Program Transformations for
Portable CPU Accounting and Control in Java

Jarle Hulaas
Software Engineering Laboratory
School of Computer and Comm. Sciences
Swiss Federal Institute of Technology Lausanne
(EPFL)
CH-1015 Lausanne, Switzerland

firstname.lasthname@epfl.ch

ABSTRACT

In this paper we introduce a novel scheme for portable CPU
accounting and control in Java, which is based on program
transformation techniques at the bytecode level and can be
used with every standard Java Virtual Machine. In our ap-
proach applications, middleware, and the standard java run-
time libraries (i.e., the Java Development Kit, or JDK) are
modified in order to expose details regarding the execution
of threads. This paper presents the details of how we re-
engineer Java bytecode for CPU management, including the
strategies developed for transforming the JDK itself in a
fully portable way.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Features—Control structures, Frameworks; 1D.2.8
[Software Engineering|: Metrics—performance measures

General Terms

Management, Performance, Reliability, Security, Languages

Keywords

Java, Resource Management, Bytecode Engineering, Pro-
gram Transformations

1. INTRODUCTION

Resource management (i.e., accounting and controlling
physical resources like CPU, memory, bandwidth) is a use-
ful, yet rather unexplored aspect of software. Increased se-
curity, reliability, performance, and context-awareness are
some of the benefits that can be gained from a better un-
derstanding of resource management. For instance, account-
ing and controlling the resource consumption of applications
and of individual software components is crucial in server

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

PEPM’ 04, August 24-25, 2004, Verona, Italy.

Copyright 2004 ACM 1-58113-835-0/04/0008 ...$5.00.

169

Walter Binder
Artificial Intelligence Laboratory
School of Computer and Comm. Sciences
Swiss Federal Institute of Technology Lausanne
(EPFL)
CH-1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

environments that run components on behalf of external
clients, in order to protect the host from malicious or badly
programmed code. Resource accounting may also provide
valuable feedback about actual usage by end-clients and thus
enable precise billing and provisioning policies. Java [8] and
the Java Virtual Machine (JVM) [10] are being increasingly
used as the programming language and deployment platform
for such servers (Java 2 Enterprise Edition, Servlets, Java
Server Pages, Enterprise Java Beans). Moreover, account-
ing and limiting the resource consumption of applications is
a prerequisite to prevent denial-of-service (DoS) attacks in
mobile object (mobile agent) systems and middleware that
can be extended and customized by mobile code. A more re-
cent research topic addresses the problem of designing and
implementing agent-oriented, context-aware software com-
ponents; awareness of resource availability and usage policies
is inherent to this approach, where the realization of self-
organizing and self-healing properties are among the long-
term objectives. Yet another interesting target domain is
resource-constrained embedded systems, because software
run on such platforms has to be aware of resource restric-
tions in order to prevent abnormal termination. For many
of the above mentioned systems, Java is the predominant
programming language.

However, currently the Java language and standard Java
runtime systems lack mechanisms for resource management
that could e.g. be used to limit the resource consumption of
hosted components or to charge the clients for the resource
consumption of their deployed components.

Prevailing approaches to provide resource control in Java-
based platforms rely on a modified JVM, on native code
libraries, or on program transformations. For instance, the
Aroma VM [11], KaffeOS [1], and the MVM [5] are spe-
cialized JVMs supporting resource control. JRes [6] is a
resource control library for Java, which uses native code for
CPU control and rewrites the bytecode of Java programs for
memory control.

On the other hand, resource control with the aid of pro-
gram transformations offers an important advantage over
the other approaches, because it is independent of any par-
ticular JVM and underlying operating system. It works with
standard Java runtime systems and may be integrated into
existing server and mobile object environments. Further-
more, this approach enables resource control within embed-
ded systems based on modern Java processors, which pro-
vide a JVM implemented in hardware that cannot be easily

modified [4]. This is the direction followed in this paper,
since it is based completely on program transformations:
the bytecode of ’legacy’ applications is rewritten in order to
make the resource consumption of programs explicit. Thus,
rewritten programs will unknowingly keep track of the num-
ber of executed bytecode instructions (CPU accounting) and
update a memory account when objects are allocated or re-
claimed by the garbage collector.

These ideas were first implemented in the Java Resource
Accounting Framework J-RAF [3], which has undergone a
complete revision in order to provide far better reliability,
programmability and performance. This paper presents the
details of how we currently re-engineer Java bytecode for
CPU management, including the strategies developed for
transforming the JDK (Java Development Kit, i.e., the stan-
dard java runtime libraries) itself in a fully portable way.
These advances are implemented in the second generation
of this tool, called J-RAF2*.

This paper is structured as follows: In the next section we
explain the details of our new approach for CPU account-
ing. Section 3 evaluates the performance of applications
using our new CPU accounting scheme. Finally, the last
section summarizes the benefits of J-RAF2 and concludes
this paper.

2. OUR CPU ACCOUNTING SCHEME

In this section we explain the details of our latest CPU
accounting scheme. In J-RAF2 each thread permanently
accounts for its own CPU consumption, taking the num-
ber of executed JVM bytecode instructions as platform-
independent measurement unit. Periodically, each thread
will aggregate the collected information concerning its own
CPU consumption within an account that is shared by all
threads of a software component, and execute management
code, e.g., scheduling decisions, to ensure that a given re-
source quota is not exceeded (e.g., the component may be
terminated if there is a hard limit on the total amount of
bytecode instructions it may execute, or threads may be
delayed in order to meet a restriction placed on execution
rates). In this way, the CPU accounting scheme of J-RAF2
does not rely on a dedicated supervisor thread, but the
scheduling task is distributed among all threads in the sys-
tem. We call this approach self — accounting.

Hence, and this is for us a guarantee of portability and re-
liability, we do not rely on the underlying scheduling of the
JVM, which is left loosely specified in the Java language,
probably to make it easier to implement Java across a wide
variety of environments: while some JVMs seem to provide
preemptive scheduling ensuring that a thread with high pri-
ority will execute whenever it is ready to run, other JVMs
do not respect thread priorities at all.

2.1 Bytecode Transformation Scheme

Concerning the bytecode rewriting schemes, our two main
design goals are to ensure portability (by following a strict
adherence to the specification of the Java language and
virtual machine) and performance (i.e., minimal overhead
due to the additional instructions inserted into the original
classes).

"http://www.jraf2.org/

170

Each thread has an associated ThreadCPUAccount which
is shown in figure 5 of subsection 2.5. During normal
execution each thread updates the consumption counter
of its ThreadCPUAccount. In order to prevent overflows
of the consumption counter, which is a simple 32-bit in-
teger, and to schedule regular activation of the shared
management tasks, the counter is checked against an ad-
justable granularity limit. More precisely, each time the
counter has been incremented by granularity (executed
bytecodes), its value will be registered and reset to an initial
value by the invocation of a consume() method. In other
words, each thread invokes the consume() method of its
ThreadCPUAccount, when the local consumption counter ex-
ceeds a certain limit defined by the granularity variable. In
order to optimize the comparison whether the consumption
counter exceeds the granularity, the counter runs from
-granularity to zero, and when it equals or exceeds zero,
the consume () method is called. In the JVM bytecode there
are dedicated instructions for the comparison with zero. We
use the iflt instruction in order to skip the invocation of
consume () if consumption is below zero. In order to apply
this CPU accounting scheme, methods of applications are
rewritten in the following way:

1. Insertion of conditionals in order to invoke the
consume () method periodically. The rationale be-
hind these rules is to minimize the number of checks
whether consume () has to be invoked for performance
reasons, but to make sure that malicious code cannot
execute an unlimited number of bytecode instructions
without invocation of consume(). The conditional
“if (cpu.consumption >= 0) cpu.consume();” is
inserted in the following locations (the variable cpu
refers to the ThreadCPUAccount of the currently exe-
cuting thread):

(a) In the beginning of each method. This en-
sures that the conditional is present in the ex-
ecution of recursive methods. For performance
reasons, the insertion in the beginning of meth-
ods may be omitted if each possible execution
path terminates or passes by an already in-
serted conditional before any method /constructor
invocation (invokeinterface, invokespecial,
invokestatic, invokevirtual). In other words,
leaf methods may be omitted (especially accessors
of abstract data types), as well as entry points of
methods inside which the first method invocation
happens after another inserted conditional, typi-
cally inside or after a loop.

In the beginning of each loop.

In the beginning of each JVM subroutine. This
ensures that the conditional is present in the ex-
ecution of recursive JVM subroutines.

In the beginning of each exception handler.

In each possible execution path after
MAXPATH Dbytecode instructions, where
MAXPATH is a global parameter passed to
the bytecode rewriting tool. This means that
the maximum number of instructions executed
within one method before the conditional is
being evaluated is limited to MAXPATH. In

order to avoid an overflow of the consumption
counter, MAXPATH should not exceed 2%°
(see section 2.7 for an explanation). In practice,
hand-written Java methods never exceed a few
hundred bytecodes in length, so this is a very
weak constraint.

2. The run() method of each class that implements
the Runnable interface is rewritten according to fig-
ure 1 in order to invoke consume() before the thread
terminates. After the thread has terminated, its
ThreadCPUAccount becomes eligible for garbage collec-
tion.

Figure 1: The rewritten run() method.

public void run(ThreadCPUAccount cpu) {
try {...}
finally {cpu.consume();3}

}

3. Finally, the instructions that update the consumption
counter are inserted at the beginning of each account-
ing block?. In order to reduce the accounting overhead,
the conditionals inserted before are not considered as
separate accounting blocks. The number of bytecode
instructions required for the evaluation of the condi-
tional is added to the size of the accounting block they
precede.

In [7], a problem similar to the one of minimizing the
number of inserted conditionals was studied, but in the con-
text of compiling functional languages; this leads to slightly
different results than with our scheme, which allows ex-
plicit loop constructs, and where modularity and object-
orientation precludes certain kinds of optimizations relying
on global program analysis.

2.2 Rewriting Example

Figure 2: Exemplary method to be rewritten for
CPU accounting.

void f() {
X;
while (true) {
if () {
Y;
}
Z;
}
}

Figure 3 illustrates how the exemplary method of figure 2
is transformed using the proposed CPU accounting scheme.

2Here we define the term accounting block as the longest
possible sequence of bytecode instructions where only the
first instruction may be the target of a branch, and where
the last instruction is one that changes the control flow (i.e.,
a branch, return, etc., but not an invocation).

We assume that the code block X includes a method invoca-
tion, hence the conditional at the beginning of the method
cannot be omitted. Here we do not show the concrete val-
ues by which the consumption variable is incremented; these
values are calculated statically by the rewriting tool and rep-
resent the number of bytecodes that are going to be executed
in the next accounting block.

Figure 3: Exemplary method rewritten for CPU ac-
counting.

void f(ThreadCPUAccount cpu) {
cpu.consumption += ...;
if (cpu.consumption >= 0) cpu.consume();
X;
while (true) {
cpu.consumption += ...;
if (cpu.consumption >= 0) cpu.consume();
if (© {
cpu.consumption += ...;
Y;
X
cpu.consumption += ...;
Z;

2.3 Obtaining a Reference to the Associated
ThreadCPUA ccount

The astute reader may have noticed, by looking at figure 3,
that ThreadCPUAccount references were passed by argument
to all rewritten methods, thus changing their profiles. In
reality, this works in the ideal case where we know that
absolutely all code has been transformed, i.e., when both
callers and callees refer to the same method profiles, and the
account reference can be simply and directly transmitted in
a chain. But in order to cope with special cases where this
is not possible, we have to leave in all classes stubs with
the original method profiles, which act as wrappers for the
methods with the additional ThreadCPUAccount argument,
as in figure 4.

Figure 4: Exemplary wrapper method for CPU ac-
counting.

void £() {
// Obtain a reference to the account
// of the current Thread:
ThreadCPUAccount cpu =
ThreadCPUAccount . getCurrentAccount () ;
// Invoke the real method:
f (cpw) ;

Now, another question arises: how can the
getCurrentAccount() method know which account is
associated to the current thread? Unfortunately, the JVM
provides no means for applications to be alerted each

time a thread switch occurs. Therefore, we have to call
the standard Thread.currentThread() method each time
this information is needed. Then, using the reference to
the current thread, we can obtain the associated CPU
account either through a hash table, or we can patch the
real Thread class and add the needed reference directly to
its set of instance fields. In the measurements presented
in this paper, we opted for the second solution, because
it is far more efficient, while still respecting the language
specifications®. The getCurrentAccount() method does
exactly this.

2.4 Bootstrapping with a Rewritten JDK

The functionality of getCurrentAccount () described just
above is however not valid during the bootstrapping of
the JVM. During this short, but crucial period, there is
an initial phase where the Thread.currentThread() pre-
tends that no thread is executing and returns the value
null (this is in fact because the Thread class has not
yet been asked by the JVM to create its first instance).
As a consequence, in all code susceptible of being exe-
cuted during bootstrapping, i.e., in the JDK, as opposed
to application code, we have to make an additional check
whether the current thread is undefined; for those cases,
we have to provide a dummy, empty ThreadCPUAccount
instance, the role of which is to prevent all references to
the consumption variable in the rewritten JDK from gen-
erating a NullPointerException. This special function-
ality is provided by the jdkGetCurrentAccount() method,
which replaces the normal getCurrentAccount() whenever
we rewrite JDK classes.

A second issue that arises when bootstrapping the JVM
with a rewritten JDK, is that we have no means for being
informed when the bootstrapping is terminated. This is
important, since before that moment, we are not allowed to
actually use classes of the JDK inside the implementation of
our runtime support, like ThreadCPUAccount. If we did, it
would disturb the normal class loading sequence of the JVM,
and most probably make it crash. But unless we want to im-
plement all our runtime support from scratch, and not only
ignore the benefits of code reuse for our own base classes,
but also impose the same constraints to third-party imple-
mentations of CPUManager classes (as described in the next
section), we have to know from what moment we are allowed
to use helper classes like java.util.Vector. Our solution
goes like this: application classes, i.e., all those which are
not part of the JDK, are loaded by the JVM at the end of the
bootstrapping. We can thus try to detect when such non-
JDK classes are initialized by the JVM, because that will
signal the end of the bootstrapping. Concretely, J-RAF2 ex-
ploits the static initializer method, named <clinit>, that
may exist inside every class for the sake of initializing class
(static) variables. Whenever the JVM initializes a class, it
will invoke the <clinit> method of that class, if it exists.
Our rewriting tool can thus insert an invocation to the J-
RAF2 runtime system inside every <clinit> method (and,
if necessary, create it from scratch) of every non-JDK class.

3We investigated another approach, which was to make the
standard Thread class inherit from a special class provided
by us, and thus receive the required additional field by inher-
itance. This elegant alternative would however not conform
to the Java language API, which stipulates that Thread is
a direct subclass of Object.

172

At that call, the more advanced functionalities of CPU man-
agement can be loaded and launched. Note that this latter
step has to be performed by meta-programming (using the
java.lang.reflect facility), in order to hide such depen-
dencies away from the JVM; if the dependencies were ex-
plicit, the JVM might try to load those classes eagerly, and,
of course, break the bootstrapping.

A third issue concerns the wrapper rewriting of the JDK.
At some instances, native code in the JDK assumes that
it will find a required piece of information at a statically
known number of stack frames below itself. This is unfortu-
nately incompatible with the generation of wrapper meth-
ods as described previously, because at run-time, it would
induce additional stack frames that would break the kind
of native methods mentioned above. For this reason, the
JDK cannot take advantage of the more efficient wrapper
rewriting scheme, and has to invoke jdkGetCurrentAccount
at the beginning of every method. We can however, at the
expense of a comprehensive class hierarchy analysis process,
completely duplicate most JDK methods, so that there al-
ways is one version with the original profile, and a second
with the additional ThreadCPUAccount argument. This ap-
proach works well, but is quite complex, and results in an
appreciable speedup only with older JVMSs, therefore we did
not include it in the measurements presented in this paper.

2.5 Implementation of Thread CPUAccount

Normally, each ThreadCPUAccount refers to an implemen-
tation of CPUManager (see figure 6), which is shared between
all threads belonging to a component. The first constructor
of ThreadCPUAccount requires a reference to a CPUManager.
The second constructor, which takes a value for the account-
ing granularity, is used only during bootstrapping of the
JVM (manager == null). If the JDK has been rewritten for
CPU accounting, the initial bootstrapping thread requires
an associated ThreadCPUAccount object for its proper execu-
tion. However, loading complex user-defined classes during
the bootstrapping of the JVM is dangerous, as it may vio-
late certain dependencies in the classloading sequence. For
this reason, a ThreadCPUAccount object can be created with-
out previous allocation of a CPUManager implementation so
that only two classes are inserted into the initial classloading
sequence of the JVM: ThreadCPUAccount and CPUManager.
Both of them only depend on java.lang.Object. After
the bootstrapping, the setManager (CPUManager) method is
used to associate ThreadCPUAccount objects that had been
allocated during the bootstrapping with a CPUManager. As
the variable manager is volatile, the thread associated with
the ThreadCPUAccount object will notice the presence of the
CPUManager upon the following invocation of consume().

After the bootstrapping the granularity wvariable in
ThreadCPUAccount is updated during each invocation of the
consume () method. Thus, the CPUManager implementation
may allow to change the accounting granularity dynamically.
However, the new granularity does not become active for a
certain thread immediately, but only after this thread has
called consume().

The consume () method of ThreadCPUAccount passes the
locally collected information concerning the number of exe-
cuted bytecode instructions to the consume(long) method
of the CPUManager which implements custom scheduling
policies. As sometimes consume (long) may execute a large
number of instructions and the code implementing this

Figure 5: Excerpt of the ThreadCPUAccount class.

public final class ThreadCPUAccount {
public int consumption;
private long aggregatedConsumption = 0;
private int granularity;
private boolean consumeInvoked = false;
private volatile CPUManager manager;

public ThreadCPUAccount (CPUManager m) {
manager = m;
granularity = manager.getGranularity();
consumption = -granularity;

}

public ThreadCPUAccount(int g) {
manager = null;
granularity = g;
consumption = -granularity;

}

public void setManager (CPUManager m) {
manager = m;

}

public void consume() {
long amountCons =
(long) consumption + granularity;

if (manager == null) {
aggregatedConsumption += amountCons;
consumption = -granularity;

} else {
granularity = manager.getGranularity();
consumption = -granularity;

if (consumeInvoked) {
aggregatedConsumption += amountCons;
} else {
amountCons += aggregatedConsumption;
aggregatedConsumption = 0;
consumelInvoked = true;
manager . consume (amountCons) ;
consumeInvoked = false;

Figure 6: The (simplified) CPUManager interface.

public interface CPUManager {
public int getGranularity();
public void consume(long c);

}

method may have been rewritten for CPU accounting as
well, it is important to prevent a recursive invocation of
consume (long). We use the flag consumeInvoked for this
purpose. If a thread invokes the consume() method of
its associated ThreadCPUAccount while it is executing the
consume (long) method of its CPUManager, it simply accu-
mulates the information on CPU consumption within the
aggregatedConsumption variable of its ThreadCPUAccount.
After the consume (long) method has returned, the thread
will continue normal execution and upon the subsequent
invocation of consume() the aggregatedConsumption will
be taken into account. During bootstrapping a simi-
lar mechanism ensures that information concerning the
CPU consumption is aggregated internally within the
aggregatedConsumption field, as a CPUManager may not yet
be available.

Details concerning the management of CPUManager ob-
jects, and the association of ThreadCPUAccount with
CPUManager objects are not in the scope of this paper. If
J-RAF2 is used to integrate CPU management features into
a Servlet or EJB container, the management of CPUManager
objects is under the control of the container.

2.6 ermplary CPUManager Implementa-
ions

The following figures 7 and 8 show simplified examples
how the accounting information of multiple threads may be
aggregated and used. Both CPUAccounting and CPUControl
implement CPUManager and provide specific implementa-
tions of the consume(long) method. CPUAccounting sup-
ports the dynamic adaptation of the accounting granularity.
The variable granularity is volatile in order to ensure
that the consume() method of ThreadCPUAccount alyways
reads the up-to-date value.

Figure 7: Exemplary CPUManager implementation:
CPU accounting without control.

public class CPUAccounting implements CPUManager {|
protected long consumption = 0;
protected volatile int granularity;

public CPUAccounting(int g) {granularity = g;}

public int getGranularity() {
return granularity;

}

public void setGranularity(int g) {
granularity = g;

}

public synchronized long getConsumption() {
return consumption;

}

public synchronized void consume(long c) {
consumption += c;

}

140.0%
120.0% -
100.0%
80.0%
60.0% —‘
40.0% +— -
20.0% +
0.0%
35% '3‘55 T\ . \130 QO ‘(_(\‘ -ac.\(\ e@(\
0((\9‘ qjﬂ) 20~ AD » ega\) fﬂj - fL’L%) Y
A_C A - 2 o9 y y e
/0 - - r?:L?z/ Geo
OSun JDK 1.5.0, client mode [ESun JDK 1.5.0, server mode WM IBM JDK 1.4.1, default mode
Figure 9: Overheads due to simple CPU accounting in SPEC JVM98.
Note that the consume(long) method is synchronized,
as multiple threads may invoke it concurrently. The
CPUAccounting implementation simply maintains the sum
of all reported consumption information, whereas the
CPUControl implementation enforces a strict limit and ter-
Figure 8: Exemplary CPUManager implementation: minates a component when its threads exceed that limit.

CPU control.

public class CPUControl extends CPUAccounting {
private Isolate isolate;
private long limit;

public CPUControl(int g, Isolate i, long 1) {
super (g) ;
isolate
limit =

= i;
1;
}

public synchronized void consume(long c) {
super. consume (c) ;
if (consumption > limit) isolate.halt();

}

174

In this example we assume that the component whose CPU
consumption shall be limited executes within a separate iso-
late. This is a notional example, as the isolation API [9]
is missing in current standard JVMs. More sophisticated
scheduling strategies could, for instance, delay the execu-
tion of threads when their execution rate exceeds a given
threshold. However, attention has to be paid in order to
prevent deadlocks and priority inversions.

2.7 Scheduling Delay

The delay until a thread invokes the scheduling code (as
a custom implementation of the consume(long) method of
CPUManager) is affected by the following factors:

1. The current accounting granularity for the thread.
This value is bounded by Integer.MAX_VALUE, i.e.,
231 — 1.

2. The number of bytecode instructions until the next
conditional C is executed that checks whether the
consumption variable has reached or exceeded zero.
This value is bounded by the number of bytecode
instructions on the longest execution path between

80.0%

70.0%

60.0% -

50.0% -

40.0% -

30.0% -

20.0%

10.0% -

0.0%

eg,% '656
. 00«\9‘ S
20N~ -

-

’ng /6‘0 ,\,5 ')a\lac
- 2

bl /“\Qe

a“d\o

-~

e
g8

e

ack
'ﬂ%)30

OSun JDK 1.5.0, client mode

ESun JDK 1.5.0, server mode

M IBM JDK 1.4.1, default mode

Figure 10: Overheads due to optimized CPU accounting in SPEC JVM98.

two conditionals C'. The worst case is a method M
of maximum length that consists of a series of in-
vocations of a leaf method L. We assume that L
has MAXPATH — 1 bytecode instructions, no JVM
subroutines, and no loops. M will have the condi-
tional C in the beginning and after each segment of
MAXPATH instructions, whereas C' does not occur
in L. During the execution of M, C' is reached every
MAXPATH x (MAXPATH — 1) instructions, i.e.,
before M AX PAT H? instructions.

Considering these two factors, in the worst case the
consume () method of ThreadCPUAccount (which in turn will
invoke the consume (1ong) method of CPUManager) will be in-
voked after each MAXDELAY = (23! —1)+ MAXPATH?
executed bytecode instructions. If MAXPATH = 25,
the int counter consumption in ThreadCPUAccount will not
overflow, because the initial counter value is -granularity
and it will not exceed 2%°, well below Integer.MAX_VALUE).
Using recent hardware and a state-of-the-art JVM, the exe-
cution of 232 bytecode instructions may take only a fraction
of a millisecond, of course depending on the complexity of
the executed instructions.

For a component with n concurrent threads, in total less
than n * MAXDFELAY bytecode instructions are executed
before all its threads invoke the scheduling function. If the
number of threads in a component can be high, the account-
ing granularity may be reduced in order to achieve a fine-
grained scheduling. However, as the delay until an individ-

175

ual thread invokes the scheduling code is not only influenced
by the accounting granularity, it may be necessary to use a
smaller value for M AXPATH during the rewriting.

3. EVALUATION

In this section we present a brief overview of the bench-
marks we have executed to validate our new accounting
scheme. We ran the SPEC JVM98 benchmark suite [12]
on a Linux RedHat 9 computer (Intel Pentium 4, 2.6 GHz,
512 MB RAM). For all settings, the entire JVM98 bench-
mark was run 10 times, and the final results were obtained
by calculating the geometric means of the median of each
sub-test. Here we present the measurements made with the
IBM JDK 1.4.1 platform in its default execution mode, as
well as the Sun JDK 1.5.0 beta 1 platform in its ’client’ and
’server’ modes. In our test we used a single CPUManager with
the most basic accounting policy, i.e., the one described in
figure 7, and with the highest possible granularity.

The most significant setting we measured was the perfor-
mance of the rewritten JVM98 application on top of rewrit-
ten JDKs, and we found that the overhead (execution time
of modified code vs. execution time of unmodified code) is
about 40% (see figure 9). This average is slightly better for
the IBM JDK, and much better for the Sun JDK* than pre-

4The Sun virtual machine has evolved considerably since
our former measurements: with the same rewriting scheme,
overheads fall from around 300% down to about 40% when
going from Sun’s 1.3.1 generation to its latest release.

——Overhead % —=-Delay [ms]

120.0% 300

100.0% \ F—1 250

2 80.0% 200
W
3 E
£ 60.0% - +150 5
o o
> [}
(@) (=]

40.0% \\ . 100

20.0% / 50

0.0% bl T bl T bl T ol T - T T T 0
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 2°31-1
Granularity [bytecodes]

Figure 11: Granularity versus overhead and delay.

viously published results [2], which were based on a former,
less portable and less reliable rewriting scheme.

Another interesting measurement we made was to deter-
mine the impact of the choice of a granularity (see figure 11).
The granularity has a direct influence on the responsive-
ness of the implementation w.r.t. the chosen management
policy: the lower the granularity, the more frequently the
management actions will take place. In our current imple-
mentation, and on the given computer, this interval is not
measurable with granularities below 10,000,000 bytecode in-
structions. Another valuable lesson learned is that granular-
ities of 100,000 and more exhibit practically the same level of
overhead. The latter measurements were made exclusively
on the ’compress’ sub-benchmark of SPEC JVM98®, hence
the asymptotical values slightly different from the above
mentioned average overhead.®

There are still many ways to reduce these overheads by
improving the rewriting schemes. We have for instance ex-
perimented with inlining carefully hand-crafted bytecode
sequences instead of invoking very frequent methods like
getCurrentAccount (), or with duplicating all method bod-

This was for simplicity, and ’compress’ was chosen because
it exhibits a performance which is usually closest to the over-
all average value.

6All performance measurements have an intrinsic impreci-
sion of 2-3% depending on complex factors such as the load
history of the test machine.

176

ies instead of resorting to short wrappers, or also with de-
tecting leaf calls that do not need to implement the check of
consumption vs. granularity (a simple optimization that is
applicable to about 19% of the methods of both JDKs con-
sidered here); these optimizations decrease overheads dras-
tically, but this is ongoing work, and could not be described
further here due to the lack of space. Figure 10 shows that
overheads fall down to approximately 27% with what has
lately become the default set of optimizations of J-RAF2.

As a final remark, it should be emphasized that these re-
sults all correspond to a perfectly accurate accounting of
executed bytecode instructions, which is a level of precision
not always necessary in practice. Currently, we are work-
ing on approximation schemes, which already enable us to
reduce the overheads down to below 20%.

With the algorithms described here, the rewriting pro-
cess takes only a very short time. For instance, rewriting
the 20660 methods of the 2790 core classes of IBM JDK
1.4.1 takes less than one minute on our test machine. Each
method is treated separately, but some algorithms could
be enhanced with limited forms of interprocedural analysis.
We do however not allow ourselves to do global analysis, as
this might restrict the developer’s freedom to extend classes
gradually, and to load new sub-classes dynamically.

4. CONCLUSIONS

Resource control with the aid of program transformations
offers an important advantage over the other approaches,
because it is independent of any particular JVM and under-
lying operating system. It works with standard Java runtime
systems and may be integrated into existing server and mo-
bile object environments, as well as into embedded systems
based on Java processors.

To summarize, the CPU accounting scheme described here
offers the following benefits, which make it an ideal can-
didate for enhancing Java server environments and mobile
object systems with resource management features:

e Full portability. J-RAF2 is implemented in pure Java
and all transformations follow a strict adherence to
the specification of the Java language and virtual ma-
chine. It has been tested with several standard JVMs
in different environments, including also the Java 2 Mi-
cro Edition [4].

e Platform-independent unit of accounting. A time-
based measurement unit makes it hard to establish
a contract concerning the resource usage between a
client and a server, as the client does not exactly know
how much workload can be completed within a given
resource limit (since this depends on the hardware
characteristics of the server). In contrast, using the
number of executed bytecode instructions is indepen-
dent of system properties of the server environment.
To improve accounting precision, various JVM byte-
code instructions could be associated with different
weights. At the moment, our implementation counts
all instructions equally.

e Flexible accounting/controlling strategies. J-RAF2 al-
lows custom implementations of the CPUManager inter-
face.

e Fine-grained control of scheduling granularity. As de-
scribed in section 2.7, the accounting delay can be
adjusted; to some extend dynamically at runtime, to
some extend during the rewriting process.

e Independence of JVM thread scheduling. The present
CPU accounting scheme of J-RAF2 does not rely on
thread priorities.

e Moderate overhead. We have shown that our CPU ac-
counting scheme does not produce excessive overhead.
At the same time, it has many benefits, such as the in-
dependence of the JVM scheduling, or the prevention
of overflows.

Concerning limitations, the major hurdle of our approach
is that it cannot account for the execution of native code.
It is nevertheless possible to wrap several expensive native
operations, like (de-)serialization and class loading, with li-
braries that deduce the approximate CPU consumption from
the size and value of the arguments.

Work is in progress to provide a complete optimization
framework, which allows to trade-off between accounting
precision and overhead. Security has not been addressed
either in this paper; we do nevertheless have load-time byte-
code verification algorithms designed to prevent applications
from tampering with their own CPU consumption accounts.

177

Acknowledgements

This work was partly financed by the Swiss National Science
Foundation.

5. REFERENCES

[1] G. Back, W. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, resource management, and sharing
in Java. In Proceedings of the Fourth Symposium on
Operating Systems Design and Implementation
(0SDI’2000), San Diego, CA, USA, Oct. 2000.

W. Binder and V. Calderon. Creating a resource-aware
JDK. In ECOOP 2002 Workshop on Resource
Management for Safe Languages, Malaga, Spain, June
2002. http://www.ovmj.org/workshops/resman/.

W. Binder, J. Hulaas, A. Villazén, and R. Vidal.
Portable resource control in Java: The J-SEAL2
approach. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA-2001), Tampa Bay, Florida, USA, Oct.
2001.

W. Binder and B. Lichtl. Using a secure mobile object
kernel as operating system on embedded devices to
support the dynamic upload of applications. Lecture
Notes in Computer Science, 2535, 2002.

G. Czajkowski and L. Daynes. Multitasking without
compromise: A virtual machine evolution. In ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’01),
Tampa Bay, Florida, Oct. 2001.

G. Czajkowski and T. von Eicken. JRes: A resource
accounting interface for Java. In Proceedings of the
13th Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA-98),
volume 33, 10 of ACM SIGPLAN Notices, pages
21-35, New York, USA, Oct. 18-22 1998. ACM Press.
M. Feeley. Polling efficiently on stock hardware. In the
1998 ACM SIGPLAN Conference on Functional
Programming and Computer Architecture,
Copenhagen, Denmark, pages 179-187, 1993.

J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The
Java language specification. Java series.
Addison-Wesley, Reading, MA, USA, second edition,
2000.

Java Community Process. JSR 121 — Application
Isolation API Specification. Web pages at
http://jcp.org/jsr/detail/121. jsp.

T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison-Wesley, Reading, MA, USA,
second edition, 1999.

N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth,
G. A. Hill, R. Jeffers, T. S. Mitrovich, B. R. Pouliot,
and D. S. Smith. NOMADS: toward a strong and safe
mobile agent system. In C. Sierra, G. Maria, and J. S.
Rosenschein, editors, Proceedings of the 4th
International Conference on Autonomous Agents
(AGENTS-00), pages 163-164, NY, June 3-7 2000.
ACM Press.

The Standard Performance Evaluation Corporation.
SPEC JVM98 Benchmarks. Web pages at
http://www.spec.org/osg/jvmo8/.

(12]

