
  

Application Adaptive Energy Efficient Clustered Architectures 
Diana Marculescu 

Carnegie Mellon University 
Department of Electrical and Computer Engineering 

Pittsburgh, PA 15213-3890 
dianam@ece.cmu.edu 

 
ABSTRACT 
As clock frequency and die area increase, achieving energy efficiency, 
while distributing a low skew, global clock signal becomes 
increasingly difficult. Challenges imposed by deep-submicron 
technologies can be alleviated by using a multiple voltage/multiple 
frequency island design style, or otherwise called, globally 
asynchronous, locally synchronous (GALS) design paradigm. This 
paper proposes a clustered architecture that enables application-
adaptive energy efficiency through the use of dynamic voltage scaling 
for application code that is rendered non-critical for the overall 
performance, at run-time. As opposed to task scheduling using 
dynamic voltage scaling (DVS) that exploits workload variations 
across applications, our approach targets workload variations within 
the same application, while on-the fly classifying code as critical or 
non-critical and adapting to changes in the criticality of such code 
portions. Our results show that application adaptive variable 
voltage/variable frequency clustered architectures are up to 22% better 
in energy and 11% better in energy-delay product than their non-
adaptive counterparts, while providing up to 31% more energy savings 
when compared to DVS applied globally. 
Categories and Subject Descriptors: C.1.3 [Other Architecture 
Styles]: Adaptable architectures, Pipeline Processors. 
General Terms: Algorithms, Design, Performance, Measurement. 
Keywords: Dynamic voltage scaling, Clustered architectures. 
 

1 INTRODUCTION 
Driven by technology scaling and increased complexity, achieving 

power efficiency has become an increasingly difficult challenge, 
especially in the presence of increasing die sizes, higher clock speeds 
and variability driven design issues. To cope with these challenges, a 
design style based on multiple voltage/frequency islands has been 
proposed recently [1]. In addition to controlling better local clock 
skews and allowing for local performance optimizations, a multiple 
voltage/multiple frequency island design style may enable application-
driven adaptation for better energy efficiency.   

In support of a frequency island design style, a globally 
asynchronous, locally synchronous (GALS) approach may serve as an 
intermediate step between fully synchronous and fully asynchronous 
designs, while at the same time providing local adaptation capabilities. 
In a GALS design, several independently clocked regions 
communicate with each other asynchronously. This approach reduces 
the problems associated with a global clock distribution network while 
allowing designers to use synchronous design techniques for each of 
the synchronous clock domains. Such an approach has been studied in 
the case of high-performance processors [2,3], with beneficial impact 
on power efficiency. At the same time, in the case of superscalar, out-
of-order processors, the complexity of the dynamic scheduling 

hardware limits frequency growth [4]. In addition to limiting the 
performance of such an architecture, complex structures also consume 
more power than simpler equivalent structures. One way to avoid 
complexity is to partition or cluster resources into groups. Partitioning 
reduces the size of monolithic structures and the control logic 
associated with them. However, performance of a clustered 
architecture is sensitive to the steering mechanism it uses. 

Combining the potential power savings of removing the global 
clock with savings due to reducing the complexity of a given design, 
while also allowing for local optimizations and workload-driven 
adaptation, is poised to yield power efficient architecture 
configurations. While several GALS designs have been proposed and 
have yielded reasonable power-performance tradeoffs if the different 
synchronous regions can be clocked at different speeds [2,3,5], 
previous work has looked at clustering hardware (and thus, executed 
instructions) based on type (i.e., integer, floating-point, memory), as 
opposed to clustering based on importance or criticality. Recent 
studies have shown that some instructions have less impact on 
execution time than others. These instructions, called non-critical 
instructions, may be run at a lower speed (and thus, lower power), 
without impacting performance significantly. However, the use of an 
application adaptive control mechanism for dynamically selecting the 
speed (or voltage) of the non-critical cluster has not been explored, nor 
implemented.  

The contribution of this paper is twofold: 
• Explore the impact of a GALS design style on a clustered 

architecture that uses an explicit dynamic critical path prediction 
mechanism to steer instructions to one of two existing clusters, 
depending on their criticality or importance to the overall 
performance. 

• Propose application adaptive, dynamic control mechanisms able to 
adjust the speed/voltage of the cluster running non-critical code such 
that it matches the overall application profile better.  
This paper is organized as follows. Section 2 overviews existing 

related work. In Section 3, the proposed architecture is described, with 
emphasis placed on the selection of clock domains, asynchronous 
communication mechanisms, and resource clustering parameters. 
Section 4 introduces several types of dynamic critical path predictors 
and power model for each of them, while also describing the dynamic 
control mechanisms. Section 5 describes the experimental 
methodology and an evaluation of the application adaptive variable 
voltage/frequency clustered architecture, when compared to the non-
adaptive counterpart. Finally, Section 6 concludes the paper and 
outlines possible directions for future work. 

2 RELATED WORK 
Although the multiple voltage/frequency island design styles has 

been introduced recently [1], the GALS design paradigm has a history 
of a couple of decades [6]. The impact of using a GALS design style 
for power efficient ASICs has been explored in [7], while more 
recently the concept has been applied to high performance, superscalar 
processors [2,3,5,8]. There, the idea of using varying speeds and local 
voltages has been explored in the context of an Alpha-like architecture, 
with back-end clustering based on the type of instructions (e.g., 
integer, floating point, or memory), and not their importance or 
criticality to overall performance.  
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Casmira and Grunwald [9] investigated applying scheduling slack 
to dynamic instruction issue. If an instruction had sufficient slack, then 
it was sent to a half-speed functional unit; otherwise, it went to a full-
speed one. Instructions with sufficient slack can then be considered 
non-critical. Casmira and Grunwald’s [9] determination of criticality is 
localized; it is computed within a 24–entry instruction window. The 
method used by Fields et al. [10], however, is global, which makes it 
more accurate and robust. [9] also only uses functional units of 
different speeds, while the architecture presented in this paper has the 
ability to run entire sections of the processor at different speeds and 
dynamically change them. Tune et al. [11] propose several heuristics 
that can be used to dynamically predict the critical path. The heuristics 
are localized, but the impact of this is mitigated by their sensitivity to 
machine resources. While the heuristics are less accurate and robust 
then the global method proposed by Fields et al. [10], their simplicity 
may cause them to be more power efficient to implement. Fields et al. 
[12] discuss slack as a measure of criticality. Criticality can only 
divide instructions into two classes: critical and non-critical. If a 
measure of criticality is known, however, multiple classes can be 
defined, leading to more powerful control strategies. Such a strategy 
could be used to steer instructions to more than two clusters. Later on, 
Tune et al. [13] introduce the concept of tautness: slack measures how 
much an instruction can be delayed before it becomes critical; tautness 
measures how much an instruction can be optimized before it becomes 
non-critical. Using these metrics, [13] compares several critical path 
predictors and comment on the accuracy of several prediction and 
training mechanisms. 

3 BASELINE MICROARCHITECTURE 
In this section, we describe the proposed clustered architecture that 

uses a dynamic explicit critical path prediction mechanism to steer 
instructions, a GALS clocking scheme and support for dynamic control 
of the non-critical cluster speed 
3.1 Clock Domain Selection 

In a standard pipelined out-of-order superscalar processor, a series 
of events takes place when handling an instruction. First, one or more 
instructions are fetched from the instruction cache. A branch predictor 
allows fetching to continue even when the next address to be fetched is 
not precisely known. Next, instructions are decoded to determine their 
purpose and registers are renamed to reduce false dependencies. If an 
operand register’s content is valid, it is read from the register file and it 
travels through the pipeline with the instruction; otherwise, a flag is set 
and the instruction watches for the result to be produced. After register 
renaming, instructions are dispatched to an issue queue. When all 
operands of an instruction are ready and the appropriate functional unit 
is available, the instruction is woken up and is marked ready to 
execute. Based on a given policy, ready instructions are selected for 
execution during a given cycle. Once selected, the instruction issues, 
executes, and writes its result back to the register file. Results also 
traverse data bypass paths to waiting instructions in the issue window. 
Finally, instructions commit. 

The above description suggests some natural boundaries in the 
pipeline. For instance, a decoupling buffer can often be inserted 
between the fetch and decode stages. The pipeline also has closely 
coupled regions that should not be separated. The issue and execution 
logic, for example, must be able to quickly share information back and 
forth. In addition to the boundaries suggested by the architecture’s 
functionality, boundaries are also implied by current/future technology 
trends. As feature sizes shrink and die areas increase, it takes more 
cycles for a signal to propagate from one end of the die to the other. 
Matzke [14] studies this trend and suggests that, for a 0.13um process, 
only 33% of the die length will be reachable in a single clock period 
(assuming a 1.2GHz clock); for a 0.1um process, only about 16% of 
the die length is reachable in a single clock period. The trend of 
increasing wire delay has several implications. First, it suggests a 
minimum number of clock domains for a given technology, if a signal 
must be able to propagate throughout the entire clock domain in a 
single cycle. Second, it implies that architectures with distributed 

rather than centralized structures are likely to have better performance, 
as localization will be a key feature of future successful designs.  

With these implied boundaries and limitations in mind, the clock 
domains were chosen as shown in Table 1. The selection of domains is 
similar to that made by Iyer et al. [2,8] and Semeraro et al. [3,5]. A 
significant difference, however, is that the back-end clock domains are 
clustered based on criticality rather than type.  

 
Table 1. Stages and clock domains in the processor architecture 
Stage Operation Domains 
1, 2, 3 Fetch from I-cache. Predict branch outcomes. 1 
4 Decode. Speculatively update branch predictor. 2 
5, 6, 7 Rename registers. Read from register file. 2 
8 Dispatch to clusters. 2 
9, 10 Dispatch to issue queues. 3, 4 
11 Issue to functional units. 3, 4 
12 Execute. 3, 4 
13 Wakeup. Writeback. 3, 4 
14 Recover from branch mispredicts. Write to 

register file. Commit. 
2 

 
Figure 1 shows what resources are included in each clock domain 

of the GALS architecture and illustrates the flow of information within 
and between domains. The proposed architecture currently has 
fourteen stages to reflect current trends for increasingly deep pipelines 
(such as the Pentium 4 [15], which has more than 20 pipeline stages). 
The first clock domain consists of the fetch logic and takes three 
stages. The branch prediction unit and level 1 and level 2 instruction 
caches are located here; if a trace cache were present, as in the Pentium 
4 [15], it would also be in this clock domain. The second clock domain 
contains the rest of the front end—decode, rename, and dispatch 
stages—as well as the commit stage. We justify grouping the decode 
stage with other stages by assuming a RISC architecture, or a CISC 
architecture with a trace cache, which greatly simplifies the decoding 
logic. The rename step takes three stages because trends suggest that 
additional cycles will be needed to access large data structures (such as 
renaming tables) in future designs. The register file is included in the 
second domain because it is closely coupled with the rename logic and 
the commit logic. Performing register read at rename, rather than at 
issue, also removes the need to have multiple copies of the register file 
in a two-cluster configuration. 

 

Figure 1. A clustered architecture with four clock domains. Cluster 1 
runs non-critical code, while Cluster 2 runs critical code and includes 
the D-cache (memory operations are considered critical). 

The dispatch stage is responsible for steering instructions based on 
criticality to one of the two remaining clock domains (Cluster 1 and 
Cluster 2, respectively). The third clock domain is the non-critical one 
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and does not handle any memory operations. Instead, the fourth clock 
domain, which handles critical instructions, becomes responsible for 
all memory operations. Placing all of the memory operations within a 
single clock domain removes the need to devise a way to have more 
than one domain share the data cache (such as having two copies of the 
data cache or using inter-cluster communication to handle non-critical 
memory accesses), which improves both power consumption and 
performance. Other than the changes to memory, the third and fourth 
clock domains in the two-cluster configuration are very similar to the 
third clock domain in the one-cluster configuration. 
3.2 Asynchronous Communication Mechanism 

In a design that uses a GALS clocking scheme, clocking domains 
use asynchronous communication mechanisms to communicate. These 
mechanisms have been the focus of a considerable amount of research 
and a wide variety are available, such as synchronization FIFOs [16], 
stretchable clocks [17], and pausable clocks [6,18]. In this paper, we 
assume an asynchronous FIFO queue, based on the low-latency token-
ring implementation proposed by Chelcea and Nowick [19]. The FIFO 
is composed of multiple cells organized as a circular queue, with each 
cell implemented as a central latch and its associated control logic. 
Successive write operations are performed to successive cells at the 
head of the circular queue, until all of the cells are full. The read 
operations are serviced in the same way, starting from the tail of the 
structure. If the FIFO queue is neither full nor empty most of the time, 
it can provide the low latency offered by synchronizers while 
maintaining a high bandwidth through pipelining. A similar 
synchronization mechanism has been used before [2,3,5,8]. 
3.3 Resource Clustering 

When the architecture is split into two-clusters, the same total 
number of resources is present, but distributed between the two 
clusters (Table 2). While there are a number of ways to distribute the 
resources, our work places three-quarters of the available resources in 
the first cluster (the non-critical cluster) and one-quarter of the 
available resources in the second cluster (the critical cluster). As 
discussed above, memory resources are an exception. The 3:1 division 
of resources reflects the fact that an estimated 75% of instructions are 
non-critical [10,11]. Results from previous work [20] also suggest this 
partitioning to be reasonable, while pointing the fact that critical code 
does not need to rely on dynamic scheduling for increasing 
performance due to tight dependencies on critical path. 

 
Table 2. Processor configuration for the clustered architecture 

Fetch/Decode/Rename
/Dispatch/Commit 

4 

Issue 12  (4 int, 4 fp, 4 mem) 
L1 Instruction Cache 32KB, 2-way SA; 32B blocks; 1 cycle latency 
L1 Data Cache 32KB, 4-way SA; 32B blocks; 1 cycle latency 
L2 Unified Cache 256KB, 2-way SA; 64B blocks; 6 cycles latency 
Physical register file 72 integer, 72 floating-point 
Branch predictor Alpha 21264 like: Combined predictor which 

uses a bimodal and a 2-level PAg 
Non-critical resources : Critical resources 

Integer ALUs (3 + 1 mult/div units :  1 + 1 mult/div units ) 
Floating-point ALUs (3 + 1 mult/div units :  1 + 1 mult/div units ) 
Load/Store Units (0 : 2) 
Integer issue queue  (15 entries : 5 entries ) 
FP issue queue  (12 entries : 4 entries ) 
Mem issue queue (0 entries : 16 entries ) 

 
Instructions are distributed between the two clusters via dynamic 

steering logic during the first dispatch stage. A dynamic steering 
scheme can adapt to the state of the pipeline better than a static 
scheme, so it can minimize the number of inter-cluster 
communications and balance the workload better. This translates into 
improved performance. Several dynamic steering algorithms have been 
explored in the literature, including random steering and register 
dependence (or register mapped) steering, which has a number of 
variations [21]. Our work uses pure criticality to steer instructions. 

Criticality is dynamically predicted using the algorithms discussed in 
Section 4. 

Often, load balancing is necessary in clustered architectures to be 
sure that resources are not underutilized. Our results show that only in 
10-15% of the cases a load balancing mechanism would help alleviate 
potential bottlenecks, hence we decided against using a load balancing 
technique.  

4 DYNAMIC CRITICAL PATH PREDICTION 
A critical instruction is an instruction whose data dependencies 

and/or resource requirements induce performance bottlenecks. Since 
the criticality of an instruction in case of dynamically scheduled 
processors is partly determined by the characteristics of the 
microarchitecture, criticality cannot be determined at compile time. 
The dynamic critical path prediction mechanisms used in this paper are 
similar to the work done by Fields et al. [10], in addition to a lower 
cost, but sufficiently accurate version that we propose. The token-
based predictor [10] was chosen because of its accuracy and 
robustness. As it will be seen later, however, to be accurate, its size 
and complexity become prohibitive due to its power overhead. 
4.1 Critical vs. Non-Critical Instructions 

To characterize the criticality of instructions, a dependency graph 
can be used. In such a directed graph, instructions constitute the nodes, 
while edges show the dependency information. The weight of each 
edge is the time needed to resolve the dependence. The challenge in 
the case of superscalar processors is that these weights are dependent 
on the run-time conditions, and, for better results, dynamic versions of 
such graphs should be constructed and managed on the fly [10]. Given 
such a graph, the critical path is the longest weighted path from the 
first dispatch node to the last commit node; any instructions on the 
critical path are considered critical 

To be able to classify instructions in critical or non-critical, the 
impact of delaying each one of them on the overall execution time 
should be assessed. Given the complexity of typical dependency 
graphs, especially for dynamically scheduled processors, heuristics can 
be used to keep track of the most relevant information. For example, 
the approach in [10] assumes that the execution time of all instructions 
is increased by one cycle. Then, the latency of the critical and non-
critical instructions is decreased in turn and the change in performance 
is compared. Decreasing the latency of critical instructions should have 
a much larger impact on performance than decreasing the latency of 
the non-critical instructions. As one might expect, however, there is 
not a one-to-one correspondence between the total number of cycles 
removed from execution time and the total number of latency cycles 
removed from critical instructions. Instead, this ratio provides a 
measure of how dominant the critical path is. Near critical paths may 
emerge if the dominant critical path is optimized, limiting the 
performance gain. Additionally, some performance improvement may 
be seen by reducing the latency of the non-critical instructions. This 
characteristic exists because the model does not capture all possible 
architectural dependencies, allowing some critical instructions to 
escape notice.  

Two additional key observations, that reduce the complexity of 
hardware based predictors, should be considered. First, the weights of 
the edges in the dependency graph are irrelevant – only the order in 
which the edges arrive is meaningful. What matters is when an 
instruction completes, not how long it takes to do so. A multi-cycle 
multiply instruction may be non-critical, for example, if it produces a 
required result before a single-cycle addition instruction does. If an 
edge is on the critical path, then it must be last-arriving. Otherwise, the 
edge could be delayed without penalty, which contradicts the 
definition of criticality. Likewise, if an edge is not a last-arriving edge, 
then it is not critical. A long chain of last-arriving edges is therefore 
likely to be part of the critical path, and instructions in the chain are 
likely to be critical. Second, if criticality is to be analyzed and detected 
in hardware, it is not possible for a dependency to span more than the 
number of instructions in flight between decode and commit as it 
would exceed the available state space in the dynamically scheduled 



 

processor (this number is usually characterized by rob_size, the size of 
the reorder buffer that holds instructions from the time they are 
decoded until they have committed). These two observations have 
proven to be useful for reducing the complexity of critical path 
predictors. In addition, critical instructions are typically tightly coupled 
in a dependency chain that is unlikely to benefit from an out-of-order, 
dynamically scheduled microarchitecture [20]. Hence, an in-order 
issue for the critical cluster is enough, without any significant 
performance penalty. 
4.2 Token-Based Critical Path Prediction 

The dynamic critical path prediction hardware as defined in [10] 
can be divided into two parts: prediction and training. The prediction 
hardware is simply an array of hysteresis counters indexed by the 
program counter and accessed during the fetch stage. If the hysteresis 
counter is above a certain threshold, the instruction is predicted 
critical; otherwise, it is predicted non-critical. The information is 
stored in a Critical Path Prediction table which is similar in 
functionality to the Branch Target Buffer. 

The training hardware is more complicated and is implemented as a 
special array [10]. Training is performed in the commit stage via 
sampling. As each instruction commits, it is added to the token array in 
FIFO fashion. Next, a token is planted into the entry corresponding to 
the committing instruction, if possible. The bit of the training array 
entry corresponding to the available token must then be set for the 
committing instruction. Then, as other instructions commit, the token 
is propagated forward along all last-arriving edges. When an 
instruction commits, it knows which instructions in the dependency 
graph are the sources for its last-arriving edges. To propagate tokens, 
the token trainer array entry for the given source instruction is read and 
any tokens in the corresponding entry are copied to the entry of the 
destination instruction for the currently committing instruction. Once 
the processor has committed a certain number of instructions, with 
respect to the planting of the token, the token is checked for liveness. If 
the token is still alive, then it is likely that the instruction that it was 
planted in is critical; otherwise, the instruction is likely to be non-
critical. Finally, the prediction array is updated to reflect the training 
decision, and the token is freed. 

In our case, a coarse grain approach—instead of a fine grain one—
was used to roughly estimate the accuracy of the predictor. Instead of 
changing the latency of individual instructions, the speed of an entire 
cluster was changed. Doubling the speed of the critical cluster (which 
has a third of the functional units), created, on average, a performance 
increase of 9.9%. Doubling the speed of the non-critical cluster (which 
has three functional units and is responsible for roughly three quarters 
of the total number of instructions executed) created a performance 
increase of only 8.0%. This result implies that the dynamic critical path 
predictor is working as intended. 
4.3 Dependency-Based Critical Path Prediction 

Although very accurate, the token-based predictor described before 
has the potential of becoming a significant source of additional power 
overhead due to the extra arrays needed to store token information. On 
the other hand, if structures are downsized for increased power 
efficiency, the prediction accuracy decreases. As suggested before 
[20], an alternative, less expensive predictor may be employed, based 
on (for example): “age” of instructions in the issue window; 
dependency chain length; dependency sub-tree size (i.e., the number of 
dependent instructions); wake-up information (i.e., the number of 
instructions woken-up when bypassing results). Results indicate that 
marking the oldest, not ready to issue instructions in the issue window 
as critical fares the best [20]. The only hardware support needed for 
this (in addition to the Critical Path Prediction table storing 
information about criticality of instructions) is a set of counters whose 
bitwidth depends on the issue window size. One downside of such 
predictors is that they see a smaller window of the dependency graph 
(i.e., only instructions present in the issue window, and not the entire 
set of in-flight instructions). 

We propose a modified version of this heuristic predictor which 
turns out to be similar in performance and accuracy with the token 
based predictor. In addition to marking instructions at the bottom of 
the issue queue as critical, our proposed heuristic also marks as critical 
instructions that wake-up instructions already scheduled for running in 
the critical cluster. A similar, but not identical, policy has been used 
before [20], in that instructions waking up the oldest instructions in the 
issue window were also marked as critical. 

Our results show that, for the pipeline considered in this paper, the 
proposed dependency based heuristic fares slightly better on average 
than the token based predictor, and without the extra hardware 
structures imposed by it.  
4.4 Practical Considerations 

The Critical Path Prediction table used in both token-based and 
dependency-based prediction works much like the branch target buffer 
(BTB), so its power consumption is modeled in the same way, as a 
simple array structure. Six bit counters with hysteresis are used to 
follow the criticality of a given instruction (Table 3).  

While Fields et al. [10] use a standard monolithic reorder buffer, in 
our case, however, rob_size is the total number of pipeline registers 
after the decode stage, including the issue queues. It should be noted 
that some pipeline registers are part of a larger queue and that all 
entries of the queue are included in the total. 

Because of token management, the token training array is too 
complex to be treated as a simple array and is therefore handled as a 
content addressable memory (CAM). Thus, the token training array has 
(number of nodes per instruction x commit width) read ports and 
(commit width) write ports. Assuming that clock gating is used on a per 
cycle basis, the token training array’s power consumption can be 
scaled by the number of instructions committed in a cycle, yielding a 
significant reduction in power. Also, the number of ports can be 
chosen so as to handle only the average commit width, dropping extra 
information or caching it for delayed processing; such a step would 
understandably reduce the accuracy of the predictor. Since the number 
of read and write ports is proportional to the commit width, the power 
consumption is still quite large and scales poorly, even if these power 
saving techniques are employed.  

 
Table 3. Dynamic critical path prediction hardware characteristics 

Critical Path 
Prediction Table  

1.5KB in size  (2K entries x 6b per counter 
x direct mapped); 1 read/write port 

Token- and 
dependency-
based 
predictors 

Hysteresis 6 bit counters  (saturate at 0 and 63) 
Increment by 8 when trained as critical 
Decrement by 1 when trained as non-
critical 
Predict as critical if hysteresis is above 8 

   
Token Array 416B in size    (104 entries x 32b per entry 

x direct mapped);  
12 read ports;  4 write ports 

Token 
information 

128B in size    (8 entries x 128b per entry x 
direct mapped); 4 read/write ports 

No. tokens used 8 
Planting of 
tokens 

If a token is available and the instruction 
does not have a token already, then plant a 
token in the execute node. 

Token-based 
predictor 

Liveness check 
for tokens 

After 185 committed instructions    (1.75 x 
rob_size) 

 
A final piece of hardware needed for dynamic critical path 

prediction (which was not mentioned in [10]), is the token 
management hardware, which tracks free tokens and liveness counters. 
We have considered this piece of logic as a four-ported array that is 
accessed every cycle that an instruction commits, with no clock or 
power gating capabilities. A complete summary of the dynamic critical 
path prediction hardware’s characteristics is provided in Table 3. 
4.5 Non-Critical Cluster Dynamic Control Algorithms 

Previous work on GALS superscalar processors has explored the 
possibility of achieving better power efficiency through the use of 



 

dynamic control algorithms for local speeds and voltages, so as to 
match a given application’s profile. A threshold based control  
algorithm triggered by issue queue occupancy has been proposed in 
[8], while an aggressive attack-decay algorithm based on monitoring 
overall performance counters has been used in [5]. The idea of queue 
occupancy monitoring for voltage scaling is not new – in a real design 
case [22] such a control mechanism has been successfully used in 
conjunction with self-timed interface-based GALS systems. 

For the purpose of providing adaptability depending on the 
application profile, we have considered two control algorithms (Figure 
2). The relative-threshold based control algorithm checks the ratio of 
issue queue occupancy in the current and previous monitoring interval. 
While this is similar to the attack-decay algorithm presented in [5], it 
does not check for limits on performance degradation as the non-
critical cluster produces a 0.08% overall performance degradation, for 
each 1% slowdown factor (as described in Section 4.2), so the impact 
on overall performance can be quantified easily, without keeping 
another performance counter. The main idea is to slowdown 
progressively if the issue queue occupancy is within a certain relative 
factor (down), while ramping up the speed by more  than one power 
state when occupancy increases significantly (by a relative factor of 
up). 

 
 
Figure 2. The relative- (a) and absolute-threshold (b) based control 
algorithms. In both cases, state zero is the highest speed/largest 
voltage, while state three is the lowest speed/lowest voltage (Vdd,0 > Vdd,1 
> Vdd,2 > Vdd,3) 

 
The absolute-threshold based algorithm checks the average issue 

queue occupancy and, if below a certain low threshold, the non-critical 
cluster is put in the next low power state. Otherwise, if the average 
occupancy is larger than a high threshold, the non-critical cluster is 
ramped up to next high power state.  

Table 4. Dynamic control algorithms settings 
Adaptation interval  10K instructions 
Slowdown factors  1, 1.5, 2, 2.5 
Relative difference factors for the 
relative threshold-based alg. 

1.1 (up) and 0.8 (down) 

Threshold values  for the absolute-
threshold based alg. 

Int: 4, 7, 10, 12 
FP: 2, 3, 5, 6 

 
For the results presented in this paper, we have assumed four power 

states characterized by relative slowdown factors as shown in Table 4. 
The voltages corresponding to each state have been determined based 
on the delay-voltage dependency: Delay ∝ Vdd/(Vdd-Vt)α (for a baseline 
value of Vdd = 3.3V, Vt = 0.55V and α = 1.4 in a 0.18um technology) 
and assuming slowdown factors as in Table 4. The threshold values 
(th0, th1, th2, th3) have been computed based on the threshold values 
for the integer and FP issue queues given in Table 4 (e.g., th0 is the 
sum of the highest thresholds for integer and FP, or 12+6 = 18; 
similarly, th3 is the sum of the lowest threshold values for integer and 
FP issue queues or 4+2 = 6.) As assumed before [2,3,5,8], we assume 

that the system does not stop working while the non-critical cluster 
voltage or speed are changing. 

5 EXPERIMENTAL RESULTS 
The SimpleScalar toolset [23] was used to create a cycle-accurate 

model of a fourteen stage superscalar pipeline with out-of-order 
execution. Out-of-order execution was accomplished through the use 
of issue queues and a register file instead of the default register update 
unit/load store queue (RUU/LSQ) combination. The configuration of 
the proposed architecture has been summarized in Tables 2-4.  

The GALS clustered architecture was simulated using an event-
driven simulation engine, similar to the one described previously 
[2,3,5,8]. For the results presented in this paper, each clocking domain 
in the GALS processor is run at the same frequency, except for the 
non-critical cluster clock domain. Asynchronous FIFO models based 
on work done by Chelcea and Nowick [19] were used to model the 
synchronization penalties between the different clock domains 
contained in the GALS architecture. 

The Wattch [24] power estimation extensions were also included so 
that the power dissipation of the proposed architecture could be 
evaluated. The power consumption of the critical path prediction 
hardware is modeled as discussed in Section 4.4. A subset of the 
SPEC2000 benchmark suite (gzip, vpr, mesa, equake, vortex, bzip2) 
was used to assess the performance and power dissipation of the 
proposed architecture. Reference input sets were used and the 
benchmarks were run for 100M instructions, after fast-forwarding over 
500M instructions. 

To assess the feasibility of our proposed approach, we have 
investigated: 
• The impact of the critical path predictor on the overall energy 

cost and performance of the clustered GALS architecture. 
• The impact of the dynamic control algorithm for the non-critical 

cluster in terms of both performance and energy cost. 
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Figure 3. The impact of the critical path predictor implementation on 
the energy cost and overall performance 

 
We show in Figure 3 the breakdown of the total energy budget into 

major components for the two hardware based critical path predictors 
used in this paper: token-based and the newly proposed one, 
dependency-based. The configuration used for the two predictors has 
been included in Table 3. As it can be seen, while performance (IPC or 
Instructions Committed per Cycle) is on average about the same (with 
the dependency-based case slightly better), the power cost associated 
to the token-based predictor is much higher: 12% vs. 4% (for the 
dependency-based predictor) of the overall energy budget. 
Furthermore, the total energy consumed across all benchmarks 
considered is slightly better in the case of dependency-based than for 
the token-based criticality predictor. For the microarchitecture 
considered in this paper, the token-based predictor does not seem to be 
justified in terms of cost and a simple, dependency-based predictor is 
sufficiently good, with only the overhead of the Critical Path Predictor 
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table (Table 3). For this reason, the next set of results assumes a 
dependency-based critical path predictor. 
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Figure 4. Normalized energy and performance for the application 
adaptive clustered architecture using relative threshold-based control. 
The baseline is the original GALS clustered architecture with 
dependency-based criticality predictor, without control.  
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Figure 5. Normalized energy and performance for the application 
adaptive clustered architecture using absolute threshold-based control. 
The baseline is the original GALS clustered architecture with 
dependency-based criticality predictor, without control. 

 
We show in Figures 4 and 5 the results of analyzing the two 

proposed control algorithms described in Section 4.5. The parameters 
considered in the two cases have been described in Table 4. As it can 
be seen, the relative threshold based algorithm is more aggressive and 
keeps the non-critical cluster for most applications in states 
characterized by a large slowdown factor, yielding energy savings of 
up to 22% (in case of mesa, for example), with performance loss of 
10% on average. On the other hand, the absolute-threshold based 
control algorithm is more conservative and it does not allow the non-
critical cluster to go into a state characterized by a large slowdown 
value. In this case, the energy savings reaches 17% (in case of vortex), 
with an average performance penalty of only 2%. In terms of energy-
delay product, the application adaptive clustered architecture with 
relative threshold based control is 11% better than the non-adaptive 
clustered architecture, while the absolute-threshold based case is 5% 
better than the non-adaptive counterpart. Although not pictured, when 
compared to globally applied DVS, our application adaptive, localized 
version is up to 31% better in terms of overall energy savings. 

6 CONCLUSION 
In this paper we have proposed an application adaptive clustered 

architecture based on a GALS design style, able to dynamically match 
the speed (and thus voltage) of various portions of code with the 
application profile. Based on hardware based critical path prediction, 
instructions rendered non-critical for the overall performance of the 
application are steered to a non-critical cluster whose speed and 
voltage can be varied dynamically depending on several runtime 
factors. Results show that such an architecture is up to 22% more 
energy efficient than its non-adaptive counterpart and has 11% better 
energy delay product. 
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