

Application Adaptive Energy Efficient Clustered Architectures
Diana Marculescu

Carnegie Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, PA 15213-3890
dianam@ece.cmu.edu

ABSTRACT
As clock frequency and die area increase, achieving energy efficiency,
while distributing a low skew, global clock signal becomes
increasingly difficult. Challenges imposed by deep-submicron
technologies can be alleviated by using a multiple voltage/multiple
frequency island design style, or otherwise called, globally
asynchronous, locally synchronous (GALS) design paradigm. This
paper proposes a clustered architecture that enables application-
adaptive energy efficiency through the use of dynamic voltage scaling
for application code that is rendered non-critical for the overall
performance, at run-time. As opposed to task scheduling using
dynamic voltage scaling (DVS) that exploits workload variations
across applications, our approach targets workload variations within
the same application, while on-the fly classifying code as critical or
non-critical and adapting to changes in the criticality of such code
portions. Our results show that application adaptive variable
voltage/variable frequency clustered architectures are up to 22% better
in energy and 11% better in energy-delay product than their non-
adaptive counterparts, while providing up to 31% more energy savings
when compared to DVS applied globally.
Categories and Subject Descriptors: C.1.3 [Other Architecture
Styles]: Adaptable architectures, Pipeline Processors.
General Terms: Algorithms, Design, Performance, Measurement.
Keywords: Dynamic voltage scaling, Clustered architectures.

1 INTRODUCTION
Driven by technology scaling and increased complexity, achieving

power efficiency has become an increasingly difficult challenge,
especially in the presence of increasing die sizes, higher clock speeds
and variability driven design issues. To cope with these challenges, a
design style based on multiple voltage/frequency islands has been
proposed recently [1]. In addition to controlling better local clock
skews and allowing for local performance optimizations, a multiple
voltage/multiple frequency island design style may enable application-
driven adaptation for better energy efficiency.

In support of a frequency island design style, a globally
asynchronous, locally synchronous (GALS) approach may serve as an
intermediate step between fully synchronous and fully asynchronous
designs, while at the same time providing local adaptation capabilities.
In a GALS design, several independently clocked regions
communicate with each other asynchronously. This approach reduces
the problems associated with a global clock distribution network while
allowing designers to use synchronous design techniques for each of
the synchronous clock domains. Such an approach has been studied in
the case of high-performance processors [2,3], with beneficial impact
on power efficiency. At the same time, in the case of superscalar, out-
of-order processors, the complexity of the dynamic scheduling

hardware limits frequency growth [4]. In addition to limiting the
performance of such an architecture, complex structures also consume
more power than simpler equivalent structures. One way to avoid
complexity is to partition or cluster resources into groups. Partitioning
reduces the size of monolithic structures and the control logic
associated with them. However, performance of a clustered
architecture is sensitive to the steering mechanism it uses.

Combining the potential power savings of removing the global
clock with savings due to reducing the complexity of a given design,
while also allowing for local optimizations and workload-driven
adaptation, is poised to yield power efficient architecture
configurations. While several GALS designs have been proposed and
have yielded reasonable power-performance tradeoffs if the different
synchronous regions can be clocked at different speeds [2,3,5],
previous work has looked at clustering hardware (and thus, executed
instructions) based on type (i.e., integer, floating-point, memory), as
opposed to clustering based on importance or criticality. Recent
studies have shown that some instructions have less impact on
execution time than others. These instructions, called non-critical
instructions, may be run at a lower speed (and thus, lower power),
without impacting performance significantly. However, the use of an
application adaptive control mechanism for dynamically selecting the
speed (or voltage) of the non-critical cluster has not been explored, nor
implemented.

The contribution of this paper is twofold:
• Explore the impact of a GALS design style on a clustered

architecture that uses an explicit dynamic critical path prediction
mechanism to steer instructions to one of two existing clusters,
depending on their criticality or importance to the overall
performance.

• Propose application adaptive, dynamic control mechanisms able to
adjust the speed/voltage of the cluster running non-critical code such
that it matches the overall application profile better.
This paper is organized as follows. Section 2 overviews existing

related work. In Section 3, the proposed architecture is described, with
emphasis placed on the selection of clock domains, asynchronous
communication mechanisms, and resource clustering parameters.
Section 4 introduces several types of dynamic critical path predictors
and power model for each of them, while also describing the dynamic
control mechanisms. Section 5 describes the experimental
methodology and an evaluation of the application adaptive variable
voltage/frequency clustered architecture, when compared to the non-
adaptive counterpart. Finally, Section 6 concludes the paper and
outlines possible directions for future work.

2 RELATED WORK
Although the multiple voltage/frequency island design styles has

been introduced recently [1], the GALS design paradigm has a history
of a couple of decades [6]. The impact of using a GALS design style
for power efficient ASICs has been explored in [7], while more
recently the concept has been applied to high performance, superscalar
processors [2,3,5,8]. There, the idea of using varying speeds and local
voltages has been explored in the context of an Alpha-like architecture,
with back-end clustering based on the type of instructions (e.g.,
integer, floating point, or memory), and not their importance or
criticality to overall performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’04, August 9–11, 2004, Newport Beach, California, USA.
Copyright 2004 ACM 1-58113-929-2/04/0008…$5.00.

Casmira and Grunwald [9] investigated applying scheduling slack
to dynamic instruction issue. If an instruction had sufficient slack, then
it was sent to a half-speed functional unit; otherwise, it went to a full-
speed one. Instructions with sufficient slack can then be considered
non-critical. Casmira and Grunwald’s [9] determination of criticality is
localized; it is computed within a 24–entry instruction window. The
method used by Fields et al. [10], however, is global, which makes it
more accurate and robust. [9] also only uses functional units of
different speeds, while the architecture presented in this paper has the
ability to run entire sections of the processor at different speeds and
dynamically change them. Tune et al. [11] propose several heuristics
that can be used to dynamically predict the critical path. The heuristics
are localized, but the impact of this is mitigated by their sensitivity to
machine resources. While the heuristics are less accurate and robust
then the global method proposed by Fields et al. [10], their simplicity
may cause them to be more power efficient to implement. Fields et al.
[12] discuss slack as a measure of criticality. Criticality can only
divide instructions into two classes: critical and non-critical. If a
measure of criticality is known, however, multiple classes can be
defined, leading to more powerful control strategies. Such a strategy
could be used to steer instructions to more than two clusters. Later on,
Tune et al. [13] introduce the concept of tautness: slack measures how
much an instruction can be delayed before it becomes critical; tautness
measures how much an instruction can be optimized before it becomes
non-critical. Using these metrics, [13] compares several critical path
predictors and comment on the accuracy of several prediction and
training mechanisms.

3 BASELINE MICROARCHITECTURE
In this section, we describe the proposed clustered architecture that

uses a dynamic explicit critical path prediction mechanism to steer
instructions, a GALS clocking scheme and support for dynamic control
of the non-critical cluster speed
3.1 Clock Domain Selection

In a standard pipelined out-of-order superscalar processor, a series
of events takes place when handling an instruction. First, one or more
instructions are fetched from the instruction cache. A branch predictor
allows fetching to continue even when the next address to be fetched is
not precisely known. Next, instructions are decoded to determine their
purpose and registers are renamed to reduce false dependencies. If an
operand register’s content is valid, it is read from the register file and it
travels through the pipeline with the instruction; otherwise, a flag is set
and the instruction watches for the result to be produced. After register
renaming, instructions are dispatched to an issue queue. When all
operands of an instruction are ready and the appropriate functional unit
is available, the instruction is woken up and is marked ready to
execute. Based on a given policy, ready instructions are selected for
execution during a given cycle. Once selected, the instruction issues,
executes, and writes its result back to the register file. Results also
traverse data bypass paths to waiting instructions in the issue window.
Finally, instructions commit.

The above description suggests some natural boundaries in the
pipeline. For instance, a decoupling buffer can often be inserted
between the fetch and decode stages. The pipeline also has closely
coupled regions that should not be separated. The issue and execution
logic, for example, must be able to quickly share information back and
forth. In addition to the boundaries suggested by the architecture’s
functionality, boundaries are also implied by current/future technology
trends. As feature sizes shrink and die areas increase, it takes more
cycles for a signal to propagate from one end of the die to the other.
Matzke [14] studies this trend and suggests that, for a 0.13um process,
only 33% of the die length will be reachable in a single clock period
(assuming a 1.2GHz clock); for a 0.1um process, only about 16% of
the die length is reachable in a single clock period. The trend of
increasing wire delay has several implications. First, it suggests a
minimum number of clock domains for a given technology, if a signal
must be able to propagate throughout the entire clock domain in a
single cycle. Second, it implies that architectures with distributed

rather than centralized structures are likely to have better performance,
as localization will be a key feature of future successful designs.

With these implied boundaries and limitations in mind, the clock
domains were chosen as shown in Table 1. The selection of domains is
similar to that made by Iyer et al. [2,8] and Semeraro et al. [3,5]. A
significant difference, however, is that the back-end clock domains are
clustered based on criticality rather than type.

Table 1. Stages and clock domains in the processor architecture
Stage Operation Domains
1, 2, 3 Fetch from I-cache. Predict branch outcomes. 1
4 Decode. Speculatively update branch predictor. 2
5, 6, 7 Rename registers. Read from register file. 2
8 Dispatch to clusters. 2
9, 10 Dispatch to issue queues. 3, 4
11 Issue to functional units. 3, 4
12 Execute. 3, 4
13 Wakeup. Writeback. 3, 4
14 Recover from branch mispredicts. Write to

register file. Commit.
2

Figure 1 shows what resources are included in each clock domain

of the GALS architecture and illustrates the flow of information within
and between domains. The proposed architecture currently has
fourteen stages to reflect current trends for increasingly deep pipelines
(such as the Pentium 4 [15], which has more than 20 pipeline stages).
The first clock domain consists of the fetch logic and takes three
stages. The branch prediction unit and level 1 and level 2 instruction
caches are located here; if a trace cache were present, as in the Pentium
4 [15], it would also be in this clock domain. The second clock domain
contains the rest of the front end—decode, rename, and dispatch
stages—as well as the commit stage. We justify grouping the decode
stage with other stages by assuming a RISC architecture, or a CISC
architecture with a trace cache, which greatly simplifies the decoding
logic. The rename step takes three stages because trends suggest that
additional cycles will be needed to access large data structures (such as
renaming tables) in future designs. The register file is included in the
second domain because it is closely coupled with the rename logic and
the commit logic. Performing register read at rename, rather than at
issue, also removes the need to have multiple copies of the register file
in a two-cluster configuration.

Figure 1. A clustered architecture with four clock domains. Cluster 1
runs non-critical code, while Cluster 2 runs critical code and includes
the D-cache (memory operations are considered critical).

The dispatch stage is responsible for steering instructions based on
criticality to one of the two remaining clock domains (Cluster 1 and
Cluster 2, respectively). The third clock domain is the non-critical one

Commit
Clock 2

Dispatch
(Cluster 1)

Integer
Queue

Floating Point
Queue

Integer
ALUs

Floating Point
ALUs

Integer
Write-back

Floating
Point WB

Clock 3–
Cluster 1

L1 I-Cache Fetch Unit

Branch
Prediction

Decode

Rename

Dispatch

Register
File

integer
floating
point

Dispatch
(Cluster 2)

Integer
Queue

Floating Point
Queue Memory

Queue

Integer
ALUs

Floating Point
ALUs

L1 D-Cache

L2 Cache

Integer
Write-back

Floating
Point WB Memory

Write-back

Clock 4–
Cluster 2

Clock 2Clock 1– Fetch

and does not handle any memory operations. Instead, the fourth clock
domain, which handles critical instructions, becomes responsible for
all memory operations. Placing all of the memory operations within a
single clock domain removes the need to devise a way to have more
than one domain share the data cache (such as having two copies of the
data cache or using inter-cluster communication to handle non-critical
memory accesses), which improves both power consumption and
performance. Other than the changes to memory, the third and fourth
clock domains in the two-cluster configuration are very similar to the
third clock domain in the one-cluster configuration.
3.2 Asynchronous Communication Mechanism

In a design that uses a GALS clocking scheme, clocking domains
use asynchronous communication mechanisms to communicate. These
mechanisms have been the focus of a considerable amount of research
and a wide variety are available, such as synchronization FIFOs [16],
stretchable clocks [17], and pausable clocks [6,18]. In this paper, we
assume an asynchronous FIFO queue, based on the low-latency token-
ring implementation proposed by Chelcea and Nowick [19]. The FIFO
is composed of multiple cells organized as a circular queue, with each
cell implemented as a central latch and its associated control logic.
Successive write operations are performed to successive cells at the
head of the circular queue, until all of the cells are full. The read
operations are serviced in the same way, starting from the tail of the
structure. If the FIFO queue is neither full nor empty most of the time,
it can provide the low latency offered by synchronizers while
maintaining a high bandwidth through pipelining. A similar
synchronization mechanism has been used before [2,3,5,8].
3.3 Resource Clustering

When the architecture is split into two-clusters, the same total
number of resources is present, but distributed between the two
clusters (Table 2). While there are a number of ways to distribute the
resources, our work places three-quarters of the available resources in
the first cluster (the non-critical cluster) and one-quarter of the
available resources in the second cluster (the critical cluster). As
discussed above, memory resources are an exception. The 3:1 division
of resources reflects the fact that an estimated 75% of instructions are
non-critical [10,11]. Results from previous work [20] also suggest this
partitioning to be reasonable, while pointing the fact that critical code
does not need to rely on dynamic scheduling for increasing
performance due to tight dependencies on critical path.

Table 2. Processor configuration for the clustered architecture

Fetch/Decode/Rename
/Dispatch/Commit

4

Issue 12 (4 int, 4 fp, 4 mem)
L1 Instruction Cache 32KB, 2-way SA; 32B blocks; 1 cycle latency
L1 Data Cache 32KB, 4-way SA; 32B blocks; 1 cycle latency
L2 Unified Cache 256KB, 2-way SA; 64B blocks; 6 cycles latency
Physical register file 72 integer, 72 floating-point
Branch predictor Alpha 21264 like: Combined predictor which

uses a bimodal and a 2-level PAg
Non-critical resources : Critical resources

Integer ALUs (3 + 1 mult/div units : 1 + 1 mult/div units)
Floating-point ALUs (3 + 1 mult/div units : 1 + 1 mult/div units)
Load/Store Units (0 : 2)
Integer issue queue (15 entries : 5 entries)
FP issue queue (12 entries : 4 entries)
Mem issue queue (0 entries : 16 entries)

Instructions are distributed between the two clusters via dynamic

steering logic during the first dispatch stage. A dynamic steering
scheme can adapt to the state of the pipeline better than a static
scheme, so it can minimize the number of inter-cluster
communications and balance the workload better. This translates into
improved performance. Several dynamic steering algorithms have been
explored in the literature, including random steering and register
dependence (or register mapped) steering, which has a number of
variations [21]. Our work uses pure criticality to steer instructions.

Criticality is dynamically predicted using the algorithms discussed in
Section 4.

Often, load balancing is necessary in clustered architectures to be
sure that resources are not underutilized. Our results show that only in
10-15% of the cases a load balancing mechanism would help alleviate
potential bottlenecks, hence we decided against using a load balancing
technique.

4 DYNAMIC CRITICAL PATH PREDICTION
A critical instruction is an instruction whose data dependencies

and/or resource requirements induce performance bottlenecks. Since
the criticality of an instruction in case of dynamically scheduled
processors is partly determined by the characteristics of the
microarchitecture, criticality cannot be determined at compile time.
The dynamic critical path prediction mechanisms used in this paper are
similar to the work done by Fields et al. [10], in addition to a lower
cost, but sufficiently accurate version that we propose. The token-
based predictor [10] was chosen because of its accuracy and
robustness. As it will be seen later, however, to be accurate, its size
and complexity become prohibitive due to its power overhead.
4.1 Critical vs. Non-Critical Instructions

To characterize the criticality of instructions, a dependency graph
can be used. In such a directed graph, instructions constitute the nodes,
while edges show the dependency information. The weight of each
edge is the time needed to resolve the dependence. The challenge in
the case of superscalar processors is that these weights are dependent
on the run-time conditions, and, for better results, dynamic versions of
such graphs should be constructed and managed on the fly [10]. Given
such a graph, the critical path is the longest weighted path from the
first dispatch node to the last commit node; any instructions on the
critical path are considered critical

To be able to classify instructions in critical or non-critical, the
impact of delaying each one of them on the overall execution time
should be assessed. Given the complexity of typical dependency
graphs, especially for dynamically scheduled processors, heuristics can
be used to keep track of the most relevant information. For example,
the approach in [10] assumes that the execution time of all instructions
is increased by one cycle. Then, the latency of the critical and non-
critical instructions is decreased in turn and the change in performance
is compared. Decreasing the latency of critical instructions should have
a much larger impact on performance than decreasing the latency of
the non-critical instructions. As one might expect, however, there is
not a one-to-one correspondence between the total number of cycles
removed from execution time and the total number of latency cycles
removed from critical instructions. Instead, this ratio provides a
measure of how dominant the critical path is. Near critical paths may
emerge if the dominant critical path is optimized, limiting the
performance gain. Additionally, some performance improvement may
be seen by reducing the latency of the non-critical instructions. This
characteristic exists because the model does not capture all possible
architectural dependencies, allowing some critical instructions to
escape notice.

Two additional key observations, that reduce the complexity of
hardware based predictors, should be considered. First, the weights of
the edges in the dependency graph are irrelevant – only the order in
which the edges arrive is meaningful. What matters is when an
instruction completes, not how long it takes to do so. A multi-cycle
multiply instruction may be non-critical, for example, if it produces a
required result before a single-cycle addition instruction does. If an
edge is on the critical path, then it must be last-arriving. Otherwise, the
edge could be delayed without penalty, which contradicts the
definition of criticality. Likewise, if an edge is not a last-arriving edge,
then it is not critical. A long chain of last-arriving edges is therefore
likely to be part of the critical path, and instructions in the chain are
likely to be critical. Second, if criticality is to be analyzed and detected
in hardware, it is not possible for a dependency to span more than the
number of instructions in flight between decode and commit as it
would exceed the available state space in the dynamically scheduled

processor (this number is usually characterized by rob_size, the size of
the reorder buffer that holds instructions from the time they are
decoded until they have committed). These two observations have
proven to be useful for reducing the complexity of critical path
predictors. In addition, critical instructions are typically tightly coupled
in a dependency chain that is unlikely to benefit from an out-of-order,
dynamically scheduled microarchitecture [20]. Hence, an in-order
issue for the critical cluster is enough, without any significant
performance penalty.
4.2 Token-Based Critical Path Prediction

The dynamic critical path prediction hardware as defined in [10]
can be divided into two parts: prediction and training. The prediction
hardware is simply an array of hysteresis counters indexed by the
program counter and accessed during the fetch stage. If the hysteresis
counter is above a certain threshold, the instruction is predicted
critical; otherwise, it is predicted non-critical. The information is
stored in a Critical Path Prediction table which is similar in
functionality to the Branch Target Buffer.

The training hardware is more complicated and is implemented as a
special array [10]. Training is performed in the commit stage via
sampling. As each instruction commits, it is added to the token array in
FIFO fashion. Next, a token is planted into the entry corresponding to
the committing instruction, if possible. The bit of the training array
entry corresponding to the available token must then be set for the
committing instruction. Then, as other instructions commit, the token
is propagated forward along all last-arriving edges. When an
instruction commits, it knows which instructions in the dependency
graph are the sources for its last-arriving edges. To propagate tokens,
the token trainer array entry for the given source instruction is read and
any tokens in the corresponding entry are copied to the entry of the
destination instruction for the currently committing instruction. Once
the processor has committed a certain number of instructions, with
respect to the planting of the token, the token is checked for liveness. If
the token is still alive, then it is likely that the instruction that it was
planted in is critical; otherwise, the instruction is likely to be non-
critical. Finally, the prediction array is updated to reflect the training
decision, and the token is freed.

In our case, a coarse grain approach—instead of a fine grain one—
was used to roughly estimate the accuracy of the predictor. Instead of
changing the latency of individual instructions, the speed of an entire
cluster was changed. Doubling the speed of the critical cluster (which
has a third of the functional units), created, on average, a performance
increase of 9.9%. Doubling the speed of the non-critical cluster (which
has three functional units and is responsible for roughly three quarters
of the total number of instructions executed) created a performance
increase of only 8.0%. This result implies that the dynamic critical path
predictor is working as intended.
4.3 Dependency-Based Critical Path Prediction

Although very accurate, the token-based predictor described before
has the potential of becoming a significant source of additional power
overhead due to the extra arrays needed to store token information. On
the other hand, if structures are downsized for increased power
efficiency, the prediction accuracy decreases. As suggested before
[20], an alternative, less expensive predictor may be employed, based
on (for example): “age” of instructions in the issue window;
dependency chain length; dependency sub-tree size (i.e., the number of
dependent instructions); wake-up information (i.e., the number of
instructions woken-up when bypassing results). Results indicate that
marking the oldest, not ready to issue instructions in the issue window
as critical fares the best [20]. The only hardware support needed for
this (in addition to the Critical Path Prediction table storing
information about criticality of instructions) is a set of counters whose
bitwidth depends on the issue window size. One downside of such
predictors is that they see a smaller window of the dependency graph
(i.e., only instructions present in the issue window, and not the entire
set of in-flight instructions).

We propose a modified version of this heuristic predictor which
turns out to be similar in performance and accuracy with the token
based predictor. In addition to marking instructions at the bottom of
the issue queue as critical, our proposed heuristic also marks as critical
instructions that wake-up instructions already scheduled for running in
the critical cluster. A similar, but not identical, policy has been used
before [20], in that instructions waking up the oldest instructions in the
issue window were also marked as critical.

Our results show that, for the pipeline considered in this paper, the
proposed dependency based heuristic fares slightly better on average
than the token based predictor, and without the extra hardware
structures imposed by it.
4.4 Practical Considerations

The Critical Path Prediction table used in both token-based and
dependency-based prediction works much like the branch target buffer
(BTB), so its power consumption is modeled in the same way, as a
simple array structure. Six bit counters with hysteresis are used to
follow the criticality of a given instruction (Table 3).

While Fields et al. [10] use a standard monolithic reorder buffer, in
our case, however, rob_size is the total number of pipeline registers
after the decode stage, including the issue queues. It should be noted
that some pipeline registers are part of a larger queue and that all
entries of the queue are included in the total.

Because of token management, the token training array is too
complex to be treated as a simple array and is therefore handled as a
content addressable memory (CAM). Thus, the token training array has
(number of nodes per instruction x commit width) read ports and
(commit width) write ports. Assuming that clock gating is used on a per
cycle basis, the token training array’s power consumption can be
scaled by the number of instructions committed in a cycle, yielding a
significant reduction in power. Also, the number of ports can be
chosen so as to handle only the average commit width, dropping extra
information or caching it for delayed processing; such a step would
understandably reduce the accuracy of the predictor. Since the number
of read and write ports is proportional to the commit width, the power
consumption is still quite large and scales poorly, even if these power
saving techniques are employed.

Table 3. Dynamic critical path prediction hardware characteristics

Critical Path
Prediction Table

1.5KB in size (2K entries x 6b per counter
x direct mapped); 1 read/write port

Token- and
dependency-
based
predictors

Hysteresis 6 bit counters (saturate at 0 and 63)
Increment by 8 when trained as critical
Decrement by 1 when trained as non-
critical
Predict as critical if hysteresis is above 8

Token Array 416B in size (104 entries x 32b per entry

x direct mapped);
12 read ports; 4 write ports

Token
information

128B in size (8 entries x 128b per entry x
direct mapped); 4 read/write ports

No. tokens used 8
Planting of
tokens

If a token is available and the instruction
does not have a token already, then plant a
token in the execute node.

Token-based
predictor

Liveness check
for tokens

After 185 committed instructions (1.75 x
rob_size)

A final piece of hardware needed for dynamic critical path

prediction (which was not mentioned in [10]), is the token
management hardware, which tracks free tokens and liveness counters.
We have considered this piece of logic as a four-ported array that is
accessed every cycle that an instruction commits, with no clock or
power gating capabilities. A complete summary of the dynamic critical
path prediction hardware’s characteristics is provided in Table 3.
4.5 Non-Critical Cluster Dynamic Control Algorithms

Previous work on GALS superscalar processors has explored the
possibility of achieving better power efficiency through the use of

dynamic control algorithms for local speeds and voltages, so as to
match a given application’s profile. A threshold based control
algorithm triggered by issue queue occupancy has been proposed in
[8], while an aggressive attack-decay algorithm based on monitoring
overall performance counters has been used in [5]. The idea of queue
occupancy monitoring for voltage scaling is not new – in a real design
case [22] such a control mechanism has been successfully used in
conjunction with self-timed interface-based GALS systems.

For the purpose of providing adaptability depending on the
application profile, we have considered two control algorithms (Figure
2). The relative-threshold based control algorithm checks the ratio of
issue queue occupancy in the current and previous monitoring interval.
While this is similar to the attack-decay algorithm presented in [5], it
does not check for limits on performance degradation as the non-
critical cluster produces a 0.08% overall performance degradation, for
each 1% slowdown factor (as described in Section 4.2), so the impact
on overall performance can be quantified easily, without keeping
another performance counter. The main idea is to slowdown
progressively if the issue queue occupancy is within a certain relative
factor (down), while ramping up the speed by more than one power
state when occupancy increases significantly (by a relative factor of
up).

Figure 2. The relative- (a) and absolute-threshold (b) based control
algorithms. In both cases, state zero is the highest speed/largest
voltage, while state three is the lowest speed/lowest voltage (Vdd,0 > Vdd,1
> Vdd,2 > Vdd,3)

The absolute-threshold based algorithm checks the average issue

queue occupancy and, if below a certain low threshold, the non-critical
cluster is put in the next low power state. Otherwise, if the average
occupancy is larger than a high threshold, the non-critical cluster is
ramped up to next high power state.

Table 4. Dynamic control algorithms settings
Adaptation interval 10K instructions
Slowdown factors 1, 1.5, 2, 2.5
Relative difference factors for the
relative threshold-based alg.

1.1 (up) and 0.8 (down)

Threshold values for the absolute-
threshold based alg.

Int: 4, 7, 10, 12
FP: 2, 3, 5, 6

For the results presented in this paper, we have assumed four power

states characterized by relative slowdown factors as shown in Table 4.
The voltages corresponding to each state have been determined based
on the delay-voltage dependency: Delay ∝ Vdd/(Vdd-Vt)α (for a baseline
value of Vdd = 3.3V, Vt = 0.55V and α = 1.4 in a 0.18um technology)
and assuming slowdown factors as in Table 4. The threshold values
(th0, th1, th2, th3) have been computed based on the threshold values
for the integer and FP issue queues given in Table 4 (e.g., th0 is the
sum of the highest thresholds for integer and FP, or 12+6 = 18;
similarly, th3 is the sum of the lowest threshold values for integer and
FP issue queues or 4+2 = 6.) As assumed before [2,3,5,8], we assume

that the system does not stop working while the non-critical cluster
voltage or speed are changing.

5 EXPERIMENTAL RESULTS
The SimpleScalar toolset [23] was used to create a cycle-accurate

model of a fourteen stage superscalar pipeline with out-of-order
execution. Out-of-order execution was accomplished through the use
of issue queues and a register file instead of the default register update
unit/load store queue (RUU/LSQ) combination. The configuration of
the proposed architecture has been summarized in Tables 2-4.

The GALS clustered architecture was simulated using an event-
driven simulation engine, similar to the one described previously
[2,3,5,8]. For the results presented in this paper, each clocking domain
in the GALS processor is run at the same frequency, except for the
non-critical cluster clock domain. Asynchronous FIFO models based
on work done by Chelcea and Nowick [19] were used to model the
synchronization penalties between the different clock domains
contained in the GALS architecture.

The Wattch [24] power estimation extensions were also included so
that the power dissipation of the proposed architecture could be
evaluated. The power consumption of the critical path prediction
hardware is modeled as discussed in Section 4.4. A subset of the
SPEC2000 benchmark suite (gzip, vpr, mesa, equake, vortex, bzip2)
was used to assess the performance and power dissipation of the
proposed architecture. Reference input sets were used and the
benchmarks were run for 100M instructions, after fast-forwarding over
500M instructions.

To assess the feasibility of our proposed approach, we have
investigated:
• The impact of the critical path predictor on the overall energy

cost and performance of the clustered GALS architecture.
• The impact of the dynamic control algorithm for the non-critical

cluster in terms of both performance and energy cost.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

I-c
ac

he

Bp
re

d

R
en

am
e

R
eg

fil
e

C
Pp

re
d

N
C

-C
lu

st
er

C
-C

lu
st

er

C
-C

lu
st

er
 (D

-
ca

ch
e)

IP
C

µarchitecture Components

En
er

gy
 F

ra
ct

io
n

or
 IP

C

Token-based Dependency-based

Figure 3. The impact of the critical path predictor implementation on
the energy cost and overall performance

We show in Figure 3 the breakdown of the total energy budget into

major components for the two hardware based critical path predictors
used in this paper: token-based and the newly proposed one,
dependency-based. The configuration used for the two predictors has
been included in Table 3. As it can be seen, while performance (IPC or
Instructions Committed per Cycle) is on average about the same (with
the dependency-based case slightly better), the power cost associated
to the token-based predictor is much higher: 12% vs. 4% (for the
dependency-based predictor) of the overall energy budget.
Furthermore, the total energy consumed across all benchmarks
considered is slightly better in the case of dependency-based than for
the token-based criticality predictor. For the microarchitecture
considered in this paper, the token-based predictor does not seem to be
justified in terms of cost and a simple, dependency-based predictor is
sufficiently good, with only the overhead of the Critical Path Predictor

0 1 2 3

Crt_occ > th0

Crt_occ < th1

Crt_occ > th1 Crt_occ > th2

Crt_occ < th2 Crt_occ < th3

th0 > th1 > th2 > th3

0 1 2 3

Crt occ/Prev occ > up

Crt occ/Prev occ > up

Crt_occ/Prev_occ > up

Crt_occ/Prev_occ < down

Crt_occ/Prev_occ < down

Crt_occ/Prev_occ < down

up > 1 > down

(a)

(b)

table (Table 3). For this reason, the next set of results assumes a
dependency-based critical path predictor.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

gzip vpr mesa equake vortex bzip2 AVG

N
or

m
al

iz
ed

 v
al

ue
s

Energy Performance

Figure 4. Normalized energy and performance for the application
adaptive clustered architecture using relative threshold-based control.
The baseline is the original GALS clustered architecture with
dependency-based criticality predictor, without control.

0.75

0.8

0.85

0.9

0.95

1

1.05

gzip vpr mesa equake vortex bzip2 AVG

N
or

m
al

iz
ed

 V
al

ue
s Energy Performance

Figure 5. Normalized energy and performance for the application
adaptive clustered architecture using absolute threshold-based control.
The baseline is the original GALS clustered architecture with
dependency-based criticality predictor, without control.

We show in Figures 4 and 5 the results of analyzing the two

proposed control algorithms described in Section 4.5. The parameters
considered in the two cases have been described in Table 4. As it can
be seen, the relative threshold based algorithm is more aggressive and
keeps the non-critical cluster for most applications in states
characterized by a large slowdown factor, yielding energy savings of
up to 22% (in case of mesa, for example), with performance loss of
10% on average. On the other hand, the absolute-threshold based
control algorithm is more conservative and it does not allow the non-
critical cluster to go into a state characterized by a large slowdown
value. In this case, the energy savings reaches 17% (in case of vortex),
with an average performance penalty of only 2%. In terms of energy-
delay product, the application adaptive clustered architecture with
relative threshold based control is 11% better than the non-adaptive
clustered architecture, while the absolute-threshold based case is 5%
better than the non-adaptive counterpart. Although not pictured, when
compared to globally applied DVS, our application adaptive, localized
version is up to 31% better in terms of overall energy savings.

6 CONCLUSION
In this paper we have proposed an application adaptive clustered

architecture based on a GALS design style, able to dynamically match
the speed (and thus voltage) of various portions of code with the
application profile. Based on hardware based critical path prediction,
instructions rendered non-critical for the overall performance of the
application are steered to a non-critical cluster whose speed and
voltage can be varied dynamically depending on several runtime
factors. Results show that such an architecture is up to 22% more
energy efficient than its non-adaptive counterpart and has 11% better
energy delay product.

7 ACKNOWLEDGEMENTS
This research was supported in part by SRC Grant No. 2001-HJ-

898 and by NSF CAREER Award No. CCR-008479. The author

would like to thank Katrina Zwicker and Adam Stoler for contributing
to an earlier version of this work.

8 REFERENCES
[1] D. Lackey, et al., “Managing Power and Performance for System-on-Chip Designs

using Voltage Islands,’ in Proc. Intl. Conf. on Computer-Aided Design (ICCAD),
pp. 195-202, Nov. 2002.

[2] A. Iyer and D. Marculescu, “Power and performance evaluation of globally
asynchronous, locally synchronous processors,” in Proc. Intl. Symp. on Computer
Architecture (ISCA), pp. 158-170, May 2002.

[3] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi, S. Dwarkadas, and
M. Scott, “Energy-Efficient Processor Design Using Multiple Clock Domains with
Dynamic Voltage and Frequency Scaling,” in Proc. Intl. Symposium on High-
Performance Computer Architecture (HPCA), pp. 29-42, Feb. 2002.

[4] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective superscalar
processors,” in Proc. Intl. Symposium on Computer Architecture, ACM Press, pp.
206-218, June 1997.

[5] G. Semeraro, D.H. Albonesi, S.G. Dropsho, G. Magklis, S. Dwarkadas, M.L.
Scott, “Dynamic Frequency and Voltage Control for a Multiple Clock Domain
Microarchitecture,” in Proc. Intl. Symposium on Microarchitecture (MICRO), pp.
356-367, Nov. 2002.

[6] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Systems”, PhD
Thesis, Stanford University, Oct. 1984.

[7] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg, P.
Ellervee, and D. Lundqvist, “Lower Power Consumption in Clock By Using
Globally Asynchronous Locally Synchronous Design Style,” in Proc. Design
Automation Conference (DAC), pp. 873-878, June 1999.

[8] A. Iyer and D. Marculescu, “Power Efficiency of Multiple Clock, Multiple
Voltage Cores,” in Proc. IEEE/ACM Intl. Conference on Computer-Aided Design
(ICCAD), pp. 379-386, San Jose, CA, Nov. 2002

[9] J. Casmira and D. Grunwald, “Dynamic Scheduling Slack,” in Proc. Kool Chips
Workshop, in conjunction with MICRO 33, Dec. 2000.

[10] B. Fields, S. Rubin, and R. Bodik, “Focusing Processor Policies via Critical-Path
Prediction,” in Proc. Intl. Symp. on Computer Architecture (ISCA), pp. 74-85,
July 2001.

[11] E. Tune, D. Liang, D. Tullsen, and B. Calder, “Dynamic Prediction of Critical Path
Instructions,” in Proc. Intl. Symposium on High Performance Computer
Architecture (HPCA), pp. 185-196, Jan. 2001

[12] B. Fields, R. Bodik, and M. D. Hill, “Slack: Maximizing Performance under
Technological Constraints,” in Proc. Intl. Symposium on Computer Architecture
(ISCA), pp. 47-58, May 2002.

[13] E. Tune, D. Tullsen, and B. Calder, “Quantifying Instruction Criticality,” in Proc.
Intl. Conference on Parallel Architectures and Compilation Techniques (PACT),
pp. 104-116, Sept. 2002.

[14] D. Matzke, “Will Physical Scalability Sabotage Performance Gains?,” in IEEE
Computer, 30(9):37-39, Sept. 1997.

[15] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel,
“The Microarchitecture of the Pentium4 Processor,” in Intel Technology Journal,
Q1 2001.

[16] R. Kol and R. Ginosar, “Adaptive Synchronization for Multi-Synchronous
Systems”, 1998 IEEE Intl. Conference on Computer Design (ICCD’98), pp. 188-
189, Oct. 1998.

[17] D. S. Bormann and P. Y. K. Cheung, “Asynchronous Wrapper for Heterogeneous
Systems”, Proc. Intl. Conference on Computer Design (ICCD), IEEE Computer
Society Press, pp. 307-314, Oct. 1997.

[18] J. Seizovic, “Pipeline Synchronization”, Proc. Intl. Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 87-96, November 1994.

[19] T. Chelcea and S. M. Nowick, “A Low-Latency FIFO for Mixed-Clock Systems,”
in Proc. of the IEEE Computer Society Annual Workshop on VLSI (WVLSI’00),
pp. 119-126, April 2000.

[20] J. Seng, E. Tune and D. Tullsen, “Reducing Power with Dynamic Critical Path
Information,” in Proc. Intl. Symposium on Microarchitecture (MICRO-34), pp.
114-123, Dec. 2001.

[21] R. Canal, J.M. Parcerisa, and A. Gonzalez, “A Cost-Effective Clustered
Architecture,” Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT’99), pp. 160-168, Oct. 1999

[22] L. S. Nielsen, C. Niessen, J. Sparso, and K. van Berkel, “Low-Power Operation
Using Self-Timed Circuits and Adaptive Scaling of the Supply Voltage,” in IEEE
Transactions on Very Large Scale Integration Systems (TVLSI), December 1994.

[23] D. Burger, and T. Austin, “The SimpleScalar Tool Set, Version 2.0,” Technical
Report CS-TR-97-1342, Computer Science Department, University of Wisconsin-
Madison, 1997.

[24] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations,” in Proc. Intl. Symposium
on Computer Architecture, pp. 83-94, June 2000.

