
Parallel Computation of High Dimensional Robust Correlation and
Covariance Matrices

by

James Chilson

B.S., Western Oregon University, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Department of Computer Science)

We accept this thesis as conforming
to the required standard

The University of British Columbia
March 2004

© James Chilson, 2004

Library Authorization

In presenting this thesis in partial fulfillment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for

extensive copying of this thesis for scholarly purposes may be granted by the

head of my department or by his or her representatives. It is understood that

copying or publication of this thesis for financial gain shall not be allowed without

my written permission.

Name of Author (please print) Date (dd/mm/yyyy)

Title of Thesis:

01/4 fi <Lp

VXc^Jt) ess

Year:

5c

The University of British Columbia
Vancouver, BC Canada

Abstract

Currently, data mining applications use classical methods to calculate covariance and correlation matrices.
These methods have the drawback that they can be adversely affected by data set outliers. Thus, robust
methods for calculating covariance and correlation matrices are useful for these applications. However,
robust methods require more time to calculate. To counter this, we propose two parallel robust methods
of calculating correlation and covariance matrices. The first algorithm is a parallel version of Quadrant
Correlation (QC), and the second is a parallel version of the Maronna method. Parallel QC uses a parallel
matrix library and can handle single-dimensional outliers in its data. The parallel Maronna method divides
the independent correlation calculations between the processors and is capable of detecting one and two
dimensional outliers in data.

We evaluate these algorithms using a dataset from a "real-life" application. It is a genetic data
set that comes from cardiovascular research, and it contains 6068 variables. Our evaluation also includes
performance results from datasets with varying dimensions, performance of several algorithm components,
a communications analysis, and improvements for the Maronna method.

' From our results we conclude that our parallel algorithms make the robust calculation of correlation
and covariance matrices useful in applications that deal with large dimensional data, such as data mining.
Our initial hypothesis was that Maronna would perform better in parallel than QC, to the point that Maronna
would be faster. In actuality, we found that Maronna does work better in parallel than a parallel QC in that
it scales to more processors. However, our experiments do not show the parallel Maronna takes less time.
Our conclusion is QC and Maronna are two viable options for computing robust correlation and covariance
matrices. QC is less robust, fast, but does not scale as well to many processors while Maronna takes longer,
is more robust, and scales to many processors.

ii

Contents

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

Acknowledgements viii

Dedication ix

1 Introduction 1

1.1 Motivation 1

1.2 Problems 3

1.3 Approaches 3

1.4 Overview 4

1.5 Outline 4

2 Background 5

2.1 Cluster Computing 5

2.2 Robust Correlation and Covariance Calculation 6

2.2.1 Correlation and Covariance 6

2.2.2 Robust Correlation and Covariance 7

2.2.3 Robust Examples 8

2.2.4 Component Algorithms to Robust Correlation/Covariance 9

iii

2.3 Correlation and Covariance in Data Mining 10

3 The Algorithms 15

3.1 General Algorithm Overview 15

3.2 Median and MAD Calculation 16

3.3 Repair Positive Definiteness via Eigensolving 17

3.4 Parallel Algorithm for Quadrant Correlation 21

3.5 Parallel Algorithm for the Maronna Method 23

4 The Experiments 26

4.1 Setup 26

4.1:1 Parallel Cluster Environment 26

4.1.2 Parallel Matrix Software 27

4.1.3 Parallel Eigensolvers 27

4.1.4 Communication Analysis Software 28

4.1.5 Experiment Parameters 29

4.2 Algorithm Performance Comparison 29

4.2.1 Small Cluster Performance 29

4.2.2 Large Cluster Performance 30

4.3 I/O Performance 33

4.4 Performance for Eigenvector Calculation 34

4.5 Load Balanced Maronna 35

4.5.1 Correlation Convergence 35

4.5.2 Changing e 38

4.5.3 Dynamic Load Balanced Maronna 38

4.5.4 Load Balance Block Size 40

4.6 Varying Data Shape 43

4.7 Communication Analysis 46

4.7.1 MPI Performance 46

4.7.2 Algorithm Communication 48

iv

5 Conclusions and Future Work 5 7

5.1 Conclusion ^7

5.2 Future Work 5 8

Bibliography 5 '

i

v

List of Tables

4.1 QC Timings on Gene Dataset, where v is the number of variables, p is the number of pro­

cessors, and cor is the correlation computation time 31

4.2 Maronna Timings on Gene Dataset, where v is the number of variables, p is the number of

processors, cor is the correlation computation time, and fill is the matrix fill time 32

4.3 Maronna Timings on 6068 Variable Gene Dataset Using WestGrid 32

4.4 QC Timings on 6068 Variable Gene Dataset Using WestGrid 33

4.5 I/O Timings on Gene Dataset 33

4.6 Time for Repairing Positive Definiteness on the Gene Dataset 34

4.7 Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = .1 36

4.8 Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = 10 - 7 36

4.9 Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = 10~13 ' 37

4.10 Range of Slow Converging Correlations on 6068 by 20 Gene Dataset with e = 10~7 37

4.11 Slow Converging Correlations and Their Large Distance Values 37

4.12 Correlation Accuracy Compared to Iteration Time for Various Processor Sizes 39

4.13 Load Balanced Maronna Optimal Block Sizes 41

4.14 Block Division Between Processors 42

4.15 Load Balanced Maronna with End Gather, where v is the number of variables, p is the

number of processors, cor is the correlation computation time, and fill is the matrix fill time 42

4.16 Load Balanced Maronna with Block Gather, where v is the number of variables, p is the

number of processors, cor is the correlation computation time, and fill is the matrix fill time 43

4.17 Algorithm Performance Varying Cases Using 6000 Variables 46

4.18 Algorithm Performance Varying Variables Using 20 Cases 47

vi

List of Figures

2.1 Advantages of Maronna Over QC and the Classical Pearson Correlation. 12

2.2 Robustness Results for a Small Five-Dimensional Data Set 13

2.3 Correlation Dendrogram for Gene Data 14

3.1 Parallel Algorithm for Repairing the Positive Definiteness of a Correlation Matrix 20

3.2 Parallel Algorithm for Quadrant Correlation 22

3.3 Parallel Maronna Method 23

4.1 Load Balanced Maronna Various Task Sizes on 6000 Variables with 8 Processors 41

4.2 Unidirectional MPI Bandwidth . 48

4.3 Bidirectional MPI Bandwidth 49

4.4 Roundtrip Time of MPI Send 50

4.5 Latency of MPI Send 51

4.6 Performance of MPI Broadcast 52

4.7 QC Communications Profile 53

4.8 Maronna Communications Profile 54

4.9 Load Balanced Maronna with Block Gather Communications Profile 55

4.10 Load Balanced Maronna with End Gather Communications Profile 56

vii

Acknowledgements

I would like to thank Dr. Alan Wagner for his supervision and help, Dr. Raymond Ng and Dr. Ruben Zamar
for their crucial advice and guidance, and the DSG people for putting up with me.

JAMES CHILSON

The University of British Columbia

March 2004

viii

To my friends and family. Without your support, this journey would not have been possible.

ix

Chapter 1

Introduction

1.1 Motivation

One important analysis of any data is to discover the relationships between the variables. Correlation and

covariance are statistical measures of the linear relationship between two variables. When considering

several variables, a correlation/covariance matrix can be formed using the correlations/covariances between

all the variables. The calculation of correlation and covariance matrices plays an important role in the field

of data mining. Data mining is the extraction of useful data or trends from large databases. This is relevant

in current times because memory is readily available in large quantities and there are datasets which contain

many thousands of variables and records, such as in genetics, oceanography, customer transaction data, and

web data. The size of these datasets makes it challenging to effectively compute data mining tasks, including

correlation and covariance.

The use of correlation and covariance in data mining fits into the areas of clustering and classifi­

cation. In classification, covariance matrices are used in the principle components analysis phase to find

the most correlated variables in the data. Principle components analysis is used to order the variables in

decreasing order of their variability. Then, the number of variables can be reduced if one is interested in

just the most wide-ranging variables. For example, covariance matrices are used in clustering to reduce the

number of dimensions in the data so that calculations are performed on smaller dimensioned data. For a

covariance calculation to be useful in these applications, it needs to be able to handle the large data matrices

common in data mining.

Most data mining applications that use correlation and covariance calculations use classical methods

to compute them. These methods are not always adequate for applications' needs. In some cases, datasets

1

can be corrupted with bad data, and we want to calculate the correlation or covariance without having these

values spoil the results. This is especially true in biomedical applications, some of which are forced to use

small samples that are more easily corrupted by outliers. For example, research geneticists using microarray

gene data can be affected by such outliers because in certain circumstances, microarray data can be affected

by noise that creates these outliers [8]. It would be valuable if researchers could reduce the outliers' influence

on their results in such a case.

In cases where outliers affect the quality of results for correlation and covariance calculation, robust

methods are a good alternative to classical methods. Robust methods for correlation and covariance spe­

cialize in providing results that are less influenced by outlier data. One robust technique for covariance and

correlation matrix computation is the Quadrant Correlation method (QC). QC performs a pairwise calcula­

tion of correlation/covariance and is capable of detecting single dimensional outliers. It runs in a reasonable

amount of time, but its robustness is limited to only single dimensional outliers. Another robust technique

is the Maronna method. Maronna also computes the correlation/covariance in a pairwise fashion, but it can

detect one and two dimensional outliers. This added ability comes with a far greater computational cost so

that Maronna has generally been viewed as unuseable for all but the smallest data sets.

The performance of robust methods for calculating correlation and covariance must be improved if

these methods are going to be used to compute those matrices for large datasets in data mining applica­

tions. We hypothesize that using parallel methods to calculate robust covariance/correlation will improve

performance to the point where such calculations can be used for data mining applications.

QC and Maronna are both parallelizeable. Their algorithms both consist of two parts, one part

performs median calculations for the variables, the other works on the correlation/covariance calculation.

The median portion is easily parallelized by dividing the variables between processors and calculating the

medians distributively, or if there are few variables, have the processors work together to find the medians.

The correlation part is where the two algorithms differ. QC's correlation contains mostly vector operations

and a matrix multiply. Matrix multiply is a well studied parallel problem, thus we create parallel QC by

using a parallel matrix library, such as PLAPACK [32], which uses efficient parallel matrix multiply and

other vector operations. Maronna's correlation is parallelizeable because the algorithm considers each of

the correlation entries in the resulting matrix to be independent calculations. For each pair of variables, the

algorithm uses an iterative process that converges to the correlation between them. These correlations can

easily be divided between the processors so that all of them calculate their portion of the resulting correlation

matrix in parallel.

2

1.2 Problems

This thesis focuses on the creation, implementation, and performance of a parallel robust parallel co-

variance/correlation algorithm. We consider two algorithms to parallelize, Quadrant Correlation and the

Maronna method. The two algorithms break down into similar component parts, the median calculation for

the data variables, the correlation calculation, and the positive definiteness repair of the covariance matrix.

We look at the individual components to find how to make improvements to them through parallelization.

Next, we look for methods of further improving the parallel version of Maronna. Finally, we investigate

how the parallel algorithms perform, especially when we run them on a larger number of processors.

1.3 Approaches

The correlation calculation component of QC and Maronna are the main parts of the algorithms, and we used

different approaches to parallelize them. As described earlier, we used a parallel matrix library, PLAPACK,

to make the matrix and vector operations in QC parallel. For Maronna, we changed the algorithm so that

it partitions the correlation matrix between the processors and each processor calculates and fills in the

correlations for their partition. Our median component is adaptive and depends on the size of the dataset.

It can use a sequential method, a parallel method where each processor performs the sequential median

algorithm on a subset of variables, or a parallel method that has groups of processors running a parallel

median algorithm for each variable. The last component we parallelized repairs the positive definiteness of

the correlation matrix. To do this we find the negative eigenvalues by using a parallel partial eigensolver, then

calculate replacement values for the negative eigenvalues to rebuild a positive definite correlation matrix.

Our improvements of the parallel Maronna fall into two areas, load balancing and convergence.

We implemented a dynamic load balanced version of Maronna using a processor farm approach to ensure

processors have enough work to stay busy throughout the calculation. Maronna uses an iterative process to

calculate each correlation, so an improvement in convergence benefits the algorithm. We experimented with

improving convergence by manipulating the internal parameters of the Maronna algorithm.

For our investigation of QC and Maronna's performance, we began with a communication analysis

of our implementations. This includes a measure of the communication primitives used and a profile of the

overall communication during runtime. In addition we experimented with the algorithms on the large cluster

environment of WestGrid [35].

3

1.4 Overview

Parallel Maronna and QC are both good algorithms in different ways. QC is fast, while Maronna takes longer

but continues to speedup with a larger number of processors. The two algorithms work well, but for different

types of problems. QC should be used when only a few processors are available and you need the solution

quickly, but with only a medium amount of robustness. Maronna is a good choice when a lot of robustness

is required and many processors are available. In addition, it is desirable to have adaptive components

in the algorithms that depend on the dataset dimensions because this can improve runtime as well. Also,

effective means of improving Maronna include modifying the internal parameters of the algorithm and the

implementation of dynamic load balanced Maronna.

1.5 Outline

The thesis is organized as follows. Chapter 2 covers the background information. Section 2.1 focuses

on cluster computing. Section 2.2 is about robust correlation and covariance including an example and

components to robust correlation and covariance algorithms. Section 2.3 describes how correlation and

covariance are used in data mining.

Chapter 3 covers the algorithms we use to calculate robust correlation and covariance in parallel.

Section 3.1 gives a general overview of both our algorithms. Section 3.2 describes our algorithm for cal­

culating median and MAD. Section 3.3 focuses on our method of repairing the positive definiteness of the

correlation matrix. Section 3.4 describes our parallel QC algorithm and Section 3.5 describes our parallel

Maronna algorithm.

In Chapter 4 we give the results of our experiments. First we describe the experimental setup in

Section 4.1. Chapter 4 continues in Section 4.2 with or results analysis for the parallel QC and Maronna

algorithms. Section 4.3 covers the I/O performance of our algorithms and Section 4.4 describes our results

for repairing the positive definiteness of covariance matrices. We use Section 4.5 to explain our experiments

with load balancing the Maronna algorithm. Section 4.6 describes our experiments in varying the size of

input data. Finally, Section 4.7 covers our communications analysis of QC and Maronna.

Chapter 5 gives our conclusions and describes some areas for future work.

4

Chapter 2

Background

The background describes some basic knowledge of the areas that relate to this thesis. Section 2.1 discusses

parallel cluster computing, Section 2.2 describes robust correlation/covariance computation, and Section 2.3

focuses on how correlation and covariance are used in data mining.

2.1 Cluster Computing

Parallel computing has two main areas for architectures, shared memory machines and clusters. In this

thesis, we are concerned with the cluster architecture. A parallel cluster is made of separate machines, each

having its own processor and memory, which are connected together by a network, such as Ethernet. The

machines work together by sending messages to one another across the network.

Cluster computing has advantages over single processor computing because cluster computing com­

bines computer power and resources across several computers. If a computation is too large for a single

machine, a cluster of machines can provide more computing power to calculate the result faster. Similarly,

if there is not enough memory in a single machine to compute a memory intensive job, a cluster can be used

to divide the problem across multiple machines to compute the result in a distributed fashion. In an ideal

circumstance, if p machines in a cluster are used to perform a computation, it takes ^th the time of the single

processor version. This is not usually true in practice because there is an overhead cost to the parallelization

and a communication cost associated with passing messages between machines.

Cluster computing is becoming more competitive with other methods of supercomputing. Standards

such as MPI [1 0] let developers create software that is more portable between clusters. Todays commodity

processors and equipment are more affordable so that it is more cost effective to assemble a cluster than

5

to build a supercomputer. These components are also gaining in performance, as can be seen by their

presence in the list of 500 top supercomputers [23]. Computing clusters comprise forty percent of the list,

and have seven of the top ten positions. The success of computing clusters has increased the interest in

grid computing, which involves combining computers or clusters in separate geographic locations to form

a system. Users in a grid computing environment only see the system as a large single computer, and the

system takes care of all the technical details of combining the resources together for the user. One example

of grid computing research is WestGrid in Canada [35].

In the case of calculating robust covariance/correlation, the computation is processor intensive.

Thus, in our experiments, we show that by using a cluster with enough processors, parallel robust co-

variance/correlation provides users with performance that is of interest for data mining applications.

2.2 Robust Correlation and Covariance Calculation

2.2.1 Correlation and Covariance

Covariance measures the degree of linear association between two variables. If the covariance between two

variables is high, a change in one variable will bring a similar linear change in the related variable. When

the covariance is very negative, the two variables are inversely linear related to one another. Zero covariance

implies there is no linear association between the two variables.

Formally, covariance is defined as

cov(Xi, = E[(Xi - IM){Xj - UJ)]

where Xi and Xj are the two column variables, and /Zj and /Zj are their respective means. For a data set

with several variables, the covariance matrix is a matrix that contains all the covariance values for every

combination of variables. Thus position in the matrix contains the covariance between variables i and

j. The correlation between two such variables is the covariance normalized so that it lies between the values

-1 and 1. The normalization occurs by dividing the covariance by the product of the standard deviations for

the two variables.

corn A j, A,-) = J—
CTiGj

Variables that are directly related will have correlations near one, while those inversely related will have

correlations around -1. Again, the correlation is near zero for unrelated variables.

6

2.2.2 Robust Correlation and Covariance

Robust covariance matrix estimation is a popular area in statistics. The robustness of estimators is deter­

mined by their breakdown point, the maximum amount of contamination that an estimator can handle. Of

particular interest are the estimators that are positive definite, affine equivariant, and have a high breakdown

point near one-half. The reason positive definite estimators are desired is that it does not make sense for

a covariance matrix not to be positive definite. Covariance matrices can be represented geometrically as a

multidimensional ellipsoid that describes the multivariate scatter of the original data. The eigenvectors of the

covariance matrix are the axes of the ellipsoid and the eigenvalues of the covariance matrix are the lengths of

these axes. These lengths must be positive, so we only want to consider estimators that are positive definite.

The property of affine equivariance is also related to the covariance ellipsoid. If we apply an affine

equivariant transformation to the original data set, then the resulting covariance ellipsoid after applying the

transformation is the same as the covariance ellipsoid of the resulting transformed data. This is a good

property because if an estimator can detect single dimensional outliers and is affine equivariant, then it is

known to be able to detect structural outliers as well. The Maronna method is one example of such an

estimator.

Estimators with the properties we desire fall into several classes. One class includes the S estimates,

such as the Minimum Volume Ellipsoid (MVE), and another class is the Minimum Covariance Determinant

(MCD) estimates [28,29]. There is also a class for the projection based estimates, such as the Stahel-Donoho

estimate (SDE) proposed by [31] and [7], and studied by [22, 17]. Yet another class is the P-estimates [21].

The major problem with these estimators is they are very time consuming to compute, requiring on

the order of 2V operations, where v is the number of variables. The projection estimators further require

n 2 operations, where n is the number of cases. This is unacceptable due to the large size of datasets in

data mining, which can have thousands of variables and hundreds of thousands to millions of cases. The

reason for the high level of complexity is that computing these estimators comes down to solving a highly

non-convex optimization problem, which consists of trying to find a good initial estimate that has the global

optimum as its nearest local optimum. The initial estimates are usually computed through repeated random

sub-sampling of Ns rows of the dataset, where Na is chosen to result in a high breakdown point with high

probability, .99 or .999 (see for example [27]). This results in the exponential complexity.

A quicker alternative is the "Fast MCD" (FMCD) [26]. FMCD is better than using naive subsam-

pling because it can produce "good" solutions using a much smaller JVS. The downside is the running time

7

for FMCD is still too long for a large number of variables and it does not have a high breakdown point when

the number of cases is large.

It is possible to compute faster estimates that have high breakdown points if we do not require

the resulting matrix to be affine equivariant. The easiest of such methods are those based on pairwise

estimates which have overall high breakdown points because each of the individual pairwise estimates is

calculated with a high breakdown point. This reduces the complexity in terms of the number of variables

from exponential to quadratic (from 2P to p2). One category of these estimates is (i) the classical rank

based methods, such as the Spearman's p and Kendall's r (see for example [1]). Another is (ii) classical

correlations applied after coordinate-wise outlier insensitive transformations such as the quadrant correlation

(QC) and 1-D "Huberized" data (see [15], p. 204). Also, (iii) bivariate outlier resistant methods such as the

method proposed by [11] and studied by [6]. The smaller running time for theses pairwise methods make

them more appropriate for use in data mining, especially on the datasets with hundreds of variables.

More recent approaches are based on modifications of the pairwise methods, the Gnanadesikan and

Kettenring (MGK) approach [19] modifies (iii) and a version of quadrant correlation modified from (ii) [2]

improve on the previous approaches in that they have complexity 0{np2). We chose the version of QC in [2]

to parallelize to extend the use of robust correlation in data mining to datasets with thousands of variables,

such as the gene dataset of 6068 variables we use in our experiments.

The problem with these pairwise estimators is that they were created with speed in mind instead

of robustness. Their lack of affine equivariance means that they will be susceptible to two-dimensional

structural outliers. An alternative choice is to use the Maronna M-estimate [20] because it has a higher

quality robustness. The Maronna covariance matrix estimate is positive definite, affine equivariant, and

can be computed using a re-weighting algorithm. This computation is much too expensive for sequential

approaches as we will see in the Experiments chapter, but we choose this method to parallelize because of

its better robustness.

2.2.3 Robust Examples

A comparison of the robustness between the classical Pearson correlation, QC, and Maronna is in Figure

2.1. Figure 2.1 shows the three methods used on clean data, data with two dimensional structural outliers,

and data with large two dimensional structural outliers. We see that the classical method performs badly

and is affected by the structural outliers and even worse by the large structural outliers, going from a .95

8

correlation to .40 and —.22. QC was also affected by the outliers in the data, with its correlation going from

.98 to .64. The Maronna performs the best and is hardly affected by the outliers. The Maronna correlation

changed from .96 to .91.

Another example of the advantage of two dimensional robustness is the Woodmod data set from

the S-PLUS robustness library in Figure 2.2. In the rectangles of V1-V2 and V4-V5, both have a small

group of two dimensional outliers in one of their comers. Both sets of outliers are not visible when viewing

the data along a single dimension. The correlations for V1-V2 and V4-V5 using traditional methods are

— .14 and —.24. However, a robust calculation method shows the correlations are .85 and .65. This is a

vast difference from the non-robust approach. This makes it clear that a robust method is preferred when

calculating correlation and covariance matrices.

Even though a robust approach is computationally expensive, there are applications that would ben­

efit from robust correlation and covariance matrix calculations. One such area is bio-medicine, especially

genetic related fields. For example, one application of covariance matrix calculations is to examine the

genetics of rheumatic and normal heart valves to help identify which genes are responsible for generating

rheumatic valves. To do so, it is useful to look at both the genes' correlation, and how the genes fall into

clusters based upon their correlations. Figure 2.3 shows an example dendrogram of gene correlation clus­

ters. The dendrogram is formed by first calculating the correlation matrix for the gene expression data.

Then group the correlations into clusters using a clustering algorithm. Finally, create the dendrogram based

on the clusters. The height in the diagram relates to the gene correlation by 1 — r, where r is the correlation.

The robust methods are especially effective for this application because microarray gene data is affected by

noise [8] which can cause outliers in the data that skews the results. In addition, the data usually has few

samples, which makes it more important to downplay the outliers to achieve accurate results. Gene data

usually has a large number of variables as well, so only a robust technique that could process large data

sets would be useful for this application. Thus, it is important to develop the techniques to handle robust

approaches to calculating high dimensional covariance and correlation matrices.

2.2.4 Component Algorithms to Robust Correlation/Covariance

There are a couple of algorithms that are key components in calculating covariance and correlation matrices.

One such algorithm calculates the median and MAD (Median Absolute Deviation). The median and MAD

act as robust calculations of the mean and standard deviation. The algorithms for both are similar, so a

9

median algorithm can calculate MAD with minor alterations. Sequential median algorithms range from

linear and average linear time, such as [5, 10.3] and [5, 10.2] that use partitioning, to 0(n logn) algorithms

that sort the data using quicksort. Most of the parallel implementations of the median algorithm are based

on shared memory architectures, where there is not as great a penalty for communicating data between

processors. Existing algorithms for distributed memory architectures, such as [30], attempt to reduce the

amount of data communication between processors. One of the best parallel median algorithms uses the

PRAM model and has C(logn • log logn) running time on ©(_ |^) processors [16]. [4] has suggested an

algorithm that has a worst case time that matches [16] in runtime, but has an expected runtime of ©(log n)

with the added restriction that the input values are distributed randomly on an interval [a,b]. Finally, [13]

provides an optimal version of the parallel selection algorithm for EREW PRAMs that takes C(log n) time
u s i n § isf̂ processors.

The operations performed in QC and Maronna do not preserve the quality of positive definiteness of

the correlation matrix. The algorithms must repair the matrix if we desire the property of positive definite­

ness. Our implementations use an eigensolver to identify the negative eigenvalues so they can be repaired.

Various algorithms exist for calculating eigenvectors. The power method is one of the simplest. It solves

for extreme eigenvalues of the matrix and a variant can be applied repeatedly to solve for multiple eigen­

values [9, 7.1]. QR-factorization uses a set of similarity transforms to convert the matrix into a form that is

easier to solve for eigenvalues [9, 7.3]. Another method used widely in applications such as Matlab is the

Arnoldi method, or Lanczos method in the case for real symmetric matrices. The Lanczos method works

well for finding extreme eigenvalues, and can find the eigenvalues in the inner portion of the spectrum when

functions are used to remap those eigenvalues to the extreme points [34, 5.3].

2.3 Correlation and Covariance in Data Mining

Covariance and correlation matrices have applications in many fields, and one important use is in the area

of data mining. Data mining applications deal with very large datasets that can have hundreds of thousands

of variables and millions of cases. However these datasets can come in a variety of shapes. For example,

some gene datasets will have data on thousands of genes, but only a few samples, such as the rheumatic

heart valve gene dataset we use for experiments. Other datasets can have the opposite dimensions, such as

atmospheric or oceanographic data, which can have a few thousand variables for the locations they measure

and many thousands of samples, one for each measurement.

10

There are several types of applications that covariance matrices are used for in data mining. These

applications include selection of relevant variables to analyze, methods of outlier detection, and as a key

component in the processes of clustering and classification.

Clustering is a method of dividing data into groups with similar characteristics. Clustering requires

queries and information retrieval on large datasets that can span many dimensions. A fast way of performing

these operations is to try to reduce the dimensionality of the dataset. One technique for doing so is to form

the covariance matrix for the data and find the principal component eigenvectors and eigenvalues. The

principal components are used to form a new, smaller dimensional space with projected data points from the

original data.

Covariance matrices are also used in classification data mining. Classification is a means of creating

rules that govern which category a data object is filed under. These rules are constructed by examining a

small set of already categorized data. Algorithms use these rules to separate new data values into preexisting

classes. Classification also uses principle component analysis, and hence covariance matrices, to determine

what features of the dataset should be used by the mles to divide the data into classes.

These examples show that covariance and correlation calculations play a part in the field of data

mining. If we improve the robust calculation of covariance and correlation matrices through parallelization,

all these areas in data mining will benefit.

11

Clean Data

QC =.98

Maronna = .96

Classical = .95

Structural Outliers

QC = .64

Maronna = .91

Classical = .40

-1

Large Outliers

QC = .64
Maronna = .91
Classical = -.22

Figure 2.1: Advantages of Maronna Over QC and the Classical Pearson Correlation.

12

0.12 0.14 0.16

V1

0.45 0.55
I I 1 L_

V2

V3

o

6

V4

0.45 0.55 0.65
~1 1 T 1 1 1 1

0.40 0.50 0.60
-i 1 1 r

l I L

V5

0.85 0.95

Figure 2.2: Robustness Results for a Small Five-Dimensional Data Set.

13

Cluster Dendrogram

o
CM

LO

LO
d

o
O

ri 11 r?i r C T p ,

i— C\i t - •

3 3

I I I I
D D D Q

CO . O J3 J3

CO CO CO CD CD
I I I

D Q Q
I I I

P P - Q

CD CD
I I

D Q

J D J D J D
O O O H — H— LI— £T l>— CI— LI— *— H— irLj—

H— H— _ts

co co —'
o 0 0
co
2 3

1 1 LO 1-
O) co

IO CO
CM 0 0 0 0
0 0 CD
X X , 9

C L CL
J D y i i c o
"TT 0

° ° " * c o ° f ^ c o
O L O 2
LO T - S
O CM

CD CM
CD CO
LO
O CO
O CO
> X

CD CD CM CM CM
I I I

Q D Q
1 1 1

n on

1 1
I Q Q

1 1
cd CO
o o

0 0 o
I I

I I
J D J D

H— JD Li— *»— A O H— Li—

CO i l T)-
LO **r LO
LO -1 LO
CO " CD
(D S T -
X 2 N

O LO
LO -<t
LO LO
CD 0 0
C\J CO
2 3

co 1
CO 1-
rl- CO
0 0 r -
CO CM
Q O

X

I I
0 0 1-
CM CD
1- CM
T - LO
CM O
3 3

r -
I I

D Q
I I

O CO
Q . °

LO
I I

3 3

J D J D

•a co

55_
CD - 1

LO
3

I
CM -r-
T - CD

CO
•<fr CO
O CO
x s

LO LO
I I

3 Q
I I

CO J D
O W=

CM CO
co 10
0 0 CO
CM O
•* CM
CM N

l O L O c o c o c o c o c o c o c o c o c o
I I I I I I I I I I I

0 3 3 0 0 3 3 3 0 3 3
I I I I I I I I I I I

O O J D CO O J D C0JD O « J D
• — - • .-. £ 0 1 _

1 S- 1
C L C L 1

JL JL 0 0 O O Jo OO CO
r ^ c o y
O CM
. V 3

0 0 a 0 0 • *
CM *T 1- CM

o J , o s

3 c 5 2 >
GO
CD

co a 0 0 0 0
CD ' LO O
C D S O O O S o
3 § 3 " ^

Interested G e n e s and Their Clusters: dissimilarity 1-r
hclust (*, "complete")

Figure 2.3: Correlation Dendrogram for Gene Data.

14

Chapter 3

The Algorithms

Two algorithms were implemented for calculating correlation and covariance. This chapter is divided into

five sections, an overview describing the main parts of the algorithms, the median/MAD calculation step,

using an eigensolver to repair positive definiteness, calculating correlation and covariance using QC, and

calculating correlation and covariance using the Maronna method.

Our notation is to represent the number of variables as v, the number of cases as n, and the number

of processors as p. In the algorithms, we treat matrices as being in column-major order, so that Mj4T[i][y]

is the item in the xth column and yth row and MylT[x] represents the xth column. We represent a single

row, in this case row x, by MATX.

3.1 General Algorithm Overview

The general setup for the calculation is similar for both QC and Maronna. The data is read in from disk

and distributed to the other processors, then the median and MAD are calculated for each variable. Next,

the covariance matrix is calculated. Afterwards, we use the eigensolver to repair positive definiteness, then

convert the matrix into a correlation matrix if necessary. Finally, the matrix is gathered to the root processor

where it is written to disk.

There are several parts of the parallel algorithms that are similar between QC and Maronna. The

input and output procedures are the same; a dataset with n cases, where each case deals with the same v

variables. The dataset is stored in column major order. When the data is read by the program, the program

stores the transpose of the data matrix. The output for both QC and Maronna is a v-by-v correlation or

covariance matrix, depending on which matrix the user wants. In the output matrix, the element at the

15

intersection of column i and row j is the correlation or covariance between the ith variable and the j

variable. Both algorithms can use the same I/O routines, and they are optimized to read/write binary data

in row blocks. Both algorithms need to distribute the data and collect the answer, however, this will vary

depending on the algorithm used.

3.2 Median and M A D Calculation

QC and Maronna use the median and MAD values calculated for each variable. MAD stands for the median

absolute deviation from the median. MAD represents the scatter of the data, and is a more robust measure

than the standard deviation. The definition of MAD is

M A T V v r , - n - m e d i a n (l x ^ b 1 -median(A"[i])|)
{ 0.6745 '

The .6745 here represents the inverse of the third quartile of the normal distribution. The division

is necessary because the numerator alone tends to underestimate the standard deviation, so dividing by

this value makes the MAD more accurate. From the definition, it appears that, once the median values

are calculated, the MAD is quite similar to the median calculation. The same median routine used in the

algorithm can also be applied to calculate the MAD with the help of a few small changes.

Initially, we planned to use a sequential median algorithm since correlation is more computationally

complex. However, if the number of variables in the input data is small, the resulting correlation matrix

is small and requires less work to calculate than a matrix of larger dimensions. For example, a dataset

with twenty variables and 50000 cases requires the calculation of 400 correlations. If the dataset had 1000

variables, there would be 1000000 correlations to calculate. Even though the number of medians to calculate

also increases with the number of variables, it is only related linearly, while the number of correlations to

calculate increases quadratically. In the case with fewer variables, the median would take a larger percent of

the total time, so performance gains from parallelizing the median would have a larger effect.

There are three options for the median calculation. The first is to use a sequential median algorithm.

[5] provides median finding algorithms that run in average case 0(n) time. These algorithms are most easily

implemented in a recursive fashion, and they are based on a partition scheme similar to quicksort. Even

though we are interested in a parallel algorithm, a sequential version of the median algorithm is still useful

because there are datasets that are small where the sequential algorithm is faster than a parallel algorithm

since the sequential version does not have the overhead from parallelization.

16

Still, we want a parallel version of the median to deal with large datasets. Two types of parallelization

are possible. Given that there are many variables, one method is to divide the variables among the processors

and have each processor calculate the medians for its variables using the sequential version of the algorithm.

The complexity for this version is 0(n • ^)

The second approach handles the case where we have more processors available than variables in

the dataset. We can maximize the use of processors by dividing the processors into groups, where each

processor group works together to calculate the median for a single variable. The algorithm proceeds by

dividing the variable column between the processors in the group. In this case, each processor of the group

sorts its piece of the variable column using quick sort, then the processors decide on the lowest and highest

medians between the processors. Next, the processors merge the portion of their sorted variable columns

that lie between the largest and smallest of their medians, and then select the global median or MAD for the

variable from the combined chunk. The time complexity here is 0(n log n • ^ + log 2) .

3.3 Repair Positive Definiteness via Eigensolving

The operations performed in the QC and Maronna algorithms do not preserve the property of positive def­

initeness in the covariance matrix. Both algorithms require a step to repair the matrix. This repair consists

of two parts, finding the desired eigenvalues and using these eigenvalues to repair the matrix.

The easiest way to find the negative eigenvalues is to do a complete eigensolve of the matrix and

examine the eigenvalues. We began by developing a sequential eigensolver that uses the QR method and

had planned to parallelize it. There are several existing parallel eigensolvers, and in fact, the PLAPACK

package we were already using contained one that performs a complete eigensolve. After adding the full

eigensolver to our program, we realized that a complete eigensolve is an expensive operation for large

matrices. The PLAPACK implementation first transforms the matrix into tri-diagonal form, then uses a

tri-diagonal matrix eigensolver to find the eigenvalues and eigenvectors. Typical tri-diagonal reduction

techniques require 0(n3) time, while the tri-diagonal eigensolve takes 0(n2) time. Thus, performing a

complete eigensolve on a large matrix can be time consuming and take hours of time.

There is another option besides complete eigensolvers. Partial eigensolvers exist that allow users

to solve for a few eigenvalues and eigenvectors from different parts of the spectrum, such as the largest

algebraic or smallest absolute. We switched our eigensolver for one of these with the idea that only a few

eigenvalues would be negative and the eigensolver would be able to find them quickly. However, tests

17

using the gene dataset show that there were more negative eigenvalues than we expected. It became clear

that different datasets could have vast differences in the number of negative eigenvalues in their respective

covariance matrices. Thus, we needed a flexible method of isolating the negative eigenvalues.

Our method for finding negative eigenvalues is based on the idea that we want to solve for the

least number of eigenvalues necessary. The number of negative eigenvalues is somewhat related to the

dimensions of the original data matrix for the problem. If the number of variables is less than or equal to

the number of cases, there will be only a few negative eigenvalues. These are the ones that were corrupted

by our calculation. When the number of cases is less than the number of variables, there will be as many

nonzero eigenvalues as cases in the original data matrix. The rest of the eigenvalues should be zero, but a

small amount of error in the calculation will result in these eigenvalues being slightly positive or negative.

About half of these will fall on the negative side of zero if we assume the error is random. If the number

of cases is small, less than one third of the number of variables, we can simplify things by just solving

for the largest eigenvalues instead of the negative ones. Otherwise, it would be less work to solve for

the negative eigenvalues, both the ones corrupted through our calculation, and the zero eigenvalues turned

negative through error.

Once the eigenvalues are known, whether positive or negative, the covariance matrix is repaired by

forming a new matrix by subtracting a matrix formed by the negative eigenvalues and their eigenvectors

from the original corrupted covariance matrix. If some of those negative eigenvalues were caused by the

corruption of the covariance matrix, we recalculate positive replacement eigenvalues for them and use the

negative ones' eigenvectors to form a matrix and add it to the original covariance matrix to replace the

negative ones we subtracted out. If we solved for the largest eigenvalues instead, they only need to be

combined with their eigenvectors to form the new matrix, unless some of the largest were negative, in which

case we fix them with new eigenvalues in the same manner as before.

The following small example illustrates the general process of positive definiteness repair.

Example:

Let A =
an O l 2 « 1 3

021 G22 « 2 3

031 « 3 2 « 3 3

be the original covariance matrix.

Let eig
' !i i eg2

be the negative eigenvalues for A.

18

en e i2

Let e = e2i e22 be the negative eigenvectors corresponding to eig

e3i e32

^12 di3

Let d =
d2l ^22 d23 be the data matrix.
^31 ^32 d33

_ d4i d42 d43 _

1. Calculate the negative eigenvalue matrix to be subtracted out.

n =

e n e i2

e2i e22

e3i e 3 2

egi 0

0 e g 2

e n e 2 i e 3 i

ei2 e 2 2 e 3 2

n n "12 n i 3

"21 "22 "23

"31 "32 "33

2. Find positive replacement eigenvalues, peig, for eig using the MAD.

peig — MAD

e n e i2

e2i e 2 2

e3i e 3 2

/ 1 r i n di2 di3

d2\ d22 d23

3̂1 d^2 d^s

\ [^41 ^42 <̂ 43

3. Calculate replacement eigenvalue matrix

e n e i2

P - e 2 i e 2 2

e3i e 3 2

4. Subtract n from A and add in p to replace it

Anew = A 1% -\- p

peigi peig2

peigi 0

0 peig2

P n P l 2 •P13
e3i

— P21 P22 P23
e32

P31 P32 P33

a n a i 2 a i 3

a 2 i a22 a 2 3

0-31 «32 <J33

+

(< en e i2

e2i e 2 2

\l e3i e 3 2

- e p i .0

0 -e#2

e n e 2 i e 3 i

e i2 e22 e 3 2

19

(' e n ei2

+ I e2i e22

e3i e32

a n ai2 fl.13

a2i &22 a 2 3 +

fl31 a 3 2 33

peigi 0

0 pezt72

e n e 2 i e 3 i

ei2 e22 e 3 2

e n eX2

e2i e22

e3i e 3 2

peigi - egi 0

0 peig2 - egi

e n e 2 i e 3 i

ei2 e22 e 3 2

The general process for repairing the positive definiteness of a covariance matrix is listed in Fig­

ure 3.1. Many times, we do not know the number of negative eigenvalues we are solving for ahead of time.

In this case, we solve for a set proportion depending on the dataset size, and repeat a process of fixing

and solving for more until no more negative eigenvalues exist. Using this method, we can hopefully avoid

solving for all the eigenvalues. Also, Figure 3.1 covers the case of solving for and fixing the negative eigen­

values. As discussed earlier, we sometimes do not want to fix the negative eigenvalues, but to just discard

them instead, as in the case where they are created from corrupted zero eigenvalues. Then, we would not

create the replacement eigenvalues, but instead rebuild the matrix using the positive ones.

Input: v by v covariance matrix C
n by v original data matrix X

Output: v by v positive definite covariance matrix CadjUsted

1. In parallel Solve for the negative eigenvalues, Afc..Ag of C
and eigenvectors Q — ak--aq

2. In parallel Form Y = X Q
3. In parallel Calculate replacements, mk~mq, for the negative eigenvalues:
4. mi ={MAD of column i in Y)2

5. Let A = Diag(Afc..Ag) and B = Diag(mfc..mg), diagonal matrices
6. In parallel CadjUsted = Q • (B - A) • QT

Figure 3.1: Parallel Algorithm for Repairing the Positive Definiteness of a Correlation Matrix

At worst, the eigensolver will need to solve for a little over one third of the eigenvalues. Hopefully,

we can get away with solving for much fewer eigenvalues if the data matrix has the right dimensions, such

as one that is almost square, so that there are fewer negative eigenvalues present.

The rest of the algorithms depend on the method, either QC or Maronna.

20

3.4 Parallel Algorithm for Quadrant Correlation

Figure 3.2 describes the parallel version of QC. In it, we represent the matrices in column-major order, where

the columns are variables. Thus X[i] refers to the ith column (variable). After calculating the median and

MAD for all the variables, the algorithm creates a temporary matrix to hold the normalized values.

_ X[z][j]-median(X[i])
L j m ~ MADOTJ)

The X matrix is used to create a matrix Y of all 1 's, -l's, and near zero values by applying a function,

ip, that is similar to the sign function, to all the elements in X.

ip{x, c) = I
sign(x) if \x\ > c
X
c otherwise

Our sign function cuts off the values within c of zero and assigns them to be the value | . Our choice

for c in the code was .00001. In actuality, by our ip function, we are using a Huberized estimator which, in

the limiting case, is Quadrant Correlation [2]. The limiting case here would be to use the sign function in

place of rp.

In the next step, the algorithm calculates the following equation to fill in each entry of the correlation

matrix.

, \ h Efc(Y b'PD • (Y[i][fc]) cor(z,j) = n^k\ un u v M L \) (3 1)

^ E f c (Y [7] [f e]) 2 - i E f c (Y W [f c]) a)

The computationally expensive part of the calculation is the part where the numerator is calculated

using a matrix multiplication between Y and its transpose in steps 6 and 7 of Figure 3.2. The operations in­

volved are approximately 0(v3). The denominator is the geometric mean of the average number of nonzero

elements for a pair of columns i and j. This part of the calculation takes 0{v2) time and is set up in step 10.

The equation finishes in step 12 where the denominator divides the numerator. Again, this division occurs

for every element in the matrix, thus step 12 requires 0(v2) time.

Overall, the matrix multiplication step dominates the runtime of the sequential QC algorithm since

it requires 0(v3) operations. This gave us a place to start in creating a parallel algorithm. Parallel matrix

multiplication is a well-studied algorithm, and it has been shown to be scalable to thousands of variables on

large machines using a variety of different approaches [12]. First, we experimented with a simple matrix

multiply routine [33]. It partitions one matrix and gives each processor a block made of rows from the

21

Input: v by n matrix X for v variables and n cases
Output: v by v matrix cov, the covariance matrix
1. In parallel For each column X [i]
2. Calculate the median and MAD
3. Let median [i] be the median of column i.
4. Let MAD[z] be the MAD calculation of column i.
5. Constmct Y where Y[i]\j] = ip(X[i\[j] - median[i])/MAD[i], C);
6. In parallel compute matrix cor = Y • YT;
7. In parallel Y = ^ Y; (element-wise)
8. F o r a l H j , set Y\i][j] = (Y[i\\j})2;
9. Constmct vector D
10- flw - vmmi-
11. In parallel For all i, j set
12. cor[i]b'] = cor[i][j] x D[i\ x D^]
13. cor[i][j] = sin(f • cor[i][?']);
14. Constmct diagonal matrix V where V[i][«] = MAD(A"[i]);
15. In parallel cov = V • cov • V;

Figure 3.2: Parallel Algorithm for Quadrant Correlation.

matrix. Then, it broadcasts the second matrix to all the processors and each one performs a multiply to

create part of the resulting matrix. This multiply routine scaled well, but it was slow.

Our second approach was to find an optimized parallel matrix library that includes matrix multipli­

cation. We chose the PLAPACK library because it uses low-level libraries such as BLAS and LAPACK in

its matrix routines. PLAPACK distributes its matrices in a more complex manner that is based on the distri­

bution of vectors in vector operations. The PLAPACK matrix multiply is faster than our previous approach,

but it is difficult to achieve good speedup because this requires careful adjustment to parameters within

PLAPACK, such as the distribution block size, the dimensions of the processor mesh, and the algorithm

block size.

Overall, the reason PLAPACK led to the best performance, despite the difficulties, is the paralleliza-

tion of the multiply and other key parts of the algorithm reduce the computation time so that it does not dom­

inate total mntime when compared to other components, such as I/O time and data distribution/collection.

This gives us a faster, more practical QC algorithm, however QC still has the downside of a less robust

solution when compared to the Maronna method.

22

3.5 Parallel Algorithm for the Maronna Method

Input: v by n matrix X with v variables and n cases
Output: v by v matrix cor, the correlation matrix
1. In parallel For each column X [i]
2.
3.
4.
5.
6.
7.

Calculate the median and MAD.
Let median [i] be the median of column i.
Let MAD[z] be the MAD calculation of column i.
In parallel For each pair of variables i, j

Initially
p(°) = [median[i], median[7']]

9.
10.
11.
12.
13.
14.
15.

16.

17.

18.
19.
20.

a<°> = (MAD[z])2 0
0 (MAD [7]) 2

Let xq be the vector [X[i][q], X\j][q]].
ITERATE

Given pW and
For q = 1 to n

mah[o] = [x, - M(fc)] • [a (f c)] _ 1 • [x, - ^k)f
W[q] = weight(mah[g])

Calculate

(fc+i) _ _ _ L

9=1 n

9=1

UNTIL (determinant [((c r ^) " 1 ^ ^) — 1| < e)
Let cr* denote the converged a for columns X[i] and X\j].
cor[z]L7l=a*[0][l]/vT^[0][0]-cr*[l][l])

(fc+i)

Figure 3.3: Parallel Maronna Method

Figure 3.3 outlines the Maronna algorithm. Maronna begins with the median and MAD calculation

described earlier. The algorithm's focus is to divide the p2 correlation calculations between the processors,

then the processors use an iterative algorithm to calculate each correlation assigned to them. The iterative

portion consists of steps 5 to 18. First, the values involved in the iteration are initialized in step 7 and 8. p

is a vector of length two, and is initialized with the median of the data variables involved in this correlation

23

calculation, a is a 2 x 2 matrix that will hold the estimate values for the correlation upon convergence.

It is initialized as a diagonal matrix holding the MAD of the correlation variables in the diagonal. After

initialization, the algorithm repeats the following process. The Mahalanobis distance is used to measure the

distance between two variables' samples in step 13. The Mahalanobis distance measures the distance a data

point is from the centroid of all data points. In our case, this is in the two dimensional space of the two

variables, and takes into account the median of the data along with the estimated variance, covariance, and

correlation at the current iteration.

Next, we apply a weight function to the distance values in step 14. Our weight function uses Hu-

ber's score function as the robust M-estimate to score the influence of the sample points to the median and

variance. We use this to constmct a weight function to decrease the influence of outliers in the data.

. V \v\ < c
HSF(y) = <J HUBER'S SCORE FUNCTION

c • sign(y) \y\ > c

weight(y) = {
HSF(y)/y y^O

i y = o

1 1^1-c WEIGHT FUNCTION
c/\y\ \y\ > c

The weight function gives weights between zero and one that are applied to the data. The weight

function will weight normal data variables near one and down-weight the outlier values with weights closer

to zero. The outlier values are the ones with large distances from the distance function.

The weighted data is used to calculate new values for y, and a for the next iteration in steps 16

and 17. Iteration continues until the change in covariance from one step to another is within the desired

tolerance. The algorithm is known to converge, but the rate can vary depending on the input. Finally, on

step 20, calculate the correlation by dividing the covariance value by the square root of the values on sigma's

diagonal.

At this point, the algorithm calculates the correlation matrix for the data. If we want the covariance

matrix instead, we convert the correlation matrix to a covariance matrix by scaling the rows and the columns

of the matrix by the MAD values corresponding to the variables that the columns/rows represent.

cov(i, j) = cor(z, j) • MAD(i) • MAD(j)

Initially, when the iterative process converges in step 19, it will have calculated the covariance for

the two variables. We do not want to use this initial covariance value in the covariance matrix because it was

calculated in a pairwise fashion and does not represent the covariance relative to the overall global matrix.

24

Each iteration of the Maronna algorithm takes 0(n) time. If we let k be the number of iterations

needed for convergence, then each correlation requires 0(nk) time. There are v2 correlations to calcu­

late between the processors, so the overall time cost is C(21y^). Maronna's runtime could be significantly

greater than QC depending on the value of k. Maronna does have the advantage that its tasks are indepen­

dent, so they easily divide between the processors. The value of k can differ between the pairs of variables,

so a load-balancing scheme is necessary to evenly distribute the tasks.

25

Chapter 4

The Experiments

The Experiments chapter begins with a description of the environment we used in our experiments, including

the machine setup and software packages. We then go on to directly compare QC and Maronna, then look at

the I/O performance and the performance for repairing the positive definiteness of the covariance matrices.

Next, we present a dynamic load balanced version of Maronna along with other analysis of Maronna's

convergence. Section 4.6 describes QC and Maronna's performance on datasets of different dimensions and

looks at how the median and correlation parts of the computation perform based on the data's dimensions.

Finally, a communication analysis is provided on both the message passing environment and for overall

communication of our algorithms.

4.1 Setup

4.1.1 Parallel Cluster Environment

There are several different environments used for the experiments. The small tests used a cluster of eight

machines, all 500 MHz Pentium 3 processors running Red Hat Linux 9. They are interconnected by 100 Mbit

Ethernet and use L A M MPI 6.5.9 for message passing between them. The MPI (Message Passing Interface)

is public domain software that runs on a variety of platforms. MPI provides a portable standardized interface

for message passing applications on distributed memory computers [10].

Even though this setup is limited with only eight processors, it is still valuable because it is a dedi­

cated setup. It is easier to obtain consistent times because our programs do not have to share the machines

with other processes or share network services such as file servers.

26

The experiments measuring the communications analysis used a different machine setup. For these

we used a small cluster of four Pentium 2 and Pentium 3 machines connected to a Juniper Networks router

via dedicated Ethernet cables. This setup allows us to look at the communications going on between any of

the machines using the values that the router records.

We used a new cluster of machines for our experiments involving large numbers of processors. This

cluster is a part of the WestGrid computing project [35]. It consists of 504 dual processor 3 GHz Xeon

processors running Red Hat 7.3 with 2 GB of RAM. They are connected on a Gigabit Ethernet network.

These machines use MPICH [24].

4.1.2 Parallel Matrix Software

We use several software packages in implementing our algorithms. The first is a matrix library written

by E. van den Berg [33] that has basic matrix functions, such as creating, destroying, reading, and has

parallel matrix multiply. We altered the library to add our own I/O functions, and matrix distribution and

collection operations. We did not use the parallel matrix multiplication functionality from this library in our

implementations because other packages are available with better performance.

Our implementations use the PLAPACK Parallel Linear Algebra Package for matrix multiplications

[32]. PLAPACK is a C based MPI parallel matrix library. It has a fast matrix multiply routine, several

solvers, and other matrix and vector operations. The problem with PLAPACK is that there are some diffi­

culties in using it. One difficulty is that it lacks some basic matrix or vector operations. For example, we

need to perform an element wise multiply of two vectors, or scale the columns of a matrix by the correspond­

ing elements of a vector, but we must implement them ourselves since they are missing from PLAPACK.

Another difficulty with PLAPACK is dealing with the parallel matrix distribution. The matrices in PLA­

PACK use an unusual block distribution scheme that is not as easy to manipulate as a row based distribution

or a simple block distribution. This makes it difficult to implement the missing matrix and vector operations.

PLAPACK's eigensolver is a complete eigensolver, which was not needed in our case. It solves for all the

eigenvalues and eigenvectors, but does not allow the user to choose only a subset of the values to find.

4.1.3 Parallel Eigensolvers

We had to use a different set of packages for partial eigensolving capabilities. PETSc [3] is the base matrix

and vector library we use in the eigensolving component. It is mainly a parallel solver library for matrices

27

and vectors, written in C, and uses MPI. PETSc focuses more on parallel solvers and there are many solvers

created as add-on packages. The only drawback is PETSc does not include a matrix multiplication routine,

so we did not abandon PLAPACK.

The SLEPc package is an eigensolving package that is an add-on to PETSc [14]. It allows the user

to perform partial eigensolving for eigenvalues within a specified part of the spectrum and their associated

eigenvectors. SLEPc contains four built-in eigensolving methods, though they are rather limited in their

implementation. SLEPc also acts as an interface to other eigensolving packages so you can use techniques

that are more powerful.

Since the eigensolving routines in SLEPc are too limited for our use, we decided to use SLEPc as

an interface to ARPACK [18]. ARPACK is a parallel partial eigensolver written in FORTRAN 77 that uses

MPI. It uses the Implicitly Restarted Arnoldi Method to solve for eigenvalues. Even though SLEPc can

use ARPACK as an add-on, it was still necessary to make some changes for MPI to work between the C in

SLEPc and FORTRAN in ARPACK. We added some calls to conversion routines for MPI Communicators

where SLEPc uses ARPACK, and the libraries worked fine.

4.1.4 Communication Analysis Software

Our analysis of communication uses two pieces of software. First, we use the MPBench benchmarking tool

[25] for MPI that is included with the LLCBench tool in order to analyze the MPI communication primitives.

MPBench performs repeated tests using increasing data sizes and provides graphical performance results.

It measures bandwidth, latency, turnaround time, and performance of MPI collective operations such as

broadcast and reduce.

The second piece of software we used for the communication analysis is a Perl script that makes

SNMP calls to the router for statistics related to the number of bytes sent between the individual processors

and the router. The script repeatedly queries the router for the number of bytes transmitted, and we use

this data to create a profile of the amount of communication our software uses over time. The script is run

simultaneously with our program and the queries are sent over a separate Ethernet cable to the router so that

they do not interfere with the values we measure.

28

4.1.5 Experiment Parameters

Our experiments evaluate both the total time for our algorithms, and a component-wise analysis. For the

components that are common between all versions of the algorithms, such as the I/O routines and repair of

positive definiteness, the times are reported separately. Otherwise, the time for the experiments are broken

down into their component parts. The dataset used is the gene dataset with 6068 variables and 20 trials,

which produces a 6068 by 6068 correlation matrix. The experiments are run on different sizes of data, from

1000 to 6000, by reading in less variables from the gene data set. We also experiment with more variables

and cases by generating a larger dataset from the gene dataset. We generate new variables by choosing a

random number of variables, and using a set of random weights that sum to one, combine the variables and

weights to form the new variable data. We use a similar strategy for generating more cases for the dataset.

The number of processors also varies across the trials to demonstrate how the performance scales. Al l times

are reported in seconds. We ran multiple trials and took the best times to report because the times can vary

depending on activity on the processors or network. We report the best time of the mns to give results that

are similar to what the results would be under ideal conditions.

4.2 Algorithm Performance Comparison

4.2.1 Small Cluster Performance

Timing results for QC and Maronna are presented in Table 4.1 and Table 4.2. The portion of the algorithm

that restores the positive definiteness of the correlation matrix is not included in this comparison because, as

we will see in section 4.4, the time for this dominates the total runtime.

Looking at the two tables, we can see that QC performs much faster than Maronna. The paralleliza-

tion helps QC perform the correlation calculation quicker, but the total time is not affected as much. It

appears that QC is reaching the limits of parallelization with just eight processors, but we will need to verify

this on a larger cluster to be sure. Also, there appears to be superlinear speedup going from one to two

processors. A possible explanation is that we are using the parallel algorithm for the single processor times,

so the time for one processor includes some of the parallel overhead and inflates the time value. Another

source of inefficiency in the times is related to how the PLAPACK library uses processors. PLAPACK treats

the processors as a mesh formation, and in these experiments the library attempts to arrange the processors

into a square mesh. Some numbers of processors do not easily arrange into a square mesh, and this could

29

affect the distribution of objects and the efficiency of the algorithm.

The column labelled "Other" represents the time for initializing variables, allocating memory, and

deallocating memory. We can see that this time is very large with QC using a single processor for the

6000 variable experiment. This happened repeatedly, and we speculate that this size is where the problem

begins to be too large for the memory of a single machine. The Maronna program also shows the memory

constraints when the variable size is 6000, this time in the matrix fill portion, which takes the correlation

values gathered from the processors and places them into the proper position of the matrix. Normally, this

time would be constant, but here we see it increases as there are fewer processors. Fewer processors mean

there is a larger demand for memory on the root processor since it will have to use more memory. Thus,

when filling the entries into the matrix, it has to use more swap memory during the memory copy operations,

which causes the time to be longer.

There are also unusual values for QC's gather time on the single and two processor experiments on

5000 and 6000 variables. The time seems large for a single processor, then decreases on two processors,

and then continues to increase with more processors. The gather portion of QC uses a PLAPACK primitive

call to assemble the distributed matrix into a continuous buffer on one processor, and this performance was

noted in repeated experiments. This performance may also be due to the memory constraints of such a large

problem size on our small cluster because it was not present on the large cluster experiments in Table 4.4.

Maronna takes much longer than QC in these trials, but it is showing good improvement from the

parallelization in terms of both the correlation computation time and the total time.

4.2.2 Large Cluster Performance

We were able to run the parallel Maronna and QC on the WestGrid cluster using up to 128 processors on

the gene data set. The results are in Table 4.3 for Maronna and Table 4.4 for QC. There was much variation

in the experiments we ran because the cluster is a shared resource environment. This accounts for some of

the time differences. Because of this we ran each experiment ten times, then chose the best value that was

repeated in multiple experiments. We chose the best times to include instead of the average since this would

best represent the closest we can achieve to performance in ideal conditions.

For the Maronna algorithm in Table 4.3, the correlation calculation time still appears to be decreasing

as we add processors. The time decreases from 360 seconds on a single machine to 6 seconds with 128

processors. The total time is affected as well, but not to the same degree. It appears that using 128 processors

30

V V Input Output Scatter Gather Median Cor Other Total
1000 1 0.005 1.924 0.001 0.096 0.033 0.911 0.139 3.109

2 0.005 1.743 0.010 0.469 0.028 0.564 0.103 2.921
4 0.006 1.818 0.016 0.681 0.022 0.353 0.088 2.984
8 0.022 2.081 0.036 0.806 0.019 0.244 0.144 3.351

2000 1 0.008 7.029 0.003 0.369 0.066 3.810 0.526 11.809
2 0.008 6.951 0.022 2.230 0.054 1.870 0.307 11.442
4 0.009 6.878 0.022 3.123 0.042 1.146 0.215 11.436
8 0.008 7.168 0.041 3.610 0.035 0.800 0.200 11.862

3000 1 0.011 15.724 0.004 0.815 0.099 8.570 1.146 26.369
2 0.012 15.784 0.029 4.724 0.082 4.586 0.678 25.894
4 0.012 15.713 0.032 6.547 0.066 2.830 0.403 25.603
8 0.023 15.504 0.064 8.535 0.053 1.339 0.279 25.798

4000 1 0.015 29.303 0.006 1.594 0.132 19.098 2.220 52.367
2 0.016 27.788 0.040 8.897 0.109 8.954 1.169 46.972
4 0.015 27.763 0.042 12.008 0.089 4.002 0.634 44.553
8 0.014 27.916 0.073 14.503 0.070 2.411 0.504 45.490

5000 1 0.030 47.974 0.008 15.630 0.164 27.748 4.454 96.007
2 0.018 50.546 0.048 13.962 0.136 12.789 1.856 79.356
4 0.019 45.490 0.050 18.732 0.108 7.107 1.005 72.511
8 0.025 43.179 0.088 22.274 0.096 3.632 0.663 69.957

6000 1 0.088 76.259 0.009 24.625 0.363 44.503 21.005 166.851
2 0.079 68.537 0.059 21.720 0.163 18.982 2.831 112.371
4 0.074 64.937 0.058 27.059 0.129 9.503 1.536 103.296
8 0.079 66.996 0.146 32.477 0.112 4.916 1.188 105.914

Table 4.1: QC Timings on Gene Dataset, where v is the number of variables, p is the number of processors,
and cor is the correlation computation time

may be the highest for this dataset because there does not appear to be room for much improvement. The

computation time may decrease by a couple of seconds if 256 processors were used, but that would probably

be the point where the parallel overhead catches up since the computation time change going from 64 to 128

processors is only three seconds.

On the other hand, it appears that QC already reaches this point and is showing the affects of too

much overhead as seen in Table 4.4. The total times are actually getting worse with more processors. The

computation time itself is still decreasing up to the point where 64 processors are used, but the increase in

gather time and other overhead is eliminating any improvements. The best number of processors seems to

be in the four to sixteen processor range. It is difficult to tell because QC seems to be very susceptible to the

variation that occurs from sharing the cluster with other jobs. Again, numbers of processors that do not form

square meshes could also be a factor in this odd performance. Though the values appear to be anomalies,

31

V P Input Output Beast Gather Median Cor Fill Other Total
1000 1 ^ 0.01 1.73 0.00 0.03 0.01 39.33 0.10 0.02 41.23

2 0.01 1.83 0.01 0.23 0.02 20.92 0.10 0.03 23.14
4 0.01 2.01 0.04 0.32 0.02 11.02 0.10 0.03 13.55
8 0.11 2.11 0.04 0.38 0.02 5.71 0.10 0.06 8.52

2000 1 0.01 6.82 0.00 0.11 0.03 160.43 0.43 0.05 167.87
2 0.01 7.04 0.03 0.90 0.04 85.94 0.43 0.05 94.44
4 0.01 7.22 0.09 1.24 0.03 43.87 0.43 0.25 53.16
8 0.01 7.37 0.09 1.43 0.03 22.94 0.43 0.07 32.37

3000 1 0.02 15.59 0.00 0.25 0.04 375.46 1.03 0.08 392.47
2 0.02 15.92 0.04 2.01 0.05 200.96 1.07 0.08 220.15
4 0.01 15.81 0.13 2.78 0.05 108.54 1.03 0.08 128.44
8 0.05 15.97 0.13 3.17 0.05 55.58 1.03 0.11 76.09

4000 1 0.02 27.69 0.00 0.45 0.06 709.11 2.28 0.11 739.72
2 0.02 27.91 0.06 3.56 0.07 392.05 2.22 0.12 426.01
4 0.02 28.15 0.18 4.92 0.07 213.08 2.20 0.12 248.74
8 0.02 28.01 0.19 5.62 0.06 112.39 2.19 0.15 148.63

5000 1 0.03 44.78 0.00 0.70 0.07 1186.50 3.52 0.22 1235.82
2 0.03 44.81 0.08 5.56 0.09 678.23 3.39 0.21 732.38
4 0.03 43.80 0.23 7.69 0.08 373.64 3.29 0.16 428.93
8 0.03 43.64 0.23 8.78 0.09 203.76 3.39 0.19 260.12

6000 1 0.08 63.10 0.00 1.01 0.09 1766.95 40.69 0.42 1872.34
2 0.09 63.20 0.09 8.02 0.11 1045.99 22.71 0.34 1140.55
4 0.08 63.49 0.28 11.07 0.10 590.70 8.02 0.22 673.97
8 0.06 62.97 0.28 12.59 0.10 318.84 7.60 0.28 402.72

Table 4.2: Maronna Timings on Gene Dataset, where v is the number of variables, p is the number of
processors, cor is the correlation computation time, and fill is the matrix fill time

especially the high values for the gather time using four and eight processors, this activity appeared in the

repeated experiments. Despite the odd numbers from QC, it is still clear that QC does not parallelize to as

many processors as Maronna in this case.

Procs Input Output Broadcast Gather Median Cor Comp Matrix Fill Other Total
1 0.017 12.590 0.000 0.280 0.018 359.642 2.034 0.104 374.684
2 0.009 13.136 0.007 0.557 0.012 220.361 2.025 0.104 236.212
4 0.016 9.327 0.024 1.056 0.012 118.945 2.038 0.104 131.521
8 0.009 9.508 0.034 1.394 0.012 58.208 2.037 0.104 71.306
16 0.010 3.787 0.065 1.463 0.010 29.677 2.069 0.104 37.185
32 0.010 5.057 0.057 1.839 0.011 18.972 2.464 0.280 28.689
64 0.011 4.863 0.303 1.941 0.252 9.087 2.444 0.283 19.185
128 0.009 4.241 0.301 1.920 0.020 6.182 2.474 0.386 15.533

Table 4.3: Maronna Timings on 6068 Variable Gene Dataset Using WestGrid

32

Procs Input Output Scatter Gather Median Cor Comp Other Total
1 0.009 6.260 0.002 0.920 0.067 18.524 1.197 26.977
2 0.011 5.382 0.004 1.648 0.037 9.430 0.969 17.480
4 0.009 5.366 0.005 10.058 0.024 4.157 0.558 20.176
8 0.010 5.405 0.012 14.383 0.020 1.513 0.528 21.870
16 0.009 4.171 0.019 7.038 0.018 1.455 1.501 14.212
32 0.008 4.510 0.044 7.530 0.057 1.082 2.945 16.177
64 0.018 5.536 0.145 15.489 0.291 0.331 9.414 31.225
128 0.008 3.903 0.485 47.815 0.266 0.497 27.226 80.201

Table 4.4: QC Timings on 6068 Variable Gene Dataset Using WestGrid

4.3 I/O Performance

Variables Read Time Write Time
1000 .0045 1.72
2000 .0075 7.0
3000 .01 15.5
4000 .015 27.7
5000 .018 43.6
6000 .074 63.2

Table 4.5: I/O Timings on Gene Dataset

Al l the implementations use the same I/O routines to read and write the data to disk. The I/O routines

operate on data a row at a time and perform the read and write operations on binary data. The I/O operations

are sequential, as the root processor performs the reading and broadcasts the data or gathers the result and

performs a write. The performance of the I/O routines is listed in Table 4.5. The table shows that input time

increases about linearly except for the experiments using 6000 variables. This was a repeatable occurrence,

and is likely due to the input matrix being large enough to cause one more page miss. This did not occur in

the experiments with the larger cluster, so we assume the input time is linear with the variable size. Though

these experiments only deal with a small number of cases, the input time is linear in those as well. The

output time scales quadratically with the problem size, as can be expected since the size of the correlation

matrix is the square of the number of variables.

33

Variables Processors Time
1000 1 10.635

2 7.625
4 5.018
8 7.485

2000 1 38.071
2 24.422
4 14.620
8 15.194

3000 1 83.804
2 50.105
4 30.564
8 23.565

4000 1 160.265
2 89.006
4 52.768
8 43.595

5000 1 356.491
2 148.677
4 84.777
8 63.362

6000 1 829.985
2 276.929
4 124.555
8 83.900

Table 4.6: Time for Repairing Positive Definiteness on the Gene Dataset

4.4 Performance for Eigenvector Calculation

When the Maronna method or QC are used to calculate a covariance matrix, the resulting matrix may

not be positive definite. We created a routine that uses a parallel eigensolver to solve for the negative

eigenvalues, then creates a positive replacement for them and shifts the covariance matrix to repair the

positive definiteness. Also, the routine can choose to solve for the positive eigenvalues instead, if there are

fewer, and form the new covariance matrix from these. Again, this routine is identical for each algorithm.

Table 4.6 shows the timings for repairing the positive definiteness.

We see that repairing the positive definiteness is no small matter because the times are nearly equiv­

alent to QC's running time and are a significant portion of Maronna's running time. However, there does

seem to be a benefit to parallelization here. For 3000 variables or more, the times show reasonable improve­

ment with an increase in processors. With 1000 and 2000 variables, the algorithm seems to hit the point

34

where there is no more benefit to parallelization with eight processors. In these cases, the problem size is

probably too small to where the overhead cost draws even with the benefits of adding processors. Also, the

times for 5000 and 6000 variables seem to be too good. This could be due to several reasons. First, the prob­

lem size may be large enough to tax memory capacity, similar to what was seen with the Maronna and QC

times for similar sizes. The sequential versions are just single processors running the parallel code, so this

could penalize the single processor times and make them look extra slow. Finally, we used the PLAPACK

matrix library in this code for the matrix operations, such as multiplication. As discussed earlier, PLAPACK

looks to form the processors into a mesh formation, so certain numbers of processors, such as four, could

experience better performance since the processors form a more square shaped mesh.

4.5 Load Balanced Maronna

4.5.1 Correlation Convergence

The motivation for implementing the load balanced Maronna came about from investigating the iteration

counts for the algorithm. Initially we used random data sets that were not correlated, and Maronna converged

very quickly. Each correlation calculation converged in roughly five iterations. However, Maronna reacts

differently on real datasets, such as the gene data whose correlation iterations are shown in Table 4.8. While

over ninety-nine percent of the calculations converged rapidly, others required more iterations. This behavior

is bad for a static load-balancing scheme because some processors could receive a large number of the slow

converging correlations to compute, and thus require more time to do their work. In the worst case, one

processor could get all the bad correlations and end up being the bottleneck for the program while all the

other processors wait for the unlucky processor to finish. In addition, a processor can receive one of the slow

converging correlations as the last to compute of its correlations, which causes another bottleneck while all

the processors wait for the unbalanced processor to finish calculating its last correlation.

One strategy to deal with the slow converging correlations is to identify them and spend less time

by truncating the calculation. The absence of these correlations in the random data and their presence

in the gene data led us to believe that calculating correlations for strongly positive or strongly negative

correlations were the calculations that require the most time. We theorized that once we have performed

enough iterations to identify a correlation to be within this group, its correlation could be truncated and then

assigned the proper value. Unfortunately, closer analysis of the Maronna program showed that the slow

35

Iterations Correlations Percent of
Total Corrs

0-2 11814349 64.18303%
3-5 5698891 30.95999%
6-8 741905 4.03050%
9-11 133822 0,72701%
12-14 14989 0.08143%
15-17 2983 0.01621%
18-20 317 0.00172%
21-23 21 0.00011%
24-26 1 0.00001%

Table 4.7: Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = .1

Iterations Correlations Percent of
Total Corrs

0-200 18396529 99.9416%
201-400 8665 0.04707%
401-600 1362 0.00740%
601-800 379 0.00206%
801-1000 127 0.00069%
1001-1200 78 0.00042%
1201-1400 53 0.00029%
1401-1600 28 0.00015%
1601-1800 22 0.00012%
1801-2000 9 0.00005%
2001-2200 7 0.00004%
2201-2400 4 0.00002%
>2400 19 0.00010%

Table 4.8: Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e = 1 0 - 7

converging correlations might not be limited to only the strongly related correlations. Table 4.10 shows the

slow converging correlations are from all parts of the spectrum, large, small, positive, and negative. Also,

this distribution matched the distribution of all the correlation values, so we conclude that the correlation

value itself does not determine whether convergence is fast or slow.

We discovered that the slow converging correlations are actually caused by outlier data by carefully

examining how the Maronna algorithm calculates these correlations. Outlier values result in large distance

values from the distance function. The Maronna algorithm then iterates and changes its parameters to

decrease the distance values until convergence. Under normal circumstances, the distances are less than

nine. The slow converging correlations had very large distance values, as seen in Table 4.11, which means

36

Iterations Correlations Percent of
Total Corrs

0-200 18353376 99.70717%
201-400 42114 0.22879%
401-600 6981 0.03793%
601-800 2278 0.01238%
801-1000 993 0.00539%
1001-1200 532 0.00289%
1201-1400 316 0.00172%
1401-1600 180 0.00098%
1601-1800 123 0.00067%
1801-2000 92 0.00050%
2001-2200 61 0.00033%
2201-2400 46 0.00025%
>2400 185 0.00101%

Table 4.9: Correlation Convergence for Maronna on 6068 by 20 Gene Dataset with e =

the Maronna algorithm had to iterate more times to decrease these distances.

Range Number of
Correlations

-1 to -.8 1
-.8 to -.6 8
-.6 to -.4 21
-.4 to -.2 30
-.2 to 0 45
Oto .2 36
.2 to .4 34
.4 to .6 26
.6 to .8 12
.8 to 1 0

Table 4.10: Range of Slow Converging Correlations on 6068 by 20 Gene Dataset with e

Iterations Distances
2961 45.6, 33.3
5860 20.9, 21.5
3079 22.7, 19.5
3333 14.0
10332 11.9

Table 4.11: Slow Converging Correlations and Their Large Distance Values

37

4.5.2 Changing e

Since a selective approach for dealing with the slow converging correlations is difficult, we thought to try

a more global approach. The Maronna algorithm contains an epsilon argument as a stopping condition that

determines how close the iterated correlation estimate is to the real correlation value. By increasing the

value of epsilon, the correlation values, including the slow converging ones, will converge faster at the cost

of accuracy. We can see how changing epsilon affects the convergence in Table 4.7 and Table 4.9. Table 4.9

shows the convergence using e = 10 - 1 3 . In comparison to Table 4.8, the iteration categories contain about

ten times more correlations. Thus, when epsilon decreases, more correlations will take longer to converge.

Table 4.7 shows the convergence using a very big epsilon, e = .1. As expected, the correlations all converge

quickly in under 30 iterations and the majority converge within five iterations. In this case, decreasing

epsilon results in faster convergence, but it is not yet clear what the effect is on accuracy.

We defined the accuracy to be the absolute difference between a correlation estimate and the corre­

lations real value. We define the accuracy of a correlation matrix estimate to be the largest of the accuracy

values for the matrix's individual correlation entries compared to the corresponding entries in the real corre­

lation matrix. To calculate the accuracy in practice, we used the correlation matrix estimate with the smallest

epsilon you can calculate, 10~1 3 for the gene data. The accuracies for various epsilon appear in Table 4.12.

The largest epsilon that seems reasonable is 10 - 7 . The differences in time for the various epsilon show that

we gain some improvement with a careful choice of epsilon. This improvement helps in both cases of slow

converging correlations, whether a single slow converging correlation at the end of a processor's batch, or

an unbalanced load to a processor since all the correlation calculations benefit with faster convergence for a

smaller epsilon.

4.5.3 Dynamic Load Balanced Maronna

Another approach that avoids unbalanced processor loads is dynamic load balancing. For Maronna, we

choose a block size and send each processor a starting block. Then, when a processor finishes with the

first block, we send them another block of the same size. If one processor is stuck with several of the long

converging correlations, then the load disperses to other processors that are not working as hard. This has

an added benefit in that the user can mn this implementation on a heterogeneous group of processors with

greater success because the balancing will even out the differences of running on different speed processors.

Table 4.14 shows the block division that occurs during load balanced Maronna. The top half of the

38

e Largest 10th Largest Time Time Time
Cor Quality Cor Quality 2 Processors 4 Processors 10 Processors

io-1 1.726 1.624 423.34 139.28 64.24
io-2 1.77 1.433 524.88 182.88 86.82
10~3 1.438 8.95E-01 577.23 202.65 95.72
10-4 1.337 6.94E-01 618.59 221.01 105.22
1(T5 8.14E-01 4.39E-01 660.18 239.60 114.15
I O - 6 4.22E-01 1.59E-01 714.74 255.23 122.87
10-7 1.45E-01 1.71E-05 745.55 272.03 131.68
IO" 8 2.68E-06 1.27E-06 782.27 288.77 140.21
10-9 3.36E-07 1.51E-07 840.36 305.56 148.85
1 0 - i o 3.36E-07 1.36E-08 864.89 322.26 157.53
10-11 3.36E-07 1.23E-09 911.88 339.01 166.19
10-12 2.41E-10 1.10E-10 947.70 357.77 174.85
IO" 1 3 0 0 991.89 372.48 182.58

Table 4.12: Correlation Accuracy Compared to Iteration Time for Various Processor Sizes

table shows the division when identical processors are used with three worker processors and seven worker

processors. The number of blocks each processor computes is nearly the same size for all, but it shows that

some processors work through fewer blocks, which means the blocks they received contained correlations

that took longer to converge. The bottom half of the table shows what happens when a heterogeneous

group of processors is used. Processor seven is half as fast as the others and processor six is one and a half

times faster. The table shows the slower processor does not process as many work blocks, but the quicker

processor makes up for it and works through more blocks. If the regular Maronna version were used instead,

the program would only proceed as fast as the slowest processor. The faster machines would simply wait

until the slow one finished before continuing, which wastes computational resources and time. Thus, load

balancing is beneficial to spread the work load evenly between the processors, and to improve performance

in a heterogeneous environment.

We have created two versions of Maronna based on dynamic load balancing. The two load balanced

versions are very similar and only differ in the way the result is gathered to the root processor. One version

has the worker processors send their results to the root whenever they finish calculating the results for a

block. The second version has the root gather all the results from the worker processors at the end of

the entire calculation. The timings for the two load balanced Maronna algorithms are in Table 4.15 and

Table 4.16. We can see that dynamic load balancing is a feasible approach to the problem of long converging

correlations by comparing these to tables to the static Maronna in Table 4.2.

39

We see that the load balanced version with the ending gather in Table 4.15 is similar to the normal

Maronna, but is a bit faster in the category of correlation calculation. Overall, the charts show this version

is better than the original. The time on 5000 variables with 8 processors is 40 seconds faster and the time

with 6000 variables and 8 processors is 100 seconds faster. This benefit is likely due to the positive results

of load balancing.

Comparing both the load balanced versions to the regular Maronna in general, we see that the load

balanced versions are not as constrained for memory as the regular Maronna. For example, there are no

irregular values in the gather column for the ending gather version, and the matrix fill times seem more

consistent. There is less of a memory constraint because the load balanced versions use a processor farm

approach. The root processor's role is to keep feeding work to the other processors. Thus, it does not need

to use memory for computation purposes as in the original version.

Even though the ending gather version of Maronna is better than the original, the block gather

version is a bigger improvement. Table 4.16 shows that, compared to the original Maronna in Table 4.2,

the block gather version takes only 60 — 70% of the running time. This is better than the few seconds

improvement of the ending gather version. Thus, the block gather version provides superior load balancing

than the ending gather Maronna.

4.5.4 Load Balance Block Size

The block size plays a key role in dynamic load balancing. If it is too small, the communication overhead

increases, while large sizes do not successfully balance the load. Performance analysis of load balancing

with the gene data shows that a block size of around 50,000 works best. A detailed graph of load balanced

Maronna times for different block sizes is show for 6000 variables on eight processors as an example in

Figure 4.1. The figure shows that the best choice in block size is at the bottom of the curve somewhere

between 6000 and 75000. Nothing smaller is a good choice because the running time increases rapidly for

smaller block sizes since the root node becomes saturated with work requests. Sizes that are bigger than this

range are bad because they are too close to the static division that the regular Maronna uses, and thus see

little of the dynamic load balancing benefits.

The optimal block sizes for different variable and processor combinations are listed in Table 4.13.

Al l of the combinations have optimal block sizes in the 6000 to 75000 range. It is interesting to note that

in the experiments to discover the best block sizes for the different combinations, all of them had curves

40

that were rounded similarly to Figure 4.1. None had a sharp point where one single value had the best

range. Instead, they all had a range near the optimal with similar performance. This range seems best to

take advantage of the benefits of dynamic load balancing for Maronna.

Load Balanced Maronna Performance on 6000 Variables with 8 Processors Varying Task Size

1000 I 1 • 1 — i i i i < i . . . — • . . , . i , 1 , — • i i i i I

900 h

800 r

700 h

300 I ' ' • • r • I l 1 i < 1 • • • • • I 1 1 • I
1000 10000 100000 1e+06

Task Size

Figure 4.1: Load Balanced Maronna Various Task Sizes on 6000 Variables with 8 Processors

Variables Processors Block Size
2000 4 15000
4000 12000
6000 4000
2000 8 5000
4000 5000
6000 50000

Table 4.13: Load Balanced Maronna Optimal Block Sizes

41

Proc Group Variables Block Size PI P2 P3 P4 P5 P6 P7
Identical 2000 15000 45 44 45

4000 12000 222 225 220
6000 8000 745 751 754
2000 10000 28 30 29 29 27 28 29
4000 10000 112 116 120 113 111 113 115
6000 50000 52 51 52 51 53 50 51

Fast and Slow 2000 15000 27 92 15
4000 12000 130 478 59
6000 8000 423 1618 209
2000 10000 23 22 22 21 23 78 11
4000 10000 90 84 93 86 84 321 42
6000 50000 39 38 39 40 39 145 20

Table 4.14: Block Division Between Processors

V P Input Output Beast Gather Median Cor Fill Other Total
1000 1 0.010 1.828 0.012 0.355 0.020 38.844 0.096 0.021 41.186

2 0.009 1.809 0.020 0.351 0.019 19.658 0.098 0.020 21.984
4 0.008 1.711 0.031 0.327 0.018 9.885 0.102 0.020 12.103
8 0.091 2.207 0.044 0.335 0.017 4.989 0.103 0.020 7.807

2000 1 0.013 6.973 0.026 1.382 0.035 158.452 0.433 0.040 167.354
2 0.013 7.035 0.059 1.295 0.036 79.472 0.427 0.040 88.377
4 0.013 6.795 0.086 1.178 0.033 40.035 0.437 0.041 48.617
8 0.012 6.919 0.117 1.010 0.031 19.928 0.440 0.041 28.498

3000 1 0.016 15.590 0.045 3.706 0.052 375.065 1.044 0.060 395.577
2 0.016 15.564 0.093 3.104 0.055 186.543 1.036 0.060 206.471
4 0.017 15.481 0.134 3.100 0.048 93.532 1.069 0.061 113.442
8 0.052 15.751 0.191 3.103 0.046 47.261 1.033 0.061 67.498

4000 1 0.020 27.811 0.061 6.441 0.070 706.150 2.327 0.081 742.960
2 0.018 27.591 0.124 5.888 0.071 353.164 2.201 0.081 389.138
4 0.018 27.555 0.182 5.516 0.066 180.484 2.225 0.081 216.127
8 0.022 28.041 0.252 5.505 0.061 88.534 3.015 0.081 125.509

5000 1 0.031 44.472 0.076 9.988 0.088 1189.482 3.376 0.139 1247.651
2 0.030 44.285 0.155 9.907 0.085 599.196 3.394 0.143 657.195
4 0.036 44.011 0.233 8.630 0.084 296.905 3.374 0.164 353.437
8 0.035 43.412 0.321 8.575 0.077 147.789 4.294 0.101 204.604

6000 1 0.040 62.324 0.092 14.394 0.105 1828.638 7.978 0.122 1913.693
2 0.040 63.153 0.191 13.013 0.100 891.910 7.696 0.122 976.224
4 0.040 63.028 0.286 12.524 0.103 450.486 7.859 0.122 534.449
8 0.035 63.714 0.386 12.374 0.108 222.788 9.245 0.221 308.871

Table 4.15: Load Balanced Maronna with End Gather, where v is the number of variables, p is the number
of processors, cor is the correlation computation time, and fill is the matrix fill time

42

V P Input Output Beast Median Cor Fill Other Total
1000 1 0.007 1.795 0.012 0.021 19.001 0.097 0.020 20.954

2 0.009 1.925 0.024 0.019 9.693 0.096 0.020 11.786
4 0.007 1.994 0.040 0.018 4.901 0.096 0.020 7.076
8 0.061 2.017 0.056 0.017 2.498 0.097 0.021 4.766

2000 1 0.012 7.160 0.026 0.036 83.175 0.434 0.040 90.883
2 0.011 6.841 0.059 0.039 41.753 0.437 0.040 49.181
4 0.011 6.910 0.086 0.033 21.260 0.439 0.041 28.780
8 0.013 7.033 0.125 0.031 10.671 0.455 0.041 18.368

3000 1 0.016 15.820 0.042 0.057 211.414 1.044 0.060 228.453
2 0.015 15.680 0.092 0.055 106.303 1.044 0.060 123.249
4 0.019 15.481 0.135 0.048 54.855 1.053 0.061 71.652
8 0.049 15.503 0.190 0.046 26.882 1.066 0.061 43.796

4000 1 0.018 28.031 0.061 0.070 416.773 2.193 0.081 447.227
2 0.018 28.190 0.126 0.070 210.005 2.187 0.081 240.677
4 0.018 27.935 0.182 0.065 108.365 2.211 0.081 138.857
8 0.020 27.783 0.254 0.061 52.997 3.192 0.081 84.390

5000 1 0.031 44.119 0.076 0.088 724.090 3.360 0.157 771.921
2 0.031 44.914 0.158 0.088 363.619 3.347 0.151 412.309
4 0.035 44.306 0.233 0.083 183.444 3.340 0.140 231.582
8 0.035 42.825 0.321 0.076 92.819 4.291 0.101 140.469

6000 1 0.040 63.159 0.092 0.105 1156.037 7.836 0.121 1227.390
2 0.043 62.946 0.188 0.103 580.643 7.990 0.122 652.034
4 0.040 62.803 0.287 0.103 295.477 7.587 0.121 366.418
8 0.034 63.934 0.385 0.105 147.254 10.035 0.122 221.868

Table 4.16: Load Balanced Maronna with Block Gather, where v is the number of variables, p is the number
of processors, cor is the correlation computation time, and fill is the matrix fill time

4.6 Varying Data Shape

The QC and Maronna algorithms performance is partially dependent on the shape of the dataset, i.e. the

number of variables and cases. It is clear that the algorithms depend on the number of variables in the

dataset because this determines the size of the output correlation/covariance matrix. The number of cases

plays a smaller role. The runtime of the median and MAD portion of the algorithm depends on the number

of cases in the input dataset. If the number of cases or the number of variables is small enough, it may

be more appropriate to perform a sequential operation in place of the parallel because the parallel version

may have too high of an overhead. Also, it may be better to mn the sequential median algorithm when the

number of processors is large and creates enough overhead so that the parallel is slower than the sequential.

We separated the two algorithms each into two parts, the median-MAD calculation and the rest of the

43

correlation/covariance computation.

With these two components, we have four separate combinations if we consider the parallel and

sequential versions of each. One would combine the sequential median and the sequential correlation algo­

rithms for data sets that have few variables and few cases. We see in the trends in Table 4.18 that the parallel

median does provide improvement when there are a few cases and many variables. However, with more pro­

cessors the overhead may be too great so that there is little gain in using the parallel median. Thus, if there

are many variables and few cases, it is good to use the parallel median with a small number of processors,

but when there are many processors, it is faster to use the sequential version. If the dataset has few variables

but many cases, we would still use the parallel correlation algorithm because even with a few variables,

the number of correlations is a quadratic function of the variables. Plus, the number of cases affects the

correlation runtime, as we see in Table 4.17. Therefore, there is always some time savings possible using

a parallel correlation algorithm unless the data set has few variables and cases. The most obvious choice

is when the data set has many variables and cases, where parallel algorithms should be used for both the

median and correlation calculations.

For our experiments varying the number of variables and cases, we use the gene dataset, however,

we generate more variables or cases at random for the dataset to evaluate the algorithms on different data

sizes. We construct a new variable or row in the dataset from a random group of existing variables or cases.

To create each element in the new variable/case, we assign random weights to the corresponding elements

in the set of existing variables/cases, where the weights sum to one, then sum up the products of the weights

and elements.

The results of our experiments involving the variation of cases and variables on our correlation

algorithms are listed in Table 4.17 and 4.18. For Table 4.17, we hold the number of variables constant at

6000 and vary the number of cases in the data set. QC seems to handle increasingly larger numbers of cases

well, and has a moderate time increase as the number of cases goes from twenty to one hundred to one

thousand. However, our runs with ten thousand cases show a significant increase in time. It is difficult to

tell how accurate these times are because this is well into the point where memory constraints kick in. In

fact, the runs for one and two processors were unable to complete due to lack of memory.

The Maronna algorithm does not fair as well as QC as the number of cases increase. In fact, the in­

crease in running time seems to increase linearly with the increase in cases. In the bottom half of Table 4.17,

as the cases increase from twenty to one hundred, the running times increase by about a factor of five, and

44

when the cases increase from one hundred to a thousand, the running times increase by about a factor of ten.

this makes sense because every iteration of the Maronna algorithm requires a sum across the current values

of the cases for the variables involved in the current correlation. Also, the runs with one thousand cases are

the point where Maronna runs into memory problems as the single processor experiment ran out of memory

before completion.

We also experimented with increasing the number of variables in Table 4.18. In these experiments,

we held the number of cases constant at twenty and increased the number of variables. Unfortunately,

memory constraints kept us from trying anything beyond ten thousand variables. The running times clearly

do not increase linearly with the number of variables. From 2000 variables to 4000, the total time increases

by a factor of four, from 4000 to 6000 by a factor of two, from 6000 to 8000 by a factor of almost ten, and

from 8000 to 10000 by a factor of two. The correlation computation time also increases at a nonlinear rate,

going from a factor of three to two to one and a half over the changes in variables. The changing increase

in times could be caused by some parts of the algorithm being related linearly to the number of variables,

while others are reacting quadratically to the number of variables, such as the output time. Again, we can

see where the algorithm is running into memory problems on the single processor 8000 variable mn and also

in the fact that the single and two processor runs with 10000 variables did not finish and are absent from the

table.

The bottom half of Table 4.18 shows the effects on Maronna when the number of variables increases.

The total time increases by a factor of five from 2000 to 4000 variables, but from that point, it is increasing

by about a factor of 2.7 for the larger numbers of variables. The correlation computation time is not that

steady, and increases by a factor of 5 from 2000 to 4000 variables, by 2.88 from 4000 to 6000, by 2.38

from 6000 to 8000, and by 1.87 from 8000 to 10000. The times seem to be increasing at a decreasing rate,

and less so than QC. Maronna also ran into memory problems with 10000 variables, as the single processor

experiment ran out of memory.

In summary, both algorithms are affected by the number of variables and cases in the input data set.

Both react quadratically to the number of variables, QC seemingly more so than Maronna. Maronna reacts

linearly to changes in the number of cases, and QC does not react as much, though it may for very large

numbers of cases, such as 10000.

45

Algorithm Cases Procs Median Cor Comp Total
QC 20 1 0.380 45.551 167.486

2 0.162 19.936 113.477
4 0.130 9.988 108.931
8 0.110 5.159 102.084

100 1 2.056 64.587 184.321
2 0.949 29.130 123.999
4 0.706 15.591 109.909
8 0.579 9.024 108.964

1000 1 26.197 293.737 667.494
2 12.504 147.608 247.294
4 8.558 89.336 193.375
8 6.641 57.945 169.754

10000 4 357.696 8411.704 9295.692
8 176.208 6301.003 6857.489

Maronna 20 1 0.087 1768.519 1872.328
2 0.105 1045.453 1129.290
4 0.103 589.543 673.169
8 0.101 318.835 400.893

100 1 0.299 9730.242 9819.595
2 0.428 5006.885 5105.313
4 0.452 2595.059 2680.493
8 0.459 1315.559 1401.823

1000 2 4.025 50057.706 50186.467
4 4.364 25596.003 25709.269
8 4.551 13191.708 13315.304

Table 4.17: Algorithm Performance Varying Cases Using 6000 Variables

4.7 Communication Analysis

4.7.1 MPI Performance

The MPBench tool measures the performance of MPI primitives. We use the tool to examine some of the

costs of using MPI. Figures 4.2-4.6 show the graphical results for the MPI primitives relevant to our pro­

gram. Figures 4.2 and 4.3 show the unidirectional and bidirectional bandwidth for MPI. The unidirectional

bandwidth is implemented using the normal send and receives while the bidirectional uses nonblocking

sends and receives. Figures 4.4 and 4.5 give the roundtrip time and latency for the send function. Finally,

Figure 4.6 shows the performance of the broadcast primitive.

One of the things evident in the figures is that sending small messages requires only a constant

amount of time. If a message is small, then MPI just transfers the message into the buffer of the receiving

46

Algorithm Variables Procs Median Cor Comp Total
QC 2000 1 0.066 3.915 11.906

2 0.055 1.967 11.435
4 0.042 1.232 11.632
8 0.037 0.885 11.475

4000 1 0.132 19.419 51.747
2 0.108 9.286 47.286
4 0.089 4.170 44.638
8 0.069 2.571 45.768

6000 1 0.435 45.293 164.516
2 0.163 19.224 113.248
4 0.130 10.037 103.713
8 0.114 5.201 105.826

8000 1 0.436 436.336 2192.327
2 0.331 40.027 1065.459
4 0.180 20.564 998.024
8 0.165 9.697 857.481

10000 4 0.224 30.731 1913.898
8 0.197 15.111 1812.029

Maronna 2000 1 0.029 161.155 168.681
2 0.038 86.056 94.665
4 0.034 43.849 52.665
8 0.032 22.889 32.095

4000 1 0.058 708.679 739.346
2 0.071 392.950 427.056
4 0.069 213.169 249.073
8 0.064 112.564 149.675

6000 1 0.086 1772.464 1874.283
2 0.105 1050.567 1149.855
4 0.104 593.846 676.139
8 0.104 323.927 409.366

8000 1 0.115 3761.701 4091.564
2 0.140 2345.051 2692.082
4 0.135 1400.404 1733.449
8 0.142 769.024 1102.883

10000 2 0.173 4350.110 6905.358
4 0.166 2599.129 4636.957
8 0.173 1440.370 3009.094

Table 4.18: Algorithm Performance Varying Variables Using 20 Cases

process. When messages are large, the sender and receiver have to agree on the memory location where the

message will be stored on the receiver's end, and then transfer the message. This introduces a per-byte cost,

but this is more efficient than buffering large messages because the extra buffering would require more time

47

Unidirectional MPI Bandwidth

12000 | 1 — • — > 1 1 > 1 1 1 1 1 1 1 1 1 1 P 1 r -

10000 h

8000 h

I 6000 [•

4000 h

2000 I- \ \] \ : -

0 I—<—i—i j 11: 11 11 i < n - * - r f ^ i — I — i — i — i — i — i — i — — i — I — i — • — i — i — I — i — i —
1 32 1024 32768 1.04858e+06 3.35544e+07 1.07374en

Message size in bytes

Figure 4.2: Unidirectional MPI Bandwidth

for buffer copying. We can estimate the costs using the performance graphs. The constant startup time for a

send is roughly 16 microseconds, while the per byte cost for larger messages is about .0856 microseconds

per byte.

4.7.2 Algorithm Communication

We were able to create rough communications profiles for the algorithms using a setup with several machines

connected to a router via dedicated Ethernet cables. Then, we repeatedly queried the router for the traffic

through the connections to monitor the activity as time passed. The communications traffic is measured

in bytes over the queries we made. We could query the router at approximately 37 times per second. We

grouped the results of 1000 of these queries together and report the sum of the traffic that the router reported

for this period. The x-axis in the graphs represents a rough estimation of time, where we report total router

traffic about every twenty-seven second interval. The reported traffic is measured in kilobytes.

48

Bidirectional MPI Bandwidth

20000 | — i — i — > — i — i — i — • — • — ' — i — • — i — i — • — i — i — i — • — > — j — i — • — i — i — r

Message size in bytes

Figure 4.3: Bidirectional MPI Bandwidth

Looking at QC's graph, Figure 4.7, we see that the largest amount of traffic occurs during the result

gathering stage. Figure 4.8 shows the Maronna algorithm's profile. Maronna also has the heaviest traffic

during the gather stage. There are two large communication points on the graph because one of our machines

was slower than the rest. When the faster machines completed earlier, they had to wait for the slowest one

to finish and meanwhile sat idly. This is one reason why load balancing is an improvement.

We have profiled two versions of the load balanced Maronna. The first has the processors returning

their results after they calculate a block of correlations, and is shown in Figure 4.9. The height of all the

communications here and their thickness in the graph are all related to the block size of the algorithm. Small

blocks make the messages smaller and more frequent, while larger blocks make for larger messages that are

not as frequent. Thus, the total traffic the network can handle is something to consider when choosing the

block size.

The profile for the second load balanced Maronna is in Figure 4.10. It is similar to the original

Maronna in that all the correlations are saved up until the end for one massive gather. The processors still

49

Roundtrip time of MPI Send

16384

1024

256

64

16

0.25

0.0625

— 1 — 1 — 1 — 1 — 1

_ I I M i l |

i — i — i — i — i — i — 1 — < — i — < — i

)

i — . — i — i — i — | i — i — i — i — • —

•

-

•

-

•

•

•

TV . i TV .

32 1 024 32768 1.04858e+06 3.35544e+07 1.07374en

Packet size in bytes

Figure 4.4: Roundtrip Time of MPI Send

send messages throughout the algorithm, but they are small and only serve as requests for more work.

50

Latency of MPI Send

1.67772e+07

Packet size in bytes

Figure 4.5: Latency of MPI Send

51

Performance of MPI Broadcast

52

Q C Communication

45000 I 1 1 1 1 —

Epochs (1 Epoch is approximately 27 seconds)

Figure 4.7: QC Communications Profile

53

Maronna Communication

40000

35000 h

40 60 80

Epochs (1 Epoch is approximately 27 seconds)

Figure 4.8: Maronna Communications Profile

100 120

54

Load Balanced Maronna Communication (with Gather in Computation)

4500 I 1 1 r 1 1 1 1 1

4000 3 r
/-

3500 -

3000 -

2500 r

2000 \

1500 i

0 10 20 30 40 50 60 70 80 90 100

Epochs (1 Epoch is approximately 27 seconds)

Figure 4.9: Load Balanced Maronna with Block Gather Communications Profile

55

4 0 0 0 0

3 5 0 0 0

3 0 0 0 0

10

J , 2 5 0 0 0
_o

M 2 0 0 0 0
01

S 1 5 0 0 0
IS

1 0 0 0 0

5 0 0 0

0 ^BttMHHBBHUffjj UIHlOXUIUIlllllltBMlIJ
10 2 0 8 0 3 0 4 0 5 0 6 0 7 0

Epochs (1 Epoch is approximately 2 7 seconds)

Figure 4 . 1 0 : Load Balanced Maronna with End Gather Communications Profile

90 1 0 0

56

Chapter 5

Conclusions and Future Work

5.1 Conclusion

This thesis has shown that robust methods for calculating correlation and covariance matrices are feasible

when implemented in parallel. These methods now make it possible to not only solve for large correlation

and covariance matrices in a timely fashion, but also compute them with a more robust approach.

Our experiments were performed on a relevant dataset with 6068 variables representing different

genes in 20 cases. The results show that both QC and Maronna scale well for up to 8 processors. Maronna

seems to scale exceptionally well since the computation portion requires no communication between pro­

cessors. This helps Maronna to achieve speedup on more than 8 processors, up to 128 as can be seen from

the WestGrid results. QC is still faster, but Maronna is more robust and scalable to more processors. The

two algorithms are good for solving different types of problems. If an application requires speed, has few

processors available, and is willing to sacrifice some robustness in its results, then QC is the algorithm of

choice. On the other hand, if many processors are available and greater robustness is required, then Maronna

is a good choice if one is willing to put up with a longer wait. Both algorithms have their advantages and

disadvantages, and the best method depends on the circumstances of the problem being solved.

We examined Maronna closely and found that some correlations, namely the ones involving outlier

data values, converge at a slower rate. In response, we developed a load balanced version of Maronna and

also experimented with several values for accuracy to improve the run time.

When we varied the size of the dataset in both cases and variables, we found that both algorithms

scale linearly when the number of cases increase, and scales quadratically when the number of variables

increase. We explain that there is a dividing line where it is more advantageous to mn sequential versions of

57

the median and correlation components when the overhead of the parallel algorithms was too much.

Finally, our communication analysis on QC and Maronna give us an idea of which parts of the algo­

rithms have the greatest communication cost and how the algorithms compare in terms of communication.

5.2 Future Work

With the success from parallelizing these techniques, the next step is to wonder whether other methods of ro­

bust calculation for correlation and covariance matrices would see similar results. Other algorithms include

a version of Maronna that considers three variables at a time instead of just two and also the Stahel-Donoho

method. Another area to improve these algorithms is the I/O time or repairing the positive-definiteness since

parallelization has decreased the computation time of the main algorithm to a small portion of total time.

Also of interest would be a hybrid method that initially calculates the correlation pairwise, but could detect

when better outlier detection is needed for certain correlations and run a triplet correlation method for those

values. Much benefit would come from parallel I/O routines or a more efficient eigensolving routine that is

specialized for our purpose of fixing the positive definiteness.

58

Bibliography

[1] M. B. Abdullah. On a robust correlation coefficient. The Statistician, 39:455-460, 1990.

[2] F. A. Alqallaf, K. P. Konis, and R. D. Martin. Scalable robust covariance and correlation estimates for
data mining. In Proceedings of the Seventh ACM SIGKDD, pages 455^60, 1990.

[3] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M . Knepley, L. C. Mclnnes, B. F. Smith, and
H.Zhang. PETSc home page, http://www.mcs.anl.gov/petsc, 2001.

[4] L. Boxer. Expected optimal selection on the PRAM. Technical Report 2002-17, Department of Com­
puter Science and Engineering, University at Buffalo, 2002.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw Hill, 1990.

[6] S. J. Devlin, R. Gnanadesikan, and J. R. Kettenring. Robust estimation of dispersion matrices and
principal components. Journal of the American Statistical Association, 76:354—362, 1981.

[7] D. Donoho. Breakdown properties of multivariate location estimators. PhD thesis, Harvard University,
1982.

[8] R. O. Dror. Noise models in gene array analysis, June 2001. Area exam report, MIT Department of
Engineering and Computer Science.

[9] L. V. Fausett. Applied Numerical Analysis Using Matlab. Prentice Hall, 1999.

[10] Message Passing Interface Forum. MPI: A message-passing interface standard. Technical Report
UT-CS-94-230, Department of Computer Science, University of Tennessee, 1994.

[11] R. Gnanadesikan and J. R. Kettenring. Robust estimates, residuals, and outlier detection with multi-
response data. Biometrics, 28:81-124, 1972.

[12] A. Gupta and V. Kumar. Scalability of parallel algorithms for matrix multiplication. In Proceedings
of the 1993 International Conference on Parallel Processing, volume III - Algorithms & Applications,
pages III—115—III—123, Boca Raton, FL, 1993. CRC Press.

[13] Y. Han. Optimal parallel selection. In Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 1-9. Society for Industrial and Applied Mathematics, 2003.

[14] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: Scalable Library for Eigenvalue Problem Computa­
tions. Lecture Notes in Computer Science, 2565:377-391, 2003.

59

http://www.mcs.anl.gov/petsc

[15] P. J. Huber. Robust Statistics. John Wiley & Sons, 1981.

[16] J. JaJa. An Introduction to Parallel Algorithms. Addison-Wesley, 1992.

[17] E. M . Knorr, R. T. Ng, and R. H. Zamar. Robust space transformations for distance-based operations.
In Knowledge Discovery and Data Mining, pages 126-135, 2001.

[18] R. Lehoucq, D. Sorensen, and C. Yang. Arpack users' guide: Solution of large scale eigenvalue
problems with implicitly restarted Amoldi methods, 1997.

[19] R. Maronna and R. Zamar. Robust estimates of location and dispersion for high dimensional data sets.
Technometrics, 2002. to appear.

[20] R. A. Maronna. Robust M-estimators of multivariate location and scatter. The Annals of Statistics,
4(l):51-67, 1976.

[21] R. A. Maronna, W. A. Stahel, and V. Yohai. Bias-robust estimation of multivariate scatter based on
projections. Journal of Multivariate Analysis, 42:141-161, 1992.

[22] R. A. Maronna and V. Yohai. The behaviour of the Stahel-Donoho robust multivariate estimator.
Journal of the American Statistical Association, 90(429):330-341, 1995.

[23] H. Meuer, E. Strohmajer, J. Dongarra, and H. Simon. Top 500 supercomputers, November 2003.

[24] MPICH - a portable implementation of MPI. www-unix.mcs.anl.gov/mpi/mpich/.

[25] P. Mucci and K. London. The MPBench report, March 1998. Available at
www.cs.utk.edu/mucci/DOD/mpbench.ps.

[26] P. Rousseeuw and V. Driessen. A fast algorithm for the minimum covariance determinant estimator.
Technometrics, 41:212-223, 1999.

[27] P. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection. John Wiley & Sons, 1987.

[28] P. J. Rousseeuw. Least median of squares regression. Journal of the American Statistical Association,
pages 871-880, Dec 1984.

[29] P. J. Rousseeuw. Multivariate estimation with high breakdown point. In Mathematical Statistics and
Applications, pages 283-297. Reidel Publishing, 1985.

[30] E. L. G. Saukas and S. W. Song. Efficient selection algorithms on distributed memory computers.
In Proceedings of the 1998 ACM/IEEE conference on Supercomputing (CDROM), pages 1-26. IEEE
Computer Society, 1998.

[31] W. Stahel. Breakdown of covariance estimators, 1981. Research Report 31, Fachgruppe fur Statistik,
ETH, Zurich.

[32] R. A. van de Geijn. Using PLAPACK. Scientific and Engineering Computation Series. MIT Press,
1997.

60

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.cs.utk.edu/mucci/DOD/mpbench.ps

[33] E. van den Berg. Seminar on high-performance computing: Parallel. Sem
for ACES: Centre for Advanced Computations in Engineering Science, available
http://www.nus.edu.sg/ACES/seminars/2001/ewout/index.htm, 2001.

[34] D. S. Watkins. Fundamentals of Matrix Computations. John Wiley & Sons, 1991.

[35] Westgrid: Western Canada research grid, www.westgrid.ca.

61

http://www.nus.edu.sg/ACES/seminars/2001/ewout/index.htm
http://www.westgrid.ca

