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Abstract

Surrogate maximization (or minimization)
(SM) algorithms are a family of algorithms
that can be regarded as a generalization of
expectation-maximization (EM) algorithms.
There are three major approaches to the
construction of surrogate functions, all rely-
ing on the convexity of some function. In
this paper, we solve the boosting problem by
proposing SM algorithms for the correspond-
ing optimization problem. Specifically, for
AdaBoost, we derive an SM algorithm that
can be shown to be identical to the algo-
rithm proposed by Collins et al. (2002) based
on Bregman distance. More importantly, for
LogitBoost (or logistic boosting), we use sev-
eral methods to construct different surrogate
functions which result in different SM algo-
rithms. By combining multiple methods, we
are able to derive an SM algorithm that is
also the same as an algorithm derived by
Collins et al. (2002). Our approach based
on SM algorithms is much simpler and con-
vergence results follow naturally.

1. Introduction

Boosting is among the most successful recent devel-
opments in the machine learning community. Essen-
tially, boosting can be formulated as an optimization
problem. In general, there exist three different types
of boosting algorithms according to the loss functions
used. AdaBoost (for “adaptive boosting”; also called
ExpBoost) is based on the exponential loss function,
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LogitBoost is based on the log loss function (or neg-
ative log likelihood function), and L2Boost is based
on the squared loss function. For both AdaBoost
and LogitBoost, since there exists an explicit equiv-
alence relationship between them and logistic expo-
nential models, maximum likelihood estimation meth-
ods are natural choices for solving the optimization
problem. For L2Boost, on the other hand, some least
squares fitting methods, such as the functional gradi-
ent descent algorithm (Friedman et al., 2000; Fried-
man, 2001; Bühlmann & Yu, 2003), can be used.

In this paper, we focus on AdaBoost and LogitBoost.
Our work has been motivated by some recent works
(Kivinen & Warmuth, 1999; Lafferty, 1999; Collins
et al., 2002) which are based on Bregman distance
optimization methods. Simply put, the Bregman dis-
tance between two vectors is defined via a convex func-
tion on a convex set that contains these two vectors.
Della Pietra et al. (1997) applied Bregman distance
optimization to log-linear models, and Della Pietra
et al. (1997) and Collins et al. (2002) discussed its
relationship with generalized iterative scaling (Dar-
roch & Ratcliff, 1972) for log-linear models. Like gen-
eralized iterative scaling, the core spirit of Bregman
distance optimization is from convex analysis (Rock-
afellar, 1970). It is an interesting novelty to unify
AdaBoost and logistic regression within the frame-
work of Bregman distance. However, this approach
requires considerable mathematical skills to construct
a Bregman function that matches the problem in ques-
tion. Furthermore, in order to use Bregman dis-
tance optimization, it is necessary to reformulate the
unconstrained optimization problem for boosting as
an equivalent constrained optimization problem sub-
ject to linear constraints. This makes the problem
much more technically involved. Della Pietra et al.
(2001) also recognized these difficulties and sought to
use the Legendre transformation technique (Rockafel-
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lar, 1970). The main difference between (Della Pietra
et al., 2001) and (Collins et al., 2002) is that the former
works with the argument at which a convex conjugate
takes on its value, while the latter works with the value
of the functional itself. This makes it more natural to
formulate a duality theorem.

Since log likelihood functions are closely related to con-
vex (or concave) functions, convexity plays a central
role in both statistical inference and computational
statistics. In computational statistics, a successful
example is the well-known expectation-maximization
(EM) algorithm (Dempster et al., 1977). Becker et al.
(1997) and Lange et al. (2000) demonstrated that the
EM algorithm can be derived from either Jensen’s in-
equality or the concavity property of the log function.
Along this line, a family of EM-like algorithms with-
out missing data (Becker et al., 1997) have been de-
vised to handle cases involving no missing data. Lange
et al. (2000) unified this family of algorithms within
the framework of the so-called optimization transfer

algorithms, in which all algorithms rely on an opti-
mizing function to serve as a surrogate function for
the objective function of the optimization problem. By
invoking convexity arguments, a general principle pro-
viding guidelines on constructing surrogate functions,
as well as some specific examples for special cases, have
been discussed in (Lange et al., 2000). Depending
upon the context, this often relies on three important
tools, namely, Jensen’s inequality, first-order Taylor

approximation, and the low quadratic bound principle.

Optimization transfer algorithms are very efficient be-
cause they can make an intractable or complex opti-
mization problem simpler. For example, optimization
transfer decouples the correlation among parameters
so that we can estimate the parameters in parallel. It
can also locally linearize a convex function near some
value to make the problem at hand more tractable.
It can avoid the computational problem of inverting
large matrices as required by Newton’s method. More-
over, optimization transfer enjoys the same local con-
vergence properties as standard EM.

Some other names have been used for optimization
transfer methods. In the context of multidimensional
scaling (MDS), optimization transfer is referred to as
iterative majorization, while in convex optimization,
it is usually called the auxiliary function method. To
contrast it with the standard EM algorithm for miss-
ing data problems, Meng (2000) suggested to refer to
it as the SM algorithm. Here, S stands for the sur-
rogate step while M stands for the maximization (or
minimization, depending on the optimization problem
at hand) step. In this paper, we prefer the name ‘SM

algorithm’ as it reflects more accurately the spirit of
this family of algorithms.

Motivated by the idea of using surrogate functions, we
apply the SM algorithm to the optimization problem
corresponding to boosting. Based on Jensen’s inequal-
ity and first-order Taylor approximation, we devise SM
algorithms for both AdaBoost and LogitBoost. The
devised SM algorithms are exactly equivalent to the
parallel Bregman distance algorithms of Collins et al.
(2002), and thus our method can be seen as providing
a new derivation for their algorithms. Compared with
(Della Pietra et al., 2001) and (Collins et al., 2002),
the mathematical skills required for our approach are
much simpler because we only need to utilize Jensen’s
inequality or first-order Taylor approximation over a
convex function. More importantly, our approach nat-
urally guarantees convergence of the iterative algo-
rithms for both AdaBoost and LogitBoost.

In this paper, we pay more attention to LogitBoost in
order to show the potential of SM algorithms in ma-
chine learning. Although every road leads to Rome,
a good traveling manual is still necessary. Our goal
is to demonstrate how to use three popular meth-
ods for constructing the surrogate function. Based on
Jensen’s inequality, we decouple the correlation among
the estimated parameters and decompose the origi-
nal high-dimensional optimization problem into a set
of one-dimensional sub-problems, allowing us to han-
dle each sub-problem separately. Although we cannot
obtain a one-step closed-form iterative procedure, we
present a gradient SM algorithm by borrowing ideas
from the gradient EM algorithm (Lange, 1995). More-
over, we show that the iterative procedure of Collins
et al. (2002) can be regarded as a generalized SM al-
gorithm analogous to the generalized EM algorithm
(Dempster et al., 1977). Based on first-order Tay-
lor approximation, we express the original objective
function as the difference of two convex functions (i.e.,
a convex function plus a concave function), leading
to a quadratic surrogate function. Based on the low
quadratic bound principle (Böhning & Lindsay, 1988),
we devise a quadratic SM algorithm. The essence of
quadratic SM algorithms is to approximate the Hes-
sian matrix in Newton’s method with a simple posi-
tive definite matrix. In particular, quadratic SM uses
a constant matrix. This implies that we need to com-
pute the inverse of the Hessian matrix just once. As a
result, this can avoid the need for inverting large ma-
trices in each iterative step. Finally, based on the com-
bination of Jensen’s inequality and first-order Taylor
approximation, we present the fourth method for con-
structing surrogate functions. More surprisingly, using
this method, we can devise SM algorithms which are



equivalent to the parallel Bregman distance algorithms
of Collins et al. (2002).

2. AdaBoost and Logistic Regression

Let T = {(x1, y1), . . . , (xn, yn)} be a finite set of train-
ing examples, where each instance xi from a domain or
instance space X corresponds to a label yi ∈ {−1,+1}.
We also assume that we are given a set of real-valued
functions, h1, . . . , hm, on X . In the boosting literature,
these hi’s are usually called weak or base hypotheses.

Boosting aims at labeling the xi’s using a linear com-
bination of these weak hypotheses. In other words, we
want to find a parameter vector λ = (λ1, . . . , λm)T ∈
R

m such that fλ(xi) =
∑m

j=1 λjhj(xi) is a good ap-
proximation of the underlying function for class labels.
Instead of using fλ directly as a classification rule, we
usually postulate that the yi’s are determined by a
probabilistic model associated with fλ(xi). For exam-
ple, Friedman et al. (2000) suggested that the poste-
rior probability of y is given by a logistic function of
fλ(x), as

P̂ (y|x) =
1

1 + e−y
P

m
j=1

λjhj(x)
. (1)

Analogously, AdaBoost is based on the exponential
loss function

Le(λ) =
n
∑

i=1

e−yi

P

m
j=1

λjhj(xi), (2)

while LogitBoost is based on the following loss function

Ll(λ) =

n
∑

i=1

ln
(

1 + e−yi

P

m
j=1

λjhj(xi)
)

. (3)

Clearly, LogitBoost is equivalent to the problem of
maximizing the log likelihood function of the logistic
regression model.

3. Generic Structure of SM Algorithm

In many applications, we have to consider the prob-
lem of maximizing an arbitrary function L(θ) w.r.t.
some parameter θ. Given an estimate θ(t) at the tth
iteration, the SM algorithm (Lange et al., 2000; Meng,
2000) consists of the following two steps:

1. Surrogate Step (S-Step): Substitute a surro-
gate function Q(θ | θ(t)) for L(θ), such that

L(θ) ≥ Q(θ | θ(t)) (4)

for all θ, with equality holding at θ = θ(t).

2. Maximization Step (M-Step): Obtain the
next parameter estimate θ(t + 1) by maximizing
the surrogate function Q(θ | θ(t)) w.r.t. θ, i.e.,

θ(t + 1) = arg max
θ

Q(θ | θ(t)). (5)

The SM algorithm aims at transforming intractable
optimization problems to tractable ones. For exam-
ple, this can be achieved by decoupling the correlation
among parameters so that each parameter can be es-
timated separately in a one-step closed-form iterative
manner. Another advantage of using the SM algo-
rithm is that we can avoid inverting large matrices as
required by Newton’s method. Moreover, as

L(θ(t+1)) ≥ Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t)) = L(θ(t)),

the SM algorithm also enjoys the same local conver-
gence properties as the standard EM algorithm.

Despite these nice properties, it is not always possi-
ble to obtain a closed-form solution for θ(t + 1) in
the M-step. In the same spirit as the generalized EM
algorithm (Dempster et al., 1977), we can use a gener-
alized SM algorithm. That is, instead of maximizing
Q(θ|θ(t)), we only attempt to find a θ(t + 1) such
that Q(θ(t + 1)|θ(t)) ≥ Q(θ(t)|θ(t)). Alternatively, in
the same spirit as the gradient EM algorithm (Lange,
1995), we may also devise a gradient SM algorithm,
as:

θ(t + 1) = θ(t) − (∇2Q(θ(t)|θ(t)))−1∇L(θ(t)).

Note that the above-mentioned SM algorithm can be
applied equally well to the minimization of L(θ), by
simply reversing the inequality sign in (4) and chang-
ing the ‘max’ to ‘min’ in (5). Therefore, in the sequel,
‘M’ stands for either maximization or minimization
depending on the optimization problem.

Clearly, construction of the surrogate function is key
to the SM algorithm. On the one hand, the closer is
the surrogate function to L(θ), the more efficient is the
SM algorithm. On the other hand, a good surrogate
function should preferably have a closed-form solution
in the M-step. Lange et al. (2000) described some gen-
eral principles as well as three methods in particular
for the design of surrogate functions, in which function
convexity plays a central role.

Suppose f : S → (−∞,+∞] is convex on a closed con-
vex set S ⊆ R

q. The first method stems from Jensen’s
inequality

f(

k
∑

i=1

αiui) ≤
k
∑

i=1

αif(ui),



where α1 ≥ 0, . . . , αk ≥ 0 and
∑k

i=1 αi = 1. This in-
equality can be used to decouple the correlation among
the ui’s. The second method makes use of the follow-
ing property. When f(·) is also differentiable on its
domain S, it can be linearized by first-order Taylor
approximation, as

f(u) ≥ f(v) + ∇f(v)T (u − v), for u,v ∈ S.

Since most continuous functions can be expressed as
the difference of two convex functions, we can often
use this trick in constructing the surrogate function.
For example, if for any f(u) = g(u)−h(u) where both
g(u) and h(u) are convex, we can write f(u) ≤ g(u)−
h(v)−∇h(v)T (u−v). The third method uses the low
quadratic bound principle (Böhning & Lindsay, 1988).
Suppose there exists a u-independent positive semi-
definite matrix B such that B − ∇2f(u) is positive
semi-definite. Then, it can be shown that

f(u) ≤ f(v) + ∇f(v)T (u − v) +
1

2
(u − v)T B(u − v).

This is often used to define a quadratic surrogate func-
tion that can avoid the inversion of the Hessian matrix
in Newton’s method.

4. SM Algorithm for AdaBoost

In this section, we present an SM algorithm for Ad-
aBoost. Let us define

gij = −yihj(xi) (6)

and gi = (gi1, . . . , gim)T . As in (Collins et al., 2002),
we assume that

∑m
j=1 |gij | ≤ 1. Moreover, without

loss of generality, we assume throughout this paper
that gij 6= 0 for all i, j. If there exists some gij = 0,
we can simply remove the corresponding term and still
obtain the same results below.

Let us denote the tth iterate of λj by λj(t). From (2),
we have

Le(λ) =

n
∑

i=1

e
P

m
j=1

|gij |
gij

|gij |
(λj−λj(t))+λ(t)T

gi

=

n
∑

i=1

e
P

m
j=1

|gij |
gij

|gij |
(λj−λj(t))+(1−αi)0 × eλ(t)T

gi ,

where

αi =
m
∑

j=1

|gij |. (7)

Since exp(·) is convex, it can be shown that

Le ≤
n
∑

i=1

eλ(t)T
gi

{

1 − αi +

m
∑

j=1

|gij |e
gij

|gij |
(λj−λj(t))

}

≡ Qe(λ|λ(t)).

Clearly, Qe(λ(t)|λ(t)) = Le(λ(t)), and thus the RHS
can be used as a surrogate function of Le(λ). Note also
that Qe(λ|λ(t)) has decoupled the relationship among
the λj ’s. To minimize Qe(λ|λ(t)) w.r.t. λj ’s, we set

∂Qe(λ|λ(t))

∂λj
=

n
∑

i=1

gije
λ(t)T

gie
gij

|gij |
(λj−λj(t))

to zero, and obtain
∑

i∈S+

j

|gij |eλ(t)T
gieλj−λj(t) =

∑

i∈S−
j

|gij |eλ(t)T
gieλj(t)−λj ,

where S+
j = {i : gij > 0} and S−

j = {i : gij < 0}.
We take log on both sides and simplify to obtain the
following update equation for λj , as:

λj(t + 1) = λj(t) +
1

2
ln

(
∑

i∈S−
j
|gij |eλ(t)T

gi

∑

i∈S+

j
|gij |eλ(t)T gi

)

.

As Le(λ(t+1)) ≤ Qe(λ(t+1)|λ(t)) ≤ Qe(λ(t)|λ(t)) =
Le(λ(t)), local convergence is guaranteed.

Note that this iterative procedure is equivalent to
that of the parallel-update optimization algorithm of
(Collins et al., 2002). However, while ours is built upon
the SM algorithm and relies only on the convexity of
the exponential function, the one in (Collins et al.,
2002) requires the construction of a Bregman distance
which is much more mathematically involved. More-
over, convergence of our algorithm follows directly
from the SM algorithm. In fact, the Bregman dis-
tance optimization algorithm of (Collins et al., 2002)
can also work with the first-order Taylor expansion
of a convex function. However, the argument of this
convex function is itself also a function.

5. SM Algorithm for LogitBoost

In this section, we apply the SM algorithm to Logit-
Boost. From (1) and (3), we can see that LogitBoost
is equivalent to maximizing the conditional log likeli-
hood. In the following subsections, we present several
SM algorithms for LogitBoost based on four different
methods for constructing the surrogate function.

5.1. Using Jensen’s Inequality

Using gij and αi as defined in (6) and (7), we can
rewrite Ll(λ) in (3) as

Ll(λ) =
n
∑

i=1

ln

{

1 +

e
P

m
j=1

|gij |
h

gij

|gij |
(λj−λj(t))+λ(t)T

gi

i

+(1−αi)λ(t)T
gi

}

.



Since d2 ln(1+exp(u))
du2 = exp(u)

(1+exp(u))2 > 0, ln(1+ exp(·)) is

convex, and hence

Ll(λ)

≤

n
X

i=1

(1 − αi) ln(1 + e
λ(t)T

gi)

+

n
X

i=1

(

m
X

j=1

|gij | ln

»

1 + e

gij

|gij |
(λj−λj(t))+λ(t)T

gi

–

)

≡ Ql(λ|λ(t)). (8)

It is easy to show that Ql(λ(t)|λ(t)) = Ll(λ(t)).
Hence, Ql(λ|λ(t)) can be used as a surrogate function
of Ll(λ). As in Section 5, we can minimize Ql(λ|λ(t))
w.r.t. the λj ’s, by setting the partial derivative

∂Ql(λ|λ(t))

∂λj
=

∑

i∈S+

j

|gij |
eλ(t)T

gieλj−λj(t)

1 + eλ(t)T gieλj−λj(t)

−
∑

i∈S−
j

|gij |
eλ(t)T

gieλj(t)−λj

1 + eλ(t)T gieλj(t)−λj

to zero. However, a closed-form solution cannot be
found. There are two methods to tackle this problem.
One is to employ a strategy similar to the generalized
EM algorithm (Dempster et al., 1977), leading to a
generalized SM algorithm. Alternatively, we can resort
to a gradient SM algorithm analogous to the gradient
EM algorithm (Lange, 1995). Here, we employ this
strategy for LogitBoost. Using

∂Ql(λ|λ(t))

∂λj

˛

˛

˛

˛

˛

λ=λ(t)

=

n
X

i=1

pi(λ(t))gij ,

∂2Ql(λ|λ(t))

∂λ2
j

˛

˛

˛

˛

˛

λ=λ(t)

=

n
X

i=1

pi(λ(t))(1 − pi(λ(t)))|gij |,

where pi(λ) = exp(λT
gi)

1+exp(λT
gi)

, we update the current

parameter estimate λj(t) to

λj(t + 1) = λj(t) −

(

n
X

i=1

pi(λ(t))(1 − pi(λ(t)))|gij |

)

−1

×

n
X

i=1

pi(λ(t))gij . (9)

5.2. Using First-Order Taylor Approximation

Our point of departure is from that the function
f(u) = ln cosh

√
u for u ∈ [0,∞) is concave (Jaakkola

& Jordan, 1997). Noting the following relationship

ln(1 + eλ
T
gi) = ln 2 +

λT gi

2
+ ln cosh(

λT gi

2
), (10)

and using the concavity of f(u) = ln cosh
√

u, we have

ln cosh(
λT gi

2
) ≤ ln cosh(

λ(t)T gi

2
)

+
1

4
(λ − λ(t))T βi(t)gig

T
i (λ + λ(t)),

where βi(t) stands for the derivative of ln cosh
√

u at
√

u = |λ(t)T gi/2|, and βi(t) = tanh(λ(t)T
gi/2)

|λ(t)T gi|
when

λ(t)T gi 6= 0 and βi(t) = 1
2 otherwise. Thus, we obtain

a quadratic surrogate function

Qf (λ|λ(t)) = n ln 2 +

n
X

i=1

n

λT gi

2
+ ln cosh(

λ(t)T gi

2
)
o

+
1

4
(λ− λ(t))T

(

n
X

i=1

βi(t)gig
T
i

)

(λ+ λ(t)).

Minimization of Qf (λ|λ(t)) w.r.t. λ results in a new
one-step SM algorithm

λ(t + 1) = −
{

n
∑

i=1

βi(t)gig
T
i

}−1 n
∑

i=1

gi. (11)

Since this SM algorithm follows exactly the setting of
the standard SM algorithm, its convergence is natu-
rally guaranteed. It is worth noting that (10) shows
we indeed express the objective as the difference of
two convex functions because a linear function is both
convex and concave and the minus of a concave func-
tion is convex. The use of differences of convex (d.c.)
functions is a very important strategy in convex opti-
mization and has received much attention recently in
machine learning.

5.3. Using the Low Quadratic Bound Principle

The original idea of the low quadratic bound principle
was proposed by Böhning and Lindsay (1988). More
specifically, let L(θ) be the objective function to be
maximized, ∇L(θ) the Fisher score vector and ∇2L(θ)
the Hessian matrix at θ ∈ R

r. The low quadratic
bound algorithm aims to find a negative definite r × r
matrix B such that ∇2L(θ) º B for all θ.1 Thus, one
can define the surrogate function Q(θ | φ) of L(θ) as

Q(θ|φ) = L(φ)+(θ−φ)T∇L(φ)+
1

2
(θ−φ)T B(θ−φ).

Clearly, L(θ)−Q(θ | φ) attains its minimum at θ = φ.
Since Q(θ | φ) is a quadratic function, its convexity
implies that it has only one maximum. If we let φ be
the tth estimate of θ, denoted θ(t), then maximizing
Q(θ | θ(t)) w.r.t. θ yields the (t+1)th estimate of θ as

θ(t + 1) = θ(t) − B−1∇L(θ(t)). (12)

1Here C º D means C − D is positive semi-definite.



Convergence of this iterative algorithm has also been
proven (Böhning & Lindsay, 1988).

We now apply the low quadratic bound principle to
LogitBoost. First, we compute the Fisher score vector
and Hessian matrix as

∇Ll(λ) =
n
∑

i=1

pi(λ)gi,

∇2Ll(λ) =

n
∑

i=1

pi(λ)(1 − pi(λ))gig
T
i .

Since pi(λ)(1 − pi(λ)) ≤ 1
4 , we have

∇2Ll(λ) ¹ 1

4
GGT ,

where G = [g1, . . . ,gn]. Now, given the tth iterates
λj(t)’s of λj ’s, we can define a surrogate function of
Ll(λ) as

Qq(λ|λ(t)) = Ll(λ(t)) + (λ − λ(t))T∇Ll(λ(t))

+
1

8
(λ − λ(t))T GGT (λ − λ(t)).

Then minimization of Qq(λ|λ(t)) gives rise to the
(t+1)th iterate of λ, as:

λ(t + 1) = λ(t) − 4(GG)−1∇Ll(λ(t)). (13)

We can see that the assumption
∑m

j=1 |gij | ≤ 1 is not
necessary for the SM algorithm.

5.4. Using Multiple Approaches

Usually the three approaches discussed above are sep-
arately used to construct a surrogate function depend-
ing upon the problem at hand. However, in some cases,
it may be useful to combine multiple approaches to-
gether. Here we present a method for LogitBoost by
combining Jensen’s inequality and first-order Taylor
approximation.2

Consider the Ql(λ|λ(t)) in (8) and again work on ln(·)
with first-order Taylor approximation. Then

ln

[

1 + e
gij

|gij |
(λj−λj(t))+λ(t)T

gi

]

≤ ln
[

1 + eλ(t)T
gi
]

+

(

e
gij

|gij |
(λj−λj(t)) − 1

)

eλ(t)T
gi

1 + eλ(t)T gi

.

By combining this with the expression for Ql(λ|λ(t)),

2Other combinations also exist. Due to space limit,
these possibilities will be reported in a separate paper.

we obtain a new surrogate function for Ll(λ):

Qc(λ|λ(t))

=

n
∑

i=1

ln
(

1 + e
P

m
j=1

λj(t)gij

)

(14)

+

n
∑

i=1

pi(λ(t))

m
∑

j=1

|gij |
{

e
gij

|gij |
(λj−λj(t)) − 1

}

.

The partial derivative of Qc(λ|λ(t)) w.r.t. λj is

∂Qc(λ|λ(t))

∂λj
=

n
∑

i=1

pi(λ(t))gije
gij

|gij |
(λj−λj(t))

=
∑

i∈S+

j

pi(λ(t))|gij |eλj−λj(t) −

∑

i∈S−
j

pi(λ(t))|gij |eλj(t)−λj .

It is easy to find an exact analytical solution of
argminλQc(λ|λ(t)) as

λj(t+1) = λj(t)+
1

2
ln

(
∑

i∈S−
j
|gij |pi(λ(t))

∑

i∈S+

j
|gij |pi(λ(t))

)

. (15)

Clearly, this is a standard SM algorithm and thus its
convergence is guaranteed. Notice that this algorithm
is equivalent to the parallel Bregman distance algo-
rithm for LogitBoost proposed by Collins et al. (2002).
However, our derivation is much simpler because we
only utilize Jensen’s inequality with the convexity of
ln(1 + exp(u)) and first-order Taylor approximation
with the concavity of ln(u).

5.5. Analysis and Discussion

From the previous subsections, we can see that mul-
tiple surrogate functions can be derived for the same
objective function and hence multiple SM algorithms
are resulted. A natural question to ask is what criteria
should be used to guide the design of a good surrogate
function. One intuitive criterion is the closeness of a
surrogate function to the original objective function.
Specifically, the closer is the surrogate function to the
objective function, the better it will be. Another pos-
sible criterion is the tractability of the M-step. Obvi-
ously, a closed-form update equation is desirable.

Going back to the LogitBoost example above, it can
be shown that

Ll(λ) ≤ Ql(λ|λ(t)) ≤ Qc(λ|λ(t)),

and thus the surrogate function Ql(λ|λ(t)) proposed
in Section 5.1 is superior to Qc(λ|λ(t)) proposed in



Section 5.4. On the other hand, while Ql(λ|λ(t)) does
not have a closed-form solution for the M-step, it is
easy to show that an exact analytical solution exists
for Qc(λ|λ(t)). Similarly, we can show that3

Ll(λ) ≤ Qf (λ|λ(t)) ≤ Qq(λ|λ(t)).

From (11) and (13), we can see that both the SM algo-
rithms based on Qf (λ|λ(t)) and Qq(λ|λ(t)) essentially
amount to minimizing Ll(λ) by Newton’s method,
but with the Hessian matrix ∇2Ll(λ) replaced by
an approximation matrix. They can avoid the non-
convergent problem of standard Newton’s method.
Since the latter method uses a constant matrix (i.e.,
B), it only needs to compute the inverse of this con-
stant matrix once during the whole iterative process.
However, the former method has the same computa-
tional cost as Newton’s method. Thus, in general,
there has to be a tradeoff between the two criteria.

In passing, note that for λ(t+1) given in (15), we have

Ql(λ(t + 1)|λ(t)) ≤ Qc(λ(t + 1)|λ(t))

≤ Qc(λ(t)|λ(t)) = Ll(λ(t)) = Ql(λ(t)|λ(t)).

So the iterative procedure based on (15) defines a gen-
eralized SM algorithm for either the surrogate function
Qc(λ|λ(t)) or the surrogate function Ql(λ|λ(t)).

6. Experiments

In this section, we evaluate empirically several SM
algorithms for LogitBoost, i.e., those defined by (9),
(11), (13) and (15). For convenience, we refer to
them as SM-J, SM-F, SM-Q and SM-C, respectively.
We use synthetic data sets for two-class classifica-
tion problems similar to those used by Collins et al.
(2002). The first data set consists of 3,000 data points
xi ∈ R

100 sampled randomly from the normal distri-
bution with zero mean and identity covariance ma-
trix. To label these points, we first randomly generate
a 100-dimensional hyperplane represented by a vector
w ∈ R

100 subject to ‖w‖ = 1 and then assign the label
yi = sgn(wT xi) to each xi. After this labeling step, we
perturb each point xi by adding a random noise term
εi ∼ N (0, 0.2 ∗ I), leading to a new noisy data point
zi. We use 1,000 points for training and the remaining
2,000 points for testing.

We run our experiments using two data sets, i.e., {xi}
with noise and {zi} without noise. Specifically, we set
hj(xi) = xij and hj(zi) = zij , respectively, for the two
data sets. First, for i = 1, . . . , 1000 and j = 1, . . . , 100,
we calculate gij = −yihj(xi) (or gij = −yihj(zi)) and

3Due to space limit, the proof is omitted in the paper.

set gij =
gij

P

100
j=1

|gij |
such that

∑100
j=1 |gij | ≤ 1. Figure 1

shows the training losses, whose values are normalized
to 1 when λ(0) = 0, corresponding to the four SM
algorithms. We can see that for both data sets, the
convergence of SM-F and SM-Q is faster while the con-
vergence of SM-J and SM-C is slower. On the noisy
data set, both SM-F and SM-Q converge to a fixed
point after about 15 iterations. The loss values of SM-
J and SM-C, on the other hand, still decrease slowly
even after 200 iterations. Note that these results are
in line with our discussions above in Section 5.5.
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Figure 1. Training loss vs. number of iterations (SM-C: red
solid; SM-J: green dashed; SM-Q: blue dotted; SM-F: ma-
genta dash-dot).

We also report the classification accuracies. On the
test data without noise, both SM-F and SM-Q outper-
form SM-J and SM-C. Moreover, SM-F outperforms
SM-Q while SM-J outperforms SM-C. However, on the
test data with noise, the classification accuracies of
both SM-F and SM-Q decrease as the number of it-
erations increases. This shows the occurrence of over-
training for these two algorithms. Contrarily, SM-J
and SM-C are rather robust to noise.

7. Concluding Remarks

In this paper, we have demonstrated the successful
application of SM algorithms to boosting for two-class
problems, particularly LogitBoost. SM algorithms can
also be applied to boosting for multi-class problems.
However, due to space limit, this more general case
will be reported in an extended version of this paper.
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Figure 2. Testing accuracy vs. number of iterations (SM-C:
red solid; SM-J: green dashed; SM-Q: blue dotted; SM-F:
magenta dash-dot).

Like EM algorithms for missing data problems, SM
algorithms are gaining popularity in computational
statistics for problems without missing data. Although
EM algorithms are commonly used for solving many
machine learning problems, SM algorithms are still
rarely used. We hope this paper is successful in demon-
strating the power of SM algorithms and will lead to
wide applications in machine learning.
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