
Low-Power Fixed-Width Array Multipliers
Jinn-Shyan Wang

Institute of Electrical Engineering
Chung-Cheng University

160, San-Hsing,Ming-Hsiung,
Chia-Yi,Taiwan

+886-05-2720411 ext. 33202
ieegsw@ccu.edu.tw

Chien-Nan Kuo
Institute of Electrical Engineering

Chung-Cheng University
160, San-Hsing,Ming-Hsiung,

Chia-Yi,Taiwan
+886-05-2720411 ext. 23280

joseph@vlsi.ee.ccu.edu.tw

Tsung-Han Yang
Institute of Electrical Engineering

Chung-Cheng University
160, San-Hsing,Ming-Hsiung,

Chia-Yi,Taiwan
+886-05-2720411 ext. 23280
u8943041@ccu.edu.tw

ABSTRACT
A fixed-width multiplier using the left-to-right algorithm for
partial-product reduction is presented. The high-speed feature
offered by this design is used to trade for low power. In one design,
the proposed multiplier not only owns 8% speed improvement but
also gains 14% power and 13% area reduction. When applying the
voltage scaling to balance the speed, the power reduction is
increased to 29%.

Categories and Subject Descriptors
B.2.1 [Arithmetic and Logic Structure]: Design Style – parallel.

General Terms
Design.

Keywords
Left-to-right multiplier, fixed-width multiplier, reduced-width
multiplier, low power.
1. INTRODUCTION
The multiplier is an important kernel of digital signal processors
(DSP) because it typically determines the performance of the chips.
Furthermore, because of high circuit complexity, the power
consumption and the layout area are another two design
considerations of the multiplier. In some of the DSP applications,
precision can be sacrificed to improve the speed and to reduce the
area. Therefore, several fixed-width or reduced-width multipliers
[1]-[3] have been proposed for this purpose.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA
Copyright 2004 ACM 1-58113-929-2/04/0008…$5.00.

By removing some unnecessary gates in a full-width multiplier,
the fixed- and reduced-width multipliers also gain the advantage
of power reduction because of the reduced gate count. In this
circumstance, how to reduce the error caused by removing part of
the operation in a full-width multiplier becomes the main focus in
the previous designs for fixed- and reduced-width multipliers.

Conventional full-width multipliers often adopt the right-to-left
algorithm for summing the partial product terms into the final
product. Recently, the left-to-right algorithm without a final carry
propagation step [4]-[5] had been proposed in an attempt to
improve the performance of the right-to-left algorithm. More
recently, the work [6][7] used several kinds of compressors in the
LSB parts of the partial product reduction array to further increase
the operating speed of a left-to-right multiplier. However, to the
best of our knowledge, no one fixed- or reduced-width multiplier
adopts the left-to-right algorithm.

In this work, the design of a fixed-width multiplier based on the
left-to-right algorithm is studied. For convenience of comparison,
all the evaluated multipliers are designed in the cell-based
approach. Different multipliers are coded in the structure-level
Verilog language, and the performance change can be observed by
applying different speed constraints during synthesizing. Our
study shows that the performance of the proposed design, without
using any compressors and even under default synthesis, is still
superior to conventional fixed-width multipliers utilizing a fast
final adder. On the other hand, if tighter speed constraints are
applied to the conventional right-to-left fixed-width multipliers,
the proposed left-to-right fixed-width multiplier gains more power
saving.

The rest of this paper is organized as follows. Section 2 briefly
reviews the background information about conventional
fixed-width right-to-left multipliers and conventional full-width
left-to-right multipliers. Section 3 describes the architecture design
and the error analysis of low-power fixed-width left-to-right
multipliers. Evaluation results are discussed in section 4, and
conclusions are given in the last section.

11.2

307

2. BACKGROUND
2.1 Conventional right-to-left fixed-width
multiplier
This section briefly reviews the design of a conventional
right-to-left fixed-width multiplier. For designing a high-speed
multiplier, one usually utilizes the modified Booth algorithm [8] to
reduce the number of the rows of partial products. The block
diagram of an 8×8 modified-Booth full-width array multiplier,
without showing the Booth encoder, is depicted in Fig. 1. The
partial-product reduction array can be replaced by a Wallace tree
to shorten the summation time if the input bit-width is larger than
16. However, the complexity of the intra-signal connection will
become much higher. Note that the operands are summed from
right to left in a most intuitive way. In this case, the input bit width
is 8, and the output bit width is 16. Therefore, this is called an 8×8
right-to-left full-width array multiplier.

SUB 0SUB 1SUB 2

pp20

~pp171
1

HHHHHHFH1
pp21pp22pp23pp24pp25pp26pp27

~PP27

FFFFFFFH

1

pp30pp31pp32pp33pp34pp35pp36pp37

~pp37

SUB 3

1 ~pp47

FFFFFFFFFFH F F F H H

FFFFFFFH
pp40pp41pp42pp43pp44pp45pp46pp47

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

pp10pp11pp12pp13pp14pp15pp16pp17

Figure 1. An 8×8 right-to-left full-width multiplier.

For designing a right-to-left fixed-width multiplier, those partial
products, that enter the array from the right of the column
generating S8, and the corresponding gates can be omitted. These
terms are in the shadow region of Fig. 1. To reduce the accuracy
loss induced from truncating part of the operands, one method is to
add some compensation terms. Figure 2(a) shows the block
diagram of such an 8×8 right-to-left fixed-width multiplier [3],
where cells AO and the AND gate are the correction terms and the
realized function of the AO cell is shown in Fig. 2(b).

A word worth mentioning is that in Fig. 2(a), a ripple-carry adder
(RCA) is used to produce the final product. If the operating speed
is expected to be higher, one easy way is to use a fast adder instead,
such as the carry lookahead adder (CLA) or the carry select adder
(CSA). In a cell-based design environment, we can use a tool such
as the DesignWare to automatically choose a better architecture
when setting a tighter constraint to squeeze the speed of the final
adder.

2.2 Conventional left-to-right full-width
multiplier
The basic idea of the left-to-right algorithm is to arrange the rows
of the partial products up-side-down as opposed to a conventional
right-to-left multiplier. Then, to utilize the advantage afforded by

this arrangement, some on-the-fly converters should be added to
the left of the original array. The block diagram of a left-to-right
full-width multiplier is shown in Fig. 3(a) according to the design

~pp17

S 15 S 14 S 13 S 12 S 11 S 10 S 9 S 8

FH

FFFH

FFFFFH

HFFFFFFH

A O

A O

1
1

pp17

pp25pp26pp27
1 ~pp27

pp33pp34pp35pp36pp37
1 ~pp37

pp42pp43pp44pp45pp46pp47
1 ~pp47

pp41

(a)

AO

A

B

Sum

A B

Carry Sum

Carry

(b)

Figure 2. (a) An 8×8 right-to-left fixed-width multiplier and (b)
the function of the AO cell.

described in [5]. The circuit between the dashed lines is used to
interface the added converters to the original array. The first
diagonal row of type D cells is used to create the conditional forms
of the product bits in that column. Type D cells also create the
Absorb (A) and Generate (G) signals that are used to alter the
conditional product bits in every higher bit position. The
conditional products are updated as each product digit is reduced
in carry-save form from the array composed of type B cells. Fig.
3(b) depicts the logic of both type D and type B cells. A 2:1
multiplexer is used to select between the two conditional forms of
the product.

To see the advantage of the operating speed afforded by the
left-to-right algorithm, we use a simplified gate delay model to
estimate the critical path delay of the multiplication. The block
diagrams of Fig. 1 and Fig. 3(a) are redrawn in Figs. 4(a) and 4(b),
respectively, with the signal names removed for clarity. Instead,

308

the accumulated signal propagation delay is added beside each
component. The propagation delay estimation of each building
block is shown in Fig. 4(c). We find that the right-to-left array
multiplier without a fast final adder needs 59 unit delays, while the
left-to-right array multiplier with on-the-fly converters takes only
42 unit delays. Therefore, the 8 × 8 left-to-right full-width
multiplier is about 28% faster than the right-to-left full-width
multiplier, and this estimation is close to that reported in [5].

BB D FF FF F F F F H H

SUB 1

pp20pp21pp22pp23pp24pp25pp26pp27

D F F F FF F H F FH H

111 1

SUB 2

SUB 3
pp40pp41pp42pp43pp44pp45pp46pp47

pp30pp31pp32pp33pp34pp35pp36pp37

~pp47 ~pp37 ~pp27 ~pp17

2:1 Mux HFFFFFFFFH

BBB B D FF F F FF F F H H

SUB 0

pp10pp11pp12pp13pp14pp15pp16pp17

1

S15 S14 S13 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0
(a)

B AA
G G

ZO

ZI

O O

O I

ZO = ZI*(~G) + O I*G
O O = ZI*A + O I*(~A)

ZO k

DA
G

C k

S k-1 S k

ZO k-1
O O k-1 O O k

 A = ~(S k-1*(S k+C k))
 G = S k-1*S k*C k
 ZO k = S k⊕C k
 O O k = ~(S k⊕C k)
 ZO k-1 = S k-1⊕(S k*C k)
 O O k-1 = S k-1⊕(S k+C k)

(b)

Figure 3. (a) The left-to-right full-width multiplier and (b) the
functions of D cell and B cell.

There still exist rooms for speed improvement for the basic
left-to-right multiplier. To see why this is achievable, we observe
that the outputs of the on-the-fly converter arrive at the
multiplexer 11 unit delays earlier than the selection signal of the
multiplexer. Based on this observation, the work in [6] proposed to
use a strategic array of (3, 2), (5, 3), (7, 4) compressors to enhance
the operation speed of the part of the least significant product
(LSP) terms.

3. THE LEFT-TO-RIGHT FIXED-WIDTH
MULTIPLIER
3.1 Selection of the architecture
Although there are several versions of left-to-right full-width
multipliers proposed so far, we adopt the architecture of Fig. 3(a)
to design a left-to-right fixed-width multiplier. The main reason is
described as follows.

The speed bottleneck of the original left-to-right full-width
multipliers comes from the LSP part, as described before.
Therefore, the speed-up design [6] focused on reducing the signal
propagation delay of the LSP part. However, in the design of
fixed-width left-to-right multipliers, most gates lying in the LSP
part will be deleted. Thus, the acceleration effect of the above
design becomes insignificant for the fixed-width left-to-right
multipliers.

SUB 0SUB 1SUB 2

1

HHHHHHFH

FFFFFFFH

SUB 3

FFFFFFFFFFH F F F H H

FFFFFFFH

4 2 2 2 2 2 23 6 3 3 3 3 32 3

0 0 0 0 0 0 00 0 0

0 0
0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 6 8 10 7 7 73 8 10 12 9 9 9 97

0 0
2 6 10 12 14 16 133 8 12 14 16 18 15 1513

54 50 46 42 38 34 30 26 22 10 5 314185859

0 0

52 44 40 36 32 28 24 204856 16 24812

(a)

14

42

BB D FF FF F F F F H H

SUB 1

D F F F FF F H F FH H

SUB 2

SUB 3

2:1 Mux HFFFFFFFFH

BBB B D FF F F FF F F H H

SUB 0
0

0 00000 0 0
0 0 0 0 00 0 0

12 48 0 0 0 0 0000

18 14 10 0 0 0 0 0000

18 1422 0 0 0 0 0000

44 4 666 6 2 3 4 6 2 3 2 315 16 15 15 14 10

24 24

20

24 24

25

24

21

15

21 21 2122 71012 9 101220 16 12 7 9 97 2 3 2 3

28 28 2828 28 2528 2628

39

28 25 25 24 16 18 151316 1320 7 9 7 9 2 3 215 3

6111519232731353940

17 9132125293337 5

(b)

3

D2
3

0

0 0

3 4 3

F 0

00

4
6

H 0

00

2
3

B 00
0 0

3

0

3

0

(c)

Figure 4. (a) Right-to-left, (b) left-to-right full-width
multipliers, and (c) propagation delay of each block.

309

For the design in Fig. 3(a), the gates to be removed to obtain a
reduced design are in the shadow region. Similar to the design of a
right-to-left fixed-width multiplier, several error compensation
cells (AO and AND gates) should be added. The resultant block
diagram of a left-to-right fixed-width multiplier is shown in Fig. 5.

2:1 M ux

N -2

BB

B

B

B

B

D

D

D

F FF

F

F F

F F A O

F A OF

1

F

F

FF

111 1~pp47 ~pp37 ~pp27 ~pp17 pp41
pp42pp43pp44pp45pp46pp47

pp33pp34pp35pp36pp37

pp25pp26pp27

pp17

S 15 S 14 S 13 S 12 S 11 S 10 S 9 S 8
Figure 5. The proposed 8×8 left-to-right fixed-width multiplier.

To roughly compare the performance of the left-to-right and the
right-to-left fixed-width multipliers, the block diagrams of these
two multipliers with the propagation delay indicated are shown in
Figs. 6(a) and 6(b), respectively.

FH

FFFH

FFFFFH

HFFFFFF

00 0

0 0

0 0

H

0 0

4 23 6

2 6 8 10
4

3 8 10 12

2 6 10 12 14 163 8 12 14 16 18

40

42 38 34 30 26 21

32 28 24 20 6

0 0 0 0 0

0 0 0 0

0 0

2

36

0

44

4647

0

A O

A O

0

0

0

2

4

(a)

2:1 M ux

N -2

BB

B

B

B

16

24

15

21

20

23

21

20

21

20

21

2323
26

1515

23

6 6

16

30

410

24 21

18

21

18 16

B

D

D

D

14 10

410

2323 2326 26

4

14

23

F FF

F

F F

4 6

22
22 22 22 22 22

2426

6

1220 4

0
12

18

16

F F A O

F A OF

0 0 00 0 0 00
0 0 0

0
0 0 0

12

14

8

15

2424

27 27 27 27

2
0

0

2

28 24

2226
6

0

F

F

FF

0 0 0 0

0 0

4

(b)

Fig. 6. (a) Right-to-left and (b) left-to-right fixed-width
multipliers with propagation delay indicated.

We have two observations from these two diagrams.

(a) The propagation delay of the right-to-left multiplier is 47 unit
delays, but that of the left-to-right multiplier is only 30 unit
delays. Thus, the 8×8 left-to-right fixed-width multiplier is
about 36% faster than the right-to-left fixed-width multiplier
with a ripple-carry final adder.

(b) In the left-to-right multiplier, the outputs of the on-the-fly
converters arrive at the data input of the multiplexer just 1
unit delay later than the selection signal. Therefore, the
previously described speed bottleneck from the LSP in the
full-width multiplier disappears in this case. In other words,
we can obtain a high-speed fixed-width multiplier just with
an array structure, and we don’t need any compressors in the
LSP to accelerate the operating speed as proposed in [6].

3.2 Error analysis
When inspecting the designs in Fig. 2(a) and Fig. 5 carefully, we
find that both designs keep the same partial products and having
the same compensation terms. Therefore, both the left-to-right and
the right-to-left fixed-width multipliers will have the same level of
accuracy.

4. PERFORMANCE EVALUATION
In order to obtain a more realistic comparison, both kinds of 32×
32 fixed-width multipliers are carried out to the physical design
based on the cell-based design approach. All the designs use a
3.3-V 0.35-µm CMOS technology. The design procedures are
described as follows.

4*MUX2

CLA4

Co

Co

4*MUX2

CLA4

Co

Co

4*MUX2

CLA4

Co

Co

4*MUX2

CLA4

Co

Co

C15C19C23C27C31

B31
A31

B30
A30

B29
A29

B28
A28

B18
A19

B18
A18

B17
A17

B16
A16

B23
A23

B22
A22

B21
A21

B20
A20B27

A27
B26

A26
B25

A25
B24

A24

B31
A31

B30
A30

B29
A29

B28
A28

B18
A19B18A18

B17
A17

B16
A16

B23
A23B22A22

B21
A21

B20
A20

B27
A27B26A26

B25
A25

B24
A24

S29 S28 S27 S26 S25 S24 S23 S22 S21 S20 S19 S18 S17 S16S31 S30

4*MUX2

CLA4

Co

Co

C3
4*MUX2

CLA4

Co

Co

C7
4*MUX2

CLA4

Co

Co

Cin
4*MUX2

CLA4

Co

Co

C11

B15
A15

B14
A14

B13
A13

B12
A12

B11
A11

B10
A10

B9
A9

B8
A8

B7
A7

B6
A6

B5
A5

B4
A4

B3
A3

B2
A2

B1
A1

B0
A0

B15A15B14A14B13A13B12A12 B11
A11

B10
A10

B9
A9

B8
A8

B7
A7

B6
A6

B5
A5

B4
A4

B3
A3

B2
A2

B1
A1

B0
A0

S14 S3 S2 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0S15

CLA4 CLA4 CLA4 CLA4

CLA4 CLA4 CLA4 CLA4

Fig. 7. The 32-b carry-select adder used in the right-to-left

multiplier.

310

(1) Both designs are coded with the Verilog language in the
structure level. The left-to-right multiplier (LR_MPY) is
designed according to the expanded architecture of Fig. 5,
and the right-to-left multiplier is designed according to the
expanded architecture of Fig. 2(a). However, there are three
versions of the right-to-left multiplier, and the difference lies
in the implementation method of the final adder. The first
version (RL_MPY_RCA) uses a 32-b ripple-carry adder, and
the second version (RL_MPY_CSA) uses a simple 32-b
carry-select adder as shown in Fig. 7. The third version
(RL_MPY_DW) calls a 32-b adder cell from the DesignWare
library.

(2) All the designs are mapped into the gate-level design with a
default synthesis.

(3) All the designs are attached with two high speed ring
generators [9] to generate random test patterns for X and Y
inputs. The two random number generators for X and Y
inputs are assigned with different seeds, and therefore the
input patterns for X and Y inputs are different.

(4) The average power consumption is obtained by NanoSim
through applying thousands of test patterns from random
number generators.

(5) To obtain the speed information, we first use NanoSim to find
the most critical pair of the test patterns, and then use
HSPICE to extract the value of the worst propagation delay.

(6) The right-to-left multipliers are re-synthesized with tighter
speed constraints to obtain several high-speed designs. These
designs are analyzed to obtain the information of the
operating speed and power consumption according to steps (4)
and (5).

(7) All the designs are carried out all the way to the physical
design, and the layout area and the speed and power from
post-layout simulations are obtained for the final comparison.

Table 1 shows the obtained performance data. There are several
observations from this table.

(1) With default synthesis(the 2nd row of the table), the
left-to-right multiplier (LR_MPY, 3.3V) shows the highest
speed with slightly smaller power consumption as compared
to all the right-to-left multipliers.

(2) The operating speed of the right-to-left multipliers can be
improved by applying tighter speed constraints. However, the
speed improvement quickly reaches saturation but the power
consumption grows at a much higher rate.

(3) By calling the DesignWare library, the conventional
right-to-left multiplier (RL_MPY_DW) can have a better
performance than just using a simple carry-select adder
(RL_MPY_CSA). However, the speed improvement is still
limited and the power consumption grows quickly to an
unacceptable level by applying a more tight constraint.

(4) Because there is a tradeoff between speed and power
consumption, we regard the design, among all the right-to-left
multipliers, that has a smallest power-delay product as the
best conventional design. If we take it as the reference, the
proposed multiplier after default synthesis achieves 8%, 14%,
and 21% improvement in delay, power, and power-delay
product, respectively. See the last three columns of the table.

(5) Because the proposed multiplier owns a higher operating
speed, we can trade speed for lower power consumption.
When the supply voltage of the proposed design is reduced
from 3.3-V to 3.0-V (LR_MPY, 3.0V), its speed is nearly
equal to that of the best right-to-left multiplier. In this case,
the proposed multiplier has 29% and 30% improvement in
power and power-delay product, respectively.

We use Silicon Ensemble to finish the layout design, and the
layout areas are reported in Table 2. As the operating speed of the
right-to-left design gets higher by applying a tighter speed
constraint, the proposed multiplier exhibits more area advantage.
The study results show that the proposed multiplier requires a 13%
smaller layout area as compared to the best conventional design as
defined previously.

Table 1. Comparison of performance data.

Multiplier
Delay

(τ, ns)

Power
(p, mW)

p⋅τ

(pJ)

Norm.

τ

Norm.

p

Norm.

p⋅τ

LR_MPY (3.3V) 14.01 79.86 1119 0.92 0.86 0.79

LR_MPY (3.0V) 15.09 65.92 995 0.99 0.71 0.70

RL_MPY_RCA 19.83 80.95 1605 1.30 0.87 1.13

17.29 89.36 1545 1.14 0.96 1.09

16.75 98.01 1642 - - -

RL_MPY_CSA
16.09 163.78 2635 - - -

16.06 93.13 1496 - - -

15.23 93.36 1422 1.0 1.0 1.0

RL_MPY_DW
14.37 161.37 2319 - - -

Table 2 Layout areas and comparison.

Multiplier Gate Count Area (µm2) Normalized Area

LR_MPY 19743 1030225 0.87

RL_MPY_RCA 19969 1041624 0.88

22306 1135077 0.96

23770 1195523 -

RL_MPY_CSA
28995 1412769 -

23343 1177225 -

23462 1183308 1.0

RL_MPY_DW
29303 1419433 -

311

5. CONCLUSIONS
The design and evaluation results of low-power fixed-width
multipliers are presented in this paper. The proposed architecture
is based on the left-to-right algorithm for partial-product reduction.
For convenience of comparison, all the evaluated multipliers are
coded in the structure-level Verilog, and the cell-based approach is
used to obtain the physical layout. The cell-based approach is
adopted to observe the performance change by applying different
speed constraints. Default synthesis shows that the proposed
multiplier has a highest operating speed, which can be used to
trade for lower power consumption. The proposed multiplier
achieves 8%, 14%, and 13% reduction in delay, power, and layout
area, respectively, as compared to the best of right-to-left
fixed-width multiplier. When applying the voltage scaling to
balance the speed between two kinds of design, the power
reduction is increased to 29%.

6. ACKNOWLEDGMENTS
This work was supported by the National Science Council under
Research Grants NSC 91-2215-E-194-010 and NSC
92-2220-E-194-008.

7. REFERENCES
[1] S. S. Kidambi, F. El-Guibaly, and A. Antoniou,

“Area-efficient multipliers for digital signal processing
applications,” IEEE Trans. Circuits and Systems II, vol. 43,
pp. 90-95, Feb. 1996.

[2] Lan-Da Van, Shuenn-Shyang Wang, Tenqchen Shing,
Wu-Shiung Feng, and Bor-Shenn Jeng, “Design of a
lower-error fixed-width multiplier for speech processing
application,” in Proceedings of the 1999 IEEE International
Symposium Circuits and Systems, vol. 3 , pp. 130–133.

[3] J.-M. Jou, S.-R. Kuang, and R.-D. Chen, “Design of
low-error fixed-width multiplier for DSP applications,” IEEE
Trans. Circuits and System II, vol. 46, pp. 836-842, June
1999.

[4] M.D. Ercegovac and T. Lang, “Fast Multiplication Without
Carry-Propagate Addition,” IEEE Transactions on Computer,
vol. C-39, pp. 1385-1390, November 1990.

[5] R. K. Kolagotla, H. R. Srinivas, and G. F. Burns, “VLSI
Implementation of a 200-MHZ 16x16 Left-to-Right
Carry-Free Multiplier in 0.35µm CMOS Technology for
Next-Generation DSPs,” in Proceedings of the IEEE 1997
Custom Integrated Circuits Conference, pp. 469-472.

[6] A. Goldovsky, B. Patel, M. Schulte, R. Kolagotla, H. Srinivas,
and G. Burns, “Design and implementation of a 16 by 16
low-power two's complement multiplier,” in Proceedings of
the 2000 IEEE International Symposium on Circuits and
Systems, vol. 5, pp. 345-348.

[7] Zhijun Huang and M. D. Ercegovac, “ High-performance
left-to-right array multiplier design,” in Proceedings of the
16th IEEE Symposium on Computer Arithmetic, pp. 4-11,
2003.

[8] Wen-Chang Yeh and Chein-Wei Jen, “High-speed Booth
encoded parallel multiplier design,” IEEE Transactions on
Computers, vol. 49, pp. 692-701, July 2000.

[9] G. Mrugalski, J. Rajski, and J. Tyszer, “High speed ring
generators and compactors of test data,” in Proceedings of the
21st IEEE VLSI Test Symposium, pp. 57-62, May 2003.

312

	Main Page
	ISLPED'04
	Front Matter
	Table of Contents
	Author Index

