
Predictive Automatic Relevance Determination
by Expectation Propagation

Yuan (Alan) Qi yuanqi@media.mit.edu

MIT Media Laboratory, Cambridge, MA, 02139 USA

Thomas P. Minka minka@microsoft.com

Microsoft Research, 7 J J Thomson Ave, Cambridge, CB3 0FB, UK

Rosalind W. Picard picard@media.mit.edu

MIT Media Laboratory, Cambridge, MA, 02139 USA

Zoubin Ghahramani zoubin@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, UCL, 17 Queen Square, London, WC1N 3AR, UK

Abstract

In many real-world classification problems the

input contains a large number of potentially ir-

relevant features. This paper proposes a new

Bayesian framework for determining the rele-

vance of input features. This approach extends

one of the most successful Bayesian methods

for feature selection and sparse learning, known

as Automatic Relevance Determination (ARD).

ARD finds the relevance of features by optimiz-

ing the model marginal likelihood, also known as

the evidence. We show that this can lead to over-

fitting. To address this problem, we propose Pre-

dictive ARD based on estimating the predictive

performance of the classifier. While the actual

leave-one-out predictive performance is generally

very costly to compute, the expectation propaga-

tion (EP) algorithm proposed by Minka provides

an estimate of this predictive performance as a

side-effect of its iterations. We exploit this in our

algorithm to do feature selection, and to select

data points in a sparse Bayesian kernel classifier.

Moreover, we provide two other improvements

to previous algorithms, by replacing Laplace’s

approximation with the generally more accurate

EP, and by incorporating the fast optimization

algorithm proposed by Faul and Tipping. Our

experiments show that our method based on the

EP estimate of predictive performance is more

accurate on test data than relevance determina-

tion by optimizing the evidence.

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004.

1. Introduction

In many real-world classification and regression prob-
lems the input consists of a large number of features
or variables, only some of which are relevant. Inferring
which inputs are relevant is an important problem. It
has received a great deal of attention in machine learn-
ing and statistics over the last few decades (Guyon &
Elisseeff, 2003).

This paper focuses on Bayesian approaches to deter-
mining the relevance of input features. One of the most
successful methods is called Automatic Relevance De-
termination (ARD) (MacKay, 1992; Neal, 1996). This
is a hierarchical Bayesian approach where there are
hyperparameters which explicitly represent the rele-
vance of different input features. These relevance hy-
perparameters determine the range of variation for the
parameters relating to a particular input, usually by
modelling the width of a zero-mean Gaussian prior on
those parameters. If the width of that Gaussian is zero,
then those parameters are constrained to be zero, and
the corresponding input cannot have any effect on the
predictions, therefore making it irrelevant. ARD opti-
mizes these hyperparameters to discover which inputs
are relevant. 1

Automatic Relevance Determination optimizes the
1From a strictly Bayesian point of view, hard decisions

about whether an input feature should be selected or not
are not warranted unless there is a loss function which ex-
plicitly associates a cost to the number of features. How-
ever, in practice it is often desirable to have an easily in-
terpretable model with a sparse subset of relevant features,
and ARD methods can achieve this while closely approx-
imating the full Bayesian average which does no feature
selection.

model evidence, also known as the marginal likelihood,
which is the classic criterion used for Bayesian model
selection. In this paper we show that while this is
often effective, in cases where there are a very large
number of input features it can lead to overfitting.
We instead propose a different approach, called predic-
tive ARD, which is based on the estimated predictive
performance. We show that this estimated predictive
performance can be computed efficiently as a side ef-
fect of the expectation propagation algorithm for ap-
proximate inference and that it performs better that
the evidence-based ARD on a variety of classification
problems.

Although the framework we present can be applied to
many Bayesian classification and regression models, we
focus our presentation and experiments on classifica-
tion problems in the presence of irrelevant features as
well as in sparse Bayesian learning for kernel methods.

Compared to the traditional ARD classification, this
paper presents three specific enhancements: (1) an ap-
proximation of the integrals via Expectation Propaga-
tion, instead of Laplace’s method or Monte Carlo; (2)
an ARD procedure which minimizes an estimate of the
predictive leave-one-out generalization error (obtained
directly from EP); (3) a fast sequential update for the
hyperparameters based on Faul and Tipping (2002)’s
recent work. These enhancements improve classifica-
tion performance.

The rest of this paper is organized as follows. Section
2 reviews the ARD approach to classification and its
properties. Section 3 presents predictive ARD by EP,
followed by experiments and discussions in section 4.

2. Automatic Relevance Determination

A linear classifier classifies a point x according to
t = sign(wTx) for some parameter vector w (the
two classes are t = ±1). Given a training set D =
{(x1, t1), ..., (xN , tN)}, the likelihood for w can be
written as

p(t|w, X) =
∏
i

p(ti|xi,w) =
∏
i

Ψ(tiw
Tφ(xi)) (1)

where t = {ti}Ni=1, X = {xi}Ni=1, Ψ(·) is the cumula-
tive distribution function for a Gaussian. One can also
use the step function or logistic function as Ψ(·). The
basis function φT (xi) allows the classification bound-
ary to be nonlinear in the original features. This is
the same likelihood used in logistic regression and in
Gaussian process classifiers. Given a new input xN+1,
we approximate the predictive distribution:

p(tN+1|xN+1, t) =

∫
p(tN+1|xN+1,w)p(w|t)dw (2)

≈ p(tN+1|xN+1, 〈w〉) (3)

where 〈w〉 denotes the posterior mean of the weights,
called the Bayes Point (Herbrich et al., 1999).

The basic idea in ARD is to give the feature weights
independent Gaussian priors:

p(w|α) =
∏
i

N (wi|0, α−1
i),

where α = {αi} is a hyperparameter vector that con-
trols how far away from zero each weight is allowed to
go. The hyperparameters α are trained from the data
by maximizing the Bayesian ‘evidence’ p(t|α), which
can be done using a fixed point algorithm or an EM
algorithm treating w as a hidden variable (MacKay,
1992). The outcome of this optimization is that many
elements of α go to infinity such that w would have
only a few nonzero weights wj . This naturally prunes
irrelevant features in the data. Later we will discuss
why ARD favors sparse models (section 2.2).

2.1. ARD-Laplace

Both the fixed point and EM algorithms require
the posterior moments of w. These moments
have been approximated by second-order expansion,
i.e. Laplace’s method (MacKay, 1992), or approx-
imated by Monte Carlo (Neal, 1996). ARD with
Laplace’s method (ARD-Laplace) was used in the
Relevance Vector Machine (RVM) (Tipping, 2000).
The RVM is a linear classifier using basis functions
φ(x) = [k(x,x1), k(x,x2), · · · , k(x,xN)]. Specifically,
Laplace’s method approximates the evidence by a
Gaussian distribution around the maximum a poste-
riori (MP) value of w, wMP , as follows:

Σ = −H−1 = −d
2 log p(w, t|α)

dwdwT

∣∣∣−1

w=wMP

p(w, t|α) ≈ p(t,wMP) exp
(
− 1

2
(w −wMP)TΣ−1(w −wMP)

)
p(t|α) =

∫
p(w, t|α)dw ≈ p(t,wMP)|2πΣ|1/2

p(w|t,α) =
p(w, t|α)

p(t|α)
≈ N (w|wMP ,Σ)

If we use a logistic model for Ψ(·), then the Hessian
matrix H has the following form: H = −(ΦBΦT +A),
where Φ =

(
φ(xi), . . . , φ(xN)

)
is a d by N matrix,

A = diag(α), and B is a diagonal matrix with Bii =
Ψ
(
wT
MPxi

)(
1−Ψ(wT

MPxi)
)
.

Laplace’s method is a simple and powerful approach
for approximating a posterior distribution. But it does
not really try to approximate the posterior mean; in-
stead it simply approximates the posterior mean by
the posterior mode. The quality of the approximation
for the posterior mean can be improved by using EP
as shown by Minka (2001).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Illustration of overfitting of ARD.

2.2. Overfitting of ARD

Overfitting can be caused not only by over-complicated
classifiers, but also by just picking one from many sim-
ple classifiers that can correctly classify the data. Con-
sider the example plotted in figure 1. The data labelled
with ’x’ and ’o’ are in class 1 and 2 respectively. Every
line through the origin with negative slope separates
the data. If you apply the regular Bayes Point linear
classifier, you get a classifier of angle 135◦ (shown); if
you apply ARD to maximize evidence, you end up with
a horizontal line which is sparse, becaues it ignores one
input feature, but seemingly very dangerous. Both
horizontal and vertical sparse classifiers have larger
evidence values than the one of 135◦, though both
of them are intuitively more dangerous. Having ef-
fectively pruned out one of the two parameter dimen-
sions (by taking one of the αs to infinity), the evidence
for the horizontal and vertical classifiers involves com-
puting an integral over only one remaining dimension.
However, the evidence for the classifier which retains
both input dimensions is an integral over two parame-
ter dimensions. In general, a more complex model will
have lower evidence than a simpler model if they can
both classify the data equally well. Thus ARD using
evidence maximization chooses the “simpler” model,
which in this case is more dangerous because it uses
only one relevant dimension.

ARD is a Type II maximum likelihood method and
thus subject to overfitting as the somewhat dramatic
albeit contrived example above illustrates. However, it
is important to point out that the overfitting resulting
from fitting the relevance hyperparameters α is not
the same kind of overfitting as one gets from fitting
the parameters w as in classical maximum likelihood
methods. By optimizing w one can directly fit noise in

the data. However, optimizing α only corresponds to
making decisions about which variables are irrelevant,
since w is integrated out. In the simple case where
α can take only two values, very large or small, and
the input is d-dimensional, choosing α corresponds to
model selection by picking one out of 2d subsets of
input features. This is only d bits of information in
the training data that can be overfit, far fewer than
what can be achieved by precisely tuning a single real-
valued parameter w. However, when d is large, as
in the practical examples in our experimental section,
we find that even this overfitting can cause problems.
This motivates our proposed predictive measure for
ARD based on estimating leave-one-out performance.

2.3. Computational Issues

To compute the posterior moments of w required by
ARD-Laplace, we need to invert the Hessian matrix H
for each update. This takes O(d3) time, which is quite
expensive when the dimension d is large.

3. Predictive-ARD-EP

In this section, we improve ARD-Laplace in three
ways: replacing Laplace’s method by more accurate
EP, estimating the predictive performance based on
leave-one-out estimate without actually carrying out
the expensive cross-validation, and incorporating a
fast sequential optimization method into ARD-EP.

3.1. EP for Probit Model

The algorithm described in this section is a variant of
the one in (Minka, 2001), and we refer the reader to
that paper for a detailed derivation. Briefly, Expecta-
tion Propagation (EP) exploits the fact that the likeli-
hood is a product of simple terms. If we approximate
each of these terms well, we can get a good approx-
imation to the posterior. Expectation Propagation
chooses each approximation such that the posterior us-
ing the term exactly and the posterior using the term
approximately are close in KL-divergence. This gives
a system of coupled equations for the approximations
which are iterated to reach a fixed-point.

Denote the exact terms by gi(w) and the approximate
terms by g̃i(w):

p(w|t,α) ∝ p(w|α)
∏
i

p(ti|w)

= p(w|α)
∏
i

gi(w) ≈ p(w|α)
∏
i

g̃i(w)

The approximate terms are chosen to be Gaussian, pa-
rameterized by (mi, vi, si): g̃i = si exp(− 1

2vi
(tiφTi w −

mi)2). This makes the approximate posterior distribu-
tion also Gaussian: p(w|t,α) ≈ q(w) = N (mw,Vw).

To find the best term approximations, proceed as fol-
lows: (to save notation, tiφi is written as φi)

1. Initialization Step: Set g̃i = 1: vi = ∞, mi = 0,
and si = 1. Also, set q(w) = p(w|α).

2. Loop until all (mi, vi, si) converge:

Loop i = 1, . . . , N :

(a) Remove the approximation g̃i from q(w)
to get the ‘leave-one-out’ posterior q\i(w),
which is also Gaussian: N (m\iw ,V

\i
w). From

q\i(w) ∝ q(w)/g̃i, this implies

V\iw = Vw +
(Vwφi)(Vwφi)

T

vi − φTi Vwφi
(4)

m\iw = mw + (V\iwφi)v
−1
i (φTi mw −mi) (5)

(b) Putting the posterior without i together with
term i gives p̂(w) ∝ gi(w)q\i(w). Choose
q(w) to minimize KL(p̂(w) || q(w)). Let Zi
be the normalizing factor.

mw = m\iw + V\iw ρiφi

Vw = V\iw − (V\iwφi)
(ρi(φTi mw + ρi)

φTi V
\i
wφi + 1

)
(V\iwφi)

T

Zi =

∫
w

gi(w)q\i(w)dw = Ψ(zi) (6)

where

zi =
(m
\i
w)Tφi√

φTi V
\i
w φi + 1

ρi =
1√

φTi V
\i
w φi + 1

N (zi; 0, 1)

Ψ(zi)

(7)

(c) From g̃i = Zi
q(w)
q\i(w)

, update the term approx-
imation:

vi = φ
T
i V
\i
w φi

(1

ρi(φ
T
i mw + ρi)

− 1
)

+
1

ρi(φ
T
i mw + ρi)

(8)

mi = φ
T
i m
\i
w + (vi + φ

T
i V
\i
w φi)ρi (9)

si = Ψ(zi)

√
1 + v−1

i φTi V
\i
w φi exp

(1

2

φTi V
\i
w φi + 1

φTi mw + ρi
ρi
)
(10)

3. Finally, compute the normalizing constant and
the evidence:

B = (mw)
T

V
−1
w mw −

∑
i

m2
i

vi

p(D|α) ≈
∫ ∏

i

p(w|α)g̃i(w)dw =
|Vw|1/2

(
∏
j αj)

1/2
exp(B/2)

∏
i

si

(11)

The time complexity of this algorithm is O(d2) for pro-
cessing each term, and therefore O(Nd2) per iteration.

3.2. Estimate of Predictive Performance

A nice property of EP is that it can easily offer an es-
timate of leave-one-out error without any extra com-
putation. At each iteration, EP computes in (4) and
(5) the parameters of the approximate leave-one-out
posterior q\i(w) that does not depend on the ith data
point. So we can use the mean m\iw to approximate
a classifier trained on the other (N − 1) data points.
Thus an estimate of leave-one-out error can be com-
puted as

εloo =
1
N

N∑
i=1

Θ(−ti(m\iw)Tφ(xi)) (12)

where Θ(·) is a step function. An equivalent estimate
was given by Opper and Winther (2000) using the
TAP method for training Gaussian processes, which
is equivalent to EP (Minka, 2001).

Furthermore, we can provide an estimate of leave-one-
out error probability. Since Zi in (6) is the posterior
probability of the ith data label, we propose the fol-
lowing estimator:

εpred =
1
N

N∑
i=1

(1− Zi) =
1
N

N∑
i=1

Ψ(−zi) (13)

where Zi and zi is defined in (6) and (7). In (7),
φi is the product of ti and φ(xi). By contrast, Op-
per and Winther estimate the error probability by
1
N

∑N
i=1 Ψ(−|zi|), which ignores the information of the

label ti. Notice that εpred utilizes the variance of w
given the data, not just the mean. However, it as-
sumes that the posterior for w has Gaussian tails. In
reality, the tails are lighter so we compensate by pre-
scaling zi by 50, a number tuned by simulations.

3.3. Fast Optimization of Evidence

This section combines EP with a fast sequential opti-
mization method (Faul & Tipping, 2002) to efficiently
update the hyperparameters α.

As mentioned before, EP approximates each classi-
fication likelihood term gi(w) = Ψ(wTφi) by g̃i =
si exp(− 1

2vi
(φTi w − mi)2). Here φi is short hand for

tiφ(xi) as in the previous section. Notice that g̃i has
the same form as a regression likelihood term in a
regression problem. Therefore, EP actually maps a
classification problem into a regression problem where
(mi, vi) defines the virtual observation data point with
mean mi and variance vi. Based on this interpretation,
it is easy to see that for the approximate posterior
q(w), we have

Vw =
(
A + ΦΛ−1ΦT)−1

mw = VwΦΛ−1mo (14)

where we define

mo = (m1, . . . ,mN)T A = diag(α)

vo = (v1, . . . , vN)T Λ = diag(vo)

and Φ = (φi, . . . , φN) is a d by N matrix.

To have a sequential update on αj , we can explicitly
decompose p(D|α) into two parts, one part denoted
by p(D|α\j), that does not depend on αj and another
that does, i.e.,

p(D|α) = p(D|α\j) +
1

2

(
logαj − log(αj + rj) +

u2
j

αj + rj

)
where rj = φjC−1

\j φ
T
j , uj = φjC−1

\j mo, and C\j =
Λ−1 +

∑
m6=j φ

T
mφm. Here φj and φm are jth and mth

rows of the data matrix Φ respectively.

Using the above equation, Faul and Tipping (2002)
show p(D|α) has a maximum with respect to αj :

αj =
r2
j

u2
j − rj

, if ηj > 0 (15)

αj =∞, if ηj ≤ 0 (16)

where ηj = u2
j − rj . Thus, in order to maximize the

evidence, we introduce the jth feature when αj = ∞
and ηj > 0, exclude the jth feature when αj < ∞
and ηj ≤ 0, and reestimate αj according to (15) when
αj <∞ and ηj > 0. To further save computation, we
can exploit the following relations:

rj =
αjRj
αj −Rj

, uj =
αjUj
αj −Rj

(17)

where Rj = φjΛ−1φT
j − φjΛ−1Φ̂Tm̂w and Uj =

φjΛ−1mo − φjΛ−1Φ̂TV̂wΦ̂(φjΛ−1)−1. where Φ̂ con-
tains only the features that are currently included in
the model, and m̂w and V̂w are obtained based on
these features. This observation allows us to efficiently
compute the EP approximation and update α, since
in general there are only a small set of the features in
the model during the updates.

3.4. Algorithm Summary

To summarize the predictive-ARD-EP algorithm:

1. First, initialize the model so that it only contains
a small fraction of features.

2. Then, sequentially update α as in section 3.3 and
calculate the required statistics by EP as in sec-
tion 3.1 until the algorithm converges.

3. Finally, choose the classifier from the sequential
updates with minimum leave-one-out error esti-
mate (12). The leave-one-out error is discrete, so
in case of a tie, choose the first classifier in the
tie, i.e., the one with the smaller evidence.

A variant of this algorithm uses the error probability
(13) and is called predictiveProb-ARD-EP. Choos-
ing the classifier with the maximum evidence (approx-
imated by EP) is called evidence-ARD-EP.

4. Experiments and Discussion

This section compares evidence-ARD-EP and
predictive-ARD-EP on synthetic and real-world data
sets. The first experiment has 30 random training
points and 5000 random test points with dimension
200. True classifier weights consist of 10 Gaussian
weights, sampled from N (−0.5, 1) and 190 zero
weights. The true classifier is then used as the
ground truth to label the data. Thus the data is
guaranteed to be separable. The basis functions are
simply φ(x) = x. The results over 50 repetitions of
this procedure are visualized in figure 3-(a). Both
predictive-ARD-EP and predictiveProb-ARD-EP
outperform evidence-ARD-EP by picking the model
with the smallest estimate of the predictive error,
rather than choosing the most probable model.

Figure 2-(a) shows a typical run. As shown in the fig-
ure, the estimates of the predictive performance based
on leave-one-out error count (12) and (log) error prob-
ability (13) are better correlated with the true test er-
ror than evidence and the fraction of features. The ev-
idence is computed as in equation (11) and the fraction
of features is defined as ||w||0d where d is the dimension
of the classifier w. Also, since the data is designed to
be linearly separable, we always get zero training error
along the iterations. While the (log) evidence keeps in-
creasing, the test error rate first decreases and then in-
creases. This demonstrates the overfitting problem as-
sociated with maximizing evidence. As to the fraction
of features, it first increases by adding new useful fea-
tures into the model and then decreases by deleting old
features. Notice that the fraction of features converges
to a lower value than the true one, 10

200 = 0.05, which
is plotted as the dashed line in figure2-(a). More-
over, choosing the sparsest model, i.e., the one with
the smallest fraction of features, leads to overfitting
here even though there is zero training error.

Next, the algorithms are applied to high-dimensional
gene expression datasets: leukaemia and colon cancer.

For the leukaemia dataset, the task is to distin-

0 5 10 15 20 25 30 35

0.3

0.4

0.5

T
es

t e
rr

or

0 5 10 15 20 25 30 35

−2000

−1000

0

P
re

d
er

ro
r

0 5 10 15 20 25 30 35
0

0.1

0.2

LO
O

0 5 10 15 20 25 30 35
−20

−10

E
vi

de
nc

e

0 5 10 15 20 25 30 35
0

0.1
0.2
0.3

F
ra

c.
 o

f
fe

at
ur

es

Iterations

0 5 10 15 20 25 30 35 40 45 50

0.04

0.06

0.08

T
es

t e
rr

or

0 5 10 15 20 25 30 35 40 45 50

−1000

−500

0

P
re

d
er

ro
r

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

LO
O

0 5 10 15 20 25 30 35 40 45 50

−15

−10

−5

E
vi

de
nc

e

0 5 10 15 20 25 30 35 40 45 50
0

0.02
0.04
0.06
0.08

F
ra

c.
 o

f
fe

at
ur

es

Iterations

(a) Synthetic data classification (b) Leukaemia data classification

Figure 2. Comparison of different model selection criteria during ARD training. The second and third rows are computed
via (13) and (12), respectively. The estimated predictive performance is better correlated with the test errors than
evidence and sparsity.

10 20 30 40 50

34
.5

35
.0

35
.5

36
.0

36
.5

37
.0

Features

Te
st

 e
rr

or
 ra

te

Evidence−ARD−EP

PredictiveProb−ARD−EP

Predictive−ARD−EPActual # of relevant features

0 100 200 300 400 500

0.
08

0.
10

0.
12

0.
14

0.
16

Features

Te
st

 e
rr

or
 ra

te

Seq−ARD−Laplace

Evidence−ARD−EP

PredictiveProb−ARD−EP

Predictive−ARD−EP

All−Features−EP

(a) Synthetic data classification (b) Leukaemia data classification

Figure 3. Test errors and sizes of selected features. (a) synthetic dataset with 30 training and 5000 test data points. Each
data point has 201 features, among which only 11 are useful. 50 random repetitions of the data were used. (b) leukaemia
microarray dataset with 36 training and 36 test data points. Each data point has 7129 features. The results are averaged
over 100 random partitions. Ellipses indicate standard errors over repetitions.

guish acute myeloid leukaemia (AML) from acute lym-
phoblastic leukaemia (ALL). The dataset has 47 and
25 samples of type ALL and AML respectively with

7129 features per sample. The dataset was randomly
split 100 times into 36 training and 36 test samples,
with evidence-ARD-EP and predictive-ARD-EP run

Predictive−ARD−EP
PredictiveProb−ARD−EP

Evidence−ARD−EP
SVM−Fisher

SVM−RFE
Seq−ARD−Laplace

All−Features−EP

1.5 2.5

Test error count

0 50 100 150

of features

Figure 4. Test errors and sizes of selected feature sets on
colon cancer microarray dataset with 50 training and 12
test data points. Each data point has 2000 features. 100
random partitionings of the data were used.

on each. Figure 2-(b) shows a typical run that again
illustrates the overfitting phenomenon as shown in fig-
ure 2-(a). On most of runs including the one shown in
figure 2-(b), there is zero training error from the first to
the last iterations. The test performance is visualized
in figure 3-(b). The error counts of evidence-ARD-EP
and predictive-ARD-EP are 3.86±0.14 and 2.80±0.18,
respectively. The numbers of the chosen features of
these two methods are 2.78 ± 1.65 and 513.82 ± 4.30,
respectively.

For the colon cancer dataset, the task is to discrim-
inate tumour from normal tissues using microarray
data. The whole dataset has 22 normal and 40 cancer
samples with 2000 features per sample. We randomly
split the dataset into 50 training and 12 test samples
100 times and run evidence-ARD-EP and predictive-
ARD-EP on each partition. The test performance is
visualized in figure 4. For comparison, we show the re-
sults from Li et al. (2002). The methods tested by Li
et al. (2002) include ARD-Laplace with fast sequen-
tial updates on a logistic model (Seq-ARD-Laplace),
Support Vector Machine (SVM) with recursive fea-
ture elimination (SVM-RFE), and SVM with Fisher
score feature ranking (SVM-Fisher Score). The er-
ror counts of evidence-ARD-EP and predictive-ARD-
EP are 2.54 ± 0.13 and 1.63 ± 0.11, respectively. The
sizes of chosen feature sets for these two methods are
7.92± 0.14 and 156.76± 11.68, respectively.

As shown in figures 3-(b) and 4, pruning irrelevant fea-
tures by maximizing evidence helps to reduce test er-
rors. But aggressive pruning will overfit the model and
therefore increase the test errors. For both colon can-
cer and leukaemia datasets, predictive-ARD-EP with a
moderate number of features outperforms all the other
methods including EP without feature pruning as well
as the evidence-ARD-EP with only a few features left
in the model.

Finally, RBF-type feature expansion can be combined
with predictive-ARD-EP to obtain sparse nonlinear
Bayesian classifiers. Specifically, we use the following

Predictive−ARD−EP
PredictiveProb−ARD−EP

Evidence−ARD−EP
Seq−ARD−Laplace

SVM
All−Features−EP

27.4 28.0

Test error rate

0 20 60 100

of vectors

Figure 5. Test error rates and numbers of relevance or sup-
port vectors on breast cancer dataset. 50 partitionings of
the data were used. All these methods use the same Gaus-
sian kernel with kernel width σ = 5. The trade-off parame-
ter C in SVM is chosen via 10-fold cross-validation for each
partition.

Gaussian basis function φ(xi)

φ(xi) = [1, k(xi,x1), . . . , k(xi,xN)]T

where k(xi, xj) = exp(− ||xi−xj ||2
2σ2). Unlike the ARD

feature selection in the previous examples, here ARD
is used to choose relevance vectors φ(xi), i.e., to se-
lect data points instead of features. The algorithms
are tested on two UCI datasets: breast cancer and di-
abetes.

For the breast cancer dataset provided by Zwitter and
Soklic (1998), the task is to distinguish no-recurrence-
events from recurrence-events. We split the dataset
into 100 training and 177 test samples 50 times and run
evidence-ARD-EP and predictive-ARD-EP on each
partition. The test performance is visualized in fig-
ure 5 and summarized in table 1.

Table 1. Test error rates and numbers of relevance or sup-
port vectors on breast cancer dataset.

Algorithm Test error Size of

rate (%) feature set

SVM 28.05± 0.44 64.70± 1.17
EP 28.06± 0.46 101± 0

Seq-ARD-Laplace 27.90± 0.34 3.10± 0.13
Evd-ARD-EP 27.81± 0.35 3.84± 0.19

PredProb-ARD-EP 27.91± 0.37 8.40± 0.54
Pred-ARD-EP 27.81± 0.38 9.60± 0.62

In this experiment, evidence-ARD-EP and predictive-
ARD-EP marginally outperform the other alterna-
tives, but give much simpler models. They only have
about 4 or 10 relevance vectors while SVM uses about
65 support vectors.

Finally evidence-ARD-EP and predictive-ARD-EP are
tested on the UCI diabetes dataset. Each is run on
100 random partitions of 468 training and 300 test
samples. The partitions are the same as in Rätsch
et al. (2001), so that we can directly compare our

results with theirs. The test performance is sum-
marized in figure 4. The error rates of the evidence-
ARD-EP and predictive-ARD-EP are 23.91 ± 0.21%
and 23.96± 0.20%, respectively.

Predictive−ARD−EP
PredictiveProb−ARD−EP

Evidence−ARD−EP
All−Features−EP−linear

SVM
QP_Reg−AdaBoost
LP_Reg−AdaBoost

AdaBoost_Reg
AdaBoost

RBF

23.5 24.5 25.5 26.5

Test error rate

Figure 6. Test errors on diabetes dataset with 468 training
and 300 test data points. The results are averaged over
100 partitions.

On the diabetes dataset, predictive-ARD-EP performs
comparably or outperforms most of the other state-
of-the-art methods; only SVM performs better. Note
that the SVM’s kernel has been optimized using the
test data points, which is not possible in practice
(Rätsch et al., 2001).

5. Conclusions

Predictive-ARD-EP is an efficient algorithm for fea-
ture selection and sparse learning. Predictive-ARD-
EP chooses the model with the best estimate of the
predictive performance instead of choosing the one
with the largest marginal likelihood. On high-
dimensional micorarray datasets, Predictive-ARD-EP
outperforms other state-of-the-art algorithms in test
accuracy. On UCI benchmark datasets, it results in
sparser classifiers than SVMs with comparable test ac-
curacy. The resulting sparse models can be used in
applications where classification time is critical. To
achieve a desired balance between test accuracy and
testing time, one can choose a classifier that minimizes
a loss function trading off the leave-one-out error esti-
mate and the number of features.

The success of this algorithm argues against a few
popular principles in learning theory. First, it argues
against the evidence framework in which the evidence
is maximized by tuning hyperparameters. Maximizing
evidence is useful for choosing among a small set of dis-
tinct models, but can overfit if used with a large con-
tinuum of similar models, as in ARD. Second, our find-
ings show that larger fraction of nonzero features (or
lower sparsity) can lead to better generalization per-

formance, even when the training error is zero. This
is against the sparsity principles as well as Occam’s
razor. If what we care about is generalization perfor-
mance, then it is better to minimize some measure of
predictive performance as predictive ARD does.

Acknowledgements

Y. Qi was supported by the Things That Think consortium
at the MIT Media laboratory and the work was partially
performed during his visit to the Gatsby Unit, University
Colledge London. Thanks to W. Chu for providing the
gene expression datasets, J. Kandola for offering the se-
quential ARD-Laplace matlab codes, and F. Pérez-Cruz
for useful discussions on SVMs. Z. Ghahramani was par-
tially supported from CMU by DARPA under the CALO
project.

References

Faul, A. C., & Tipping, M. E. (2002). Analysis of sparse
bayesian learning. Advances in Neural Information Pro-
cessing Systems 14 (pp. 383–389).

Guyon, I., & Elisseeff, A. (2003). Spe-
cial issue on variable and feature selec-
tion. Journal of Machine Learning Research.
http://www.jmlr.org/papers/special/feature.html.

Herbrich, R., Graepel, T., & Campbell, C. (1999). Bayes
point machine: Estimating the Bayes point in kernel
space. IJCAI Workshop SVMs (pp. 23–27).

Li, Y., Campbell, C., & Tipping, M. E. (2002). Bayesian
automatic relevance determination algorithms for clas-
sifying gene expression data. Bioinformatics, 18, 1332–
1339.

MacKay, D. J. (1992). Bayesian interpolation. Neural
Computation, 4, 415–447.

Minka, T. P. (2001). Expectation propagation for ap-
proximate Bayesian inference. Uncertainty in AI’01.
http://www.stat.cmu.edu/~minka/papers/ep/.

Neal, R. M. (1996). Bayesian learning for neural net-
works. No. 118 in Lecture Notes in Statistics. New York:
Springer.

Opper, M., & Winther, O. (2000). Gaussian processes for
classification: Mean field algorithms. Neural Computa-
tion.

Rätsch, G., Onoda, T., & Müller, K.-R. (2001). Soft
margins for AdaBoost. Machine Learning, 42, 287–320.
also NeuroCOLT Technical Report NC-TR-1998-021. In
press.

Tipping, M. E. (2000). The relevance vector machine.
NIPS (pp. 652–658). The MIT Press.

Zwitter, M., & Soklic, M. (1998). This breast cancer do-
main was obtained from the University Medical Centre,
Institute of Oncology, Ljubljana, Yugoslavia.

