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ABSTRACT 
A fixed-width multiplier using the left-to-right algorithm for 
partial-product reduction is presented. The high-speed feature 
offered by this design is used to trade for low power. In one design, 
the proposed multiplier not only owns 8% speed improvement but 
also gains 14% power and 13% area reduction. When applying the 
voltage scaling to balance the speed, the power reduction is 
increased to 29%. 

Categories and Subject Descriptors 
B.2.1 [Arithmetic and Logic Structure]: Design Style – parallel. 

General Terms 
Design. 

Keywords 
Left-to-right multiplier, fixed-width multiplier, reduced-width 
multiplier, low power. 
1. INTRODUCTION 
The multiplier is an important kernel of digital signal processors 
(DSP) because it typically determines the performance of the chips. 
Furthermore, because of high circuit complexity, the power 
consumption and the layout area are another two design 
considerations of the multiplier. In some of the DSP applications, 
precision can be sacrificed to improve the speed and to reduce the 
area. Therefore, several fixed-width or reduced-width multipliers 
[1]-[3] have been proposed for this purpose. 
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By removing some unnecessary gates in a full-width multiplier, 
the fixed- and reduced-width multipliers also gain the advantage 
of power reduction because of the reduced gate count. In this 
circumstance, how to reduce the error caused by removing part of 
the operation in a full-width multiplier becomes the main focus in 
the previous designs for fixed- and reduced-width multipliers. 

Conventional full-width multipliers often adopt the right-to-left 
algorithm for summing the partial product terms into the final 
product. Recently, the left-to-right algorithm without a final carry 
propagation step [4]-[5] had been proposed in an attempt to 
improve the performance of the right-to-left algorithm. More 
recently, the work [6][7] used several kinds of compressors in the 
LSB parts of the partial product reduction array to further increase 
the operating speed of a left-to-right multiplier. However, to the 
best of our knowledge, no one fixed- or reduced-width multiplier 
adopts the left-to-right algorithm. 

In this work, the design of a fixed-width multiplier based on the 
left-to-right algorithm is studied. For convenience of comparison, 
all the evaluated multipliers are designed in the cell-based 
approach. Different multipliers are coded in the structure-level 
Verilog language, and the performance change can be observed by 
applying different speed constraints during synthesizing. Our 
study shows that the performance of the proposed design, without 
using any compressors and even under default synthesis, is still 
superior to conventional fixed-width multipliers utilizing a fast 
final adder. On the other hand, if tighter speed constraints are 
applied to the conventional right-to-left fixed-width multipliers, 
the proposed left-to-right fixed-width multiplier gains more power 
saving. 

The rest of this paper is organized as follows. Section 2 briefly 
reviews the background information about conventional 
fixed-width right-to-left multipliers and conventional full-width 
left-to-right multipliers. Section 3 describes the architecture design 
and the error analysis of low-power fixed-width left-to-right 
multipliers. Evaluation results are discussed in section 4, and 
conclusions are given in the last section. 

11.2
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2. BACKGROUND 
2.1 Conventional right-to-left fixed-width 
multiplier 
This section briefly reviews the design of a conventional 
right-to-left fixed-width multiplier. For designing a high-speed 
multiplier, one usually utilizes the modified Booth algorithm [8] to 
reduce the number of the rows of partial products. The block 
diagram of an 8×8 modified-Booth full-width array multiplier, 
without showing the Booth encoder, is depicted in Fig. 1. The 
partial-product reduction array can be replaced by a Wallace tree 
to shorten the summation time if the input bit-width is larger than 
16. However, the complexity of the intra-signal connection will 
become much higher. Note that the operands are summed from 
right to left in a most intuitive way. In this case, the input bit width 
is 8, and the output bit width is 16. Therefore, this is called an 8×8 
right-to-left full-width array multiplier.  
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Figure 1. An 8×8 right-to-left full-width multiplier. 

For designing a right-to-left fixed-width multiplier, those partial 
products, that enter the array from the right of the column 
generating S8, and the corresponding gates can be omitted. These 
terms are in the shadow region of Fig. 1. To reduce the accuracy 
loss induced from truncating part of the operands, one method is to 
add some compensation terms. Figure 2(a) shows the block 
diagram of such an 8×8 right-to-left fixed-width multiplier [3], 
where cells AO and the AND gate are the correction terms and the 
realized function of the AO cell is shown in Fig. 2(b). 

A word worth mentioning is that in Fig. 2(a), a ripple-carry adder 
(RCA) is used to produce the final product. If the operating speed 
is expected to be higher, one easy way is to use a fast adder instead, 
such as the carry lookahead adder (CLA) or the carry select adder 
(CSA). In a cell-based design environment, we can use a tool such 
as the DesignWare to automatically choose a better architecture 
when setting a tighter constraint to squeeze the speed of the final 
adder. 
 
2.2 Conventional left-to-right full-width 
multiplier 
The basic idea of the left-to-right algorithm is to arrange the rows 
of the partial products up-side-down as opposed to a conventional 
right-to-left multiplier. Then, to utilize the advantage afforded by 

this arrangement, some on-the-fly converters should be added to 
the left of the original array. The block diagram of a left-to-right 
full-width multiplier is shown in Fig. 3(a) according to the design 
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Figure 2. (a) An 8×8 right-to-left fixed-width multiplier and (b) 
the function of the AO cell. 

described in [5]. The circuit between the dashed lines is used to 
interface the added converters to the original array. The first 
diagonal row of type D cells is used to create the conditional forms 
of the product bits in that column. Type D cells also create the 
Absorb (A) and Generate (G) signals that are used to alter the 
conditional product bits in every higher bit position. The 
conditional products are updated as each product digit is reduced 
in carry-save form from the array composed of type B cells. Fig. 
3(b) depicts the logic of both type D and type B cells. A 2:1 
multiplexer is used to select between the two conditional forms of 
the product. 

To see the advantage of the operating speed afforded by the 
left-to-right algorithm, we use a simplified gate delay model to 
estimate the critical path delay of the multiplication. The block 
diagrams of Fig. 1 and Fig. 3(a) are redrawn in Figs. 4(a) and 4(b), 
respectively, with the signal names removed for clarity. Instead, 
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the accumulated signal propagation delay is added beside each 
component. The propagation delay estimation of each building 
block is shown in Fig. 4(c). We find that the right-to-left array 
multiplier without a fast final adder needs 59 unit delays, while the 
left-to-right array multiplier with on-the-fly converters takes only 
42 unit delays. Therefore, the 8 × 8 left-to-right full-width 
multiplier is about 28% faster than the right-to-left full-width 
multiplier, and this estimation is close to that reported in [5]. 
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Figure 3. (a) The left-to-right full-width multiplier and (b) the 
functions of D cell and B cell. 

There still exist rooms for speed improvement for the basic 
left-to-right multiplier. To see why this is achievable, we observe 
that the outputs of the on-the-fly converter arrive at the 
multiplexer 11 unit delays earlier than the selection signal of the 
multiplexer. Based on this observation, the work in [6] proposed to 
use a strategic array of (3, 2), (5, 3), (7, 4) compressors to enhance 
the operation speed of the part of the least significant product 
(LSP) terms. 

3. THE LEFT-TO-RIGHT FIXED-WIDTH 
MULTIPLIER 
3.1 Selection of the architecture 
Although there are several versions of left-to-right full-width 
multipliers proposed so far, we adopt the architecture of Fig. 3(a) 
to design a left-to-right fixed-width multiplier. The main reason is 
described as follows. 

The speed bottleneck of the original left-to-right full-width 
multipliers comes from the LSP part, as described before. 
Therefore, the speed-up design [6] focused on reducing the signal 
propagation delay of the LSP part. However, in the design of 
fixed-width left-to-right multipliers, most gates lying in the LSP 
part will be deleted. Thus, the acceleration effect of the above 
design becomes insignificant for the fixed-width left-to-right 
multipliers. 
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Figure 4. (a) Right-to-left, (b) left-to-right full-width 
multipliers, and (c) propagation delay of each block. 
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For the design in Fig. 3(a), the gates to be removed to obtain a 
reduced design are in the shadow region. Similar to the design of a 
right-to-left fixed-width multiplier, several error compensation 
cells (AO and AND gates) should be added. The resultant block 
diagram of a left-to-right fixed-width multiplier is shown in Fig. 5. 
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Figure 5. The proposed 8×8 left-to-right fixed-width multiplier. 

To roughly compare the performance of the left-to-right and the 
right-to-left fixed-width multipliers, the block diagrams of these 
two multipliers with the propagation delay indicated are shown in 
Figs. 6(a) and 6(b), respectively. 
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Fig. 6. (a) Right-to-left and (b) left-to-right fixed-width 
multipliers with propagation delay indicated. 

We have two observations from these two diagrams. 

(a) The propagation delay of the right-to-left multiplier is 47 unit 
delays, but that of the left-to-right multiplier is only 30 unit 
delays. Thus, the 8×8 left-to-right fixed-width multiplier is 
about 36% faster than the right-to-left fixed-width multiplier 
with a ripple-carry final adder. 

(b) In the left-to-right multiplier, the outputs of the on-the-fly 
converters arrive at the data input of the multiplexer just 1 
unit delay later than the selection signal. Therefore, the 
previously described speed bottleneck from the LSP in the 
full-width multiplier disappears in this case. In other words, 
we can obtain a high-speed fixed-width multiplier just with 
an array structure, and we don’t need any compressors in the 
LSP to accelerate the operating speed as proposed in [6]. 

3.2 Error analysis 
When inspecting the designs in Fig. 2(a) and Fig. 5 carefully, we 
find that both designs keep the same partial products and having 
the same compensation terms. Therefore, both the left-to-right and 
the right-to-left fixed-width multipliers will have the same level of 
accuracy. 

4. PERFORMANCE EVALUATION 
In order to obtain a more realistic comparison, both kinds of 32×
32 fixed-width multipliers are carried out to the physical design 
based on the cell-based design approach. All the designs use a 
3.3-V 0.35-µm CMOS technology. The design procedures are 
described as follows. 
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Fig. 7. The 32-b carry-select adder used in the right-to-left 

multiplier. 
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(1) Both designs are coded with the Verilog language in the 
structure level. The left-to-right multiplier (LR_MPY) is 
designed according to the expanded architecture of Fig. 5, 
and the right-to-left multiplier is designed according to the 
expanded architecture of Fig. 2(a). However, there are three 
versions of the right-to-left multiplier, and the difference lies 
in the implementation method of the final adder. The first 
version (RL_MPY_RCA) uses a 32-b ripple-carry adder, and 
the second version (RL_MPY_CSA) uses a simple 32-b 
carry-select adder as shown in Fig. 7. The third version 
(RL_MPY_DW) calls a 32-b adder cell from the DesignWare 
library. 

(2) All the designs are mapped into the gate-level design with a 
default synthesis. 

(3) All the designs are attached with two high speed ring 
generators [9] to generate random test patterns for X and Y 
inputs. The two random number generators for X and Y 
inputs are assigned with different seeds, and therefore the 
input patterns for X and Y inputs are different. 

(4) The average power consumption is obtained by NanoSim 
through applying thousands of test patterns from random 
number generators. 

(5) To obtain the speed information, we first use NanoSim to find 
the most critical pair of the test patterns, and then use 
HSPICE to extract the value of the worst propagation delay. 

(6) The right-to-left multipliers are re-synthesized with tighter 
speed constraints to obtain several high-speed designs. These 
designs are analyzed to obtain the information of the 
operating speed and power consumption according to steps (4) 
and (5). 

(7) All the designs are carried out all the way to the physical 
design, and the layout area and the speed and power from 
post-layout simulations are obtained for the final comparison. 

Table 1 shows the obtained performance data. There are several 
observations from this table. 

(1) With default synthesis(the 2nd row of the table), the 
left-to-right multiplier (LR_MPY, 3.3V) shows the highest 
speed with slightly smaller power consumption as compared 
to all the right-to-left multipliers. 

(2) The operating speed of the right-to-left multipliers can be 
improved by applying tighter speed constraints. However, the 
speed improvement quickly reaches saturation but the power 
consumption grows at a much higher rate. 

(3) By calling the DesignWare library, the conventional 
right-to-left multiplier (RL_MPY_DW) can have a better 
performance than just using a simple carry-select adder 
(RL_MPY_CSA). However, the speed improvement is still 
limited and the power consumption grows quickly to an 
unacceptable level by applying a more tight constraint. 

(4) Because there is a tradeoff between speed and power 
consumption, we regard the design, among all the right-to-left 
multipliers, that has a smallest power-delay product as the 
best conventional design. If we take it as the reference, the 
proposed multiplier after default synthesis achieves 8%, 14%, 
and 21% improvement in delay, power, and power-delay 
product, respectively. See the last three columns of the table. 

(5) Because the proposed multiplier owns a higher operating 
speed, we can trade speed for lower power consumption. 
When the supply voltage of the proposed design is reduced 
from 3.3-V to 3.0-V (LR_MPY, 3.0V), its speed is nearly 
equal to that of the best right-to-left multiplier. In this case, 
the proposed multiplier has 29% and 30% improvement in 
power and power-delay product, respectively. 

We use Silicon Ensemble to finish the layout design, and the 
layout areas are reported in Table 2. As the operating speed of the 
right-to-left design gets higher by applying a tighter speed 
constraint, the proposed multiplier exhibits more area advantage. 
The study results show that the proposed multiplier requires a 13% 
smaller layout area as compared to the best conventional design as 
defined previously. 

Table 1. Comparison of performance data. 

Multiplier 
Delay 

(τ, ns) 

Power 
(p, mW)

p⋅τ 

(pJ) 

Norm. 

τ 

Norm. 

p 

Norm. 

p⋅τ 

LR_MPY (3.3V) 14.01 79.86 1119 0.92 0.86 0.79 

LR_MPY (3.0V) 15.09 65.92 995 0.99 0.71 0.70 

RL_MPY_RCA 19.83 80.95 1605 1.30 0.87 1.13 

17.29 89.36 1545 1.14 0.96 1.09 

16.75 98.01 1642 - - - 
 

RL_MPY_CSA 
16.09 163.78 2635 - - - 

16.06 93.13 1496 - - - 

15.23 93.36 1422 1.0 1.0 1.0 
 

RL_MPY_DW 
14.37 161.37 2319 - - - 

Table 2 Layout areas and comparison. 

Multiplier Gate Count Area (µm2) Normalized Area 

LR_MPY 19743 1030225 0.87 

RL_MPY_RCA 19969 1041624 0.88 

22306 1135077 0.96 

23770 1195523 - 
 

RL_MPY_CSA 
28995 1412769 - 

23343 1177225 - 

23462 1183308 1.0 
 

RL_MPY_DW 
29303 1419433 - 
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5. CONCLUSIONS 
The design and evaluation results of low-power fixed-width 
multipliers are presented in this paper. The proposed architecture 
is based on the left-to-right algorithm for partial-product reduction. 
For convenience of comparison, all the evaluated multipliers are 
coded in the structure-level Verilog, and the cell-based approach is 
used to obtain the physical layout. The cell-based approach is 
adopted to observe the performance change by applying different 
speed constraints. Default synthesis shows that the proposed 
multiplier has a highest operating speed, which can be used to 
trade for lower power consumption. The proposed multiplier 
achieves 8%, 14%, and 13% reduction in delay, power, and layout 
area, respectively, as compared to the best of right-to-left 
fixed-width multiplier. When applying the voltage scaling to 
balance the speed between two kinds of design, the power 
reduction is increased to 29%. 
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