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Abstract 

Currently, data mining applications use classical methods to calculate covariance and correlation matrices. 
These methods have the drawback that they can be adversely affected by data set outliers. Thus, robust 
methods for calculating covariance and correlation matrices are useful for these applications. However, 
robust methods require more time to calculate. To counter this, we propose two parallel robust methods 
of calculating correlation and covariance matrices. The first algorithm is a parallel version of Quadrant 
Correlation (QC), and the second is a parallel version of the Maronna method. Parallel QC uses a parallel 
matrix library and can handle single-dimensional outliers in its data. The parallel Maronna method divides 
the independent correlation calculations between the processors and is capable of detecting one and two 
dimensional outliers in data. 

We evaluate these algorithms using a dataset from a "real-life" application. It is a genetic data 
set that comes from cardiovascular research, and it contains 6068 variables. Our evaluation also includes 
performance results from datasets with varying dimensions, performance of several algorithm components, 
a communications analysis, and improvements for the Maronna method. 

' From our results we conclude that our parallel algorithms make the robust calculation of correlation 
and covariance matrices useful in applications that deal with large dimensional data, such as data mining. 
Our initial hypothesis was that Maronna would perform better in parallel than QC, to the point that Maronna 
would be faster. In actuality, we found that Maronna does work better in parallel than a parallel QC in that 
it scales to more processors. However, our experiments do not show the parallel Maronna takes less time. 
Our conclusion is QC and Maronna are two viable options for computing robust correlation and covariance 
matrices. QC is less robust, fast, but does not scale as well to many processors while Maronna takes longer, 
is more robust, and scales to many processors. 
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Chapter 1 

Introduction 

1.1 Motivation 

One important analysis of any data is to discover the relationships between the variables. Correlation and 

covariance are statistical measures of the linear relationship between two variables. When considering 

several variables, a correlation/covariance matrix can be formed using the correlations/covariances between 

all the variables. The calculation of correlation and covariance matrices plays an important role in the field 

of data mining. Data mining is the extraction of useful data or trends from large databases. This is relevant 

in current times because memory is readily available in large quantities and there are datasets which contain 

many thousands of variables and records, such as in genetics, oceanography, customer transaction data, and 

web data. The size of these datasets makes it challenging to effectively compute data mining tasks, including 

correlation and covariance. 

The use of correlation and covariance in data mining fits into the areas of clustering and classifi­

cation. In classification, covariance matrices are used in the principle components analysis phase to find 

the most correlated variables in the data. Principle components analysis is used to order the variables in 

decreasing order of their variability. Then, the number of variables can be reduced if one is interested in 

just the most wide-ranging variables. For example, covariance matrices are used in clustering to reduce the 

number of dimensions in the data so that calculations are performed on smaller dimensioned data. For a 

covariance calculation to be useful in these applications, it needs to be able to handle the large data matrices 

common in data mining. 

Most data mining applications that use correlation and covariance calculations use classical methods 

to compute them. These methods are not always adequate for applications' needs. In some cases, datasets 
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can be corrupted with bad data, and we want to calculate the correlation or covariance without having these 

values spoil the results. This is especially true in biomedical applications, some of which are forced to use 

small samples that are more easily corrupted by outliers. For example, research geneticists using microarray 

gene data can be affected by such outliers because in certain circumstances, microarray data can be affected 

by noise that creates these outliers [8]. It would be valuable if researchers could reduce the outliers' influence 

on their results in such a case. 

In cases where outliers affect the quality of results for correlation and covariance calculation, robust 

methods are a good alternative to classical methods. Robust methods for correlation and covariance spe­

cialize in providing results that are less influenced by outlier data. One robust technique for covariance and 

correlation matrix computation is the Quadrant Correlation method (QC). QC performs a pairwise calcula­

tion of correlation/covariance and is capable of detecting single dimensional outliers. It runs in a reasonable 

amount of time, but its robustness is limited to only single dimensional outliers. Another robust technique 

is the Maronna method. Maronna also computes the correlation/covariance in a pairwise fashion, but it can 

detect one and two dimensional outliers. This added ability comes with a far greater computational cost so 

that Maronna has generally been viewed as unuseable for all but the smallest data sets. 

The performance of robust methods for calculating correlation and covariance must be improved if 

these methods are going to be used to compute those matrices for large datasets in data mining applica­

tions. We hypothesize that using parallel methods to calculate robust covariance/correlation will improve 

performance to the point where such calculations can be used for data mining applications. 

QC and Maronna are both parallelizeable. Their algorithms both consist of two parts, one part 

performs median calculations for the variables, the other works on the correlation/covariance calculation. 

The median portion is easily parallelized by dividing the variables between processors and calculating the 

medians distributively, or if there are few variables, have the processors work together to find the medians. 

The correlation part is where the two algorithms differ. QC's correlation contains mostly vector operations 

and a matrix multiply. Matrix multiply is a well studied parallel problem, thus we create parallel QC by 

using a parallel matrix library, such as PLAPACK [32], which uses efficient parallel matrix multiply and 

other vector operations. Maronna's correlation is parallelizeable because the algorithm considers each of 

the correlation entries in the resulting matrix to be independent calculations. For each pair of variables, the 

algorithm uses an iterative process that converges to the correlation between them. These correlations can 

easily be divided between the processors so that all of them calculate their portion of the resulting correlation 

matrix in parallel. 
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1.2 Problems 

This thesis focuses on the creation, implementation, and performance of a parallel robust parallel co-

variance/correlation algorithm. We consider two algorithms to parallelize, Quadrant Correlation and the 

Maronna method. The two algorithms break down into similar component parts, the median calculation for 

the data variables, the correlation calculation, and the positive definiteness repair of the covariance matrix. 

We look at the individual components to find how to make improvements to them through parallelization. 

Next, we look for methods of further improving the parallel version of Maronna. Finally, we investigate 

how the parallel algorithms perform, especially when we run them on a larger number of processors. 

1.3 Approaches 

The correlation calculation component of QC and Maronna are the main parts of the algorithms, and we used 

different approaches to parallelize them. As described earlier, we used a parallel matrix library, PLAPACK, 

to make the matrix and vector operations in QC parallel. For Maronna, we changed the algorithm so that 

it partitions the correlation matrix between the processors and each processor calculates and fills in the 

correlations for their partition. Our median component is adaptive and depends on the size of the dataset. 

It can use a sequential method, a parallel method where each processor performs the sequential median 

algorithm on a subset of variables, or a parallel method that has groups of processors running a parallel 

median algorithm for each variable. The last component we parallelized repairs the positive definiteness of 

the correlation matrix. To do this we find the negative eigenvalues by using a parallel partial eigensolver, then 

calculate replacement values for the negative eigenvalues to rebuild a positive definite correlation matrix. 

Our improvements of the parallel Maronna fall into two areas, load balancing and convergence. 

We implemented a dynamic load balanced version of Maronna using a processor farm approach to ensure 

processors have enough work to stay busy throughout the calculation. Maronna uses an iterative process to 

calculate each correlation, so an improvement in convergence benefits the algorithm. We experimented with 

improving convergence by manipulating the internal parameters of the Maronna algorithm. 

For our investigation of QC and Maronna's performance, we began with a communication analysis 

of our implementations. This includes a measure of the communication primitives used and a profile of the 

overall communication during runtime. In addition we experimented with the algorithms on the large cluster 

environment of WestGrid [35]. 
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1.4 Overview 

Parallel Maronna and QC are both good algorithms in different ways. QC is fast, while Maronna takes longer 

but continues to speedup with a larger number of processors. The two algorithms work well, but for different 

types of problems. QC should be used when only a few processors are available and you need the solution 

quickly, but with only a medium amount of robustness. Maronna is a good choice when a lot of robustness 

is required and many processors are available. In addition, it is desirable to have adaptive components 

in the algorithms that depend on the dataset dimensions because this can improve runtime as well. Also, 

effective means of improving Maronna include modifying the internal parameters of the algorithm and the 

implementation of dynamic load balanced Maronna. 

1.5 Outline 

The thesis is organized as follows. Chapter 2 covers the background information. Section 2.1 focuses 

on cluster computing. Section 2.2 is about robust correlation and covariance including an example and 

components to robust correlation and covariance algorithms. Section 2.3 describes how correlation and 

covariance are used in data mining. 

Chapter 3 covers the algorithms we use to calculate robust correlation and covariance in parallel. 

Section 3.1 gives a general overview of both our algorithms. Section 3.2 describes our algorithm for cal­

culating median and MAD. Section 3.3 focuses on our method of repairing the positive definiteness of the 

correlation matrix. Section 3.4 describes our parallel QC algorithm and Section 3.5 describes our parallel 

Maronna algorithm. 

In Chapter 4 we give the results of our experiments. First we describe the experimental setup in 

Section 4.1. Chapter 4 continues in Section 4.2 with or results analysis for the parallel QC and Maronna 

algorithms. Section 4.3 covers the I/O performance of our algorithms and Section 4.4 describes our results 

for repairing the positive definiteness of covariance matrices. We use Section 4.5 to explain our experiments 

with load balancing the Maronna algorithm. Section 4.6 describes our experiments in varying the size of 

input data. Finally, Section 4.7 covers our communications analysis of QC and Maronna. 

Chapter 5 gives our conclusions and describes some areas for future work. 
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Chapter 2 

Background 

The background describes some basic knowledge of the areas that relate to this thesis. Section 2.1 discusses 

parallel cluster computing, Section 2.2 describes robust correlation/covariance computation, and Section 2.3 

focuses on how correlation and covariance are used in data mining. 

2.1 Cluster Computing 

Parallel computing has two main areas for architectures, shared memory machines and clusters. In this 

thesis, we are concerned with the cluster architecture. A parallel cluster is made of separate machines, each 

having its own processor and memory, which are connected together by a network, such as Ethernet. The 

machines work together by sending messages to one another across the network. 

Cluster computing has advantages over single processor computing because cluster computing com­

bines computer power and resources across several computers. If a computation is too large for a single 

machine, a cluster of machines can provide more computing power to calculate the result faster. Similarly, 

if there is not enough memory in a single machine to compute a memory intensive job, a cluster can be used 

to divide the problem across multiple machines to compute the result in a distributed fashion. In an ideal 

circumstance, if p machines in a cluster are used to perform a computation, it takes ^th the time of the single 

processor version. This is not usually true in practice because there is an overhead cost to the parallelization 

and a communication cost associated with passing messages between machines. 

Cluster computing is becoming more competitive with other methods of supercomputing. Standards 

such as MPI [ 1 0 ] let developers create software that is more portable between clusters. Todays commodity 

processors and equipment are more affordable so that it is more cost effective to assemble a cluster than 

5 



to build a supercomputer. These components are also gaining in performance, as can be seen by their 

presence in the list of 500 top supercomputers [23]. Computing clusters comprise forty percent of the list, 

and have seven of the top ten positions. The success of computing clusters has increased the interest in 

grid computing, which involves combining computers or clusters in separate geographic locations to form 

a system. Users in a grid computing environment only see the system as a large single computer, and the 

system takes care of all the technical details of combining the resources together for the user. One example 

of grid computing research is WestGrid in Canada [35]. 

In the case of calculating robust covariance/correlation, the computation is processor intensive. 

Thus, in our experiments, we show that by using a cluster with enough processors, parallel robust co-

variance/correlation provides users with performance that is of interest for data mining applications. 

2.2 Robust Correlation and Covariance Calculation 

2.2.1 Correlation and Covariance 

Covariance measures the degree of linear association between two variables. If the covariance between two 

variables is high, a change in one variable will bring a similar linear change in the related variable. When 

the covariance is very negative, the two variables are inversely linear related to one another. Zero covariance 

implies there is no linear association between the two variables. 

Formally, covariance is defined as 

cov(Xi, = E[(Xi - IM){Xj - UJ)] 

where Xi and Xj are the two column variables, and /Zj and /Zj are their respective means. For a data set 

with several variables, the covariance matrix is a matrix that contains all the covariance values for every 

combination of variables. Thus position in the matrix contains the covariance between variables i and 

j. The correlation between two such variables is the covariance normalized so that it lies between the values 

-1 and 1. The normalization occurs by dividing the covariance by the product of the standard deviations for 

the two variables. 

corn A j, A,-) = J— 
CTiGj 

Variables that are directly related will have correlations near one, while those inversely related will have 

correlations around -1. Again, the correlation is near zero for unrelated variables. 
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2.2.2 Robust Correlation and Covariance 

Robust covariance matrix estimation is a popular area in statistics. The robustness of estimators is deter­

mined by their breakdown point, the maximum amount of contamination that an estimator can handle. Of 

particular interest are the estimators that are positive definite, affine equivariant, and have a high breakdown 

point near one-half. The reason positive definite estimators are desired is that it does not make sense for 

a covariance matrix not to be positive definite. Covariance matrices can be represented geometrically as a 

multidimensional ellipsoid that describes the multivariate scatter of the original data. The eigenvectors of the 

covariance matrix are the axes of the ellipsoid and the eigenvalues of the covariance matrix are the lengths of 

these axes. These lengths must be positive, so we only want to consider estimators that are positive definite. 

The property of affine equivariance is also related to the covariance ellipsoid. If we apply an affine 

equivariant transformation to the original data set, then the resulting covariance ellipsoid after applying the 

transformation is the same as the covariance ellipsoid of the resulting transformed data. This is a good 

property because if an estimator can detect single dimensional outliers and is affine equivariant, then it is 

known to be able to detect structural outliers as well. The Maronna method is one example of such an 

estimator. 

Estimators with the properties we desire fall into several classes. One class includes the S estimates, 

such as the Minimum Volume Ellipsoid (MVE), and another class is the Minimum Covariance Determinant 

(MCD) estimates [28,29]. There is also a class for the projection based estimates, such as the Stahel-Donoho 

estimate (SDE) proposed by [31] and [7], and studied by [22, 17]. Yet another class is the P-estimates [21]. 

The major problem with these estimators is they are very time consuming to compute, requiring on 

the order of 2V operations, where v is the number of variables. The projection estimators further require 

n 2 operations, where n is the number of cases. This is unacceptable due to the large size of datasets in 

data mining, which can have thousands of variables and hundreds of thousands to millions of cases. The 

reason for the high level of complexity is that computing these estimators comes down to solving a highly 

non-convex optimization problem, which consists of trying to find a good initial estimate that has the global 

optimum as its nearest local optimum. The initial estimates are usually computed through repeated random 

sub-sampling of Ns rows of the dataset, where Na is chosen to result in a high breakdown point with high 

probability, .99 or .999 (see for example [27]). This results in the exponential complexity. 

A quicker alternative is the "Fast MCD" (FMCD) [26]. FMCD is better than using naive subsam-

pling because it can produce "good" solutions using a much smaller JVS. The downside is the running time 
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for FMCD is still too long for a large number of variables and it does not have a high breakdown point when 

the number of cases is large. 

It is possible to compute faster estimates that have high breakdown points if we do not require 

the resulting matrix to be affine equivariant. The easiest of such methods are those based on pairwise 

estimates which have overall high breakdown points because each of the individual pairwise estimates is 

calculated with a high breakdown point. This reduces the complexity in terms of the number of variables 

from exponential to quadratic (from 2P to p2). One category of these estimates is (i) the classical rank 

based methods, such as the Spearman's p and Kendall's r (see for example [1]). Another is (ii) classical 

correlations applied after coordinate-wise outlier insensitive transformations such as the quadrant correlation 

(QC) and 1-D "Huberized" data (see [15], p. 204). Also, (iii) bivariate outlier resistant methods such as the 

method proposed by [11] and studied by [6]. The smaller running time for theses pairwise methods make 

them more appropriate for use in data mining, especially on the datasets with hundreds of variables. 

More recent approaches are based on modifications of the pairwise methods, the Gnanadesikan and 

Kettenring (MGK) approach [19] modifies (iii) and a version of quadrant correlation modified from (ii) [2] 

improve on the previous approaches in that they have complexity 0{np2). We chose the version of QC in [2] 

to parallelize to extend the use of robust correlation in data mining to datasets with thousands of variables, 

such as the gene dataset of 6068 variables we use in our experiments. 

The problem with these pairwise estimators is that they were created with speed in mind instead 

of robustness. Their lack of affine equivariance means that they will be susceptible to two-dimensional 

structural outliers. An alternative choice is to use the Maronna M-estimate [20] because it has a higher 

quality robustness. The Maronna covariance matrix estimate is positive definite, affine equivariant, and 

can be computed using a re-weighting algorithm. This computation is much too expensive for sequential 

approaches as we will see in the Experiments chapter, but we choose this method to parallelize because of 

its better robustness. 

2.2.3 Robust Examples 

A comparison of the robustness between the classical Pearson correlation, QC, and Maronna is in Figure 

2.1. Figure 2.1 shows the three methods used on clean data, data with two dimensional structural outliers, 

and data with large two dimensional structural outliers. We see that the classical method performs badly 

and is affected by the structural outliers and even worse by the large structural outliers, going from a .95 
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correlation to .40 and —.22. QC was also affected by the outliers in the data, with its correlation going from 

.98 to .64. The Maronna performs the best and is hardly affected by the outliers. The Maronna correlation 

changed from .96 to .91. 

Another example of the advantage of two dimensional robustness is the Woodmod data set from 

the S-PLUS robustness library in Figure 2.2. In the rectangles of V1-V2 and V4-V5, both have a small 

group of two dimensional outliers in one of their comers. Both sets of outliers are not visible when viewing 

the data along a single dimension. The correlations for V1-V2 and V4-V5 using traditional methods are 

— .14 and —.24. However, a robust calculation method shows the correlations are .85 and .65. This is a 

vast difference from the non-robust approach. This makes it clear that a robust method is preferred when 

calculating correlation and covariance matrices. 

Even though a robust approach is computationally expensive, there are applications that would ben­

efit from robust correlation and covariance matrix calculations. One such area is bio-medicine, especially 

genetic related fields. For example, one application of covariance matrix calculations is to examine the 

genetics of rheumatic and normal heart valves to help identify which genes are responsible for generating 

rheumatic valves. To do so, it is useful to look at both the genes' correlation, and how the genes fall into 

clusters based upon their correlations. Figure 2.3 shows an example dendrogram of gene correlation clus­

ters. The dendrogram is formed by first calculating the correlation matrix for the gene expression data. 

Then group the correlations into clusters using a clustering algorithm. Finally, create the dendrogram based 

on the clusters. The height in the diagram relates to the gene correlation by 1 — r, where r is the correlation. 

The robust methods are especially effective for this application because microarray gene data is affected by 

noise [8] which can cause outliers in the data that skews the results. In addition, the data usually has few 

samples, which makes it more important to downplay the outliers to achieve accurate results. Gene data 

usually has a large number of variables as well, so only a robust technique that could process large data 

sets would be useful for this application. Thus, it is important to develop the techniques to handle robust 

approaches to calculating high dimensional covariance and correlation matrices. 

2.2.4 Component Algorithms to Robust Correlation/Covariance 

There are a couple of algorithms that are key components in calculating covariance and correlation matrices. 

One such algorithm calculates the median and MAD (Median Absolute Deviation). The median and MAD 

act as robust calculations of the mean and standard deviation. The algorithms for both are similar, so a 
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median algorithm can calculate MAD with minor alterations. Sequential median algorithms range from 

linear and average linear time, such as [5, 10.3] and [5, 10.2] that use partitioning, to 0(n logn) algorithms 

that sort the data using quicksort. Most of the parallel implementations of the median algorithm are based 

on shared memory architectures, where there is not as great a penalty for communicating data between 

processors. Existing algorithms for distributed memory architectures, such as [30], attempt to reduce the 

amount of data communication between processors. One of the best parallel median algorithms uses the 

PRAM model and has C(logn • log logn) running time on ©(_ |^ ) processors [16]. [4] has suggested an 

algorithm that has a worst case time that matches [16] in runtime, but has an expected runtime of ©(log n) 

with the added restriction that the input values are distributed randomly on an interval [a,b]. Finally, [13] 

provides an optimal version of the parallel selection algorithm for EREW PRAMs that takes C(log n) time 
u s i n § isf̂  processors. 

The operations performed in QC and Maronna do not preserve the quality of positive definiteness of 

the correlation matrix. The algorithms must repair the matrix if we desire the property of positive definite­

ness. Our implementations use an eigensolver to identify the negative eigenvalues so they can be repaired. 

Various algorithms exist for calculating eigenvectors. The power method is one of the simplest. It solves 

for extreme eigenvalues of the matrix and a variant can be applied repeatedly to solve for multiple eigen­

values [9, 7.1]. QR-factorization uses a set of similarity transforms to convert the matrix into a form that is 

easier to solve for eigenvalues [9, 7.3]. Another method used widely in applications such as Matlab is the 

Arnoldi method, or Lanczos method in the case for real symmetric matrices. The Lanczos method works 

well for finding extreme eigenvalues, and can find the eigenvalues in the inner portion of the spectrum when 

functions are used to remap those eigenvalues to the extreme points [34, 5.3]. 

2.3 Correlation and Covariance in Data Mining 

Covariance and correlation matrices have applications in many fields, and one important use is in the area 

of data mining. Data mining applications deal with very large datasets that can have hundreds of thousands 

of variables and millions of cases. However these datasets can come in a variety of shapes. For example, 

some gene datasets will have data on thousands of genes, but only a few samples, such as the rheumatic 

heart valve gene dataset we use for experiments. Other datasets can have the opposite dimensions, such as 

atmospheric or oceanographic data, which can have a few thousand variables for the locations they measure 

and many thousands of samples, one for each measurement. 
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There are several types of applications that covariance matrices are used for in data mining. These 

applications include selection of relevant variables to analyze, methods of outlier detection, and as a key 

component in the processes of clustering and classification. 

Clustering is a method of dividing data into groups with similar characteristics. Clustering requires 

queries and information retrieval on large datasets that can span many dimensions. A fast way of performing 

these operations is to try to reduce the dimensionality of the dataset. One technique for doing so is to form 

the covariance matrix for the data and find the principal component eigenvectors and eigenvalues. The 

principal components are used to form a new, smaller dimensional space with projected data points from the 

original data. 

Covariance matrices are also used in classification data mining. Classification is a means of creating 

rules that govern which category a data object is filed under. These rules are constructed by examining a 

small set of already categorized data. Algorithms use these rules to separate new data values into preexisting 

classes. Classification also uses principle component analysis, and hence covariance matrices, to determine 

what features of the dataset should be used by the mles to divide the data into classes. 

These examples show that covariance and correlation calculations play a part in the field of data 

mining. If we improve the robust calculation of covariance and correlation matrices through parallelization, 

all these areas in data mining will benefit. 
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Figure 2.1: Advantages of Maronna Over QC and the Classical Pearson Correlation. 
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Figure 2.2: Robustness Results for a Small Five-Dimensional Data Set. 
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Figure 2.3: Correlation Dendrogram for Gene Data. 
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Chapter 3 

The Algorithms 

Two algorithms were implemented for calculating correlation and covariance. This chapter is divided into 

five sections, an overview describing the main parts of the algorithms, the median/MAD calculation step, 

using an eigensolver to repair positive definiteness, calculating correlation and covariance using QC, and 

calculating correlation and covariance using the Maronna method. 

Our notation is to represent the number of variables as v, the number of cases as n, and the number 

of processors as p. In the algorithms, we treat matrices as being in column-major order, so that Mj4T[i][y] 

is the item in the xth column and yth row and MylT[x] represents the xth column. We represent a single 

row, in this case row x, by MATX. 

3.1 General Algorithm Overview 

The general setup for the calculation is similar for both QC and Maronna. The data is read in from disk 

and distributed to the other processors, then the median and MAD are calculated for each variable. Next, 

the covariance matrix is calculated. Afterwards, we use the eigensolver to repair positive definiteness, then 

convert the matrix into a correlation matrix if necessary. Finally, the matrix is gathered to the root processor 

where it is written to disk. 

There are several parts of the parallel algorithms that are similar between QC and Maronna. The 

input and output procedures are the same; a dataset with n cases, where each case deals with the same v 

variables. The dataset is stored in column major order. When the data is read by the program, the program 

stores the transpose of the data matrix. The output for both QC and Maronna is a v-by-v correlation or 

covariance matrix, depending on which matrix the user wants. In the output matrix, the element at the 
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intersection of column i and row j is the correlation or covariance between the ith variable and the j 

variable. Both algorithms can use the same I/O routines, and they are optimized to read/write binary data 

in row blocks. Both algorithms need to distribute the data and collect the answer, however, this will vary 

depending on the algorithm used. 

3.2 Median and M A D Calculation 

QC and Maronna use the median and MAD values calculated for each variable. MAD stands for the median 

absolute deviation from the median. MAD represents the scatter of the data, and is a more robust measure 

than the standard deviation. The definition of MAD is 

M A T V v r , - n - m e d i a n ( l x ^ b 1 -median(A"[i])|) 
{ 0.6745 ' 

The .6745 here represents the inverse of the third quartile of the normal distribution. The division 

is necessary because the numerator alone tends to underestimate the standard deviation, so dividing by 

this value makes the MAD more accurate. From the definition, it appears that, once the median values 

are calculated, the MAD is quite similar to the median calculation. The same median routine used in the 

algorithm can also be applied to calculate the MAD with the help of a few small changes. 

Initially, we planned to use a sequential median algorithm since correlation is more computationally 

complex. However, if the number of variables in the input data is small, the resulting correlation matrix 

is small and requires less work to calculate than a matrix of larger dimensions. For example, a dataset 

with twenty variables and 50000 cases requires the calculation of 400 correlations. If the dataset had 1000 

variables, there would be 1000000 correlations to calculate. Even though the number of medians to calculate 

also increases with the number of variables, it is only related linearly, while the number of correlations to 

calculate increases quadratically. In the case with fewer variables, the median would take a larger percent of 

the total time, so performance gains from parallelizing the median would have a larger effect. 

There are three options for the median calculation. The first is to use a sequential median algorithm. 

[5] provides median finding algorithms that run in average case 0(n) time. These algorithms are most easily 

implemented in a recursive fashion, and they are based on a partition scheme similar to quicksort. Even 

though we are interested in a parallel algorithm, a sequential version of the median algorithm is still useful 

because there are datasets that are small where the sequential algorithm is faster than a parallel algorithm 

since the sequential version does not have the overhead from parallelization. 
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Still, we want a parallel version of the median to deal with large datasets. Two types of parallelization 

are possible. Given that there are many variables, one method is to divide the variables among the processors 

and have each processor calculate the medians for its variables using the sequential version of the algorithm. 

The complexity for this version is 0(n • ^) 

The second approach handles the case where we have more processors available than variables in 

the dataset. We can maximize the use of processors by dividing the processors into groups, where each 

processor group works together to calculate the median for a single variable. The algorithm proceeds by 

dividing the variable column between the processors in the group. In this case, each processor of the group 

sorts its piece of the variable column using quick sort, then the processors decide on the lowest and highest 

medians between the processors. Next, the processors merge the portion of their sorted variable columns 

that lie between the largest and smallest of their medians, and then select the global median or MAD for the 

variable from the combined chunk. The time complexity here is 0(n log n • ^ + log 2 ) . 

3.3 Repair Positive Definiteness via Eigensolving 

The operations performed in the QC and Maronna algorithms do not preserve the property of positive def­

initeness in the covariance matrix. Both algorithms require a step to repair the matrix. This repair consists 

of two parts, finding the desired eigenvalues and using these eigenvalues to repair the matrix. 

The easiest way to find the negative eigenvalues is to do a complete eigensolve of the matrix and 

examine the eigenvalues. We began by developing a sequential eigensolver that uses the QR method and 

had planned to parallelize it. There are several existing parallel eigensolvers, and in fact, the PLAPACK 

package we were already using contained one that performs a complete eigensolve. After adding the full 

eigensolver to our program, we realized that a complete eigensolve is an expensive operation for large 

matrices. The PLAPACK implementation first transforms the matrix into tri-diagonal form, then uses a 

tri-diagonal matrix eigensolver to find the eigenvalues and eigenvectors. Typical tri-diagonal reduction 

techniques require 0(n3) time, while the tri-diagonal eigensolve takes 0(n2) time. Thus, performing a 

complete eigensolve on a large matrix can be time consuming and take hours of time. 

There is another option besides complete eigensolvers. Partial eigensolvers exist that allow users 

to solve for a few eigenvalues and eigenvectors from different parts of the spectrum, such as the largest 

algebraic or smallest absolute. We switched our eigensolver for one of these with the idea that only a few 

eigenvalues would be negative and the eigensolver would be able to find them quickly. However, tests 
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using the gene dataset show that there were more negative eigenvalues than we expected. It became clear 

that different datasets could have vast differences in the number of negative eigenvalues in their respective 

covariance matrices. Thus, we needed a flexible method of isolating the negative eigenvalues. 

Our method for finding negative eigenvalues is based on the idea that we want to solve for the 

least number of eigenvalues necessary. The number of negative eigenvalues is somewhat related to the 

dimensions of the original data matrix for the problem. If the number of variables is less than or equal to 

the number of cases, there will be only a few negative eigenvalues. These are the ones that were corrupted 

by our calculation. When the number of cases is less than the number of variables, there will be as many 

nonzero eigenvalues as cases in the original data matrix. The rest of the eigenvalues should be zero, but a 

small amount of error in the calculation will result in these eigenvalues being slightly positive or negative. 

About half of these will fall on the negative side of zero if we assume the error is random. If the number 

of cases is small, less than one third of the number of variables, we can simplify things by just solving 

for the largest eigenvalues instead of the negative ones. Otherwise, it would be less work to solve for 

the negative eigenvalues, both the ones corrupted through our calculation, and the zero eigenvalues turned 

negative through error. 

Once the eigenvalues are known, whether positive or negative, the covariance matrix is repaired by 

forming a new matrix by subtracting a matrix formed by the negative eigenvalues and their eigenvectors 

from the original corrupted covariance matrix. If some of those negative eigenvalues were caused by the 

corruption of the covariance matrix, we recalculate positive replacement eigenvalues for them and use the 

negative ones' eigenvectors to form a matrix and add it to the original covariance matrix to replace the 

negative ones we subtracted out. If we solved for the largest eigenvalues instead, they only need to be 

combined with their eigenvectors to form the new matrix, unless some of the largest were negative, in which 

case we fix them with new eigenvalues in the same manner as before. 

The following small example illustrates the general process of positive definiteness repair. 

Example: 

Let A = 
an O l 2 « 1 3 

021 G22 « 2 3 

031 « 3 2 « 3 3 

be the original covariance matrix. 

Let eig 
' !i i eg2 

be the negative eigenvalues for A. 
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en e i2 

Let e = e2i e22 be the negative eigenvectors corresponding to eig 

e3i e32 

^12 di3 

Let d = 
d2l ^22 d23 be the data matrix. 
^31 ^32 d33 

_ d4i d42 d43 _ 

1. Calculate the negative eigenvalue matrix to be subtracted out. 

n = 

e n e i2 

e2i e22 

e3i e 3 2 

egi 0 

0 e g 2 

e n e 2 i e 3 i 

ei2 e 2 2 e 3 2 

n n "12 n i 3 

"21 "22 "23 

"31 "32 "33 

2. Find positive replacement eigenvalues, peig, for eig using the MAD. 

peig — MAD 

e n e i2 

e2i e 2 2 

e3i e 3 2 

/ 1 r i n di2 di3 

d2\ d22 d23 

3̂1 d^2 d^s 

\ [ ^41 ^42 <̂ 43 

3. Calculate replacement eigenvalue matrix 

e n e i2 

P - e 2 i e 2 2 

e3i e 3 2 

4. Subtract n from A and add in p to replace it 

Anew = A 1% -\- p 

peigi peig2 

peigi 0 

0 peig2 

P n P l 2 •P13 
e3i 

— P21 P22 P23 
e32 

P31 P32 P33 

a n a i 2 a i 3 

a 2 i a22 a 2 3 

0-31 «32 <J33 

+ 

(< en e i2 

e2i e 2 2 

\l e3i e 3 2 

- e p i .0 

0 -e#2 

e n e 2 i e 3 i 

e i2 e22 e 3 2 
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( ' e n ei2 

+ I e2i e22 

e3i e32 

a n ai2 fl.13 

a2i &22 a 2 3 + 

fl31 a 3 2 33 

peigi 0 

0 pezt72 

e n e 2 i e 3 i 

ei2 e22 e 3 2 

e n eX2 

e2i e22 

e3i e 3 2 

peigi - egi 0 

0 peig2 - egi 

e n e 2 i e 3 i 

ei2 e22 e 3 2 

The general process for repairing the positive definiteness of a covariance matrix is listed in Fig­

ure 3.1. Many times, we do not know the number of negative eigenvalues we are solving for ahead of time. 

In this case, we solve for a set proportion depending on the dataset size, and repeat a process of fixing 

and solving for more until no more negative eigenvalues exist. Using this method, we can hopefully avoid 

solving for all the eigenvalues. Also, Figure 3.1 covers the case of solving for and fixing the negative eigen­

values. As discussed earlier, we sometimes do not want to fix the negative eigenvalues, but to just discard 

them instead, as in the case where they are created from corrupted zero eigenvalues. Then, we would not 

create the replacement eigenvalues, but instead rebuild the matrix using the positive ones. 

Input: v by v covariance matrix C 
n by v original data matrix X 

Output: v by v positive definite covariance matrix CadjUsted 

1. In parallel Solve for the negative eigenvalues, Afc..Ag of C 
and eigenvectors Q — ak--aq 

2. In parallel Form Y = X Q 
3. In parallel Calculate replacements, mk~mq, for the negative eigenvalues: 
4. mi ={MAD of column i in Y)2 

5. Let A = Diag(Afc..Ag) and B = Diag(mfc..mg), diagonal matrices 
6. In parallel CadjUsted = Q • (B - A) • QT 

Figure 3.1: Parallel Algorithm for Repairing the Positive Definiteness of a Correlation Matrix 

At worst, the eigensolver will need to solve for a little over one third of the eigenvalues. Hopefully, 

we can get away with solving for much fewer eigenvalues if the data matrix has the right dimensions, such 

as one that is almost square, so that there are fewer negative eigenvalues present. 

The rest of the algorithms depend on the method, either QC or Maronna. 
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3.4 Parallel Algorithm for Quadrant Correlation 

Figure 3.2 describes the parallel version of QC. In it, we represent the matrices in column-major order, where 

the columns are variables. Thus X[i] refers to the ith column (variable). After calculating the median and 

MAD for all the variables, the algorithm creates a temporary matrix to hold the normalized values. 

_ X[z][j]-median(X[i]) 
L j m ~ MADOTJ) 

The X matrix is used to create a matrix Y of all 1 's, -l's, and near zero values by applying a function, 

ip, that is similar to the sign function, to all the elements in X. 

ip{x, c) = I 
sign(x) if \x\ > c 
X 
c otherwise 

Our sign function cuts off the values within c of zero and assigns them to be the value | . Our choice 

for c in the code was .00001. In actuality, by our ip function, we are using a Huberized estimator which, in 

the limiting case, is Quadrant Correlation [2]. The limiting case here would be to use the sign function in 

place of rp. 

In the next step, the algorithm calculates the following equation to fill in each entry of the correlation 

matrix. 

, \ h Efc( Y b'PD • (Y[i][fc]) cor(z,j) = n^k\ un u v M L \ ) ( 3 1 ) 

^ E f c ( Y [ 7 ] [ f e ] ) 2 - i E f c ( Y W [ f c ] ) a ) 

The computationally expensive part of the calculation is the part where the numerator is calculated 

using a matrix multiplication between Y and its transpose in steps 6 and 7 of Figure 3.2. The operations in­

volved are approximately 0(v3). The denominator is the geometric mean of the average number of nonzero 

elements for a pair of columns i and j. This part of the calculation takes 0{v2) time and is set up in step 10. 

The equation finishes in step 12 where the denominator divides the numerator. Again, this division occurs 

for every element in the matrix, thus step 12 requires 0(v2) time. 

Overall, the matrix multiplication step dominates the runtime of the sequential QC algorithm since 

it requires 0(v3) operations. This gave us a place to start in creating a parallel algorithm. Parallel matrix 

multiplication is a well-studied algorithm, and it has been shown to be scalable to thousands of variables on 

large machines using a variety of different approaches [12]. First, we experimented with a simple matrix 

multiply routine [33]. It partitions one matrix and gives each processor a block made of rows from the 
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Input: v by n matrix X for v variables and n cases 
Output: v by v matrix cov, the covariance matrix 
1. In parallel For each column X [i] 
2. Calculate the median and MAD 
3. Let median [i] be the median of column i. 
4. Let MAD[z] be the MAD calculation of column i. 
5. Constmct Y where Y[i]\j] = ip(X[i\[j] - median[i])/MAD[i], C); 
6. In parallel compute matrix cor = Y • YT; 
7. In parallel Y = ^ Y; (element-wise) 
8. F o r a l H j , set Y\i][j] = (Y[i\\j})2; 
9. Constmct vector D 
10- flw - vmmi-
11. In parallel For all i, j set 
12. cor[i]b'] = cor[i][j] x D[i\ x D^] 
13. cor[i][j] = sin(f • cor[i][?']); 
14. Constmct diagonal matrix V where V[i][«] = MAD(A"[i]); 
15. In parallel cov = V • cov • V; 

Figure 3.2: Parallel Algorithm for Quadrant Correlation. 

matrix. Then, it broadcasts the second matrix to all the processors and each one performs a multiply to 

create part of the resulting matrix. This multiply routine scaled well, but it was slow. 

Our second approach was to find an optimized parallel matrix library that includes matrix multipli­

cation. We chose the PLAPACK library because it uses low-level libraries such as BLAS and LAPACK in 

its matrix routines. PLAPACK distributes its matrices in a more complex manner that is based on the distri­

bution of vectors in vector operations. The PLAPACK matrix multiply is faster than our previous approach, 

but it is difficult to achieve good speedup because this requires careful adjustment to parameters within 

PLAPACK, such as the distribution block size, the dimensions of the processor mesh, and the algorithm 

block size. 

Overall, the reason PLAPACK led to the best performance, despite the difficulties, is the paralleliza-

tion of the multiply and other key parts of the algorithm reduce the computation time so that it does not dom­

inate total mntime when compared to other components, such as I/O time and data distribution/collection. 

This gives us a faster, more practical QC algorithm, however QC still has the downside of a less robust 

solution when compared to the Maronna method. 

22 



3.5 Parallel Algorithm for the Maronna Method 

Input: v by n matrix X with v variables and n cases 
Output: v by v matrix cor, the correlation matrix 
1. In parallel For each column X [i] 
2. 
3. 
4. 
5. 
6. 
7. 

Calculate the median and MAD. 
Let median [i] be the median of column i. 
Let MAD[z] be the MAD calculation of column i. 
In parallel For each pair of variables i, j 

Initially 
p(°) = [median[i], median[7']] 

9. 
10. 
11. 
12. 
13. 
14. 
15. 

16. 

17. 

18. 
19. 
20. 

a<°> = (MAD[z])2 0 
0 (MAD [ 7 ] ) 2 

Let xq be the vector [X[i][q], X\j][q]]. 
ITERATE 

Given pW and 
For q = 1 to n 

mah[o] = [x, - M(fc)] • [a ( f c ) ] _ 1 • [x, - ^k)f 
W[q] = weight(mah[g]) 

Calculate 

(fc+i) _ _ _ L 

9=1 n 

9=1 

UNTIL (determinant [ ( ( c r ^ ) " 1 ^ ^ ) — 1| < e) 
Let cr* denote the converged a for columns X[i] and X\j]. 
cor[z]L7l=a*[0][l]/vT^[0][0]-cr*[l][l]) 

(fc+i) 

Figure 3.3: Parallel Maronna Method 

Figure 3.3 outlines the Maronna algorithm. Maronna begins with the median and MAD calculation 

described earlier. The algorithm's focus is to divide the p2 correlation calculations between the processors, 

then the processors use an iterative algorithm to calculate each correlation assigned to them. The iterative 

portion consists of steps 5 to 18. First, the values involved in the iteration are initialized in step 7 and 8. p 

is a vector of length two, and is initialized with the median of the data variables involved in this correlation 
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calculation, a is a 2 x 2 matrix that will hold the estimate values for the correlation upon convergence. 

It is initialized as a diagonal matrix holding the MAD of the correlation variables in the diagonal. After 

initialization, the algorithm repeats the following process. The Mahalanobis distance is used to measure the 

distance between two variables' samples in step 13. The Mahalanobis distance measures the distance a data 

point is from the centroid of all data points. In our case, this is in the two dimensional space of the two 

variables, and takes into account the median of the data along with the estimated variance, covariance, and 

correlation at the current iteration. 

Next, we apply a weight function to the distance values in step 14. Our weight function uses Hu-

ber's score function as the robust M-estimate to score the influence of the sample points to the median and 

variance. We use this to constmct a weight function to decrease the influence of outliers in the data. 

. V \v\ < c 
HSF(y) = <J HUBER'S SCORE FUNCTION 

c • sign(y) \y\ > c 

weight(y) = { 
HSF(y)/y y^O 

i y = o 

1 1^1-c WEIGHT FUNCTION 
c/\y\ \y\ > c 

The weight function gives weights between zero and one that are applied to the data. The weight 

function will weight normal data variables near one and down-weight the outlier values with weights closer 

to zero. The outlier values are the ones with large distances from the distance function. 

The weighted data is used to calculate new values for y, and a for the next iteration in steps 16 

and 17. Iteration continues until the change in covariance from one step to another is within the desired 

tolerance. The algorithm is known to converge, but the rate can vary depending on the input. Finally, on 

step 20, calculate the correlation by dividing the covariance value by the square root of the values on sigma's 

diagonal. 

At this point, the algorithm calculates the correlation matrix for the data. If we want the covariance 

matrix instead, we convert the correlation matrix to a covariance matrix by scaling the rows and the columns 

of the matrix by the MAD values corresponding to the variables that the columns/rows represent. 

cov(i, j) = cor(z, j) • MAD(i) • MAD(j) 

Initially, when the iterative process converges in step 19, it will have calculated the covariance for 

the two variables. We do not want to use this initial covariance value in the covariance matrix because it was 

calculated in a pairwise fashion and does not represent the covariance relative to the overall global matrix. 
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Each iteration of the Maronna algorithm takes 0(n) time. If we let k be the number of iterations 

needed for convergence, then each correlation requires 0(nk) time. There are v2 correlations to calcu­

late between the processors, so the overall time cost is C(21y^). Maronna's runtime could be significantly 

greater than QC depending on the value of k. Maronna does have the advantage that its tasks are indepen­

dent, so they easily divide between the processors. The value of k can differ between the pairs of variables, 

so a load-balancing scheme is necessary to evenly distribute the tasks. 
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Chapter 4 

The Experiments 

The Experiments chapter begins with a description of the environment we used in our experiments, including 

the machine setup and software packages. We then go on to directly compare QC and Maronna, then look at 

the I/O performance and the performance for repairing the positive definiteness of the covariance matrices. 

Next, we present a dynamic load balanced version of Maronna along with other analysis of Maronna's 

convergence. Section 4.6 describes QC and Maronna's performance on datasets of different dimensions and 

looks at how the median and correlation parts of the computation perform based on the data's dimensions. 

Finally, a communication analysis is provided on both the message passing environment and for overall 

communication of our algorithms. 

4.1 Setup 

4.1.1 Parallel Cluster Environment 

There are several different environments used for the experiments. The small tests used a cluster of eight 

machines, all 500 MHz Pentium 3 processors running Red Hat Linux 9. They are interconnected by 100 Mbit 

Ethernet and use L A M MPI 6.5.9 for message passing between them. The MPI (Message Passing Interface) 

is public domain software that runs on a variety of platforms. MPI provides a portable standardized interface 

for message passing applications on distributed memory computers [10]. 

Even though this setup is limited with only eight processors, it is still valuable because it is a dedi­

cated setup. It is easier to obtain consistent times because our programs do not have to share the machines 

with other processes or share network services such as file servers. 
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The experiments measuring the communications analysis used a different machine setup. For these 

we used a small cluster of four Pentium 2 and Pentium 3 machines connected to a Juniper Networks router 

via dedicated Ethernet cables. This setup allows us to look at the communications going on between any of 

the machines using the values that the router records. 

We used a new cluster of machines for our experiments involving large numbers of processors. This 

cluster is a part of the WestGrid computing project [35]. It consists of 504 dual processor 3 GHz Xeon 

processors running Red Hat 7.3 with 2 GB of RAM. They are connected on a Gigabit Ethernet network. 

These machines use MPICH [24]. 

4.1.2 Parallel Matrix Software 

We use several software packages in implementing our algorithms. The first is a matrix library written 

by E. van den Berg [33] that has basic matrix functions, such as creating, destroying, reading, and has 

parallel matrix multiply. We altered the library to add our own I/O functions, and matrix distribution and 

collection operations. We did not use the parallel matrix multiplication functionality from this library in our 

implementations because other packages are available with better performance. 

Our implementations use the PLAPACK Parallel Linear Algebra Package for matrix multiplications 

[32]. PLAPACK is a C based MPI parallel matrix library. It has a fast matrix multiply routine, several 

solvers, and other matrix and vector operations. The problem with PLAPACK is that there are some diffi­

culties in using it. One difficulty is that it lacks some basic matrix or vector operations. For example, we 

need to perform an element wise multiply of two vectors, or scale the columns of a matrix by the correspond­

ing elements of a vector, but we must implement them ourselves since they are missing from PLAPACK. 

Another difficulty with PLAPACK is dealing with the parallel matrix distribution. The matrices in PLA­

PACK use an unusual block distribution scheme that is not as easy to manipulate as a row based distribution 

or a simple block distribution. This makes it difficult to implement the missing matrix and vector operations. 

PLAPACK's eigensolver is a complete eigensolver, which was not needed in our case. It solves for all the 

eigenvalues and eigenvectors, but does not allow the user to choose only a subset of the values to find. 

4.1.3 Parallel Eigensolvers 

We had to use a different set of packages for partial eigensolving capabilities. PETSc [3] is the base matrix 

and vector library we use in the eigensolving component. It is mainly a parallel solver library for matrices 
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and vectors, written in C, and uses MPI. PETSc focuses more on parallel solvers and there are many solvers 

created as add-on packages. The only drawback is PETSc does not include a matrix multiplication routine, 

so we did not abandon PLAPACK. 

The SLEPc package is an eigensolving package that is an add-on to PETSc [14]. It allows the user 

to perform partial eigensolving for eigenvalues within a specified part of the spectrum and their associated 

eigenvectors. SLEPc contains four built-in eigensolving methods, though they are rather limited in their 

implementation. SLEPc also acts as an interface to other eigensolving packages so you can use techniques 

that are more powerful. 

Since the eigensolving routines in SLEPc are too limited for our use, we decided to use SLEPc as 

an interface to ARPACK [18]. ARPACK is a parallel partial eigensolver written in FORTRAN 77 that uses 

MPI. It uses the Implicitly Restarted Arnoldi Method to solve for eigenvalues. Even though SLEPc can 

use ARPACK as an add-on, it was still necessary to make some changes for MPI to work between the C in 

SLEPc and FORTRAN in ARPACK. We added some calls to conversion routines for MPI Communicators 

where SLEPc uses ARPACK, and the libraries worked fine. 

4.1.4 Communication Analysis Software 

Our analysis of communication uses two pieces of software. First, we use the MPBench benchmarking tool 

[25] for MPI that is included with the LLCBench tool in order to analyze the MPI communication primitives. 

MPBench performs repeated tests using increasing data sizes and provides graphical performance results. 

It measures bandwidth, latency, turnaround time, and performance of MPI collective operations such as 

broadcast and reduce. 

The second piece of software we used for the communication analysis is a Perl script that makes 

SNMP calls to the router for statistics related to the number of bytes sent between the individual processors 

and the router. The script repeatedly queries the router for the number of bytes transmitted, and we use 

this data to create a profile of the amount of communication our software uses over time. The script is run 

simultaneously with our program and the queries are sent over a separate Ethernet cable to the router so that 

they do not interfere with the values we measure. 
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4.1.5 Experiment Parameters 

Our experiments evaluate both the total time for our algorithms, and a component-wise analysis. For the 

components that are common between all versions of the algorithms, such as the I/O routines and repair of 

positive definiteness, the times are reported separately. Otherwise, the time for the experiments are broken 

down into their component parts. The dataset used is the gene dataset with 6068 variables and 20 trials, 

which produces a 6068 by 6068 correlation matrix. The experiments are run on different sizes of data, from 

1000 to 6000, by reading in less variables from the gene data set. We also experiment with more variables 

and cases by generating a larger dataset from the gene dataset. We generate new variables by choosing a 

random number of variables, and using a set of random weights that sum to one, combine the variables and 

weights to form the new variable data. We use a similar strategy for generating more cases for the dataset. 

The number of processors also varies across the trials to demonstrate how the performance scales. Al l times 

are reported in seconds. We ran multiple trials and took the best times to report because the times can vary 

depending on activity on the processors or network. We report the best time of the mns to give results that 

are similar to what the results would be under ideal conditions. 

4.2 Algorithm Performance Comparison 

4.2.1 Small Cluster Performance 

Timing results for QC and Maronna are presented in Table 4.1 and Table 4.2. The portion of the algorithm 

that restores the positive definiteness of the correlation matrix is not included in this comparison because, as 

we will see in section 4.4, the time for this dominates the total runtime. 

Looking at the two tables, we can see that QC performs much faster than Maronna. The paralleliza-

tion helps QC perform the correlation calculation quicker, but the total time is not affected as much. It 

appears that QC is reaching the limits of parallelization with just eight processors, but we will need to verify 

this on a larger cluster to be sure. Also, there appears to be superlinear speedup going from one to two 

processors. A possible explanation is that we are using the parallel algorithm for the single processor times, 

so the time for one processor includes some of the parallel overhead and inflates the time value. Another 

source of inefficiency in the times is related to how the PLAPACK library uses processors. PLAPACK treats 

the processors as a mesh formation, and in these experiments the library attempts to arrange the processors 

into a square mesh. Some numbers of processors do not easily arrange into a square mesh, and this could 
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affect the distribution of objects and the efficiency of the algorithm. 

The column labelled "Other" represents the time for initializing variables, allocating memory, and 

deallocating memory. We can see that this time is very large with QC using a single processor for the 

6000 variable experiment. This happened repeatedly, and we speculate that this size is where the problem 

begins to be too large for the memory of a single machine. The Maronna program also shows the memory 

constraints when the variable size is 6000, this time in the matrix fill portion, which takes the correlation 

values gathered from the processors and places them into the proper position of the matrix. Normally, this 

time would be constant, but here we see it increases as there are fewer processors. Fewer processors mean 

there is a larger demand for memory on the root processor since it will have to use more memory. Thus, 

when filling the entries into the matrix, it has to use more swap memory during the memory copy operations, 

which causes the time to be longer. 

There are also unusual values for QC's gather time on the single and two processor experiments on 

5000 and 6000 variables. The time seems large for a single processor, then decreases on two processors, 

and then continues to increase with more processors. The gather portion of QC uses a PLAPACK primitive 

call to assemble the distributed matrix into a continuous buffer on one processor, and this performance was 

noted in repeated experiments. This performance may also be due to the memory constraints of such a large 

problem size on our small cluster because it was not present on the large cluster experiments in Table 4.4. 

Maronna takes much longer than QC in these trials, but it is showing good improvement from the 

parallelization in terms of both the correlation computation time and the total time. 

4.2.2 Large Cluster Performance 

We were able to run the parallel Maronna and QC on the WestGrid cluster using up to 128 processors on 

the gene data set. The results are in Table 4.3 for Maronna and Table 4.4 for QC. There was much variation 

in the experiments we ran because the cluster is a shared resource environment. This accounts for some of 

the time differences. Because of this we ran each experiment ten times, then chose the best value that was 

repeated in multiple experiments. We chose the best times to include instead of the average since this would 

best represent the closest we can achieve to performance in ideal conditions. 

For the Maronna algorithm in Table 4.3, the correlation calculation time still appears to be decreasing 

as we add processors. The time decreases from 360 seconds on a single machine to 6 seconds with 128 

processors. The total time is affected as well, but not to the same degree. It appears that using 128 processors 
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V V Input Output Scatter Gather Median Cor Other Total 
1000 1 0.005 1.924 0.001 0.096 0.033 0.911 0.139 3.109 

2 0.005 1.743 0.010 0.469 0.028 0.564 0.103 2.921 
4 0.006 1.818 0.016 0.681 0.022 0.353 0.088 2.984 
8 0.022 2.081 0.036 0.806 0.019 0.244 0.144 3.351 

2000 1 0.008 7.029 0.003 0.369 0.066 3.810 0.526 11.809 
2 0.008 6.951 0.022 2.230 0.054 1.870 0.307 11.442 
4 0.009 6.878 0.022 3.123 0.042 1.146 0.215 11.436 
8 0.008 7.168 0.041 3.610 0.035 0.800 0.200 11.862 

3000 1 0.011 15.724 0.004 0.815 0.099 8.570 1.146 26.369 
2 0.012 15.784 0.029 4.724 0.082 4.586 0.678 25.894 
4 0.012 15.713 0.032 6.547 0.066 2.830 0.403 25.603 
8 0.023 15.504 0.064 8.535 0.053 1.339 0.279 25.798 

4000 1 0.015 29.303 0.006 1.594 0.132 19.098 2.220 52.367 
2 0.016 27.788 0.040 8.897 0.109 8.954 1.169 46.972 
4 0.015 27.763 0.042 12.008 0.089 4.002 0.634 44.553 
8 0.014 27.916 0.073 14.503 0.070 2.411 0.504 45.490 

5000 1 0.030 47.974 0.008 15.630 0.164 27.748 4.454 96.007 
2 0.018 50.546 0.048 13.962 0.136 12.789 1.856 79.356 
4 0.019 45.490 0.050 18.732 0.108 7.107 1.005 72.511 
8 0.025 43.179 0.088 22.274 0.096 3.632 0.663 69.957 

6000 1 0.088 76.259 0.009 24.625 0.363 44.503 21.005 166.851 
2 0.079 68.537 0.059 21.720 0.163 18.982 2.831 112.371 
4 0.074 64.937 0.058 27.059 0.129 9.503 1.536 103.296 
8 0.079 66.996 0.146 32.477 0.112 4.916 1.188 105.914 

Table 4.1: QC Timings on Gene Dataset, where v is the number of variables, p is the number of processors, 
and cor is the correlation computation time 

may be the highest for this dataset because there does not appear to be room for much improvement. The 

computation time may decrease by a couple of seconds if 256 processors were used, but that would probably 

be the point where the parallel overhead catches up since the computation time change going from 64 to 128 

processors is only three seconds. 

On the other hand, it appears that QC already reaches this point and is showing the affects of too 

much overhead as seen in Table 4.4. The total times are actually getting worse with more processors. The 

computation time itself is still decreasing up to the point where 64 processors are used, but the increase in 

gather time and other overhead is eliminating any improvements. The best number of processors seems to 

be in the four to sixteen processor range. It is difficult to tell because QC seems to be very susceptible to the 

variation that occurs from sharing the cluster with other jobs. Again, numbers of processors that do not form 

square meshes could also be a factor in this odd performance. Though the values appear to be anomalies, 
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V P Input Output Beast Gather Median Cor Fill Other Total 
1000 1 ^ 0.01 1.73 0.00 0.03 0.01 39.33 0.10 0.02 41.23 

2 0.01 1.83 0.01 0.23 0.02 20.92 0.10 0.03 23.14 
4 0.01 2.01 0.04 0.32 0.02 11.02 0.10 0.03 13.55 
8 0.11 2.11 0.04 0.38 0.02 5.71 0.10 0.06 8.52 

2000 1 0.01 6.82 0.00 0.11 0.03 160.43 0.43 0.05 167.87 
2 0.01 7.04 0.03 0.90 0.04 85.94 0.43 0.05 94.44 
4 0.01 7.22 0.09 1.24 0.03 43.87 0.43 0.25 53.16 
8 0.01 7.37 0.09 1.43 0.03 22.94 0.43 0.07 32.37 

3000 1 0.02 15.59 0.00 0.25 0.04 375.46 1.03 0.08 392.47 
2 0.02 15.92 0.04 2.01 0.05 200.96 1.07 0.08 220.15 
4 0.01 15.81 0.13 2.78 0.05 108.54 1.03 0.08 128.44 
8 0.05 15.97 0.13 3.17 0.05 55.58 1.03 0.11 76.09 

4000 1 0.02 27.69 0.00 0.45 0.06 709.11 2.28 0.11 739.72 
2 0.02 27.91 0.06 3.56 0.07 392.05 2.22 0.12 426.01 
4 0.02 28.15 0.18 4.92 0.07 213.08 2.20 0.12 248.74 
8 0.02 28.01 0.19 5.62 0.06 112.39 2.19 0.15 148.63 

5000 1 0.03 44.78 0.00 0.70 0.07 1186.50 3.52 0.22 1235.82 
2 0.03 44.81 0.08 5.56 0.09 678.23 3.39 0.21 732.38 
4 0.03 43.80 0.23 7.69 0.08 373.64 3.29 0.16 428.93 
8 0.03 43.64 0.23 8.78 0.09 203.76 3.39 0.19 260.12 

6000 1 0.08 63.10 0.00 1.01 0.09 1766.95 40.69 0.42 1872.34 
2 0.09 63.20 0.09 8.02 0.11 1045.99 22.71 0.34 1140.55 
4 0.08 63.49 0.28 11.07 0.10 590.70 8.02 0.22 673.97 
8 0.06 62.97 0.28 12.59 0.10 318.84 7.60 0.28 402.72 

Table 4.2: Maronna Timings on Gene Dataset, where v is the number of variables, p is the number of 
processors, cor is the correlation computation time, and fill is the matrix fill time 

especially the high values for the gather time using four and eight processors, this activity appeared in the 

repeated experiments. Despite the odd numbers from QC, it is still clear that QC does not parallelize to as 

many processors as Maronna in this case. 

Procs Input Output Broadcast Gather Median Cor Comp Matrix Fill Other Total 
1 0.017 12.590 0.000 0.280 0.018 359.642 2.034 0.104 374.684 
2 0.009 13.136 0.007 0.557 0.012 220.361 2.025 0.104 236.212 
4 0.016 9.327 0.024 1.056 0.012 118.945 2.038 0.104 131.521 
8 0.009 9.508 0.034 1.394 0.012 58.208 2.037 0.104 71.306 
16 0.010 3.787 0.065 1.463 0.010 29.677 2.069 0.104 37.185 
32 0.010 5.057 0.057 1.839 0.011 18.972 2.464 0.280 28.689 
64 0.011 4.863 0.303 1.941 0.252 9.087 2.444 0.283 19.185 
128 0.009 4.241 0.301 1.920 0.020 6.182 2.474 0.386 15.533 

Table 4.3: Maronna Timings on 6068 Variable Gene Dataset Using WestGrid 
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Procs Input Output Scatter Gather Median Cor Comp Other Total 
1 0.009 6.260 0.002 0.920 0.067 18.524 1.197 26.977 
2 0.011 5.382 0.004 1.648 0.037 9.430 0.969 17.480 
4 0.009 5.366 0.005 10.058 0.024 4.157 0.558 20.176 
8 0.010 5.405 0.012 14.383 0.020 1.513 0.528 21.870 
16 0.009 4.171 0.019 7.038 0.018 1.455 1.501 14.212 
32 0.008 4.510 0.044 7.530 0.057 1.082 2.945 16.177 
64 0.018 5.536 0.145 15.489 0.291 0.331 9.414 31.225 
128 0.008 3.903 0.485 47.815 0.266 0.497 27.226 80.201 

Table 4.4: QC Timings on 6068 Variable Gene Dataset Using WestGrid 

4.3 I/O Performance 

Variables Read Time Write Time 
1000 .0045 1.72 
2000 .0075 7.0 
3000 .01 15.5 
4000 .015 27.7 
5000 .018 43.6 
6000 .074 63.2 

Table 4.5: I/O Timings on Gene Dataset 

Al l the implementations use the same I/O routines to read and write the data to disk. The I/O routines 

operate on data a row at a time and perform the read and write operations on binary data. The I/O operations 

are sequential, as the root processor performs the reading and broadcasts the data or gathers the result and 

performs a write. The performance of the I/O routines is listed in Table 4.5. The table shows that input time 

increases about linearly except for the experiments using 6000 variables. This was a repeatable occurrence, 

and is likely due to the input matrix being large enough to cause one more page miss. This did not occur in 

the experiments with the larger cluster, so we assume the input time is linear with the variable size. Though 

these experiments only deal with a small number of cases, the input time is linear in those as well. The 

output time scales quadratically with the problem size, as can be expected since the size of the correlation 

matrix is the square of the number of variables. 
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Variables Processors Time 
1000 1 10.635 

2 7.625 
4 5.018 
8 7.485 

2000 1 38.071 
2 24.422 
4 14.620 
8 15.194 

3000 1 83.804 
2 50.105 
4 30.564 
8 23.565 

4000 1 160.265 
2 89.006 
4 52.768 
8 43.595 

5000 1 356.491 
2 148.677 
4 84.777 
8 63.362 

6000 1 829.985 
2 276.929 
4 124.555 
8 83.900 

Table 4.6: Time for Repairing Positive Definiteness on the Gene Dataset 

4.4 Performance for Eigenvector Calculation 

When the Maronna method or QC are used to calculate a covariance matrix, the resulting matrix may 

not be positive definite. We created a routine that uses a parallel eigensolver to solve for the negative 

eigenvalues, then creates a positive replacement for them and shifts the covariance matrix to repair the 

positive definiteness. Also, the routine can choose to solve for the positive eigenvalues instead, if there are 

fewer, and form the new covariance matrix from these. Again, this routine is identical for each algorithm. 

Table 4.6 shows the timings for repairing the positive definiteness. 

We see that repairing the positive definiteness is no small matter because the times are nearly equiv­

alent to QC's running time and are a significant portion of Maronna's running time. However, there does 

seem to be a benefit to parallelization here. For 3000 variables or more, the times show reasonable improve­

ment with an increase in processors. With 1000 and 2000 variables, the algorithm seems to hit the point 
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where there is no more benefit to parallelization with eight processors. In these cases, the problem size is 

probably too small to where the overhead cost draws even with the benefits of adding processors. Also, the 

times for 5000 and 6000 variables seem to be too good. This could be due to several reasons. First, the prob­

lem size may be large enough to tax memory capacity, similar to what was seen with the Maronna and QC 

times for similar sizes. The sequential versions are just single processors running the parallel code, so this 

could penalize the single processor times and make them look extra slow. Finally, we used the PLAPACK 

matrix library in this code for the matrix operations, such as multiplication. As discussed earlier, PLAPACK 

looks to form the processors into a mesh formation, so certain numbers of processors, such as four, could 

experience better performance since the processors form a more square shaped mesh. 

4.5 Load Balanced Maronna 

4.5.1 Correlation Convergence 

The motivation for implementing the load balanced Maronna came about from investigating the iteration 

counts for the algorithm. Initially we used random data sets that were not correlated, and Maronna converged 

very quickly. Each correlation calculation converged in roughly five iterations. However, Maronna reacts 

differently on real datasets, such as the gene data whose correlation iterations are shown in Table 4.8. While 

over ninety-nine percent of the calculations converged rapidly, others required more iterations. This behavior 

is bad for a static load-balancing scheme because some processors could receive a large number of the slow 

converging correlations to compute, and thus require more time to do their work. In the worst case, one 

processor could get all the bad correlations and end up being the bottleneck for the program while all the 

other processors wait for the unlucky processor to finish. In addition, a processor can receive one of the slow 

converging correlations as the last to compute of its correlations, which causes another bottleneck while all 

the processors wait for the unbalanced processor to finish calculating its last correlation. 

One strategy to deal with the slow converging correlations is to identify them and spend less time 

by truncating the calculation. The absence of these correlations in the random data and their presence 

in the gene data led us to believe that calculating correlations for strongly positive or strongly negative 

correlations were the calculations that require the most time. We theorized that once we have performed 

enough iterations to identify a correlation to be within this group, its correlation could be truncated and then 

assigned the proper value. Unfortunately, closer analysis of the Maronna program showed that the slow 
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Iterations Correlations Percent of 
Total Corrs 

0-2 11814349 64.18303% 
3-5 5698891 30.95999% 
6-8 741905 4.03050% 
9-11 133822 0,72701% 
12-14 14989 0.08143% 
15-17 2983 0.01621% 
18-20 317 0.00172% 
21-23 21 0.00011% 
24-26 1 0.00001% 

Table 4.7: Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = .1 

Iterations Correlations Percent of 
Total Corrs 

0-200 18396529 99.9416% 
201-400 8665 0.04707% 
401-600 1362 0.00740% 
601-800 379 0.00206% 
801-1000 127 0.00069% 
1001-1200 78 0.00042% 
1201-1400 53 0.00029% 
1401-1600 28 0.00015% 
1601-1800 22 0.00012% 
1801-2000 9 0.00005% 
2001-2200 7 0.00004% 
2201-2400 4 0.00002% 
>2400 19 0.00010% 

Table 4.8: Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = 1 0 - 7 

converging correlations might not be limited to only the strongly related correlations. Table 4.10 shows the 

slow converging correlations are from all parts of the spectrum, large, small, positive, and negative. Also, 

this distribution matched the distribution of all the correlation values, so we conclude that the correlation 

value itself does not determine whether convergence is fast or slow. 

We discovered that the slow converging correlations are actually caused by outlier data by carefully 

examining how the Maronna algorithm calculates these correlations. Outlier values result in large distance 

values from the distance function. The Maronna algorithm then iterates and changes its parameters to 

decrease the distance values until convergence. Under normal circumstances, the distances are less than 

nine. The slow converging correlations had very large distance values, as seen in Table 4.11, which means 
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Iterations Correlations Percent of 
Total Corrs 

0-200 18353376 99.70717% 
201-400 42114 0.22879% 
401-600 6981 0.03793% 
601-800 2278 0.01238% 
801-1000 993 0.00539% 
1001-1200 532 0.00289% 
1201-1400 316 0.00172% 
1401-1600 180 0.00098% 
1601-1800 123 0.00067% 
1801-2000 92 0.00050% 
2001-2200 61 0.00033% 
2201-2400 46 0.00025% 
>2400 185 0.00101% 

Table 4.9: Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = 

the Maronna algorithm had to iterate more times to decrease these distances. 

Range Number of 
Correlations 

-1 to -.8 1 
-.8 to -.6 8 
-.6 to -.4 21 
-.4 to -.2 30 
-.2 to 0 45 
Oto .2 36 
.2 to .4 34 
.4 to .6 26 
.6 to .8 12 
.8 to 1 0 

Table 4.10: Range of Slow Converging Correlations on 6068 by 20 Gene Dataset with e 

Iterations Distances 
2961 45.6, 33.3 
5860 20.9, 21.5 
3079 22.7, 19.5 
3333 14.0 
10332 11.9 

Table 4.11: Slow Converging Correlations and Their Large Distance Values 
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4.5.2 Changing e 

Since a selective approach for dealing with the slow converging correlations is difficult, we thought to try 

a more global approach. The Maronna algorithm contains an epsilon argument as a stopping condition that 

determines how close the iterated correlation estimate is to the real correlation value. By increasing the 

value of epsilon, the correlation values, including the slow converging ones, will converge faster at the cost 

of accuracy. We can see how changing epsilon affects the convergence in Table 4.7 and Table 4.9. Table 4.9 

shows the convergence using e = 10 - 1 3 . In comparison to Table 4.8, the iteration categories contain about 

ten times more correlations. Thus, when epsilon decreases, more correlations will take longer to converge. 

Table 4.7 shows the convergence using a very big epsilon, e = .1. As expected, the correlations all converge 

quickly in under 30 iterations and the majority converge within five iterations. In this case, decreasing 

epsilon results in faster convergence, but it is not yet clear what the effect is on accuracy. 

We defined the accuracy to be the absolute difference between a correlation estimate and the corre­

lations real value. We define the accuracy of a correlation matrix estimate to be the largest of the accuracy 

values for the matrix's individual correlation entries compared to the corresponding entries in the real corre­

lation matrix. To calculate the accuracy in practice, we used the correlation matrix estimate with the smallest 

epsilon you can calculate, 10~1 3 for the gene data. The accuracies for various epsilon appear in Table 4.12. 

The largest epsilon that seems reasonable is 10 - 7 . The differences in time for the various epsilon show that 

we gain some improvement with a careful choice of epsilon. This improvement helps in both cases of slow 

converging correlations, whether a single slow converging correlation at the end of a processor's batch, or 

an unbalanced load to a processor since all the correlation calculations benefit with faster convergence for a 

smaller epsilon. 

4.5.3 Dynamic Load Balanced Maronna 

Another approach that avoids unbalanced processor loads is dynamic load balancing. For Maronna, we 

choose a block size and send each processor a starting block. Then, when a processor finishes with the 

first block, we send them another block of the same size. If one processor is stuck with several of the long 

converging correlations, then the load disperses to other processors that are not working as hard. This has 

an added benefit in that the user can mn this implementation on a heterogeneous group of processors with 

greater success because the balancing will even out the differences of running on different speed processors. 

Table 4.14 shows the block division that occurs during load balanced Maronna. The top half of the 
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e Largest 10th Largest Time Time Time 
Cor Quality Cor Quality 2 Processors 4 Processors 10 Processors 

io-1 1.726 1.624 423.34 139.28 64.24 
io-2 1.77 1.433 524.88 182.88 86.82 
10~3 1.438 8.95E-01 577.23 202.65 95.72 
10-4 1.337 6.94E-01 618.59 221.01 105.22 
1(T5 8.14E-01 4.39E-01 660.18 239.60 114.15 
I O - 6 4.22E-01 1.59E-01 714.74 255.23 122.87 
10-7 1.45E-01 1.71E-05 745.55 272.03 131.68 
IO" 8 2.68E-06 1.27E-06 782.27 288.77 140.21 
10-9 3.36E-07 1.51E-07 840.36 305.56 148.85 
1 0 - i o 3.36E-07 1.36E-08 864.89 322.26 157.53 
10-11 3.36E-07 1.23E-09 911.88 339.01 166.19 
10-12 2.41E-10 1.10E-10 947.70 357.77 174.85 
IO" 1 3 0 0 991.89 372.48 182.58 

Table 4.12: Correlation Accuracy Compared to Iteration Time for Various Processor Sizes 

table shows the division when identical processors are used with three worker processors and seven worker 

processors. The number of blocks each processor computes is nearly the same size for all, but it shows that 

some processors work through fewer blocks, which means the blocks they received contained correlations 

that took longer to converge. The bottom half of the table shows what happens when a heterogeneous 

group of processors is used. Processor seven is half as fast as the others and processor six is one and a half 

times faster. The table shows the slower processor does not process as many work blocks, but the quicker 

processor makes up for it and works through more blocks. If the regular Maronna version were used instead, 

the program would only proceed as fast as the slowest processor. The faster machines would simply wait 

until the slow one finished before continuing, which wastes computational resources and time. Thus, load 

balancing is beneficial to spread the work load evenly between the processors, and to improve performance 

in a heterogeneous environment. 

We have created two versions of Maronna based on dynamic load balancing. The two load balanced 

versions are very similar and only differ in the way the result is gathered to the root processor. One version 

has the worker processors send their results to the root whenever they finish calculating the results for a 

block. The second version has the root gather all the results from the worker processors at the end of 

the entire calculation. The timings for the two load balanced Maronna algorithms are in Table 4.15 and 

Table 4.16. We can see that dynamic load balancing is a feasible approach to the problem of long converging 

correlations by comparing these to tables to the static Maronna in Table 4.2. 
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We see that the load balanced version with the ending gather in Table 4.15 is similar to the normal 

Maronna, but is a bit faster in the category of correlation calculation. Overall, the charts show this version 

is better than the original. The time on 5000 variables with 8 processors is 40 seconds faster and the time 

with 6000 variables and 8 processors is 100 seconds faster. This benefit is likely due to the positive results 

of load balancing. 

Comparing both the load balanced versions to the regular Maronna in general, we see that the load 

balanced versions are not as constrained for memory as the regular Maronna. For example, there are no 

irregular values in the gather column for the ending gather version, and the matrix fill times seem more 

consistent. There is less of a memory constraint because the load balanced versions use a processor farm 

approach. The root processor's role is to keep feeding work to the other processors. Thus, it does not need 

to use memory for computation purposes as in the original version. 

Even though the ending gather version of Maronna is better than the original, the block gather 

version is a bigger improvement. Table 4.16 shows that, compared to the original Maronna in Table 4.2, 

the block gather version takes only 60 — 70% of the running time. This is better than the few seconds 

improvement of the ending gather version. Thus, the block gather version provides superior load balancing 

than the ending gather Maronna. 

4.5.4 Load Balance Block Size 

The block size plays a key role in dynamic load balancing. If it is too small, the communication overhead 

increases, while large sizes do not successfully balance the load. Performance analysis of load balancing 

with the gene data shows that a block size of around 50,000 works best. A detailed graph of load balanced 

Maronna times for different block sizes is show for 6000 variables on eight processors as an example in 

Figure 4.1. The figure shows that the best choice in block size is at the bottom of the curve somewhere 

between 6000 and 75000. Nothing smaller is a good choice because the running time increases rapidly for 

smaller block sizes since the root node becomes saturated with work requests. Sizes that are bigger than this 

range are bad because they are too close to the static division that the regular Maronna uses, and thus see 

little of the dynamic load balancing benefits. 

The optimal block sizes for different variable and processor combinations are listed in Table 4.13. 

Al l of the combinations have optimal block sizes in the 6000 to 75000 range. It is interesting to note that 

in the experiments to discover the best block sizes for the different combinations, all of them had curves 
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that were rounded similarly to Figure 4.1. None had a sharp point where one single value had the best 

range. Instead, they all had a range near the optimal with similar performance. This range seems best to 

take advantage of the benefits of dynamic load balancing for Maronna. 

Load Balanced Maronna Performance on 6000 Variables with 8 Processors Varying Task Size 

1000 I 1 • 1 — i i i i < i . . . — • . . , . i , 1 , — • i i i i I 

900 h 

800 r 

700 h 

300 I ' ' • • r • I l 1 i < 1 • • • • • I 1 1 • I 
1000 10000 100000 1e+06 

Task Size 

Figure 4.1: Load Balanced Maronna Various Task Sizes on 6000 Variables with 8 Processors 

Variables Processors Block Size 
2000 4 15000 
4000 12000 
6000 4000 
2000 8 5000 
4000 5000 
6000 50000 

Table 4.13: Load Balanced Maronna Optimal Block Sizes 
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Proc Group Variables Block Size PI P2 P3 P4 P5 P6 P7 
Identical 2000 15000 45 44 45 

4000 12000 222 225 220 
6000 8000 745 751 754 
2000 10000 28 30 29 29 27 28 29 
4000 10000 112 116 120 113 111 113 115 
6000 50000 52 51 52 51 53 50 51 

Fast and Slow 2000 15000 27 92 15 
4000 12000 130 478 59 
6000 8000 423 1618 209 
2000 10000 23 22 22 21 23 78 11 
4000 10000 90 84 93 86 84 321 42 
6000 50000 39 38 39 40 39 145 20 

Table 4.14: Block Division Between Processors 

V P Input Output Beast Gather Median Cor Fill Other Total 
1000 1 0.010 1.828 0.012 0.355 0.020 38.844 0.096 0.021 41.186 

2 0.009 1.809 0.020 0.351 0.019 19.658 0.098 0.020 21.984 
4 0.008 1.711 0.031 0.327 0.018 9.885 0.102 0.020 12.103 
8 0.091 2.207 0.044 0.335 0.017 4.989 0.103 0.020 7.807 

2000 1 0.013 6.973 0.026 1.382 0.035 158.452 0.433 0.040 167.354 
2 0.013 7.035 0.059 1.295 0.036 79.472 0.427 0.040 88.377 
4 0.013 6.795 0.086 1.178 0.033 40.035 0.437 0.041 48.617 
8 0.012 6.919 0.117 1.010 0.031 19.928 0.440 0.041 28.498 

3000 1 0.016 15.590 0.045 3.706 0.052 375.065 1.044 0.060 395.577 
2 0.016 15.564 0.093 3.104 0.055 186.543 1.036 0.060 206.471 
4 0.017 15.481 0.134 3.100 0.048 93.532 1.069 0.061 113.442 
8 0.052 15.751 0.191 3.103 0.046 47.261 1.033 0.061 67.498 

4000 1 0.020 27.811 0.061 6.441 0.070 706.150 2.327 0.081 742.960 
2 0.018 27.591 0.124 5.888 0.071 353.164 2.201 0.081 389.138 
4 0.018 27.555 0.182 5.516 0.066 180.484 2.225 0.081 216.127 
8 0.022 28.041 0.252 5.505 0.061 88.534 3.015 0.081 125.509 

5000 1 0.031 44.472 0.076 9.988 0.088 1189.482 3.376 0.139 1247.651 
2 0.030 44.285 0.155 9.907 0.085 599.196 3.394 0.143 657.195 
4 0.036 44.011 0.233 8.630 0.084 296.905 3.374 0.164 353.437 
8 0.035 43.412 0.321 8.575 0.077 147.789 4.294 0.101 204.604 

6000 1 0.040 62.324 0.092 14.394 0.105 1828.638 7.978 0.122 1913.693 
2 0.040 63.153 0.191 13.013 0.100 891.910 7.696 0.122 976.224 
4 0.040 63.028 0.286 12.524 0.103 450.486 7.859 0.122 534.449 
8 0.035 63.714 0.386 12.374 0.108 222.788 9.245 0.221 308.871 

Table 4.15: Load Balanced Maronna with End Gather, where v is the number of variables, p is the number 
of processors, cor is the correlation computation time, and fill is the matrix fill time 
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V P Input Output Beast Median Cor Fill Other Total 
1000 1 0.007 1.795 0.012 0.021 19.001 0.097 0.020 20.954 

2 0.009 1.925 0.024 0.019 9.693 0.096 0.020 11.786 
4 0.007 1.994 0.040 0.018 4.901 0.096 0.020 7.076 
8 0.061 2.017 0.056 0.017 2.498 0.097 0.021 4.766 

2000 1 0.012 7.160 0.026 0.036 83.175 0.434 0.040 90.883 
2 0.011 6.841 0.059 0.039 41.753 0.437 0.040 49.181 
4 0.011 6.910 0.086 0.033 21.260 0.439 0.041 28.780 
8 0.013 7.033 0.125 0.031 10.671 0.455 0.041 18.368 

3000 1 0.016 15.820 0.042 0.057 211.414 1.044 0.060 228.453 
2 0.015 15.680 0.092 0.055 106.303 1.044 0.060 123.249 
4 0.019 15.481 0.135 0.048 54.855 1.053 0.061 71.652 
8 0.049 15.503 0.190 0.046 26.882 1.066 0.061 43.796 

4000 1 0.018 28.031 0.061 0.070 416.773 2.193 0.081 447.227 
2 0.018 28.190 0.126 0.070 210.005 2.187 0.081 240.677 
4 0.018 27.935 0.182 0.065 108.365 2.211 0.081 138.857 
8 0.020 27.783 0.254 0.061 52.997 3.192 0.081 84.390 

5000 1 0.031 44.119 0.076 0.088 724.090 3.360 0.157 771.921 
2 0.031 44.914 0.158 0.088 363.619 3.347 0.151 412.309 
4 0.035 44.306 0.233 0.083 183.444 3.340 0.140 231.582 
8 0.035 42.825 0.321 0.076 92.819 4.291 0.101 140.469 

6000 1 0.040 63.159 0.092 0.105 1156.037 7.836 0.121 1227.390 
2 0.043 62.946 0.188 0.103 580.643 7.990 0.122 652.034 
4 0.040 62.803 0.287 0.103 295.477 7.587 0.121 366.418 
8 0.034 63.934 0.385 0.105 147.254 10.035 0.122 221.868 

Table 4.16: Load Balanced Maronna with Block Gather, where v is the number of variables, p is the number 
of processors, cor is the correlation computation time, and fill is the matrix fill time 

4.6 Varying Data Shape 

The QC and Maronna algorithms performance is partially dependent on the shape of the dataset, i.e. the 

number of variables and cases. It is clear that the algorithms depend on the number of variables in the 

dataset because this determines the size of the output correlation/covariance matrix. The number of cases 

plays a smaller role. The runtime of the median and MAD portion of the algorithm depends on the number 

of cases in the input dataset. If the number of cases or the number of variables is small enough, it may 

be more appropriate to perform a sequential operation in place of the parallel because the parallel version 

may have too high of an overhead. Also, it may be better to mn the sequential median algorithm when the 

number of processors is large and creates enough overhead so that the parallel is slower than the sequential. 

We separated the two algorithms each into two parts, the median-MAD calculation and the rest of the 
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correlation/covariance computation. 

With these two components, we have four separate combinations if we consider the parallel and 

sequential versions of each. One would combine the sequential median and the sequential correlation algo­

rithms for data sets that have few variables and few cases. We see in the trends in Table 4.18 that the parallel 

median does provide improvement when there are a few cases and many variables. However, with more pro­

cessors the overhead may be too great so that there is little gain in using the parallel median. Thus, if there 

are many variables and few cases, it is good to use the parallel median with a small number of processors, 

but when there are many processors, it is faster to use the sequential version. If the dataset has few variables 

but many cases, we would still use the parallel correlation algorithm because even with a few variables, 

the number of correlations is a quadratic function of the variables. Plus, the number of cases affects the 

correlation runtime, as we see in Table 4.17. Therefore, there is always some time savings possible using 

a parallel correlation algorithm unless the data set has few variables and cases. The most obvious choice 

is when the data set has many variables and cases, where parallel algorithms should be used for both the 

median and correlation calculations. 

For our experiments varying the number of variables and cases, we use the gene dataset, however, 

we generate more variables or cases at random for the dataset to evaluate the algorithms on different data 

sizes. We construct a new variable or row in the dataset from a random group of existing variables or cases. 

To create each element in the new variable/case, we assign random weights to the corresponding elements 

in the set of existing variables/cases, where the weights sum to one, then sum up the products of the weights 

and elements. 

The results of our experiments involving the variation of cases and variables on our correlation 

algorithms are listed in Table 4.17 and 4.18. For Table 4.17, we hold the number of variables constant at 

6000 and vary the number of cases in the data set. QC seems to handle increasingly larger numbers of cases 

well, and has a moderate time increase as the number of cases goes from twenty to one hundred to one 

thousand. However, our runs with ten thousand cases show a significant increase in time. It is difficult to 

tell how accurate these times are because this is well into the point where memory constraints kick in. In 

fact, the runs for one and two processors were unable to complete due to lack of memory. 

The Maronna algorithm does not fair as well as QC as the number of cases increase. In fact, the in­

crease in running time seems to increase linearly with the increase in cases. In the bottom half of Table 4.17, 

as the cases increase from twenty to one hundred, the running times increase by about a factor of five, and 
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when the cases increase from one hundred to a thousand, the running times increase by about a factor of ten. 

this makes sense because every iteration of the Maronna algorithm requires a sum across the current values 

of the cases for the variables involved in the current correlation. Also, the runs with one thousand cases are 

the point where Maronna runs into memory problems as the single processor experiment ran out of memory 

before completion. 

We also experimented with increasing the number of variables in Table 4.18. In these experiments, 

we held the number of cases constant at twenty and increased the number of variables. Unfortunately, 

memory constraints kept us from trying anything beyond ten thousand variables. The running times clearly 

do not increase linearly with the number of variables. From 2000 variables to 4000, the total time increases 

by a factor of four, from 4000 to 6000 by a factor of two, from 6000 to 8000 by a factor of almost ten, and 

from 8000 to 10000 by a factor of two. The correlation computation time also increases at a nonlinear rate, 

going from a factor of three to two to one and a half over the changes in variables. The changing increase 

in times could be caused by some parts of the algorithm being related linearly to the number of variables, 

while others are reacting quadratically to the number of variables, such as the output time. Again, we can 

see where the algorithm is running into memory problems on the single processor 8000 variable mn and also 

in the fact that the single and two processor runs with 10000 variables did not finish and are absent from the 

table. 

The bottom half of Table 4.18 shows the effects on Maronna when the number of variables increases. 

The total time increases by a factor of five from 2000 to 4000 variables, but from that point, it is increasing 

by about a factor of 2.7 for the larger numbers of variables. The correlation computation time is not that 

steady, and increases by a factor of 5 from 2000 to 4000 variables, by 2.88 from 4000 to 6000, by 2.38 

from 6000 to 8000, and by 1.87 from 8000 to 10000. The times seem to be increasing at a decreasing rate, 

and less so than QC. Maronna also ran into memory problems with 10000 variables, as the single processor 

experiment ran out of memory. 

In summary, both algorithms are affected by the number of variables and cases in the input data set. 

Both react quadratically to the number of variables, QC seemingly more so than Maronna. Maronna reacts 

linearly to changes in the number of cases, and QC does not react as much, though it may for very large 

numbers of cases, such as 10000. 
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Algorithm Cases Procs Median Cor Comp Total 
QC 20 1 0.380 45.551 167.486 

2 0.162 19.936 113.477 
4 0.130 9.988 108.931 
8 0.110 5.159 102.084 

100 1 2.056 64.587 184.321 
2 0.949 29.130 123.999 
4 0.706 15.591 109.909 
8 0.579 9.024 108.964 

1000 1 26.197 293.737 667.494 
2 12.504 147.608 247.294 
4 8.558 89.336 193.375 
8 6.641 57.945 169.754 

10000 4 357.696 8411.704 9295.692 
8 176.208 6301.003 6857.489 

Maronna 20 1 0.087 1768.519 1872.328 
2 0.105 1045.453 1129.290 
4 0.103 589.543 673.169 
8 0.101 318.835 400.893 

100 1 0.299 9730.242 9819.595 
2 0.428 5006.885 5105.313 
4 0.452 2595.059 2680.493 
8 0.459 1315.559 1401.823 

1000 2 4.025 50057.706 50186.467 
4 4.364 25596.003 25709.269 
8 4.551 13191.708 13315.304 

Table 4.17: Algorithm Performance Varying Cases Using 6000 Variables 

4.7 Communication Analysis 

4.7.1 MPI Performance 

The MPBench tool measures the performance of MPI primitives. We use the tool to examine some of the 

costs of using MPI. Figures 4.2-4.6 show the graphical results for the MPI primitives relevant to our pro­

gram. Figures 4.2 and 4.3 show the unidirectional and bidirectional bandwidth for MPI. The unidirectional 

bandwidth is implemented using the normal send and receives while the bidirectional uses nonblocking 

sends and receives. Figures 4.4 and 4.5 give the roundtrip time and latency for the send function. Finally, 

Figure 4.6 shows the performance of the broadcast primitive. 

One of the things evident in the figures is that sending small messages requires only a constant 

amount of time. If a message is small, then MPI just transfers the message into the buffer of the receiving 
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Algorithm Variables Procs Median Cor Comp Total 
QC 2000 1 0.066 3.915 11.906 

2 0.055 1.967 11.435 
4 0.042 1.232 11.632 
8 0.037 0.885 11.475 

4000 1 0.132 19.419 51.747 
2 0.108 9.286 47.286 
4 0.089 4.170 44.638 
8 0.069 2.571 45.768 

6000 1 0.435 45.293 164.516 
2 0.163 19.224 113.248 
4 0.130 10.037 103.713 
8 0.114 5.201 105.826 

8000 1 0.436 436.336 2192.327 
2 0.331 40.027 1065.459 
4 0.180 20.564 998.024 
8 0.165 9.697 857.481 

10000 4 0.224 30.731 1913.898 
8 0.197 15.111 1812.029 

Maronna 2000 1 0.029 161.155 168.681 
2 0.038 86.056 94.665 
4 0.034 43.849 52.665 
8 0.032 22.889 32.095 

4000 1 0.058 708.679 739.346 
2 0.071 392.950 427.056 
4 0.069 213.169 249.073 
8 0.064 112.564 149.675 

6000 1 0.086 1772.464 1874.283 
2 0.105 1050.567 1149.855 
4 0.104 593.846 676.139 
8 0.104 323.927 409.366 

8000 1 0.115 3761.701 4091.564 
2 0.140 2345.051 2692.082 
4 0.135 1400.404 1733.449 
8 0.142 769.024 1102.883 

10000 2 0.173 4350.110 6905.358 
4 0.166 2599.129 4636.957 
8 0.173 1440.370 3009.094 

Table 4.18: Algorithm Performance Varying Variables Using 20 Cases 

process. When messages are large, the sender and receiver have to agree on the memory location where the 

message will be stored on the receiver's end, and then transfer the message. This introduces a per-byte cost, 

but this is more efficient than buffering large messages because the extra buffering would require more time 
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Figure 4.2: Unidirectional MPI Bandwidth 

for buffer copying. We can estimate the costs using the performance graphs. The constant startup time for a 

send is roughly 16 microseconds, while the per byte cost for larger messages is about .0856 microseconds 

per byte. 

4.7.2 Algorithm Communication 

We were able to create rough communications profiles for the algorithms using a setup with several machines 

connected to a router via dedicated Ethernet cables. Then, we repeatedly queried the router for the traffic 

through the connections to monitor the activity as time passed. The communications traffic is measured 

in bytes over the queries we made. We could query the router at approximately 37 times per second. We 

grouped the results of 1000 of these queries together and report the sum of the traffic that the router reported 

for this period. The x-axis in the graphs represents a rough estimation of time, where we report total router 

traffic about every twenty-seven second interval. The reported traffic is measured in kilobytes. 
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Bidirectional MPI Bandwidth 
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Figure 4.3: Bidirectional MPI Bandwidth 

Looking at QC's graph, Figure 4.7, we see that the largest amount of traffic occurs during the result 

gathering stage. Figure 4.8 shows the Maronna algorithm's profile. Maronna also has the heaviest traffic 

during the gather stage. There are two large communication points on the graph because one of our machines 

was slower than the rest. When the faster machines completed earlier, they had to wait for the slowest one 

to finish and meanwhile sat idly. This is one reason why load balancing is an improvement. 

We have profiled two versions of the load balanced Maronna. The first has the processors returning 

their results after they calculate a block of correlations, and is shown in Figure 4.9. The height of all the 

communications here and their thickness in the graph are all related to the block size of the algorithm. Small 

blocks make the messages smaller and more frequent, while larger blocks make for larger messages that are 

not as frequent. Thus, the total traffic the network can handle is something to consider when choosing the 

block size. 

The profile for the second load balanced Maronna is in Figure 4.10. It is similar to the original 

Maronna in that all the correlations are saved up until the end for one massive gather. The processors still 
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Roundtrip time of MPI Send 
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Figure 4.4: Roundtrip Time of MPI Send 

send messages throughout the algorithm, but they are small and only serve as requests for more work. 
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Latency of MPI Send 
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Figure 4.5: Latency of MPI Send 
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Performance of MPI Broadcast 
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Figure 4.7: QC Communications Profile 
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Maronna Communication 
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Load Balanced Maronna Communication (with Gather in Computation) 
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Figure 4.9: Load Balanced Maronna with Block Gather Communications Profile 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusion 

This thesis has shown that robust methods for calculating correlation and covariance matrices are feasible 

when implemented in parallel. These methods now make it possible to not only solve for large correlation 

and covariance matrices in a timely fashion, but also compute them with a more robust approach. 

Our experiments were performed on a relevant dataset with 6068 variables representing different 

genes in 20 cases. The results show that both QC and Maronna scale well for up to 8 processors. Maronna 

seems to scale exceptionally well since the computation portion requires no communication between pro­

cessors. This helps Maronna to achieve speedup on more than 8 processors, up to 128 as can be seen from 

the WestGrid results. QC is still faster, but Maronna is more robust and scalable to more processors. The 

two algorithms are good for solving different types of problems. If an application requires speed, has few 

processors available, and is willing to sacrifice some robustness in its results, then QC is the algorithm of 

choice. On the other hand, if many processors are available and greater robustness is required, then Maronna 

is a good choice if one is willing to put up with a longer wait. Both algorithms have their advantages and 

disadvantages, and the best method depends on the circumstances of the problem being solved. 

We examined Maronna closely and found that some correlations, namely the ones involving outlier 

data values, converge at a slower rate. In response, we developed a load balanced version of Maronna and 

also experimented with several values for accuracy to improve the run time. 

When we varied the size of the dataset in both cases and variables, we found that both algorithms 

scale linearly when the number of cases increase, and scales quadratically when the number of variables 

increase. We explain that there is a dividing line where it is more advantageous to mn sequential versions of 
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the median and correlation components when the overhead of the parallel algorithms was too much. 

Finally, our communication analysis on QC and Maronna give us an idea of which parts of the algo­

rithms have the greatest communication cost and how the algorithms compare in terms of communication. 

5.2 Future Work 

With the success from parallelizing these techniques, the next step is to wonder whether other methods of ro­

bust calculation for correlation and covariance matrices would see similar results. Other algorithms include 

a version of Maronna that considers three variables at a time instead of just two and also the Stahel-Donoho 

method. Another area to improve these algorithms is the I/O time or repairing the positive-definiteness since 

parallelization has decreased the computation time of the main algorithm to a small portion of total time. 

Also of interest would be a hybrid method that initially calculates the correlation pairwise, but could detect 

when better outlier detection is needed for certain correlations and run a triplet correlation method for those 

values. Much benefit would come from parallel I/O routines or a more efficient eigensolving routine that is 

specialized for our purpose of fixing the positive definiteness. 
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