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ABSTRACT
We use clustering to derive new relations which augment
database schema used in automatic generation of predictive
features in statistical relational learning. Entities derived
from clusters increase the expressivity of feature spaces by
creating new first-class concepts which contribute to the cre-
ation of new features. For example, in CiteSeer, papers can
be clustered based on words or citations giving “topics”,
and authors can be clustered based on documents they co-
author giving “communities”. Such cluster-derived concepts
become part of more complex feature expressions. Out of
the large number of generated features, those which improve
predictive accuracy are kept in the model, as decided by sta-
tistical feature selection criteria. We present results demon-
strating improved accuracy on two tasks, venue prediction
and link prediction, using CiteSeer data.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning

General Terms: Algorithms.

Keywords: Relational Learning, Clustering, Feature Gen-
eration.

1. INTRODUCTION
Statistical relational learning and related methods search

a space of database queries or logic expressions to find those
which generate new predictive features. A given schema, de-
scribing background data, is used to structure a search over
database queries. Each query generates a table, which in
turn is aggregated to produce scalar feature candidates. The
process produces a stream of features, from which statisti-
cally significant predictors are selected. The expressivity of
the generated features is determined by the set of relational
entities participating in the search.
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In this paper we argue that considerably more powerful
models can be built when the original schema is augmented
with new relations which are derived via clustering (cluster-
relations). Clustering can be used to create first-class re-
lational concepts which are not derivable otherwise from
the original relations. The addition of cluster-relations to
the schema results in the creation of richer, more expres-
sive, feature spaces, resulting in more accurate models than
those built from the original relational concepts. In addi-
tion to summarizing information (e.g. “Is this document
on a given topic?”), cluster derived concepts participate in
more complex relationships (e.g., “Does the database con-
tain another document on the same topic and published in
the same conference?”). The creation of these new high-
level concepts allows more accurate and robust modeling
from complex data sources not simply through information
reduction, but, more importantly, through the increased ex-
pressivity of the language used to describe patterns in the
data [3].

2. STRUCTURAL LOGISTIC REGRESSION
We use a form of statistical relational learning which in-

tegrates regression with feature generation from relational
data. In this paper we use logistic regression, giving a
method we call Structural Logistic Regression (SLR). SLR
combines the strengths of classical statistical modeling with
the high expressivity of features automatically generated
from a relational database.

Cluster-relations enter the formulation of the search space
used to generate predictive features exactly as the original
relations. The original database schema is used to decide
which entities to cluster and which attributes to use, for
example documents clustered by words or by citations cre-
ate alternative clusterings of the same objects. Once the
schema is expanded by adding derived cluster relations to
it, the underlying statistical relational learning methodology
is repeated, i.e. database queries of the feature generation
search space are evaluated, and the resulting tables per ob-
servation are aggregated to produce scalar feature columns,
Figure 1. The new relations added are treated exactly the
same as the original relations.

In the rest of the section we briefly describe SLR. A more
detailed description of the method and the specification of
its feature generation algorithm is given in [11]. Section 2.1
describes the similarity measure we use for clustering.

SLR is an extension of logistic regression to modeling rela-
tional data. It combines the strengths of classical statistical
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Figure 1: Cluster-relations augment database
schema used to produce feature candidates.

models with the higher expressivity of features automati-
cally generated from a relational database. SLR dynami-
cally couples two main components: generation of feature
candidates from relational data and their selection using
statistical model selection criteria. Relational feature gen-
eration is a search problem. It requires formulation of the
search in the space of queries to a relational database. At
each search node, feature candidates are constructed and
considered for model inclusion. Thus, the process incre-
mentally learns predictive data patterns, possibly encoding
complex regularities in a domain. The process results in a
statistical model where each selected feature is the evalua-
tion of a database query encoding a predictive data pattern.

As mentioned above, relational feature generation is a
search problem. We use top-down search of refinement graphs
[16, 2] as our main search space specification method. Each
node in the refinement graph is a database query. The
search starts with simpler queries about learning examples
and progresses by refining its nodes, i.e. adding more rela-
tion instances and conditions to a parent query. Since we
are building statistical models, rather than logic clauses as
is the case in inductive logic programming where refinement
graphs are used, we are not limited to searching in the space
of binary logic-valued clauses. In our case, each node of the
graph is a query evaluating into a table of all satisfying so-
lutions. Within each node we apply a number of aggregate
operators to produce both boolean and real-valued features.
Each node of the refinement graph produces multiple fea-
ture candidates. Aggregations can be applied to a whole
table or to individual columns, as appropriate given type
restrictions, e.g. ave cannot be applied to a column of a
categorical type.

Top-down search of refinement graphs allows a number of
optimizations, e.g. i) the results of queries (prior to applying
the aggregations) at a parent node can be reused at the
children nodes, ii) a node resulting in an empty table for
each observation should not be refined any further as its
refinements will also be empty.

2.1 Similarity Measure used in Clustering
Throughout the experiments in this paper we use k-means

clustering algorithm (e.g. [5]) with vector-space cosine sim-
ilarity [14]. In the formulas presented here, document d can
stand for any object type we want to cluster, and words w

are the attributes which are used to cluster d. For exam-
ple, authors d, can be clustered using the documents w they
write.

Each document is viewed as a vector whose dimensions
correspond to words in the vocabulary; the component mag-
nitudes are the tf-idf weights of the words. Tf-idf is the
product of term frequency tf(w, d)—the number of times
word w occurs in the corresponding document d—and in-
verse document frequency

idf(w) = log
|D|

df(w)
,

where |D| is the number of documents in a collection and
df(w) is the number of documents in which word w occurs
at least once. The similarity between two documents is then

sim(di,dj) =
di · dj

||di||||dj||
,

where di and dj are vectors with tf-idf coordinates as de-
scribed above.

In the experiments reported here we use binary tf-idf,
where the tf component is a binary indicator. We use this
measure to be consistent with the background relation HasWord.
Since we are not using counts in the original relation HasWord,
we do not bring in this additional information into the at-
tributes used to cluster documents. Other derived cluster
relations use naturally binary attributes, e.g. citation or
authorship based clusters. Other similarity measures and
variants of tf-idf exist.

The search can be extended to include several types of
similarity measures and a search over k, the number of
groups in clustering. These would result in a higher num-
ber of features tested in the regression. If needed, on-the-
fly optimization using subsampling and efficient linear time
clustering algorithm could be used, but in this paper we did
not find them necessary.

3. TASKS AND DATA
We explore two tasks using CiteSeer data: classifying doc-

uments into their publication venues, conferences or jour-
nals, and predicting the existence of a citation between two
documents. The target concept pair is <Document, Venue>

and <Document, Document> respectively. In the case of venue
prediction, value of the response variable is one if the pair’s
venue is a true publication venue of the corresponding doc-
ument and it is zero otherwise. Similarly, in link predic-
tion, value of the response variable is one if there exists a
citation between two documents and it is zero otherwise.
In both tasks, the search space contains queries based on
several relations about documents and publication venues,
such as citation information, authorship and word content
of the documents. Modeling of latent structure of entities
in this domain, such as topics of documents or communities
of authors, is capable of producing more accurate predictive
models that the original relational representation. Clusters
can be derived by clustering entities in the domain based
on the variety of alternative sources of attributes. The fol-
lowing are descriptions of basic relations we use, followed by
a description and discussion of the derived cluster relations
we use to augment the search space:

- PublishedIn(doc:Document, vn:Venue). Publication venues
are extracted by matching information with the DBLP database,
http://dblp.uni-trier.de/. Publication venues are known
for 60,646 CiteSeer documents. All other relations are pop-
ulated with information about these documents. There are



1,560 unique conferences and journals. Training and test
examples are sampled from this background relation. Rela-
tion size: 60,646.
- Author(doc:Document, auth:Person). 53,660 out of the
total of 60,646 documents have authorship information avail-
able; there are 26,740 unique last names of authors. Relation
size: 131,582.
- Citation(from:Document, to:Document). This relation
contains all citations among our “universe” of 60,646 docu-
ments. It contains 42,749 unique citing documents, 31,603
unique cited documents, and the total of 49,398 documents.
Relation size: 173,410.
- HasWord(doc:Document, word:Word). This is by far the
largest relation even for relatively small vocabularies. It is
populated by binary word occurrence vectors, i.e. there is
a tuple for each word in the vocabulary if it is contained
in a corresponding document. The relation contains word
data available for 56,104 documents, the size of vocabulary
is 1,000 words. (the vocabulary contains top count words in
the entire collection after Porter stemming and stop word
removal). Relation size: 6,894,712.

We use k-means to derive cluster relations; any other hard
clustering algorithm can be used for this purpose. The re-
sults of clustering are represented by binary relations
<ClusteredEntity,ClusterID>. Cluster relations can be
generated lazily, or they can be precomputed and added to
the relational schema before feature generation phase. Effi-
cient clustering algorithms can be used for document cluster-
ing based on the regularities characteristic of citation struc-
ture in corpora of scientific publications [12].

The original database schema contains several entities which
can be clustered based on a number of alternative crite-
ria. Each many-to-many relation in the original schema
presented above can produce two cluster relations. Three
out of four relations are many-to-many (with the exception
of PublishedIn), this results in six new cluster-relations.
The following is the list of these six cluster relations which
we add to the relational database schema:

- ClustDocsByAuthors(doc:Document,clust:Clust0)
53,660 documents are clustered based on the identity of their
26,740 authors. Relation size: 53,660.
-ClustAuthorsByDocs(auth:Person,clust:Clust1)
26,740 authors are clustered based on 53,660 documents
they wrote. Relation size: 26,740.
- ClustDocsByCitingDocs(doc:Document,clust:Clust2)
31,603 documents are clustered based on 42,749 documents
citing them (the numbers are slightly lower in link prediction
where target concept links do not participate in clustering).
Relation size: 31,603.
- ClustDocsByCitedDocs(doc:Document,clust:Clust3)
42,749 documents are clustered based on 31,603 documents
cited from them (the numbers are slightly lower in link pre-
diction where target concept links do not participate in clus-
tering). Relation size: 42,749.
- ClustDocsByWords(doc:Document,clust:Clust4)
56,104 documents are clustered based on the vocabulary of
top 1,000 words. Relation size: 56,104.
- ClustWordsByDocs(word:Word,clust:Clust5)

The vocabulary of 1,000 words is clustered based on their
occurrence in this collection of 56,104 documents. Relation
size: 1,000.

An important aspect of optimizing cluster utility in gen-
eral, and of the use of cluster relations in our setting in par-
ticular, is the choice of k, the number of groups into which
the entities are clustered. In our case, for each potential
value of k we would ideally compute separate clusters. For
simplicity and speed in the experiments presented here we
fix k to be equal to 100 in all cluster relations except for the
last one, ClustWordsByDocs, where the number of clusters
is 10. The latter is clustered into fewer groups than the rest
of the clusters to reflect the fact that there is roughly an
order of magnitude fewer objects, words, to be clustered;
we selected the vocabulary of size 1,000 to make the size of
HasWord relation smaller and more manageable. The accu-
racy of the cluster-based models reported below can poten-
tially be improved even further if one is willing to incur the
additional cost of optimizing the choice of k.

4. RESULTS
We compare models learned from the feature space gener-

ated from four original non-cluster relations with the models
learned from the original four relations plus six derived clus-
ter relations (clustersNO and clustersYES models). Mod-
els are learned with sequential feature selection which uses
Bayesian Information Criterion (BIC) [15], i.e. as each fea-
ture is generated it is added to the model permanently if
the BIC improves, or is permanently dropped otherwise.
Sequential feature selection differs from standard step-wise
model selection in that the latter requires knowing in ad-
vance all features which will be generated; step-wise model
selection is much more expensive as it requires the com-
putation of the objective function for all available feature
candidates when deciding which one to add or drop next, se-
quential feature selection, on the other hand, re-trains only
one additional model per one generated feature.

The size of feature streams used in training each model
is set to 3,500 numerically unique features. A numeric sig-
nature of partially evaluated features is maintained to avoid
fully generating numerically equivalent (or rather, at least,
nearly collinear within hashing error) features; note that this
is different from avoiding syntactically equivalent nodes of
the search space: two different queries can produce numer-
ically equivalent feature columns, e.g. all zeros, which is a
common case as feature generation progresses deeper in the
search space.

We use 10-fold cross validation to show accuracy improve-
ment when using cluster-relations and to derive error bounds
on the improvement. All observations are split equally into
10 sets. Each of the sets is used to train a model. Each
of the models is tested on the remaining observations. This
results in 10 values per each tested level, which are used to
derive error bounds. In venue prediction, the total num-
ber of observations is 10,000: 5,000 positive examples of
<Document,Venue> target pairs uniformly sampled from the
relation PublishedIn, and 5,000 negative examples where
document is uniformly sampled from the remaining docu-
ments and the venue is uniformly sampled from the domain
of all venues, such that the sampled venue is not a true
venue of the document. Sampled positive pairs are removed
from the background relation PublishedIn, as well as the
tuples involving documents sampled for the negative set.
The size of the background relation PublishedIn reduces by
10,000 after removing tuples involved in training and test



0 500 1000 1500 2000 2500 3000 3500

50
60

70
80

# of features considered

ac
cu

ra
cy

clustersYES

clustersNO

Figure 2: Learning curves: venue prediction aver-
age test set accuracy against the number of features
generated from the training sets in 10-fold cross
validation (in each of 10 runs Ntrain = 1, 000 and
Ntest = 9, 000). Balanced positive/negative priors

sets. In link prediction, the total number of observations
is 5,000: 2,500 positive examples of <Document,Document>
target pairs uniformly sampled from the Citation relation,
and 2,500 negative examples uniformly sampled from empty
links in the citation graph. Sampled positive pairs are re-
moved from the background relation Citation. The size
of the background relation Citation reduces by 2,500, the
number of sampled positive examples.

Figure 2 and Figure 3 present test accuracy learning curves
for models learned with and without cluster relations in
venue prediction and link prediction respectively. Curve
coordinates are averages over the runs in 10-fold cross val-
idation (see below separate figures and discussion of error
bounds of the difference between accuracies in both mod-
els). The learning curves show test set accuracy changing
with the number of features, in intervals of 250, generated
and sequentially selected from the training set. The average
test set accuracy of the cluster based models after exploring
the entire feature stream is 87.2% in venue prediction and
93.1% in link prediction, which is, respectively, 4.75 and 3.22
percentage points higher than the average accuracy of the
models not using cluster relations.

Figure 4 and Figure 5 present Gaussian 95% confidence in-
tervals of the difference in mean test accuracies of clusterYES
and clusterNO models in venue prediction and link predic-
tion respectively. In venue prediction, after exploring ap-
proximately half of the feature stream the improvement in
accuracy by the cluster-based models is statistically signif-
icant at 95% confidence level according to the t-test (con-
fidence intervals do not intersect with y=0). In the early
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Figure 3: Learning curves: link prediction aver-
age test set accuracy against the number of fea-
tures generated from the training sets in 10-fold
cross validation (in each of 10 runs Ntrain = 500 and
Ntest = 4, 500). Balanced positive/negative priors

feature generation, when considering the streams of about
1,000 features, cluster-based models perform significantly
worse: at this learning phase, additional cluster-based fea-
tures while not yet significantly improving accuracy may
delay the discovery of significant non-cluster based features.
In link prediction, while the significance of the improvement
from cluster-based features is reduced early in the stream,
it continuously increases throughout the rest of the stream.
At the end of the stream the improvement in accuracy of
the cluster-based model is 3.22 percentage points, statisti-
cally significant at the 99.8% confidence level. The highest
level accuracies (after seeing 750 features by clustersNO

and after seeing 3500 features by clustersYES) also sta-
tistically differ: the accuracy improvement in cluster-based
models is 1.49 percentage points, significant at the 99.9%
confidence level. The average number of features selected in
10 clusterYES models is 32.0 in venue prediction and 32.3
in link prediction; respectively, 27.9 and 31.8 features on
average were selected into clusterNO models from equally
many feature candidates (3,500).

The improved accuracy of the cluster-based model in venue
prediction comes mostly from a single cluster-based feature.
This feature was selected in all cross validation runs. It is
a binary feature involving latent document topics, i.e. the
cluster relation of documents clustered by their word con-
tent. The feature is ON for target document/venue pair
<D,V>, if there exists a document D1 in the cluster where
D belongs such that D1 is published in the same venue as
D. Using a logic based notation, the feature is the following
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Figure 4: Mean venue prediction accuracy dif-
ference, accuracy(clustersY ES)− accuracy(clustersNO)
with 95% confidence intervals (bounds based on
N=10 points, t-test distribution)
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Figure 5: Mean link prediction accuracy dif-
ference, accuracy(clustersY ES)− accuracy(clustersNO)
with 95% confidence intervals (bounds based on
N=10 points, t-test distribution)

(abbreviate here clustDocsByWords by topic):1

exists[publishedIn(D1, V ), topic(D, C), topic(D1, C)].

The following are examples of other significant features
automatically generated and selected in the venue prediction
task: document D is more likely to be published in a confer-
ence or journal V: i) if V is a large venue, i.e. publishes many
papers (size[publishedIn( , V )]), ii) if document D cites an-
other document which is published in the same venue V, iii)
if document D is cited by another document which is pub-
lished in the same venue V, iv) if the author of D published
another paper in the same venue V.

The following three cluster-based features were selected
in more than five cross validation runs (9, 9 and 6 times
respectively) in the link prediction task (target: <D1,D2>):

exists[docsByCitedDocs(D1, C), docsByCitedDocs(D2, C)],
exists[docsByWords(D1,C), docsByWords(D2, C)],
exists[docsByCitingDocs(D1, C), docsByCitingDocs(D2, C)].

5. RELATED WORK AND DISCUSSION
Clustering and other latent space modeling methods such

as principal components analysis often used in propositional
predictive modeling as a means for dimensionality reduc-
tion. Dimensionality reduction is achieved by replacing the
original flat features with the identifiers of clusters they are
elements of, or by the coordinates of their projections onto
a lower dimensional space. For example, words can be clus-
tered into groups replacing individual words for document
classification. Structure together with the flat features can
result in more accurate predictive models, for example in
the context of maximum entropy modeling [9].

One research direction in relational learning addresses clus-
tering of relational entities with novel distance metrics de-
fined over the interlinked relational representation. Many
people have address clustering from relational representa-
tion (see e.g. [6]). It is not our goal to find a single “best”
data partitioning. Instead, we identify a number of alterna-
tive clusterings which are involved in more complex features
improving predictive accuracy of statistical models. Objects
may be clustered based on different attributes, using differ-
ent similarity measures, and with different numbers of clus-
ters found. The usefulness of a grouping can be assessed only
in relation to a particular set of predictions being made.

Cluster-based concept and relation invention, as described
in this paper, differs importantly from using aggregation, in
a sense commonly used in databases, as a means of sum-
marization. Aggregation is essential in statistical relational
learning and is also used to create new, rich types of features
from relational representation [10]. Using aggregates creates
richer features than modeling a boolean, table empty/non-
empty feature as is the case in classical logic-based relational
learning approaches [8]. The need for aggregates in rela-
tional learning comes from the fact that the central type of
relational representation is a table (set); the data is repre-
sented by a number of tables, and database queries result in
tables. Statistical models, on the other hand, work with
scalar values, real numbers, integers, or categorical vari-

1Note that D1 is distinct from D as the tuple with publica-
tion venue of document D is removed from the background
relation PublishedIn.



ables. Aggregates are essential to our approach; each node
in our search space evaluates into a table, which in turn is
aggregated to produce a number of scalar feature candidates.
The advantage of clusters comes at another level to create
central relational entities from which features are generated;
aggregates are applied at the next step to the tables result-
ing from queries which can involve both the cluster relations
and the original relations.

The idea of augmenting the existing representation with
new relations or predicates is, of course, not new. In in-
ductive logic programming it is known as “predicate inven-
tion”. For example, Statistical Predicate Invention [1] which
was proposed for learning in hypertext domains, represents
classifications produced by Naive Bayes as a new predicate
added to FOIL [13]. Our approach differs in that we use
statistics rather than logic as a central modeling component,
and more importantly in this context, we advocate the use
of cluster-based relation invention as a means to enrich fea-
ture spaces by adding to schema many types of clusters, not
only those of a response concept, thus creating first-class re-
lational concepts, such as “topics” or “communities”, which
have a clean “identity” as the world representation entities.

Concept invention could also, in theory be done in other
types of relational learning, such as in those using graphi-
cal models, e.g. Probabilistic Relational Models (PRMs) [4],
which are generative models of joint probability distribution
capturing probabilistic influences between entities and their
attributes in a relational domain. However, such generative
models are not conducive to searching for complex features,
as is done in inductive logic programming and in this paper.

6. CONCLUSIONS AND FUTURE WORK
We presented a framework for learning predictive statisti-

cal models from relational data where alternative “cluster-
relations” are derived from the attributes in the original
database schema and included in the feature generation pro-
cess. The method was used for predicting the publication
venue of scientific papers from the CiteSeer data including
the citation graph, paper authorship and word content. We
used clustering to derive new first class relational entities
reflecting hidden topics of papers, author communities and
word groups. New cluster relations included into the feature
generation process, in addition to the original relations, re-
sulted in the creation of richer cluster-based features, where
clusters enter into more complex relationships with existing
background relations rather than only provide dimensional-
ity reduction. Using relation invention gives more accurate
models than those built only from the original relations.

Adding cluster-derived concepts as relations to a database
schema used to generate features can increase the predictive
accuracy of statistical relational models. Section 4 presents
experimental results for venue prediction and link predic-
tion. In both tasks, we have shown that models built using
a schema augmented with cluster-derived relations result in
statistically significant increase in accuracy over the models
built using the original relational schema.

Two models, with and without cluster relations, were com-
pared on feature streams of 3,500 unique features. In the
middle of the feature generation process for the venue pre-
diction task, the cluster-based feature generation was able
to discover a highly significant feature from the clusters of
documents grouped by their word content which contributed
a mean of 4.75 percentage point increase in the final test set

accuracy. Through the end of the feature generation pro-
cess the cluster-based model maintained a stable accuracy
improvement, and was statistically significant at the 95%
confidence level based on the t-test over 10-fold cross valida-
tion. The average improvement from using cluster-derived
features at the end of the link prediction feature stream was
3.22 percentage points, also statistically significant at the
95% confidence level.

We envision several improvements to the relation inven-
tion methodology. Richer types of clusters can be derived
from more complex sets of attributes than those immedi-
ately available in a single relation. For example, publication
venues and authorship data are in two separate relations
which both can be used to cluster publication venues based
on the authors who publish in them. Also, clustering can
be performed lazily as a corresponding depth in the fea-
ture search space is reached by the feature generation. In
contrast to “propositionalization” [7], which implies a de-
coupling of relational feature generation and modeling, SLR
is dynamic and allows for a more natural introduction of
this extension.
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