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ABSTRACT
For the discovery of similar patterns in 1D time-series, it is
very typical to perform a normalization of the data (for ex-
ample a transformation so that the data follow a zero mean
and unit standard deviation). Such transformations can re-
veal latent patterns and are very commonly used in datamin-
ing applications. However, when dealing with multidimen-
sional time-series, which appear naturally in applications
such as video-tracking, motion-capture etc, similar motion
patterns can also be expressed at different orientations. It is
therefore imperative to provide support for additional trans-
formations, such as rotation. In this work, we transform
the positional information of moving data, into a space that
is translation, scale and rotation invariant. Our distance
measure in the new space is able to detect elastic matches
and can be efficiently lower bounded, thus being computa-
tionally tractable. The proposed methods are easy to imple-
ment, fast to compute and can have many applications for
real world problems, in areas such as handwriting recognition
and posture estimation in motion-capture data. Finally, we
empirically demonstrate the accuracy and the efficiency of
the technique, using real and synthetic handwriting data.

Categories and Subject Descriptors: H.2.8 [Database Man-
agement]: Database Applications, Data Mining

General Terms: Algorithms

Keywords: Trajectories, Time Warping, Rotation Invariance

1. INTRODUCTION
Advances in wireless communication, sensor devices and

GPS technology make it possible nowadays to collect large
amounts of trajectory data. A trajectory is a set of posi-
tional information of a moving object, ordered by time. Ex-
amples include tracking animals, gathering human motion
data by tracking various body joints, or tracing the evolution
of migrating particles in biological sciences. In fact, multi-
dimensional trajectory data are prevalent in many fields such
as environmental information systems, meteorology, wireless
technology, video tracking, or video motion capture.
An important problem in such applications is designing

techniques for identifying trajectories that are similar. Such
techniques can be used to cluster sets of trajectories, to in-
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dex sets of trajectories so that nearest neighbor queries can
be executed efficiently, and to classify new trajectories given
a set of examples.
While the design of distance functions between trajecto-

ries has been considered in recent work [15, 14, 7], none of
these techniques consider similarity measures that are rota-
tion invariant. In many applications, a similarity measure
that is immune to rotation effects is desirable. To illustrate
this, consider a hand-writing recognition application, where
each letter is represented by a two-dimensional trajectory.
In this application, we are interested in classifying a new
trajectory, given a set of letter examples. For example, all
the trajectories in Figure 1 represent the same letter, so
they should be considered similar to one another. However,
none of the currently proposed techniques can tackle the
problem effectively, primarily because they are not capable
of eliminating the rotation component from the similarity
calculations.
In this paper we seek distance measures for trajectories

that are invariant under rotations. Furthermore, we seek
distance functions that are efficient to compute, so that op-
erations such as clustering and indexing for nearest neighbor
calculations do not suffer from performance penalties. Our
main contributions are the following:
First, we present a distance measure that allows us to

find similar trajectories under translation, scaling and rota-
tional transformations. We adapt techniques developed in
[4] to first map each trajectory to a trajectory in a rota-
tion invariant space. We extend the robustness of this work
by introducing a novel iterative modulo normalization tech-
nique. The distance of two trajectories in the new rotation
invariant space, is computed using Dynamic Time Warp-
ing (DTW). We show that the resulting distance measure is
robust under the desired family of transformations (trans-
lation, rotation, scaling), and moreover, is very efficient to
compute. We provide experimental evidence to demonstrate
the accuracy of our distance measure.
Second, we give a new technique for lower-bounding our

distance measure. Our lower-bounding is a general tech-
nique for lower-bounding the DTW distance, and is there-
fore of independent interest. We compare our technique with
recent efforts on this problem, and show that our approach
is efficient and more accurate than previously known tech-
niques.

2. RELATED WORK
The problem that we examine in this paper is related to

problems studied in the areas of pattern recognition and
computer vision, such as testing for congruence of point sets
[1, 5], which is a fundamental (and still open) problem in
computer vision. Also related to this general area are prob-
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Figure 1: Transformations supported by our representation. Trajectories plotted on 2D for clarity. Time is
depicted by the intensity of the color. (a) Original sequence, (b) Translation, (c) Rotation, (d) Scaling, (e)
Transformation including (b),(c),(d) and deformation

lems in medical image registration [10], and geometric hash-
ing [6].
Inspired by the work of Cohen and Guibas [4], we use

the turning angle transformation as our invariant matching
signature. The work of [4] deals with planar lines (and not
trajectories), where the x-y position of two dimensional line
shapes are transformed into an angle/arc-length space. The
partial (subsequence) matching problem, is solved by a line
sweep algorithm in a scale-shift plane and guarantees scale,
translation and rotation invariance. This comes at a high
cost of O(m2n2) time complexity for lines of length m and n
respectively. Moreover, while this method can handle global
scaling, there is no support for local scaling. Compared to
other methods based on algebraic moments, curvature [11]
and Hausdorff distance [3], the turning angle has been shown
to be the most robust for the retrieval of two dimensional
images and shapes [12].

3. ROTATION INVARIANT TRAJECTORY
DISTANCE FUNCTIONS

Let P be a trajectory of a moving object. P is then a
sequence of 2-dimensional vectors1, each describing the po-
sition of the object at time instants 0 to n− 1:

P = [P1, . . . , Pn]

= [(px,0, py,0), . . . , (px,n−1, py,n−1)]

Let F be a distance measure for trajectories. F can be,
for example, the Euclidean metric, or the Dynamic Time
Warping distance. Let R be the set of two dimensional
rotations around the axis origin. Let also T be the set of
two-dimensional translations and S be the set of all scaling
operations by a global factor.
Figure 1 describes the effects of different transformations

on a trajectory.
Let T ∇ be the set of transformations that are composed

by rotations, translations and scaling.
Given two 2-dimensional trajectories T,Q, and a distance

measure F , we are interested in computing the smallest pos-
sible distance of T and Q if we allow transformations in T ∇
to be applied to one of the trajectories.

Finv(T,Q) = minr∈T ∇F (r(T ),Q)

This new distance measure, Finv can be expensive to com-
pute, therefore here we tranform the trajectories into a new
space with invariant characteristics where the matching can
be more efficiently performed.

1Although this paper considers mainly 2-dimensional appli-
cations, the techniques can be extended to higher dimen-
sions.

3.1 Rotation Invariant Transformations
It is difficult to design distance measures that are invariant

to rotation using positional information directly. Instead, we
use a modification of a technique by [4] to map the trajec-
tories to a space that is more amenable to this purpose. We
briefly describe the technique below:
We define the movement vector V at time t as:

Vt = Pt − Pt−1, t = 1, . . . , n− 1

We extract the angles of each movement vector relative to
a reference movement vector Vref . This reference vector is
the positive x-axis or vector [1, 0]. In other words, we calcu-
late how much is the acute rotation angle that is required to
align the vector Vref to the direction of the current move-
ment vector Vt.
The acute angle α between these two vectors is computed

utilizing the dot product as follows:

αt = V̂t = sign · cos−1(
< Vt, Vref >

‖Vt‖ · ‖Vref‖
)

and < ·, · > signifies the vector dot product.
However, the dot product does not specify the direction

of the rotation, which is denoted by sign. (e.g., clockwise
or counterclockwise). This information is obtained using the
direction of the cross product between Vt and Vref , by exam-
ining whether it spans towards the positive or the negative
z-axis. For 2D trajectories the sign is calculated as:

sign =

{
1 if ([Vt × Vref ] · [0 0 1]T ) > 0

−1 if ([Vt × Vref ] · [0 0 1]T ) < 0

In addition to the angle of each movement vector we also
record its Euclidean length L (arc length). Therefore, we
have transformed the spatial coordinates of a trajectory into
a sequence of Angle/Arc-Length pairs. We call this new
transformed space, AAL space and figure 2 shows how the
AAL representation of a 2-dimensional trajectory is com-
puted.

PAAL = [(V̂1, ‖V1‖), . . . , ( ˆVn−1, ‖Vn−1‖)]
We also consider different approaches to define the ref-

erence vectors required by the AAL transformation. As a
reference vector, instead of the positive x-axis (which we call
exact angles), one could use other vectors as well. In this
work we also consider the following:

Angle Relative to Previous (relative angles):

Vref = Pt−1 − Pt−2

The problem with this approach is that small differences
in the angles can be compounded in the original trajectory,
resulting to a large deviation between two sequences, while
the distance in the AAL space remains small.



Angle Relative to center of Mass (cMass angles):
The center of mass is defined as the average of the different
locations of the object over time:

PcMass =
1

n
[
∑

n

px,n,
∑

n

py,n] and Vref = Pt−1 − PcMass

In the experimental section we show that both exact and
cMass angles, have good robustness under real or synthetic
datasets. The relative angles perform well for the synthetic
ones, but for real datasets their performance degrades rapidly.
Representation of trajectories in the new space offers sig-

nificant advantages over the spatial representation, because
it is translation invariant. Additionally when we are com-
puting exact angles from a reference vector, rotation of a
trajectory by θ degrees this will result in a shifted pattern
by θ degrees in the AAL space. Finally, scale invariance can
be accomplished by dividing the arc length of each move-
ment vector by the total arc length of the trajectory.

PAAL = [(V̂1,
‖V1‖∑
i‖Vi‖

), . . . , ( ˆVn−1,
‖Vn−1‖∑

i‖Vi‖
)]

4. ITERATIVE MODULO NORMALIZATION
After the transformation of the x-y position of the tra-

jectories into the angle/arc-length space (using the exact
angles), similar but rotated trajectories will depict analo-
gous patterns in the new space. However, the patterns may
differ by some amount of vertical shift according to their
orientation.
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Figure 3: Left: Trajectories plotted on 2D. Right:
Angle/Arc-Length features extracted from the tra-
jectories.

To create a rotation invariant transformation we normal-
ize the transformed sequences. A simple normalization would
be to subtract the average angle value. This, nonetheless,
is not sufficient because this average value can be signifi-
cantly distorted. For example, figure 3 shows two similar
(but not identical) 2D trajectories. Their similarity is more
prevalent if the darker one is rotated clockwise by around
70o. The patterns in the AAL space appear very similar
but they are distant by a vertical shift corresponding to 70o

in the angle axis. Additionally, one can observe that some
sections of the 2nd trajectory appear very noisy in the AAL
space. This is attributed to the fact that certain consecutive
movement vectors can oscillate around the π angle. Figure
4 demonstrates the two feature patterns when the average
angle value is subtracted from both trajectories. Obviously,
an even better matching can be found (see Figure 5).
For this purpose we introduce an iterative normalization

procedure. The pseudo-code of the algorithm is illustrated
in Figure 6 and it performs two basic steps:

• A normalization, by subtracting the average value of
the sequence

• A modulo operation that wraps the angle values within
the range of [−pi, pi]
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Figure 4: After Regular Normalization (subtraction
of mean value)

These phases are repeated a certain number of times or
until stability. For simplicity in all our experiments we it-
erate the normalization steps five times, which proves to be
more than adequate for achieving stability.
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Figure 5: After Iterative Normalization. Now the
similarity between the two sequences is much more
obvious.

1 seqNorm = iterativeNormalization(sequence)
2 {
3 n = sequence.Length;
4 seqNorm = sequence;
5
6 // repeat k times or until stability
7 for i=1 to k
8 {
9 if avgValue != average(seqNorm) break;
10 // subtract mean value
11 avgValue = average(seqNorm);
12 seqNorm = seqNorm - avgValue;
13
14 // wrap points in range [-pi, pi]
15 for j=1 to n
16 {
17 if seqNorm[j]<-pi seqNorm[j]= 2*pi+seqNorm[j];
18 if seqNorm[j]> pi seqNorm[j]=-2*pi+seqNorm[j];
19 }
20 }
21}

Figure 6: Algorithm Iterative Modulo-π Normaliza-
tion

5. SUPPORT FOR ELASTIC MATCHING
Using the previous transformations we have addressed the

issues of translation, rotation and scaling. However, in order
for the two patterns in Figure 5 to be matched effectively it
is necessary to provide support for local compressions and
decompressions in the arc-length axis. To accomplish that
we use a warping distance measure in the AAL space.
The most widely used measure that supports local com-

pressions and decompressions is Dynamic Time Warping
(DTW) [2, 8, 14]. In order to utilize the DTW one as-
sumes that the measurement values (in this case the an-
gles), are taken at discrete and equi-spaced time instances
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Figure 2: An example of the Angle/Arc-Length features extracted. The figures are read from top to bottom
and from left to right.

(arc lengths for our case), which we achieve this by resam-
pling/interpolating the sequence of angle/arc-length pairs.
IfQ = (Q1, Q2, . . . , Qn) andHead(Q) = (Q1, Q2, . . . , Qn−1)

(and similarly for a sequence T ) then the recursive equation
to provide then warping distance between Q and T is:

DTW (Q, T ) = D(Qn, Tn)+min




DTW (Head(Q), Head(T ))
DTW (Head(Q), T )
DTW (Q,Head(T ))

where D(·, ·) is the distance between two points of the se-
quence. Typically, D is the Euclidean distance, but it can
be any distance complying to the requirements of a specific
application.

Figure 7: Elastic matching achieved by DTW.

In our setting of this problem we use a different distance
function in the warping definition. We call the new distance
Dwarp and we use it to mitigate the potential wrap-around
effect of the turning angles:

Dwarp(Qi, Ti) = min

{
|Qi − Ti|
2π − |Qi − Ti|

The DTW distance can be computed using a well known dy-
namic programming algorithm in O(n2) time for sequences
of length n.

6. APPROXIMATING THE DTW
Since the O(n2) complexity of DTW quickly becomes a

bottleneck for large datamining tasks, one can reduce the
warping scope within a matching region of δ2 effectively re-
ducing the complexity into O(δn). This simplification is
realistic for most real applications and in many cases it can
also improve accuracy by limiting the number of degenerate
matchings3.
We revisit some of the most recent DTW lower bounds.

The work of Keogh [8] instigated an enhanced interest in
the Warping Distance, by introducing a new tight lower
bound, called LB-Keogh. The idea is based on the notion
of the Minimum Bounding Envelope (MBE), which records
the areas of possible matching, when local displacement is
constrained within a region δ. The MBE of a sequence Q

2That is, allow matchings between two points if they are δ
points apart.
3Typical values for δ are 20− 30% of n.

consists of the area defined between the upper envelope U
and the lower envelope L and their values at position i is
given by:

Li = min(Qi−δ, . . . , Qi+δ), Ui = max(Qi−δ, . . . , Qi+δ)

The author further showed that this lower bounding func-
tion can be indexed, by introducing a reduced dimension-
ality version of it called LB − PAA, which is illustrated
in figure 8. This is achieved by creating a simplified rep-
resentation of the query MBE and all database sequences,
by converting them into k equi-length Minimum Bounding
Rectangles (MBRs)4. Each of the k MBRs of Q consists of
a tuple, [q̂i,L, q̂i,U ] with values:

MBRi(Q) =

{
q̂i,L = min(Ln

k
(i−1)+1, . . . , Ln

k
i)

q̂i,U = max(Un
k

(i−1)+1, . . . , Un
k

i)

When segmenting any database sequence T into MBRs, us-
ing the above equation we can essentially consider that Ui =
Li = Ti.
The lower bound distance LB–PAA is the distance be-

tween the MBRs of the query envelope (MBR(MBE(Q)))
and the MBRs of T (MBR(T )), which is shown in gray
vertical lines in Figure 8).

LB−PAA = 13.8479

Q T 

Figure 8: LB–PAA. The total length of the gray
vertical lines represents the lower bound distance.

Extensions of the MBE for multidimensional sequences
and introduction of new upper bounds have appeared in
[14].

In [16] Zhu and Shasha, improved on the previous idea,
by leveraging the lower bounding property of the PAA rep-
resentation [9]. The PAA approximation is a simple and ef-
fective dimensionality reduction technique, that converts a
sequence of length n into k equi-length segments, that record

4k is a user defined parameter.



average values of the original sequence. That is PAA(Q) =
(q̄1, q̄2, . . . , q̄k), where :

q̄i =
k

n

n
k

i∑
j= n

k
(i−1)+1

Qj

Similarly as before, the MBE of the queryQ is constructed,
however both the envelope (U & L) and any other sequence
T are approximated by their PAA representation. The new
lower bound, LB–Zhu, is essentially the distance between
PAA(MBE(Q)) and PAA(T ). A schematic representation
is given in Figure 9.

LB−Zhu = 25.4112

Q 

T 

Figure 9: LB–Zhu. The lower bound on the distance
is marked by the gray vertical lines.

6.1 A New Lower Bound Technique for DTW
The envelope-based approaches are fast to compute, how-

ever the tightness of the lower bound diminishes for large
warping lengths (that is, when the parameter δ becomes
too large). This happens because the bounding envelope
becomes very wide.
We propose a different approach for approximating the

DTW. In order to minimize the impact of δ (the width of
the bounding envelope), we use only approximations of the
query sequence Q and the database sequence T . We com-
pute the Minimum Bounding Rectangle approximation of
the query sequence Q (MBR(Q)), and the PAA approx-
imation of a sequence T in the database, PAA(T ). The
distance between the segments MBRi(Q) = [q̂i,L, q̂i,U ] and
PAAj(T ) = t̄j is defined as:

Dseg(MBRi(Q), PAAj(T )) =




k × ∆(q̂i,L, t̄j), if q̂i,L > t̄j
k × ∆(q̂i,U , t̄j) if q̂i,U < t̄j
0 otherwise

∆ can be any distance such as the squared Euclidean or,
in our case, the Dwarp distance which mitigates the wrap-
around effects.

LB−Warp = 29.0621

Figure 10: LB-Warp delivers a tighter lower-bound
than previously used approaches.

In order to lower bound the warping distance between
Q,T we just need to run a DTW computation on the ap-
proximations, using Dseg as the base distance function. We

call this lower bound LB−Warp. Additionally, the warping
length needs to be modified. If the original warping compu-
tation allowed matching within δ points (out of n), it has
to be modified now to �δ( k

n
)�. Therefore the running com-

plexity is reduced from O(nδ), to O(k�δ( k
n
)�). In Figure 11

we give an example of how the new bound is computed; no
envelope is computed around the query sequence (compare
with Figure 10), but the approximation segments of the two
sequences can be matched with neighboring segments.
We can state the following lemma:

Lemma 1. (Lower Bounding Lemma): Given trajectories
Q and T of length n and warping length δ, and their approx-
imations of length k, MBR(Q) and PAA(T ) the following
inequality holds:

LB −Warp�δ( k
n

)�(MBR(Q), PAA(T )) ≤ DTWδ(Q,T )

7. EXPERIMENTS
We show the rotation invariance of the new measures,

using a real dataset obtained through a graphic tablet, where
the x-y position of the stylus is recorded over time (tablet
real dataset). This dataset contained 90 two-dimensional
time-series, a subset of which is shown is Figure 11.

Figure 11: Subset of the dataset used in our ex-
periments, consisting of various strokes (at different
angles) written on a graphic tablet.

Based on the tablet real dataset, we created also a syn-
thetic dataset, using a single orientation of each tablet stroke
and creating three additional copies by rotating the template
at random angles between [−90 . . .+ 90o] (tablet synthetic)
This dataset is used as a sanity check, to examine possible
performance deviations between synthetic and real datasets.

7.1 Classification Accuracy
We have conducted a leave-one-out Nearest Neighbor clas-

sification scheme, in order to measure the classification accu-
racy of the rotation invariant distance measures. We observe
that the Exact Angles (all angles are with respect to a ref-
erence direction) and the cMass Angles techniques are both
very accurate. The performance of the Relative Angles ap-
proach is good for synthetic data, however only Exact and
cMass Angles give good accuracy for real data. This ex-
ample indicates (once more) the great discrepancy that can
exist in the performance of an algorithm between synthetic
and real datasets.
In fig. 12 we show a 2D mapping of 40 handwritten strokes

based on their pairwise distances. The position of the sym-
bols on 2D plane, is derived using ISOMAP [13], which
represents an improved implementation of Multidimensional
Scaling. The spatial proximity in 2D of the rotated versions
of the same symbol, indicates that the new representation
is very robust to rotation transformations.



Method Accuracy Accuracy
(Tablet Synthetic) (Tablet Real)

Relative Angles 98.91 % 30 %
Exact Angles 92.39 % 88.89 %
cMass Angles 100 % 92.22 %

Table 1: Accuracy rates for leave-1-out classification
experiments using the handwriting dataset.

Figure 12: 2D mapping of handwritten strokes based
on the rotation invariant measures.

7.2 Pruning Power of the LB–Warp
Using the sequences of the tablet real dataset as seeds, we

generated datasets with larger cardinality (1000, 2000, 4000
and 8000) for testing the scalability and pruning power of
the new lower bound.
We evaluate the pruning power of the lower bounds, us-

ing a scheme not affected by implementation details. We
accomplish this by measuring the number of raw sequences
retrieved from disk, in order to find the 1-Nearest-Neighbor
(1NN) to a given query, averaged over 50 queries.
We observe that the new lower bound represents a signifi-

cant enhancement over the previous approaches. For certain
queries we may examine up to 35 times fewer sequences than
LB–Keogh and up to 15 times fewer sequences compared to
LB–Zhu (Figure 15).
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Figure 13: Fraction of the dataset objects examined,
averaged over 50 queries. The new lower bound,
LB–Warp, examines consistently the fewest number
of sequences.

In figure 14 we report the cumulative time for return-
ing the 1NN for 50 queries. This time includes the lower-
bound distance calculation as well as the time to find the
1NN and the experiment is conducted for increasing dataset
sizes. We observe that LB−Warp outperforms all previous
approaches.
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Figure 14: LB-Warp can reduce the running time
by 40%, compared to next best method.
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