [8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008…$5.00.

Figure 1. Superscalar microarchitecture using an EC for reusing
scheduled instruction streams

In this microarchitecture, program execution can be split into two

conceptual phases. Initially, when EC is empty, instructions are launched
from the Issue Window, while a trace is built in parallel in the EC. This

step is called the trace build phase. Upon a mispredict (or a trace comple-
tion condition), a search is performed to identify a possible next trace
starting at that point, and should a hit occur, instructions continue to be
executed from the EC. In this trace replay phase, the processor behaves
essentially like a VLIW core with instructions being fetched from the EC
and sent directly to the functional units (Figure 1).

3.1. EC architecture overview
When stored in issue order, instructions lose their original, logical order,
so they can only be retrieved on a sequential basis. To allow for traces to
be reused, each trace is labeled with the address of its first instruction.
Instructions from two consecutive traces cannot be interleaved. To
minimize the overall performance impact associated with very frequent
trace changes, these sequences must be long, limited as much as possible
only by events that naturally occur in the processor pipeline (i.e., branch
misprediction).

The EC structure consists of a Tag Array (TA) and a corresponding
Data Array (DA). The TA is an associative cache, addressed using the
translated program counter. When looking for a new trace, the TA is
searched first and, if a tag is found, it is further used to access the DA.
The DA can be either direct mapped or set associative, and is composed
of multiple memory banks in order to reduce the energy per each access.
While the address of the first access is dictated by information retrieved
from TA, all subsequent accesses are made to sequential set addresses. By
knowing beforehand which set will be accessed next, a new look-up for
each DA read or write is avoided.

3.2. An adaptive register file
Since instructions come out of the Execution Cache without preserving
their original, program order, registers cannot be renamed for such trace
replays. For this microarchitecture, the Register Renaming operation is
only performed in trace build mode. At the same time, operand values
cannot be simply stored in the EC and reused, as they are generally
different during each trace run. To handle this task, a special register file
structure can be used [8] (Figure 2(a)). This structure employs a special
pool of physical registers for renaming every logical register of the ISA.
Unlike in a typical register file, where an architected register can be
renamed to any physical register, here an architected register can be
renamed to only physical registers of the corresponding pool.

Each trace generation is started under the assumption that the correct
value for a register can be obtained from the first logical entry of the pool.
If such a condition is met, all subsequent replays of a trace can be
performed without further renaming the registers. The caveat is that this
requires a checkpoint to be performed when a trace execution ends: the
logical ordering must be changed inside the circular buffer, so each time it
starts with the latest value for that architected register.

In this setup, the number of in-flight instructions that have the same
logical destination is bounded by the number of physical registers
available in the circular buffer. This limitation reduces the renaming
capacity when compared against other register renaming schemes.
However, we note that some registers are written very often (e.g., those
holding local variables), while others are mostly read (e.g., Stack Pointer,
Return Address, etc.). Following these guidelines, we can assign a
different number of renaming registers for each architected register, thus
alleviating the renaming capacity problem while also preventing the Reg-
ister File structure from becoming too large.

We propose a simple, dynamic approach to solving this problem. A
simple 16-bit counter (Stall Counter in Figure 2) is associated with every
architected register, to keep track of capacity limitations. When a stall is
introduced (due to the lack of available rename registers), the associated
counter is incremented. During each specified interval, these counters are
checked and register redistribution can be performed. Specifically,
architected registers that have been detected to be bottlenecks are
supplemented with additional physical entries, taken from other pools that
are only infrequently accessed.

As the redistribution of the physical registers requires significant
amount of time, this operations cannot be performed often. In our

experiments, we assumed that the counters are tested every 1 million
cycles, and, if a redistribution is needed, this operation will require an
additional 100 cycles. Our results show that only a small fraction of the
total architected registers (typically 10 to 15%) need more than four
physical entries. Furthermore, the best configuration is mostly dictated
by the conventions used for register allocation, so the number of
redistribution is fairly small and steady state can be rapidly reached.

Figu

4. D
Most
powe
increa
techn

4.1.
The m
Since
altern
want

it is f
poten
in the
seque
Thus,
cache

be co
dictat
subse
befor
specif

reach
becom
much

4.2.
When
is me
maxim
encou
branc
resum
the ex

its re
create
branc
invali

re 2. Physical register file organization: (a) Pool-based register
file [8] and (b) the adaptive Register File

(a) (b)

ESIGN TRADEOFFS
 design decisions that need to be made impact both performance and
r consumption. Furthermore, such decisions are affected by the
sing leakage power, and this effect is getting worse as the process

ology scales down.

EC size
ost obvious parameter in this microarchitecture is the EC size.

 power savings can only be achieved when the processor uses the
ative execution path and turn off the front-end, we would ideally
to achieve very high hit rates for the EC.
However, for trace-based storage this is much harder to achieve than
or normal instruction caches. In an I-Cache, any instruction can be
tially accessed directly if needed. In the EC, only the first instruction
 trace can be a branch destination; all the rest can be accessed
ntially, if the execution follows the same path as during trace build.
 multiple copies of the same instruction can very easily reside in the
, bringing the required size up.
A larger EC requires significantly more power, but this problem can
ntrolled with sub-banking. While the address of the first access is
ed by information retrieved from TA and cannot be predicted, all
quent accesses are made to sequential set addresses. By knowing
ehand which set will be accessed next, only the wordlines in the
ied block need to be precharged, saving power.

While dynamic power can be controlled using sub-banking, as we
 deep submicron process technologies the leakage power starts to
e a problem as well. Unless this problem is controlled, it can offset

 of the benefits of the large EC, as we show in Section 6.

Trace build and replacement
 creating a new trace, instructions are added until an end condition
t. Such end conditions can occur when the trace grows beyond the

um length that can be accommodated in the EC, when we
nter hard to predict instructions (like function returns or indirect
hes) or when a branch mispredict occurs and the execution must
e from a different address. When fetching instructions from the EC,
ecution is abandoned on trace-end or on a branch mispredict.

If predictions made while creating a trace prove to be wrong during
-execution, the trace must be declared invalid and another one
d. The most straightforward strategy is to observe the number of
h mispredicts generated by the trace. Thus, a trace is declared as
d (and can be replaced) when M mispredicts are encountered in a

row while executing the same trace. As M increases, more branch
mispredictions are tolerated and the usage of the pipeline’s front-end
decreases, leading to a better power efficiency.

The main parameters of the microarchitecture under consideration
are presented in Table 1. We have accounted for the difference in global
clock power due to an increased number of pipeline registers that have to
be clocked. To validate our results, we have used several SPEC2000
benchmarks (both integer and floating point). All tests have been
performed by fast forwarding over the first 500M instructions and then
doing detailed simulation for the next 100M instructions.

In our experimental results, we study how this parameter affects the
performance and energy by testing two alternative configurations. First,
we assume that traces are aggressively erased when two branch
mispredictions are encountered in a row when executing the same trace
[8]. The second case that we consider waits until the misprediction is
encountered four times in a row, and only then it evicts the trace.

Table 1. Microarchitecture parameters
Parameter Value

Pipeline Width Eight-way, out-of-order
Instruction Window 128-entries
Load Store Queue 64-entries
Regfile MIPS-like baseline with 196 rename registers,

64 architected registers with at most 8 rename
registers per block for the EC version

I-Cache 32K, 2 way, block size 32 bytes, LRU
D-Cache 32K, 4 way, block size 32 bytes, LRU
L2 Cache Unified, 256K, 4 way, block size 64 bytes, LRU
L2 access time 10 cycles
Memory access time 100 cycles
Branch Predictor Gshare, 10 bits history, 1024 entries
EC Data Array Variable size, 2 way, LRU replacement policy
EC Tag Array 4K, 4 way, LRU replacement policy
Max. Trace Length 512 instructions
Trace Lookup Penalty 1 cycle
Functional Units 8 Integer ALUs, 4 Integer MUL/DIV

4 Memory address units
4 FP Adders, 2 FP MUL/DIV

Technology [9] 130nm - Vdd = 1.4V, Vt = 0.22V
90nm - Vdd = 1.2V, Vt = 0.20V
65nm - Vdd = 1.1V, Vt = 0.18V

Normalized leakage
current per device [11]

130nm – 80 nA
90nm – 280 nA
65nm – 280 nA

4.3. Back-end throttling during trace-build
One potential drawback of the EC-based microarchitecture is its inability
to schedule instructions around a variable latency operation. When
scheduling is fixed during trace build mode, the ability of the processor to
adapt to such conditions is lost.

However, this locked issue order can actually be turned into an
advantage. If the Issue Window occupancy is sufficiently high, more
independent instructions can be found and sent to execution. In our
microarchitecture, in parallel with sending the instructions to execution
they are captured and stored in the EC. If more instructions can be sent in
parallel, a more parallel trace schedule will be captured and the replay
will be characterized by higher performance. Thus, it might make sense to
slow down the trace-build phase waiting to fill the Issue Window, since
the performance penalty associated with it will be paid for just a fraction
of the total execution time.

The implementation of this method is very simple. During trace
build, the back-end execution core is throttled (half the speed in our
setting). To avoid possible performance penalty, this policy has been
adopted only if the processor spends less than 20% of the execution time
in trace build phase. As the adaptive Register File requires certain tests to
be performed at specified intervals (1 million cycles), we used the same
checkpoints to check the front-end cycle counter and decide whether the
throttling policy should be applied or not.

6. EXPERIMENTAL RESULTS

4.4. Future process technologies Performance improves as the EC size is increased and the 128K
version performs best with an average penalty of about 5%. The trace
delete algorithm has only a minor influence in this case.

Like all caching strategies, our method only reduces the active power,
which is poised to become a smaller fraction of the total power budget.
Following the 2003 ITRS guidelines [9], the leakage power will reach 40-
50% at 90nm and even higher at a 65nm process technology. Performance

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

gcc vpr mesa equake parser vortex bzip2 gzip average

N
or

m
al

iz
ed

 IP
C

EC 16K, 2 delete EC 32K, 2 delete EC 64K, 2 delete EC 128K, 2 delete
EC 16K, 4 delete EC 32K, 4 delete EC 64K, 4 delete EC 128K, 4 delete

As it only reduces active power, the EC mechanism becomes less
efficient in such deep submicron process technologies. Furthermore, the
microarchitecture is based on a fairly large cache structure and it also
requires significantly more physical registers, so it can actually increase
the leakage power. As it will be seen in Section 6, if not controlled, the
increased leakage power can render any EC-based microarchitecture
uninteresting for achieving energy efficiency.

One possible solution to the leakage problem has been presented
recently [2], and is based on gating the ground off when the memory cell
is not in use. As it increases the cycle time only very slightly, this method
can be attractive for controlling leakage power. In our experimental setup,
we evaluate both the behavior of the microarchitecture in the presence of
uncontrolled leakage current, as well as the effect of using gated ground
to control static power.

Figure 3. Normalized performance for EC-based microarchitecture,
with varying EC size and replacement algorithms

In terms of energy consumption, we notice a significant reduction

when increasing the number of mispredictions that can be tolerated. In
this case, the best configuration (128K, four mispredictions delete
algorithm) offers both best performance and best energy efficiency.

5. EXPERIMENTAL SETUP
For our experiments we have used a modified version of the SimpleScalar
microarchitectural simulator sim-outorder engine in order to support the
adaptive Register File and EC models, a longer pipeline and an operating
mode based on inter-stage buffers instead of the SimpleScalar architecture
based on a Register Update Unit (RUU). For the baseline
microarchitecture, the Register Renaming mechanism chosen is similar to
the one used by the MIPS R10000 processor [10].

Energy

0.4

0.5

0.6

0.7

0.8

0.9

1

gcc vpr mesa equake parser vortex bzip2 gzip average

N
or

m
al

iz
ed

 E
PI

EC 16K, 2 delete EC 32K, 2 delete EC 64K, 2 delete EC 128K, 2 delete
EC 16K, 4 delete EC 32K, 4 delete EC 64K, 4 delete EC 128K, 4 delete

The power models were based or similar to the ones used in Wattch
[12]. For evaluating the leakage power we used the models proposed by
Butts and Sohi [11]. The normalized leakage current per device was
estimated using the ITRS 2003 guidelines [9]. Figure 4. Normalized EPI for EC-based microarchitecture, with

varying EC size and replacement algorithms

Looking at the adaptive Register File, our experiments show that it
helps in 75% of the cases (6 out of 8 benchmarks), with differences of
almost 8% for benchmarks like bzip2 or equake. On average, it
improves performance by about 5% (Figure 5). For this test, we used
the best configuration found so far, with a 128K DA, two way
associative and four mispredictions delete algorithm.

Performance

0.7
0.75

0.8
0.85

0.9
0.95

1
1.05

1.1

gcc vpr mesa equake parser vortex bzip2 gzip average

N
or

m
al

iz
ed

 IP
C Static Adaptive

Figure 5. EC-based microarchitecture with static vs. adaptive

Register File configuration, compared against the baseline

As we can see in Figure 6, the back-end throttling mechanism helps

significantly in several cases, making the EC-based microarchitecture
significantly faster (equake, parser, bzip2). On average, performance can
be brought to the same level as the baseline. Increasing the EC size helps
in this case as well, the only two benchmarks having a different behavior
being bzip2 and gzip. For bzip2, the time spent in trace replay mode is
very high even with a small EC, so when increasing its size we don’t see
any real improvement. For gzip, the time spent in replay mode increases
with increasing EC size, but it also has a much higher data cache miss rate
(almost 3%). In this case, the replay mode is not able to schedule around
the variable latency loads, so the trace-execution mode actually hurts the
performance.

Performance

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

gcc vpr mesa equake parser vortex bzip2 gzip average

N
or

m
al

iz
ed

 IP
C

EC, 16K EC, 32K EC, 64K EC, 128K

Figure 6. Performance of the EC-based microarchitecture using

50% back-end throttling, for various DA sizes

As process technology evolves and transistors are getting smaller,

dynamic power becomes a smaller fraction of the total power used by
the processor. In Figure 7, we study the evolution of the achievable
energy savings in 130nm, 90nm and 65nm process technologies. While
at 130nm this configuration saves more than 30% of the total energy, at
90nm it only saves around 13% and at 65nm this figure decreases even
more, to 10% (first four bars in the three charts).

The last two bars on each chart are named Low Leakage (marked
LL), and are obtained assuming that a leakage control mechanism is in
place. We used the mechanism described in [2], which can essentially
reduce by half the leakage current for each memory cell. Using such a
mechanism, the energy efficiency increases, bringing the savings up to
19% at 65nm, 24% at 90nm and more than 40% at 130nm.

7. CONCLUSIONS
In this paper, we have studied an EC-based microarchitecture aimed at
increasing the power efficiency of a superscalar out-of-order processor
through reusing as much as possible from the work performed in the
front-end of the pipeline. We have evaluated the design space available
for such a processor, looking at different cache configurations and trace
replacement algorithms, and we have proposed two mechanisms
(adaptive Register File and back-end throttling) that can bring the
performance to the same level offered by the superscalar out-of-order,
no-EC, counterpart. We show that an average of up to 35% reduction in
energy is possible, without sacrificing the overall performance.

We have also evaluated the scalability of this solution in deep
submicron process technologies, and we found that, without a leakage
controlling mechanism, most of the savings will be offset by the increased
static energy. When controlling the leakage using the gated ground
method, we obtained a 23% and respective 19% energy reduction for
90nm and 65nm process technologies.

Energy - 130nm, 90nm and 65nm

0.4

0.5

0.6

0.7

0.8

0.9

1

gcc vpr mesa equake parser vortex bzip2 gzip average

N
or

m
al

iz
ed

 E
PI

EC, 16K EC, 32K EC, 64K EC, 128K EC, 64K, LL EC, 128K, LL

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

gcc vpr mesa equake parser vortex bzip2 gzip average

N
or

m
al

iz
ed

 E
PI

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

gcc vpr mesa equake parser vortex bzip2 gzip average

N
or

m
al

iz
ed

 E
PI

Figure 7. Normalized EPI for the EC-based architecture at 130nm
(top), 90 nm (middle) and 65 nm (bottom) (two way associative DA,

four mispredictions delete algorithm, back-end throttling)

8. REFERENCES
[1] F. Theeuwen and E. Seelen, “Power Reduction Through Clock Gating by

Symbolic Manipulation,” in Proceedings of the Workshop on Logic and
Architecture Synthesis, 1996.

[2] A. Agarwal, H. Li, and K. Roy, “DRG-Cache: A Data Retention Gated-
Ground Cache for Low Power”, in Proceedings of DAC, 2002.

[3] J. Kin, Gupta Munish, and W. H. Mangione-Smith, “The filter cache: an
energy efficient memory structure,” in Proceedings of the International
Symposium on Microarchitecture, pages 142-147, December 1997.

[4] N. Bellas and I. Hajj, “Architectural and Compiler Techniques for Energy
Reduction in High Performance Processors,” in Proceedings of ISLPED,
pages 72-75, August 1998.

[5] INTEL Corp - US Patent US6170038 “Trace based instruction caching”.
[6] B. Solomon, A. Mendelson, D. Orenstein, Y. Almog, and R. Ronen,

“Micro-Operation Cache: A Power Aware Frontend for Variable
Instruction Length ISA,” in Proceedings of ISLPED, August 2001.

[7] R. Rosner, A. Mendelson, and R. Ronen, “Filtering Techniques to Improve
Trace-Cache Efficiency,” in Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, pages 37-48,
September 2001.

[8] E. Talpes and D. Marculescu, “Power Reduction Through Work Reuse,” in
Proceedings of ISLPED, pages 340-345, August 2001.

[9] International Technology Roadmap for Semiconductors, 2003 Edition,
http://public.itrs.net/

[10] K. C. Yeager, “The MIPS R10000 superscalar microprocessor”, in
Proceedings of the International Symposium on Microarchitecture, pages
28-40, April 1996.

[11] J. A. Butts, and G. S. Sohi, “A Static Power Model for Architects”, in
Proceedings of the International Symposium on Microarchitecture, pages
191–201, December 2000.

[12] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in Proceedings of
the ISCA, pages 83-94, June 2000.

	ABSTRACT

