The Feasibility of Supporting Large-Scale Live Streaming
Applications with Dynamic Application End-Points’

Kunwadee Sripanidkulchai, Aditya Ganjam, Bruce Maggs,Jr and Hui Zhang

Carnegie Mellon University

ABSTRACT

While application end-point architectures have proven to be viable
solutions for large-scale distributed applications such as distributed
computing and file-sharing, there is little known about its feasibility
for more bandwidth-demanding applications such as live streaming.
Heterogeneity in bandwidth resources and dynamic group member-
ship, inherent properties of application end-points, may adversely
affect the construction of a usable and efficient overlay. At large
scales, the problems become even more challenging. In this paper,
we study one of the most prominent architectural issues in overlay
multicast: the feasibility of supporting large-scale groups using an
application end-point architecture. We look at three key require-
ments for feasibility: (i) are there enough resources to construct an
overlay, (ii) can a stable and connected overlay be maintained in
the presence of group dynamics, and (iii) can an efficient overlay
be constructed? Using traces from a large content delivery network,
we characterize the behavior of users watching live audio and video
streams. We show that in many common real-world scenarios, all
three requirements are satisfied. In addition, we evaluate the per-
formance of several design alternatives and show that simple algo-
rithms have the potential to meet these requirements in practice.
Overall, our results argue for the feasibility of supporting large-
scale live streaming using an application end-point architecture.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Distributed Systems

General Terms

Measurement, Perfomance

*This research was sponsored by DARPA under contract num-
ber F30602-99-1-0518, and by NSF under grant numbers Career
Award NCR-9624979 ANI-9730105, ITR Award ANI-0085920,
ANI-9814929, and ANI-0331653. Additional support was provided
by Intel. Views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of DARPA, NSF,
Intel, or the U.S. government.

Bruce Maggs is also with Akamai Technologies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’04, Aug. 30-Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

Keywords

Overlay multicast, application-level multicast, peer-to-peer, live stream-

ing

1. INTRODUCTION

Live audio and video streams are now being delivered success-
fully over the Internet on a large scale. Commercial content delivery
networks such as Akamai Technologies [1] and Real Networks [21]
have developed and deployed large-scale dedicated infrastructure to
deliver both live streams and video-on-demand. These architectures
are capable of supporting many simultaneous streams and clients.

In contrast to infrastructure-based content delivery networks,
application end-point overlay multicast has recently received atten-
tion [9, 8, 12, 14, 20, 25, 5, 2, 18, 24, 13, 4]. In such an archi-
tecture, application end-points organize themselves into an overlay
structure and data is distributed along the links of the overlay. The
responsibility and cost of providing bandwidth is shared amongst
the application end-points, reducing the burden at the content pub-
lisher. The lack of dependence on infrastructure support makes ap-
plication end-point architectures easy to deploy, and economically
viable. The ability for users to receive content that they would oth-
erwise not have access to provides a natural incentive for them to
contribute resources to the system. Application end-point architec-
tures have shown promise for events where the peak group size is
small, on the order of 10 to 100 nodes [7]. However, the question re-
mains whether or not such architectures are feasible at larger scales
of 1,000s to 100,000s of nodes.

We believe that the first step towards answering the feasibility
question is to obtain a better understanding of the application work-
load and the characteristics of application end-points. We leverage
the wealth of data from Akamai Technologies, a large content de-
livery network that provides live streaming services. Because the
system has been in everyday use for several years, the data reflects
common “real-world” application end-point characteristics and be-
havior that may impact the choice of architectures. Inherent prop-
erties of application end-point architectures, such as heterogeneity
in bandwidth resources and dynamic group membership could ad-
versely affect the feasibility of constructing a usable overlay for data
delivery.

We look at three key requirements for feasibility: (i) there must
be enough resources to construct an overlay, (ii) a stable and con-
nected overlay must be maintained in the presence of group dynam-
ics, and (iii) the overlay structure must be efficient. These three
requirements are fundamental in the sense that an application end-
point architecture has little chance of providing good performance
if these requirements are not satisfied. We find that in the majority
of common scenarios, application end-point architectures have suf-
ficient inherent resources and stability. In addition, efficient overlay

1400

1.26+06
1e+06 B
L
@ 800000 | —
=]
o
[0}
s
= 600000 | i
5
o
€ 400000 | 1
=z
200000 - —
I x
Aor boxx % ki

0
10/04 10/18 11/01 11/15 11/29 12/13 12/27 01/10 01/24

Date
(b) Number of requests.

Figure 1: Summary of live streams.

1200 q
w
£ 1000 4
©
<4
7]
o 800 1
2
-
S 600 g
[
o
5
3 400 1
200 q
X
10/04 10/18 11/01 11/15 11/29 12/13 12/27 01/10 01/24
.. Date
(a) Distinct streams.
‘ ‘ ‘ " Total Réquests ‘
Peak Concurrent Hosts --------
100000 1
1]
|73
o
I
5
[A 4
-E 10000 i
g \
=z
1000 . . . L P
0 100 200 300 400 500 600 700

Stream

Figure 2: Size of large-scale streams.

structures can be constructed using simple algorithms. Our findings
argue for the feasibility of using application end-point architectures
for large-scale live streaming applications.

In Section 2, we describe and analyze the streaming media
workload that we use in our study. Section 3 studies the feasibility
of constructing overlays using the resources available at application
end-points. In Section 4, we look at overlay stability and evaluate
algorithms to maintaining a stable overlay in the presence of dy-
namic group membership. Section 5 looks at the construction of
efficient overlays. We summarize our findings in Section 6.

2. LIVE STREAMING WORKLOAD

In this section, we analyze the live streaming workload from a
large content delivery network to better understand the design re-
quirements for building a live streaming system. We focus our anal-
ysis on characteristics that are most likely to impact design, such
as group dynamics. In the following sections, we evaluate the im-
pact of the workload on the performance of an application end-point
architecture.

2.1 Data Collection and Summary Statistics

The logs used in our study are collected from the thousands
of streaming servers belonging to Akamai Technologies. Akamai’s
streaming network is a static overlay composed of (i) edge nodes
located close to clients, and (ii) intermediate nodes that take streams
from the original content publisher and split and replicate them to
the edge nodes. The logs that we use in this study are from the edge
nodes that directly serve client requests.

The logs were collected over a 3-month period from October
2003 to January 2004. The daily statistics for live streaming traf-
fic during that period is depicted in Figure 1. The traffic consists
of three of the most popular streaming media formats, QuickTime,
Real, and Windows Media. In Figure 1(a), there were typically 800-
1000 distinct streams on most days. However, there was a sharp
drop in early December and a drop again from mid-December to
January (denoted by the vertical lines). This is because we had a
problem with our log collection infrastructure and did not collect
logs for one of formats on those days. To classify streams as audio
or video streams, we look at the encoding bit rate. If the bit rate
is under 80 kbps, then it is classified as audio. Roughly 71% of
the streams are audio, and 7% are video streams. We did not clas-
sify 22% of the streams because there was insufficient information
about their streaming bit rates. Figure 1(b) depicts the number of re-
quests for live streams which varies from 600,000 on the weekends
to 1 million on weekdays. Again, the drop in requests from mid-
December onwards is due to the missing logs. Note that there are
an order of magnitude more requests for audio streams than video
streams. In addition, audio streams have extremely regular week-
end/weekday usage patterns. On the other hand, video streams are
less regular, and are more dominated by “short duration” special
events with the sharp peaks corresponding to very large events on
various days.

Streaming media events can be classified into two broad cate-
gories based on the event duration. The first category, which we call
non-stop events, are events in which there is live broadcast every
day, all hours of the day. This is similar to always being “on-the-
air” in radio terminology. The second category, which we call short
duration events, are events with well-defined durations, typically
on the order of a couple of hours. A typical example is a talk show
that runs from 9am-10am that is broadcast only during that period,
and has no traffic at any other time during the day. For simplicity,
for either one of these categories, we break the events into 24-hour
chunks, which we call streams. For the rest of the paper, we present
analysis on the granularity of streams. Note that for short duration
events, a stream is the same as an event.

In this paper, we limit the discussion to large-scale streams.
Large-scale streams are defined as the streams in which the peak
group size, i.e., the maximum concurrent number of participating
hosts, is larger than 1,000 hosts. There were a total of 660 large-
scale streams, of which 55 were video streams and 605 were audio
streams. Many of the audio streams are non-stop, and all of the
video streams are short duration.

Figure 2 depicts the peak group size and the total number of

80000 T T T T T

Al ——
250 kbps -
70000 100 kbps -+ 1
56 kbps
60000
‘@
2 50000
I
S 40000
[}
Qo
§ s0000f |
2 S0000 - e
20000

10000 | ST

= . . . -
18.00 19.00 20.00 21.00 22.00

.Time |
(a) Membership over time.

09 -
0.8 -

07 g
0.4 |
03 1
02l

Cumulative Probability Distribution

All ——
o 2-Minute Timeout ---------
1 min, 5 min -

0.1 |

0 =T L
0.01 0.1 1 10 100 1000

Session Duration (minutes)
(b) Session duration.

Figure 3: Largest event.

requests for each stream on the y-axis. Each point on the x-axis rep-
resents a stream. Note that the same value on the x-axis on the two
curves do not necessarily correspond to the same stream. Across
all large-scale streams, the peak group size ranges from 1,000 to
80,000 hosts, and the total number of requests ranges from 2,000 to
200,000. In addition to group size, we also summarize the session
duration characteristics, which are analyzed in detail in Section 4.

2.2 Workload Processing

Entity vs. incarnation: We define an entity as a unique host, corre-
sponding to an IP address. An entity or host may join the broadcast
many times, perhaps to tune in to distinct portions of the broadcast,
and as a result have many incarnations.

Log format: Each entry in the log corresponds to an incarnation’s
session, or a request made by a user to an edge server. The following
fields extracted from each entry are used in our study.

o User identification: IP address

e Requested object: stream URI

o Time-stamps: session start time and duration in seconds

2.3 Largest Event

Next, we present more detailed statistics for the largest event in
the logs. The event consisted of three encoded streams at bit rates
of 20 kbps audio, 100 kbps audio and video, and 250 kbps audio
and video. The event duration was 2 hours, from 19:00-21:00, as
shown in Figure 3(a). The sharp rise in membership at 19:00 is a
flash crowd caused by everyone wanting to tune in to the start of the
event. We note that flash crowds are common in our logs — about
40% of large-scale streams have flash crowds. Combining all three
streams, the peak group size was 74,000 users. There were roughly
119,000 IP addresses and over 394,000 requests for the entire dura-
tion of the event. Note that there are roughly 3.3 requests/IP address.
This may be caused by (i) users that join the broadcast many times,
perhaps to tune in to distinct portions of the broadcast, or (ii) mul-
tiple users that share the same IP addresses in the case of network
address translators (NATS), proxies, or DHCP.

Note that there are many people who join the broadcast before
the event started, perhaps to test that their setups are working. Also,
there are many people who stay after the broadcast is over, for un-
known reasons (they may have just left their media players running).
The 20 kbps audio stream has a sharper drop-off in membership
than the other streams because many users switch from audio to
a better quality stream. The most dynamic segment of the stream
was between 19:00-19:30, where the peak join rate was over 700
joins/second and the peak leave rate was over 70 leaves/second.

Figure 3(b) depicts the cumulative distribution of session dura-

tion time in minutes for the combined streams. There is a sharp rise
at 2 minutes caused by a known client-side NAT/firewall problem
that forces streaming servers to time out on the connection. The
second curve depicts the session duration distribution without the
incarnations that experienced 2-minute timeouts. The average ses-
sion duration is 22 minutes, with 20% of sessions lasting longer than
30 minutes. The average is dominated by the tail of the distribution.
Except for the tail, the behavior is fairly dynamic. For example, over
55% of sessions are shorter than 5 minutes. Furthermore, 30% of
sessions are shorter than 1 minute. We explore what these numbers
indicate about the stability of the system in Section 4.

Unless otherwise stated, in the remaining sections, we combine
all three streams of this event into one stream, and refer to this one
stream as the “largest stream or event.” We assume that the “de-
sired” encoding for all hosts is 250 kbps.

3. ARE THERE ENOUGH RESOURCES?

In an application end-point architecture, there is no dependence
on costly pre-provisioned infrastructure, making it favorable as an
economical and quickly deployable alternative for streaming appli-
cations. On the other hand, the lack of any supporting infrastructure
requires that application end-points contribute their outgoing band-
width resources. The feasibility of such an architecture depends on
whether or not there are enough bandwidth resources at application
end-points to support all participants at the encoding bit rate.

In this section, we look at the feasibility of supporting a large-
scale live streaming application using only the resources available
at application end-points. To answer this feasibility question, we
run trace-based analysis on the large-scale streams. We first need
to estimate the outgoing bandwidth resources at each host. Then,
using these estimates, we derive the amount of resources for each
stream over time. Note that the amount of resources is dependent
on the patterns of joining and leaving of participating hosts.

3.1 Outgoing Bandwidth Estimation

We define resources as the amount of outgoing bandwidth that
hosts in the system can contribute (i.e., how much bandwidth each
host can send). Next, we describe the methodology that we use
to quickly and accurately estimate the outgoing bandwidth of over
one million IP addresses of hosts that participated in the large-scale
streams.

3.1.1 Bandwidth Data Collection

We use a combination of data mining, inference, and active
measurements for the estimation. While the most accurate method-

Access technology Packet-pair measurement Outgoing bandwidth
estimate

Dial-up modems 0 kbps < BW < 100 kbps 30 kbps

DSL, ISDN, Wireless | 100 kbps < BW < 600 kbps 100 kbps

Cable modems 600 kbps < BW < 1 Mbps 250 kbps

Edu, Others BW > 1 Mbps BW

Table 1: Mapping of access technology to outgoing bandwidth.

ology would be to actively measure the bandwidth of all the IP ad-
dresses, it requires significant time and resources, and many hosts
do not respond to measurement probes because they filter packets or
they are off-line. Next, we describe the techniques we use to collect
bandwidth data.

Step 1: As a first order filter, we use “speed test” results from
a popular web site, broadbandreports.com. Speed tests are TCP-

based bandwidth measurements that are conducted from well-provisioned

servers owned by the web site. Users voluntarily go to the web site
to test their connection speeds. Results from the tests are aggre-
gated based on DNS domain names or ISPs and are summarized
over the past week on a publicly available web page. Approxi-
mately 10,000 tests for over 200 ISPs are listed in the summary.
The results include bandwidth measurements in both incoming and
outgoing directions. We use only the outgoing bandwidth values
for bandwidth estimation. We map the IP addresses in our stream-
ing logs to their ISPs using DNS names, and then match the ISPs to
the ones listed at broadbandreports.com. For the 72% of hosts that
matched, we assign their bandwidth values to the ones reported by
broadbandreports.com.

Step 2: Next, we aggregate the remaining IP addresses into
/24 prefix blocks and conducted packet-pair measurements to mea-
sure the bottleneck bandwidth to several hosts in each block. Of
the 13,483 prefix blocks probed, 7,463 responded. We use the mea-
surement results from the prefix blocks to assign bandwidth esti-
mates to an additional 7.6% of the IP addresses, for a total of 79.6%
estimated so far. Note that packet-pair measures the average of
the incoming and outgoing bandwidth (because it relies on round-
trip time measurements). However, many access technologies have
asymmetric bandwidth properties. For example, an ADSL host with
an incoming link of 400 kbps and an outgoing link of 100 kbps has
a packet-pair measurement of 250 kbps. Using the average of the
two directions could over-estimate the outgoing link. Taking this
into account, we map the bandwidth measurements from packet-
pair into the access technology categories listed in Table 1, where
BW stands for the measured bandwidth from using packet-pair. We
use the values in the last column as the outgoing bandwidth esti-
mates.

Step 3: We use EdgeScape, a commercial product provided
by Akamai that maps IP addresses to host information. One of the
fields in the host information database is access technology. We
compared the overlapping matches from this database to the ones
from broadbandreports.com and found them to be consistent. To
translate access technology into raw bandwidth, we use the values
in the “outgoing bandwidth estimate” column in Table 1. Using this
technique, we are able to assign estimates to an additional 7.1% of
the IP addresses, for a total of 86.7% estimated so far.

Step 4: Finally, we use the host’s DNS name to infer its ac-
cess technology. Our first heuristic is based on keywords such as
dsl, cable-modem, dial-up, wireless, .edu and popular cable modem
and DSL service providers such as rncom and attbi. Using this
technique, we get estimates for an additional 2.2% of IP addresses.
As our second heuristic, we manually construct a database of small
DSL and cable modem providers, corporations, and international
educational institutions that do not use common keywords in their

[Type [Degree-bound | Number of hosts |
| Free-riders | 0 | 58646 (49.3%) |
Contributors 1 22264 (18.7%)
Contributors 2 10033 (8.4%)

Contributors 3-19 6128 (5.2%)
Contributors 20 8115 (6.8%)
[Unknown [- [13735 (11.6%) |
[Total [- [118921 (100%) |

Table 2: Assigned degree for the largest event.

DNS names. This technique provides estimates for an additional
1.2% of 1P addresses. Again, we translate access technology into
bandwidth using the values in Table 1.

Using all 4 steps provides us with bandwidth estimates for 90%
of the IP addresses in the traces. We discuss our treatment of the re-
maining 10% of hosts with unknown estimates later in this section.

3.1.2 Degree-Bound Assignment

To simplify the presentation, we normalize the bandwidth value
by the encoding bit rate. For example, if a host has an outgoing
link bandwidth of 300 kbps and the encoding rate of the stream is
250 kbps, then the normalized value is [300/250] = 1 degree.
Assuming a tree structure for the overlay, this host can have an out-
degree of 1, i.e., it can support one child at the full encoding bit
rate. Throughout this paper, we use “degree” instead of kbps as the
outgoing bandwidth unit.

The degree assignment for the largest broadcast is listed in Ta-
ble 2. Half of the hosts have 0-degree and are labeled as free-riders.
Roughly 39% of the hosts are contributors, capable of supporting
one or more children. Of these, 6.8% are hosts who are capable of
supporting 20 or more children.

The degree assignment derived from the outgoing bandwidth
value reflects the inherent capacity of a host. However, all that ca-
pacity may not be available for use. For example, the bandwidth
may be shared by many applications on the same host, or may be
shared across many end-hosts in the case of a shared access link.
Also, users may not wish to contribute all of their bandwidth to
the system. In this paper, we set an absolute maximum bound of
20 for the out-degree (degree cap of 20) such that no host in our
simulations can exceed this limit even if they have more resources
to contribute. This roughly translates to 5 Mbps for video applica-
tions. We also study the effect of more conservative policies such
as degree caps of 4, 6, and 10.

3.1.3 Hosts With Unknown Measurements

For the 10% of IP addresses without bandwidth estimates, we
assign an estimate to them using 3 assignment algorithms. The op-
timistic estimate assumes that all unknowns can contribute up to the
maximum resource allocation (which we set to be degree 20 or less,
depending on the degree cap). This provides an upper-bound on the
best case resource assignment. The pessimistic estimate assumes
that all unknowns are free-riders and contribute no resources. This
provides a lower bound for the worst-case. The distribution algo-
rithm assigns a random value drawn from the same distribution as
the known resources. This algorithm provides reasonable estimates
assuming that the known and unknown resources follow the same
distribution.

3.2 Resource Index

To measure the resource capacity of the system, we use a metric
called Resource Index [7]. The Resource Index is defined as the
ratio of the supply of bandwidth to the demand for bandwidth in the
system for a particular encoding bit rate. The supply is computed
as the sum of all the degrees that the source and application end-

Resource Index:

8/3=27

Figure 4: Example of how to compute the Resource Index.

Optimistic Cap 20 —+—
Distribution Cap 20 -------
Pessimistic Cap 20 -~
Optimistic Cap 6 =

Distribution Cap 6 --=--
Pessimistic Cap 6 ---o--

X5 XX,
e x o
= / x> s 1
o g I 00
Ky~ F Ko KK K
K*Hx g Fokaa K xoTTTHRHIES e
e e RHII A HIAIIIIR

IR IR K S pex HHHH I IAKR LTt 30

TRk 1N

Resource Index
w

o8,
2 ;!DEEE “ogBoeasaneeagns,

e T Tatotetatal

TocoognaREEt L —— "
B LLI TP ELLLLEL L LU

.
anta na
B00005°°°000660090!

0
17.00 18.00 19.00 20.00 21.00 22.00
Time

Figure 5: Resource Index for largest event.

points participating in the system contribute. Note that the degree is
dependent on the encoding bit rate, and in turn the Resource Index
is also dependent on the encoding bit rate. Demand is computed
as the number of participating end-points. For example, consider
Figure 4, where each host has enough outgoing bandwidth to sustain
2 children. The number of unused slots is 5, and the Resource Index
is (5+3)/3 = 8/3. A Resource Index of 1 indicates that the system
is fully saturated, and a ratio less than 1 indicates that not all the
participating hosts in the broadcast can receive the full encoding
rate. As the Resource Index gets higher, the environment becomes
less constrained and it becomes more feasible to construct a good
overlay tree. A Resource Index of 2 indicates that there are enough
resources to support two times the current number of participants.

3.3 Trace Replay: Single-Tree Protocol

In this section, we use the Resource Index to measure the amount
of resources across a set of 81 streams (all video streams and 5% of
randomly selected audio streams) out of the 660 large-scale streams.
To ensure some confidence in our results, at least 70% of the IP ad-
dresses in a trace must have bandwidth estimates in order for it to
be analyzed.

For each stream, we replay the trace using the group participa-
tion dynamics (joins and leaves) and compute the Resource Index
for each second in the trace. First, we discuss the results for the
largest event, and then we present a summary of the results for the
other large-scale events.

Figure 5 depicts the Resource Index as a function of time, with
degree caps of 6 (bottom 3 lines) and 20 (top 3 lines) children. The
time interval of interest is between 19:00 - 21:00 when the event
was taking place. Again, note that a Resource Index above 1 means
that there are sufficient resources to support the stream using an

application end-point architecture. The highest and lowest curves
for each degree cap policy are computed using optimistic and pes-
simistic bandwidth estimates for unknowns, respectively. Regard-
less of the treatment of hosts with unknown estimates and the de-
gree cap policy, the Resource Index is always above 1 during 19:00
- 21:00. However, a degree cap of 6 places more constraints on the
resources in the system and could potentially make it more difficult
to construct a tree with good performance.

Figure 6 depicts a summary of the other large-scale streams.
The Resource Index for audio streams is depicted in Figure 6(a).
Each point on the x-axis represents an audio stream. The y-axis is
the Resource Index for that stream averaged over the stream dura-
tion. The lowest curve in the figure is the Resource Index computed
using the pessimistic bandwidth estimate for unknowns. For audio
streams, even the pessimistic estimate is always between 2-3 when
using a degree cap of 4. This is expected because audio is not a
bandwidth-demanding application. The typical encoding rate for
audio is 20 kbps which is low enough for most hosts on the Internet
to support, including dial-up modems. Thus, application end-points
participating in audio streaming applications can provide more than
enough resources to support live streaming.

Figures 6 (b), (c), and (d) depict the average Resource Index
for video streams with degree caps of 6, 10, and 20 children. As
the degree cap increases, the Resource Index increases. The top
most curve in all 3 figures represents the optimistic estimate for un-
knowns. In the most optimistic view, across all degree cap policies
(6,10, and 20), only one stream had a Resource Index below one. In
the worst case scenario, where the degree cap is 6 and the unknown
assignment policy is pessimistic, roughly a third of video streams
had Resource Index below 1.

In order to determine feasibility, we look at the inherent amount

of resources in the system. Using a degree cap of 20 and the distribution-

based degree assignment for unknowns as depicted in Figure 6(d),
we find that only 1 stream has a Resource Index of less than 1. The
stream with the worst Resource Index (labelled 40 on the x-axis)
had an encoding rate of 300 kbps, but was composed almost ex-
clusively (96%) of home broadband users (DSL and cable modem).
Many home broadband connections can only support 100-250 kbps
of outgoing bandwidth, which is less than the encoding bit rate.
Therefore, such hosts did not contribute any resources to the system
at all.

To better understand whether or not this composition of hosts is
common, we look at the nature of the event. This is a short duration
stream, starting on Sunday night at 11pm and ending at 2am in local
time, where local time is determined based on the geographic loca-
tion of the largest group of hosts. Section 5 gives an overview of
how geographic location is determined. Most participants are home
users because the event took place on a weekend night when people
are most likely to be at home. About 5 of the 55 large-scale video
streams have this behavior. Their Resource Index is close to 1 for
the distribution-based degree assignment in Figure 6(d). In contrast,
most of the other streams take place during the day, and are often
accessed from more heterogeneous locations with potentially more
bandwidth resources, such as from school or the workplace.

To summarize the results in this section, we find that there are
more than sufficient bandwidth resources amongst application end-
points to support audio streaming. In addition, there are enough
inherent resources in the system at scales of 1000 or more simulta-
neous hosts to support video streaming in over 90% of the common
scenarios. This indicates that using application end-point architec-
tures for live streaming is feasible. While we have shown that there
are inherent resources, we wish to point out that designing poli-
cies and mechanisms to encourage participants to contribute their
resources is beyond the scope of this paper. We have looked at sim-

5 T T T T T
Optimistic —+—
Distribution ----x---
Pessimistic -+
4t]
3 - x
g 3r e S b
8 Y ke %
=
2
$2r b
o
1 L 4
0
0 5 10 15 20 25 30
Stream Sorted By Optimistic Resource Index
(a) Audio streams, Degree Cap 4
5 —
Optimistic —+—
Distribution ----x---
Pessimistic -
4t]
3
gy f
[ot
g xxxy)‘)@x\xxxx){xx_wrxxxxxyx%*x .
=R e i
q
i
i
0
0 10 20 30 40 50 60

Stream Sorted By Optimistic Resource Index
(c) Video streams, Degree Cap 10

Optimistic —
Distribution
Pessimistic -

Hroxxne s -
oL RN s d XK s 650, KXo

Resource Index

00,
FHIEEA ek ;

) . . . | .

0 10 20 30 40 50 60

Stream Sorted By Optimistic Resource Index
(b) Video streams, Degree Cap 6
8 T T T T —
Optimistic —+—
Distribution

7 Pessimistic — 1

x
X’xxxx
3r s

*.
H Kok
HoxX
*

R

Resource Index
IS
.

e X
eoa®,
XN R, o

Kk X XX
TR Pt Sem
*

21 "k A 1
X
; s]
3
0 . . . | .
0 10 20 30 40 50 60

Stream Sorted By Optimistic Resource Index
(d) Video streams, Degree Cap 20

Figure 6: Average Resource Index for each stream.

ple policies, such as capping the degree bound to a static amount
to make sure that no person contributes more than what is consid-
ered to be “reasonable.” There could be more complex policies to
allow users to individually determine how much they are willing to
contribute in return for some level of performance [6].

While there are resources in the common scenarios, in 10% of
the cases there were not enough resources (or close to not enough)
to allow all participants to receive at the full encoding rate. In such
scenarios, there are three generic classes of alternatives to consider.
The first alternative is to enforce admission control and reject in-
coming free-riders when the Resource Index dips below one. A
second alternative is to dynamically adapt the streaming bit-rate,
either in the form of scalable coding [15], MDC [11], or multiple
encoding rates [7]. This has the advantage that the system can still
be fully supported using an application end-point architecture with
areduction in the perceived quality of the stream. Lastly, a third al-
ternative is to add resources into the system. These resources can be
statically allocated from infrastructure services such as content de-
livery networks (CDNs) with the advantage that the resources only
need to complement the already existing resources provided by the
application end-points. Another solution is to allocate resources in
a more on-demand nature using a dynamic pool of resources, for
example, using a waypoint architecture [7].

3.4 Impact of NATSs and Firewalls

One factor that can negatively impact our results is the presence
of participating hosts that have connectivity restrictions behind Net-
work Address Translators (NATSs) and firewalls. Such hosts cannot
communicate with other connectivity restricted hosts and thus re-
duce the number of usable pair-wise overlay links. Recently, several

25 :
0% NAT ——
20% NAT
30% NAT -
oL 40% NAT o |
ages 50% NAT =

|,
8 _PoePogueng,
=l
. Saee8 e gy
.,
L
1

151 - .!-.—-.-......n'..'u._“_‘

Resource Index

05 1

0
0 10 20 30 40 50 60

Stream Sorted By Optimistic Resource Index

Figure 7: Resource Index for video streams when considering
NATs.

solutions have been developed to allow hosts behind NATs and fire-
walls to participate in overlay multicast [10]. Such solutions enable
all hosts except for hosts behind symmetric NATs [23] and certain
firewalls to have universal connectivity. For the purpose of this pa-
per, we assume that these solutions are implemented. Thus, our con-
cern is with symmetric NAT's and firewalls that still are connectivity
restricted. Note that the connectivity semantics of a symmetric NAT
is that it cannot communicate with other symmetric NATs. Fire-
walls, on the other hand, can have arbitrary connectivity semantics.
For this paper, we assume that firewalls have the most restrictive se-
mantics — the same as symmetric NAT's in they cannot communicate
with other symmetric NATs or firewalls. Thus, links between two

‘ ‘Single Tree ——
Single Tree + Residual Bandwidth ----x---

KM X
L L WAV LS .
25 ¥ LR e A VL
%

Resource Index
[6)]

0 10 20 30 40 50 60
Stream

Figure 8: Resource Index for multiple trees.

different symmetric NATS or firewalls cannot be used in the overlay.
To simplify the discussion, we will refer to both symmetric NAT's
and firewalls that have the same connectivity semantics as symmet-
ric NATS for the rest of this section.

To understand how our results change in the presence of sym-
metric NATs, we consider the Resource Index as a function of the
percentage of symmetric NATS in the system. We refer the readers
to [10] for the details on how to implement the optimizations and
compute the Resource Index with connectivity restrictions.

Figure 7 depicts the Resource Index for the same video streams

as those depicted in Figure 6(b) with a degree cap of 6 and a distribution-

based estimate of unknowns. Each line represents a scenario where
there are 0% to 50% of restricted hosts (symmetric NATSs) in the
system. There is little or no difference between the 0%, 20% and
30% cases (the curves overlap). We start to see a drop in the Re-
source Index when more than 40-50% of the hosts are connectivity
restricted. However, the drop is not that significant as the Resource
Index is still above 1 for 67% of the streams even when half of the
hosts are connectivity restricted. This is similar to when there are
no connectivity restricted hosts in the system (Figure 6(b)). Further-
more, from operational experience with End System Multicast [10],
the percentage of symmetric NATs is usually much lower (10%-
30%). In such regimes, the Resource Index is the same as when
there are no symmetric NATs given that all NAT-based optimiza-
tions are implemented in the protocol.

To summarize, for the large-scale streams in our traces, the
presence of 40% or more connectivity restricted hosts in the sys-
tem reduces the Resource Index. However, such reductions are not
significant enough to make the Resource Index drop below one un-
less it was already below one without connectivity restricted hosts
in the system. In addition, for realistic percentages of NATs (10%-
30%), the Resource Index is unchanged compared to when there are
no NATS in the system.

3.5 Multiple-Tree Protocols

In the previous section, we analyzed the amount of resources
for single-tree protocols. More recently, multiple-tree protocols [4,
18, 13] have been proposed to increase the overall resilience of the
system. Such protocols are tightly coupled with specialized video
encodings, such as multiple description coding (MDC). The video
stream is encoded into k independent descriptions (or sub-streams)
and distributed across k independent trees.

The implication of multiple trees and MDC on resources is that
the amount of resources in the system may increase as the residual
bandwidth that was previously unused in the single-tree protocol
may now be used. For example, if a host has an outgoing bandwidth

of 300 kbps, and the stream is encoded at 250 kbps for a single tree,
then the host has a residual bandwidth of 50 kbps that is unused.
On the other hand, if the stream is encoded using MDC into many
descriptions each at 50 kbps, then the host can contribute all of its
outgoing bandwidth to the system to transmit up to 6 descriptions.

Overall, the use of MDC and multiple trees should always re-
sult in an increase in the supply of resources compared to a single
tree. To quantify the increase, we modify the Resource Index com-
putation as follows. We allow fractional supply (where the frac-
tion corresponds to the residual bandwidth) to be used. For exam-
ple, the supply for the host in the previous example is computed as
300/250 = 1.2. We assume the demand remains the same as in the
single-tree case — this is simplistic in that we are assuming no over-
head and no redundancy in the encoding. A host needs to collect
at least 5 descriptions in this example (5250 kbps = 250 kbps), to
have good quality video. The intuition behind this is that a stream
that is originally encoded at 250 kbps, say a tennis match, is jerky
and not watch-able at 50 kbps, or even at 200 kbps. If it were per-
fectly watch-able, then the stream would have already been encoded
at the lower rate for the single-tree protocol.

Figure 8 depicts the Resource Index for the multiple-tree pro-
tocol for the same video streams presented earlier in Figure 6(b).
Also depicted is the Resource Index for the single-tree protocol.
The configuration shown here is for degree cap 6 (or the equivalent
in kbps) and the distribution-based assignment for unknowns. To
have sufficient resources, a Resource Index higher than 1 is needed
for both the single-tree and multiple-tree protocol. We find that for
the streams that had sufficient resources using a single-tree protocol,
using a multiple-tree protocol can increase the bandwidth resources
up to 20-25%. More interestingly, for the remaining streams that
did not have sufficient resources using a single-tree protocol, the
Resource Index increases from below 1 to above 1 for all but one
stream when using a multiple-tree protocol. The value of the Re-
source Index determines how much encoding overhead the system
can support. For example, a Resource Index of 1.1 means that 10%
of overhead may be added.

To summarize, using multiple trees and MDC can increase the
amount of resources in the system. With a degree cap of 6, 1/3 of
the streams had a Resource Index of below 1 using a single-tree
protocol. Using a multiple tree protocol, in all but one case, the
Resource Index is above 1. Thus, multiple-tree protocols increase
the feasibility of overlay multicast especially for those streams that
do not have abundant resources.

3.6 Resources Summary

Our results indicate promise for application end-point architec-
tures. Using a single-tree protocol and a single encoding rate, all
audio streams have abundant resources and most video streams have
enough inherent resources. With realistic percentages of NATS and
firewalls in the system, the resource characteristics is the same as if
there were no NAT's and firewalls. Lastly, in resource constrained
environments, using multiple-tree protocols can increase the supply
of resources in the system and improve the situation.

4. IS THERE ANY STABILITY?

In this section, we look at feasibility of maintaining a stable and
connected tree in the presence of group dynamics. In addition, we
evaluate mechanisms that can be used to increase the stability of the
overlay.

4.1 Extreme Group Dynamics

Figure 9 depicts the session duration characteristics for the 660
large-scale streams. The x-axis is the session duration in minutes.

5thiPercentile
25thiPercentile - -
50th:Percentile -+ 1

) 95th Perceqtile

0 | N ..
0.01 0.1 1 10 100 1000
Session Duration (minutes)

Figure 9: Incarnation session duration in minutes.

The y-axis is the cumulative distribution of the number of streams.
The first curve on the left depicts the cumulative distribution of the
observed Sth percentile session duration in all 660 streams. For
example, 5% of incarnations in 30% of the streams had durations
of shorter than 1 second. The next 3 curves are for the 25th, 50th
and 95th percentile. Note that the same value on the y-axis does not
necessarily correspond to the same stream on all the curves.

Based on this figure, we make two observations. First, there
is a significant number of very short sessions. Looking at the 25th
percentile curve, we find that for most streams, 25% of sessions are
under 2 minutes. Furthermore, the most disastrous is that in the 50th
percentile curve, 20% of the streams have extremely dynamic group
membership with half of the sessions shorter than 5 minutes. With
such short session durations, it seems very unlikely that there could
be any stability.

Our second observation is that there is a heavy tail, where a
small number of incarnations have very long sessions. The 95th
percentile curve in Figure 9 shows that for most streams, the 95th
percentile session duration is longer than 30 minutes. Perhaps the
tail can help add some stability to the tree. Note that these observa-
tions are consistent with the session duration analysis of the largest
event in Section 2.

4.2 Stability Metrics

When an incarnation leaves, it causes all of its descendants to
become disconnected from the overlay and stop receiving data. Dis-
connects are perceived as glitches in the stream, resulting in poor
performance. Disconnected descendants will need to find new par-
ents and reconnect to continue receiving the stream. Therefore, a
desirable tree is one in which when an incarnation leaves, no one
is affected. Incarnations that will stay for a long time should be at
the top of the tree, and incarnations that will stay for short durations
should be leaf nodes at the bottom of the tree. To capture stability
of the overlay we look at two metrics:
eMean interval between ancestor change for each incarnation.
This metric captures the typical performance of each incarnation.
An ancestor change is caused by an ancestor leaving the group, typ-
ically resulting in a glitch in the stream. Frequent glitches may be
annoying. Therefore, the longer the interval, the better the perfor-
mance. If a host sees only one ancestor change during its session,
the time between ancestor change is computed as its session dura-
tion. If a host sees no ancestor changes at all, the time between
ancestor change is infinite.
eNumber of descendants of a departing incarnation. This metric
captures overall stability of the system. If many hosts are affected
by one host leaving, then the overall stability of the system is poor.

However, assuming a balanced tree, most hosts will be leaf nodes
and will not have children. Therefore, we hope to see that a large
percentage of hosts will not have children when they leave.

4.3 Overlay Protocol

We simulate the effect of group dynamics on the overlay proto-
col using a trace-driven event-based simulator. The simulator takes
the group dynamics trace from the real event and the degree assign-
ments based on the techniques in the previous section, and simulates
the overlay tree at each instant in time. Hosts in the simulator run
a fully distributed self-organizing protocol to build a single con-
nected tree rooted at the source. The protocol is a simplified version
of the one used in the End System Multicast project [7]. Note that
we do not simulate any network dynamics or adaptation to network
dynamics. The following protocol functions of the simplified proto-
col are also common across many of the existing overlay multicast
protocols.

Host Join: When a host joins, it contacts the source to get a random
list of m current group members. In our simulations, m is set to
100. It then picks one of these members as its parent using the
parent selection algorithm described below.

Host Leave: When a host leaves, all of its descendants are dis-
connected from the overlay tree. For each of its descendants, this
is counted as an ancestor change. Descendants then connect back
to the tree by independently finding a new parent using the parent
selection algorithm. Note that we prioritize reconnections by al-
lowing descendants that contribute resources to connect back first,
before free-riders. This prevents free-riders from saturating the tree
before all descendants are able to reconnect. This is implemented
by having hosts that contribute fewer resources wait longer before
trying to reconnect.

Parent Selection: When a host needs to find a parent, it selects a
set of m random hosts that are currently in the system, probes them
to see if they are currently connected to the tree and have enough re-
sources to support a new incoming child, and then ranks them based
on the parent selection criteria described in the next section. In our
simulations, m is set to 100. We do not simulate the mechanisms
for learning about hosts currently participating in the system, but
assume that such mechanisms provide random knowledge. In a real
implementation, Gossip-based mechanisms [22] may be used.

4.4 Parent Selection Algorithms

The parent selection algorithm determines the stability of the
overlay. If hosts have stable parents, as opposed to unstable parents,
then the tree is likely to be more stable. We ran simulations on 4
parent selection algorithms. Note that the chosen parent needs to
be connected to the tree and have enough resources to support an
incoming child (has not saturated its degree-bound), in addition to
satisfying the parent selection criteria.
oOracle: A host chooses the parent who will stay in the system
longer than itself. If no host will stay longer, it chooses the host
that will stay the longest. This algorithm requires future knowledge
and cannot be implemented in practice. However, it provides a good
baseline comparison for the other algorithms.
eLongest-first: This algorithm attempts to predict the future and
guess which nodes are stable by using the heuristic that if a host has
stayed in the system for a long time, it will continue to stay for a
long time. The intuition is that if the session duration distributions
are heavy-tailed, then this heuristic should be a reasonable predictor
for identifying the stable nodes.
oMinimum depth: A host chooses the parent with the minimum
depth. If there is a tie, a random parent is selected from the ones
with the minimum depth. The intuition is that balanced shallow
trees minimize the number of affected descendants when an ances-

Oracle
0.9 | Minimum depth -
Random
08| Longest-first | 0.95 -

0.9

""" 085 |

0.8

Cumulative Distribution
o
e o
|
Cumulative Distribution

075 |

0.7

0 5 10 15 20 25 30 1 10
Interval Between Ancestor Change (minutes)

(a) CDF of interval between ancestor change.

Number of Descendents
(b) Number of descendants of a departing host.

<
s o7t
3
= 0.6
k]
a
S 05t
2
o 04
E]
§ 0.3
Oracle 1 0.2 Oracle 1
Minimum depth -~ Minimum depth --------~
Random - 01 {7 Random 1
. Longest-first 0 I . . Longestfirst -
1000 10000 10000C 0 10 20 30 40 50 60 70 80 920

Depth
(c) Tree depth.

Figure 10: Stability performance of largest event.

100 -
£ Oracle —+—
3 Minimum Depth ----x---
I Random - -
@ 80 Longest-First —=a 2l
<] /.
o .)
£ ey
H A
2 60t [
5 !
il 4 i
E H
5 *
g Or s
s X /
° e /
g *¥ go X
E 20 *'*x* DED *xx* |

* S
é L] DDDDDD x;ex—xx
3 BT xX)(,x,x.x
0 5 10 15 20 25 30 35 40 45 50

Stream

Figure 11: Stability performance for 50 large-scale streams.

tor higher up at the top of the tree leaves.
eRandom: A host chooses a random parent. This algorithm provide
a baseline for how a “stability-agnostic” algorithm would perform.
Intuitively, random should perform the worst compared to the above
algorithms.

We used the degree assignment from the previous section, with
a degree cap of 4 for audio streams and 20 for video streams, and
the distribution-based assignment for the hosts with unknown mea-
surements. Unless otherwise stated we use this same set up for all
subsequent simulations.

4.5 Results: Single-Tree Protocol

We simulated the performance of the 4 parent selection algo-
rithms for the largest event over the most dynamic 30-minute seg-
ment from 19:00-19:30. We did not use the sessions with NAT/firewall
timeout problems discussed in Section 2 in the simulations because
their 2-minute session durations are artificial. Each parent selection
algorithm is simulated 10 times, each time using a different random
seed.

The cumulative distribution (CDF) of the mean time interval
between ancestor change is depicted in Figure 10(a). The x-axis
is time in minutes. A larger interval is more desirable. Because
we are simulating a 30-minute trace, the maximum time interval is
30 minutes, if a host sees one ancestor change. Hosts that do not
see any ancestor changes have an infinite interval. For presentation
purposes, we represent infinity as 31 on the x-axis. The bottom
most line in the figure represents the CDF when using the oracle
algorithm. Roughly 10% of the incarnations saw only one ancestor
change in 30 minutes. Furthermore, 87% of incarnations did not
see any changes at all. In fact, there were only one or two events
that caused ancestor changes across all the runs. It is surprising

that there is stability in the system during the busiest 30 minutes in
the trace. In addition, the overlay built by the oracle algorithm can
exploit that inherent stability.

The second-best algorithm is minimum depth. Over 90% of the
incarnations saw either no changes or 5 or more minutes between
changes. This should be tolerable to humans as they will see a glitch
every 5 minutes or so. The random algorithm and the longest-first
algorithm performed poorly in this metric. For random, only 70%
of the incarnations saw no changes or 5 or more minutes between
changes. To our surprise, the longest-first algorithm performed the
worst, with 50% of incarnations seeing decent performance. The
reason that it did not perform well stems from several factors. While
it correctly predicted stable nodes in 91% of the cases, it was wrong
for the remaining 9% as depicted in Figure 10(b). The number of
descendants of a departing host is on the x-axis, in log scale. The y-
axis is the cumulative percentage of departing hosts. If longest-first
were always correct, it would overlap with the y-axis, like oracle
where almost all departing hosts had no descendants. One of the
difficulties in getting accurate predictions is that at the start of the
event, almost all hosts will appear to have been in the group for the
same amount of time making stable hosts indistinguishable from
dynamic hosts. Note that longest-first is predicting correctly for
more cases than random and minimum depth, which had 72% and
82% of incarnations with no descendants when they left the system.
To explain the poor performance, we look at the second factor.

The second factor is that the consequence of its mistake is se-
vere as depicted in Figure 10(c). The x-axis is the average depth
of each node in the tree. The longest-first algorithm has taller trees
than the random and minimum depth algorithms. Therefore, when it
guesses incorrectly, a large number of descendants are affected. We
examined the tail end of Figure 10(b) more closely and confirmed
that this was the case.

One interesting observation is that the oracle algorithm builds
the tallest tree. The intuition here is that nodes that are stable will
cluster together and “stable” branches will emerge. More nodes
will cluster under these branches, making the tree taller. Although
the height does not affect the stability results in our simulations,
in practice a tall tree is more likely to suffer from problems with
network dynamics.

We find that minimum depth is the most effective and robust
algorithm to enforce stability. Its property of minimizing damage
seems to be the key to its good performance. The fact that it does
not attempt to predict node stability makes it more robust to a vari-
ety of scenarios, as depicted in Figure 11. We ran the same set of
simulations using 4 parent selection algorithms for 50 of the large-
scale streams. These are the same streams as the ones presented in
Section 3, but with only half of the video streams present. Again,
we used the distribution-based assignment for hosts with unknown

Single Tree ——
Multiple Trees 4 ----x---
Multiple Trees 8 -----x-- ¥
a4l Multiple Trees 16 =

/X,X'
X

*
** @
2 ae
X #oo®
> s
2 megmna Y .

Percentage of Incarnations with Poor Stability

0 - & & BEEEEE
0 5 10 15 20 25 30 35 40 45 50
Stream

Figure 12: Stability performance for multiple trees.

measurements, a degree cap of 20 for video streams, and a degree
cap of 4 for audio streams. The simulations were run over the most
dynamic 1-hour segments in each trace. We assume a conservative
cut-off for poor performance: an incarnation that sees an ancestor
change more frequently than once in 5 minutes is seeing poor per-
formance. The x-axis is the stream and the y-axis is the percentage
of incarnations that see poor stability performance in that stream.
Again, the oracle algorithm performed the best with most streams
having no incarnations with poor performance. Minimum depth
performed the second best with 45 out of the 50 streams having
20% or less incarnations with poor stability performance. Random
and longest-first both performed poorly with 5-10 streams where
50% or more incarnations see poor performance.

While we present results based on 4 parent selection algorithms,
we also explored many design alternatives. For example, we looked
at prioritizing contributors and combining multiple algorithms. How-
ever, we do not present them in this paper due to space limitations.
‘We note that alternate algorithms did not perform as well as the ones
listed above. For example, when the parent selection algorithm pri-
oritized contributors such that they are higher up in the tree, the
performance was as poor as random. This is explained by the ob-
servation that there is no correlation between being a contributor
and being stable.

We also looked at the impact of resource on stability. In partic-
ular, we looked at whether there is more stability if there are more
high degree nodes (i.e., more resources). We ran simulations on the
audio streams with degree caps of 6 and 10, and found that there
was only a slight improvement compared to when the degree cap
was 4.

To summarize, we find that there is inherent stability in applica-
tion end-point architectures. Without future knowledge, there exists
practical and simple algorithms such as minimum depth that can
provide good stability performance. While we have looked at how
to reduce the number of ancestor changes in the system, another
important direction is to reduce the perceived impact of an ancestor
change. In particular, mechanisms such as maintaining application-
level buffers to smooth out interruptions could help while the af-
fected descendants are looking for new parents. Multiple-tree pro-
tocols, which we discuss next, may also help reduce the impact of
ancestor changes.

4.6 Impact of Multiple-Tree Protocols

In multiple-tree protocols, the stream is split and distributed
across k independent trees. The probability of many trees seeing si-
multaneous disruptions is small. In addition, with sufficient redun-
dancy in the encoding, the impact of a disruption in one tree may be

negligible. On the other hand, because a host now has k times more
ancestors, it is likely that it would see a larger number of ancestor
changes overall. Although frequent ancestor changes may not al-
ways affect perceived quality, it creates more protocol overhead and
activity on the network because hosts need to find new parents more
frequently.

To explore the effect of multiple-tree protocols on stability, we
simulate the same 50 streams as those depicted in Figure 11 using a
multiple-tree protocol. There are three modifications to the single-
tree protocol in Section 4.3. Except for the changes below, each tree
is independently constructed using the single-tree protocol.
Independent trees: To maintain independence between trees, each
host is an interior node (contributor of resources) in only one tree [4].
A host selects the tree that it will contribute its resources, and joins
that tree as a contributor. It joins the remaining trees as leaf nodes.
Thus, when it leaves the broadcast, it will only affect the stability of
one tree because it has descendants in only one tree.

Load balancing: We implement load balancing of resources among
trees such that all trees have roughly the same amount of resources.
The load balancing algorithm is run at join time, where a host will
become a contributor (interior node) for the tree which currently has
the lowest Resource Index. The source keeps track of the Resource
Index by maintaining a count of the amount of resources in each
tree and the current number of incarnations in the system.
Preemption: There may be cases where a tree may be saturated
and not have enough resources. If a new host were to join the tree,
it would not be able to. To allow new contributors to join, they may
preempt existing “free-riders” in the tree. Preemption involves dis-
connecting the free-rider from the tree to open up a position for the
new incoming contributor. The contributor takes the free position
and may accept the free-rider that was preempted to join under it
as its child. We implement a limited form of preemption where a
new contributor only preempts free-riders at depth 1 (i.e., children
of the source) and found this to be sufficient for the workloads in our
study. Overall, preemption rarely take place. Even for the stream
with the most preemption, preemption caused only 4% of discon-
nects compared to the 96% caused by departing hosts.

Generally, MDC encoding adds redundancy and overhead com-
pared to the original stream. In our simulations, we assume that the
overhead is 25%. In practice, this overhead depends on the spe-
cific video stream and the MDC optimization. Setting this number
too low could result in poor resilience; setting this number too high
wastes bandwidth resources. We run the simulations using three
configurations: 4, 8, and 16 trees. Each tree carries a fraction of
the source rate. For example, in the 4-tree configuration, each tree
carries 1/4 of the original source rate with 25% redundancy and
overhead. With 25% redundancy, receiving 3 out of 4 descriptions
is sufficient. Only results for the minimum depth parent selection
algorithm are presented. Note that minimum depth performed the
best amongst all the practical algorithms evaluated for the single-
tree protocol.

First, we look at the percentage of incarnations that see frequent
ancestor changes (have an average interval between ancestor change
shorter than 5 minutes, similar to the single-tree case). Because an
incarnation has multiple simultaneous parents, one in each tree, it is
likely to see more frequent ancestor changes as more trees are used.
Simulation results confirm this intuition. We find that with 16 trees,
across the 50 streams, on average 75% of incarnations in the streams
see too frequent ancestor changes. With 8, 4, and single-tree, the
percentage drops to 55%, 32%, and 8% respectively. While this in-
dicates that protocol overhead increases significantly with multiple
trees, it does not indicate the perceived quality of the streams.

Next, to understand perceived quality, we look at the average in-
terval between too many simultaneous disconnects. As previously

mentioned, being disconnected from one tree does not impact the
quality of the stream. However, being disconnected from foo many
trees simultaneously, or over 25% of the trees in our configuration,
indicates poor perceived quality. We assume that when a host is dis-
connected, it takes one second for it to find a new parent and connect
back to the tree. The y-axis in Figure 12 depicts the percentage of
incarnations that see too many disconnects, defined as more often
than once in 5 minutes. The x-axis is the 50 large-scale streams —
the same as in the single-tree analysis in the previous section. The y-
axis is truncated at 5% to better illustrate the differences between the
different configurations. In addition, the previous results from the
single-tree minimum depth protocol are also depicted. The percent-
age of incarnations with poor stability is higher for the single-tree
protocol. For the multiple-tree protocol, using 4 trees, all streams
have less than 5% of incarnations with poor performance. Fewer
incarnations see poor performance as more trees are used. For ex-
ample, using 16 trees, all streams have less than 2% of incarnations
with poor stability performance.

In this section, we see that multiple trees can increase the per-
ceived quality of the streams. However, the improved performance
comes at a cost of more frequent disconnects, more protocol over-
head, and more complex protocols.

S. CAN EFFICIENT OVERLAYS BE
CONSTRUCTED?

In this section, we look at the feasibility of constructing effi-
cient large-scale overlays. An efficient overlay is one in which the
overlay structure closely reflects the underlying IP network. The
challenge is to enable hosts to discover other nearby hosts that may
be used as parents. When there are as many as 70,000 other hosts
simultaneously participating, it is not possible for a host to know ev-
eryone else because it would require significant protocol overhead
to maintain such knowledge. As a result, each host will only know
a subset of the current membership. In order to construct efficient
overlays, that subset must contain hosts that are nearby.

We develop and analyze techniques for partitioning application
end-points into clusters. One member of each cluster is designated
as the cluster head (also called membership server). Hosts in the
same cluster maintain knowledge about one another. Clustering
policies that leverage network proximity have the potential to in-
crease the efficiency of the overlay structure.

5.1 Membership Management

Next, we describe the clustering-based membership manage-
ment protocol hosts use to maintain and distribute group member-
ship information. We wish to highlight that the simplicity of the
protocol allows for simple recovery given the dynamic arriving and
departing nature of the membership servers.

Handling host join: A new host joining the system contacts a ren-
dezvous point, often the source of the broadcast who is respon-
sible for knowing the current membership servers participating in
the broadcast. The rendezvous point responds with a list of current
membership servers. The new joining host then selects one of the
membership servers to contact, either randomly or by using cluster-
ing techniques discussed in the next section. The selected member-
ship server replies with a fresh list of current members that it knows
(mostly inside the same cluster). The joining host then uses the list
in the tree construction protocol to connect itself to the tree via a
member in the list.

Creating membership servers: The rendezvous point is respon-
sible for ensuring that there are enough membership servers in the
system. Membership servers are created on-demand based on the
needs of the system. For example, when a new host arrives and

there are not enough membership servers in the system, the ren-
dezvous point will immediately assign the new host to function as
a membership server (assuming the new host has enough resources
to support the control traffic).

Recovering from membership server dynamics: Because we are
using application end-points as membership servers, we must cope
with membership servers leaving. Just before leaving, a member-
ship server looks to see if it can promote one of the hosts inside
its own cluster to become the new membership server. It is possi-
ble that a promotion may not be possible because of resource con-
straints. In such cases, the rendezvous server will notice that the
number of membership servers has decreased and will create a new
membership server from the newly arriving hosts. Note that when a
membership server leaves, it does not affect data delivery except for
the hosts that are its own direct descendants. The existing hosts that
were part of the departing membership server’s cluster need to find
a new membership server. If a promotion was successful, the newly
promoted host becomes their replacement membership server. The
membership state can be quickly refreshed as hosts can send explicit
liveness updates to the replacement membership server. If a promo-
tion was not successful, hosts will move to different membership
servers.

State maintenance: In order to recover from membership servers
departing the broadcast dynamically, all membership servers explic-
itly exchange state about their liveness with the rendezvous point.
Membership servers also maintain explicit state, liveness, and in-
formation about other membership servers and a random subset of
members outside their cluster. In addition, all hosts inside a cluster
exchange explicit state and maintain keep-alives with their member-
ship server. When keep-alive messages are received at the member-
ship server, the membership server will respond with a list of a sub-
set of other live membership servers in the system and other mem-
bers outside its cluster (learned from exchanges with other member-
ship servers). Knowing hosts outside one’s own cluster helps with
recovery. Hosts also exchange their group membership knowledge
with other hosts that they know. Gossip-like protocols [22] may
be used, with a stronger bias towards exchanging information with
hosts inside their own cluster.

Interplay between membership management and tree construc-
tion: The data delivery structure and the membership management
clusters are loosely coupled. The membership information from the
clusters implicitly influences the data delivery tree. We do not en-
force strict clustering on the data delivery tree. In fact overlay nodes
are free to select nodes outside their own cluster as parents if those
nodes provide better performance. This simplifies performance op-
timizations and recovery from node failures.

5.2 Clustering Policies

In this section, we discuss the design of clustering policies. We
consider three different clustering policies. Our first policy is ran-
dom, where the clusters are agnostic of network proximity. Our sec-
ond policy is network delay-based clustering. Short delays are rea-
sonably correlated with good bandwidth performance [17], which is
also important for streaming applications. And lastly, we look at ge-
ographic clustering, which roughly approximates network distance.
For example, the network delay between hosts in the same continent
is likely to be shorter than hosts in two different continents.

We implement the clustering policies by having hosts join the
cluster belonging to the membership server “closest” to them. For
random clustering, hosts pick a cluster to join at random. We call
these three policies naive clustering.

In addition to considering proximity, we need to consider two
critical requirements: ensuring that cluster sizes are not too large
and ensuring that each cluster has enough resources. Bounding the

cluster size helps to prevent membership servers from being over-
loaded. Being aware of resources helps to ensure that there are
enough resources within a cluster such that hosts can use other hosts
inside their own cluster as parents. While hosts may still use hosts
outside their cluster as parents, this degrades the efficiency of the
overlay. Hosts in different clusters are likely to be farther away than
hosts inside the same cluster.

Ignoring these two requirements results in poor clusters. For
example, we analyze the largest event and find that using naive ran-
dom clustering, all clusters have sizes close to 200 hosts. However,
naive delay-based and geographic clustering both produce clusters
with a wide range of sizes (from 10’s to 1000’s). In addition, the Re-
source Index for 7% of the random clusters, and 20% of the delay-
based and geographic clusters are below 1. For example, delay-
based clustering produces a few huge clusters with low Resource
Index, each comprising almost exclusively of DSL and cable mo-
dem hosts that belong to the same ISP.

We use the following algorithms to meet the two additional re-
quirements of maintaining cluster sizes and resources.

Cluster Size Maintenance: Two possibilities for bounding the clus-
ter size and handling overflows are: (i) redirection, where new hosts
are redirected to the next best cluster until an available one is found
and (ii) new cluster creation, where a new contributor host that is
supposed to join a full cluster creates a new cluster.

Resource Maintenance: We redirect free-riders joining a cluster
with Resource Index at or below 1 to other clusters, but we allow
contributors to join because they either increase or maintain the Re-
source Index.

5.3 Clustering Quality

In this section, we evaluate the quality of the clustering pro-
duced by the various policies and design choices. First, we discuss
how we obtained the proximity data used in the evaluation.

5.3.1 Proximity Data

Network delay: In order to evaluate efficiency, we need to
know the pair-wise delay between all participating hosts. This is
infeasible without access to the hosts themselves. Instead, we ap-
proximate pair-wise delay values using Global Network Position-
ing (GNP) [16]. We assign coordinates to each of the hosts and
“compute” the delay based on the geometric distance. To assign co-
ordinates, we use 13 landmarks (PlanetLab [19] machines) located
around the world. Landmarks measure the round-trip time between
themselves and the IP addresses in our streaming workload, and
then compute coordinates based on the measurement data (using 8
dimensions). Due to the overhead of probing and the low response
rate, we probed only the IP addresses in the largest stream in our
traces. Of the 118,921 IP addresses, only 27,305 responded. Hosts
that did not respond are not used in our simulations.

Geographic distance: We obtain location information from
Akamai’s EdgeScape service, the same service that provided ac-
cess technology information in Section 3. Using EdgeScape, we
map an IP address to its latitude and longitude. Manual verification
of mapping results with known geographic locations showed that
the information was accurate for our purpose, which is coarse-grain
geographic clustering.

For all of the following analysis and simulations, we use a de-
gree cap of 20 and the distribution algorithm for assignment of un-
knowns, similar to the setup in Section 4. We assume that each
membership server contributes one “degree” out of its existing re-
sources for the join protocol overhead.

5.3.2 Clustering Quality Metric

To capture clustering quality, we use the average and maxi-

100

o T DC — - f >>>>>>>> »

90 a pememneem T - 1
» Dm e *

&

2 80 = e 4
] <
S 70 -]
k]
_5 60 4
5
2 50]
k]
(=) 4
o 40 Average 50 ——
= 30 Maximum 50 - |
_g < Average 100 -~
£ 20 Woe Maximum 100 &
S Average 200 --+--
© Maximum 200 ---e--

10 Average 500 -~

0))) Maximum 500 -~
0 100 200 300 400 500 600

Intra-Cluster Distance (ms)

Figure 13: Clustering quality when varying number of clusters.

100

GNP Average ——
GNP Maximum -------
GNP Redirect Average -
GNP Redirect Maximum =
GNP Create New Average -—-=--
_ GNP Create New Maximum --o--

.
0 50 100 150 200 250 300 350 400 450 500
Intra-Cluster Distance (ms)

Cumulative Distribution of Clusters
o
o

Figure 14: Clustering quality when bounding cluster sizes.

mum intra-cluster distance in milliseconds as the metric. Average
intra-cluster distance measures the overall “tightness” of the clus-
tering. The smaller the value, the closer all hosts in the cluster are
to each other. Maximum intra-cluster distance measures the worst-
case “spread” of the cluster. Again, we would like to see a small
distance. The distance metric we use here is the network distance
(approximated using GNP) and the following analysis is conducted
for the largest event only for the hosts with GNP coordinates.

5.3.3 Sensitivity to the Number of Clusters

The rendezvous point needs to maintain a minimum number
of clusters. To understand what is a good number, we look at the
intra-cluster distance as a function of the number of clusters when
using naive delay-based clustering. Figure 13 plots the cumulative
distribution of the intra-cluster distances for all clusters created in
the simulation, where the minimum number of clusters is varied be-
tween 50 and 500, and the maximum cluster size is maintained at
200. Using more clusters results in smaller intra-cluster distance for
each cluster. The average (the lines towards the left) improves only
slightly, however the maximum improves significantly from close
to 600 ms for 50 clusters to about 250 ms for 500 clusters. All re-
maining simulations use a minimum of 100 clusters and a maximum
cluster size of 200 hosts.

5.3.4 Sensitivity to Cluster Size and Resource Main-
tenance

Figure 14 depicts the cumulative distribution of intra-cluster
distances for naive delay-based clustering (which we also refer to
as GNP clustering), and the two techniques used to bound cluster
sizes: GNP with redirection, and GNP with new cluster creation.

100 T T T T T T T T T

GNP Average ——

GNP Maximum ---x---

GNP Resource Average -
GNP Resource Maximum --a

Cumulative Distribution of Clusters

. .
0 50 100 150 200 250 300 350 400 450 500
Intra-Cluster Distance (ms)

Figure 15: Clustering quality when bounding Resource Index.

For 90% of the clusters the average cluster distance is within 100 ms
and the maximum reaches 300 ms. This figure shows that bounding
the cluster size does not significantly affect the intra-cluster dis-
tances. Redirecting hosts from large clusters does not affect clus-
tering quality because if the cluster is large, that indicates that there
are other clusters nearby (created from previous redirections). Sim-
ilarly, using a new contributor to create a new cluster also works
well because more hosts that are nearby will subsequently join the
new cluster.

Figure 15 depicts the cumulative distribution of intra-cluster
distances for naive GNP and GNP with Resource Index mainte-
nance. Again, average and maximum intra-cluster distances are not
significantly affected.

5.3.5 Sensitivity to Cluster Head Choice

We compared the intra-cluster distances from our results above

to distances resulting from clustering using the k-means algorithm [3].

The key difference is that k-means will choose an optimal cluster
center based on neighboring coordinates while our proposed mech-
anism chooses cluster heads randomly. Note that the results for
k-means clustering assume that all hosts are present in the system
at the same time. Although a direct comparison between the two is
not possible, it it is still useful to know whether or not the quality
of the clusterings are similar. Using k-means, 90% of the clusters
had an average intra-cluster distance less than 150 ms, indicating
that the clustering algorithms that we use have similar quality to the
more theoretically motivated clustering using k-means. Choosing
optimal cluster heads is not a critical problem.

To summarize, clustering quality is not sensitive to the opti-
mizations to maintain cluster sizes and available resources inside a
cluster. In addition, choosing the optimal cluster head is not critical
to the clustering quality.

5.4 Overlay Efficiency and Performance

In this section, we evaluate the efficiency of the overlay struc-
ture when using the join protocol, enhanced with clustering as de-
scribed in the previous sections. To measure efficiency, we use the
relative delay penalty (RDP) [8]. RDP is defined as the ratio of the
delay between the source to the host along the overlay to the direct
unicast distance between the source and the host. If the RDP is close
to 1, then the overlay is very efficient and closely reflects the under-
lying unicast paths. The larger the RDP is, the more inefficient the
overlay structure. Note that the location of the source is not pro-
vided in the logs. Typically, a content provider is generating live
streams on one of their own servers and forwarding the streams into
the Akamai network. However, the logs collected at Akamai’s edge
nodes do not reflect where the content provider’s server is located.

Cumulative Distribution
o
[$)]

GNP Clustering ——
Geo Clustering -
No Qlustering i

0 1 2 3 4 5 6 7
Average Relative Delay Penalty (RDP)

Figure 16: Overlay efficiency.

100 T T T T T T T T T
= Random Random —+—
3 Minimum Depth Random ----x----
< Longest-First Random - .
D g0t Random Geographic s 4
S Minimum Depth Geographic ---=-- 4§
o Longest-First Geographic --o-- X
= h
3
> 60t
c
2
©
£
g 40t
£
k]
S
& 20 -
c
[}
I
[}
o
0 .
0 5 10

Stream

Figure 17: Stability performance with clustering.

For the evaluation, we place the source at a location that coincides
with a randomly chosen host participating in the broadcast. Again,
we use the same configuration as in the last section with a minimum
of 100 clusters and a maximum cluster size of 200 hosts.

5.4.1 Efficiency of Large-Scale Overlays

First, we present efficiency results for the largest event in our
trace, using only the hosts for which we had GNP coordinates. Fig-
ure 16 depicts the cumulative distribution of the average RDP for
each incarnation for GNP and random clustering (while maintaining
the Resource Index). We use minimum depth as the parent selection
algorithm for tree construction. GNP clustering produces more ef-
ficient trees, as the RDP is less than 2 for 65% of the hosts—the
penalty for using the overlay is only twice that of the direct unicast
path from the source. Our RDP values for large-scale groups are
similar to previously reported values for much smaller-scale Inter-
net testbed studies (13 hosts) using synthetic workloads [8].

In comparison to GNP clustering, only 35% and 25% of the
incarnations have an RDP of less than 2 for geographic and ran-
dom clustering. Geographic clustering does not perform as well as
delay-based clustering because geographic distance may not always
correlate with network distance.

5.4.2 Impact of Clustering on Stability

Next, we ask whether or not efficient overlay structures are sta-
ble. Clustering may affect tree stability if hosts within different
clusters have drastically different stability properties. We evaluate
the stability of the same set of streams from Section 4, using random
and geographic clustering with redirection to maintain the cluster
size and resource availability. We did not evaluate delay-based clus-

tering because we did not have GNP coordinates for these streams.

Figure 17 plots the percentage of incarnations with poor stabil-
ity performance for each stream using three of the parent selection
algorithms previously presented in Section 4. Compared to the per-
formance without any clustering, as presented in Figure 11, the sta-
bility performance remains roughly the same. To verify this result,
we analyzed the session duration distribution for all clusters of a
stream and found that the session duration distributions were simi-
lar across all clusters. Thus, clustering does not impact the stability
properties of the overlay.

Our results strongly suggest that it is feasible to construct ef-
ficient and scalable overlays by leveraging delay-based clustering.
In addition, the overlays constructed using various clustering poli-
cies have similar stability performance to the overlays constructed
without clustering in Section 4.

6. SUMMARY

In this paper, we study one of the most prominent architectural
issues in overlay multicast—the feasibility of supporting large-scale
groups using an application end-point architecture. Using a large set
of live streaming media traces from a commercial content delivery
network, we demonstrate that in most of the common scenarios,
application end-point architectures (i) have enough resources, (ii)
have inherent stability, and (iii) can efficiently support large-scale
groups. Our findings show promise for using such architectures for
real-world applications.

In addition, we explore and evaluate a range of designs that can
help increase the feasibility in practice. We find that minimizing
depth in single-tree protocols provides good stability performance.
In addition, the use of multiple-tree protocols can significantly im-
prove the perceived quality of streams at the expense of an increase
in protocol activity, overhead, and complexity. We also find that
simple clustering techniques improve the efficiency of the overlay
structure. The strength of our work is perhaps the insight and anal-
ysis methodology, more than the designs as such — most of the de-
signs we study are simple.

While our results are encouraging, there are several open issues
that are candidates for future work. First, designing policies and
mechanisms to encourage application end-points to contribute their
resources is an important direction. Second, our results are depen-
dent on application workloads. While we believe that the workloads
used in this study represents common behavior for live streaming
applications, studying how the findings would change under differ-
ent or arbitrary application workloads may expose new insight to
help us better understand the feasibility of the architecture. Third,
there are several unexplored design issues that could also improve
performance of application end-point architectures, such as the use
of application-level buffers to reduce the impact of ancestor changes
in the tree, the (minimum) use of infrastructure to complement the
resources and stability in application end-point architectures, and
the design of new parent selection algorithms to bridge the gap
between minimum depth and oracle. Finally, real large-scale de-
ployment of application end-point architectures will validate and
strengthen our findings.

Acknowledgements

We wish to thank Roberto De Prisco of Akamai Technologies, for

assistance with collecting log data from the Akamai streaming servers.

We also thank the anonymous reviewers for their valuable feedback.

7.

(1]
(2]

(3]
(4]

[5

—

[6

—_

[7

—

(8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]
[20]

[21]
[22]

[23]

[24]

[25]

REFERENCES

Akamai. http://www.akamai.com/.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
Application Layer Multicast. In Proceedings of ACM SIGCOMM,
August 2002.

C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon
Press, Oxford, 1995.

M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. SplitStream: High-bandwidth Content Distribution in
Cooperative Environments. In Proceedings of SOSP, 2003.

M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. Scribe: A
Large-Scale and Decentralized Application-Level Multicast
Infrastructure. In IEEE Journal on Selected Areas in Communications
Vol. 20 No. 8, Oct 2002.

Y. Chu, J. Chuang, and H. Zhang. A Case for Taxation in Peer-to-Peer
Streaming Broadcast. In ACM SIGCOMM Workshop on Practice and
Theory of Incentives and Game Theory in Networked Systems (PINS),
2004.

Y. Chu, A. Ganjam, T. S. E. Ng, S. G. Rao, K. Sripanidkulchai,

J. Zhan, and H. Zhang. Early Experience with an Internet Broadcast
System Based on Overlay Multicast. In Proceedings of USENIX,
2004.

Y. Chu, S. G. Rao, and H. Zhang. A Case for End System Multicast.
In Proceedings of ACM Sigmetrics, June 2000.

P. Francis. Yoid: Your Own Internet Distribution,
http://www.aciri.org/yoid/. April 2000.

A. Ganjam and H. Zhang. Connectivity Restrictions in Overlay
Multicast. In Proceedings of NOSSDAV, 2004.

V. K. Goyal. Multiple Description Coding: Compression Meets the
Network. IEEE Signal Processing Magazine, Vol. 18, pages 74-93,
2001.

J. Jannotti, D. Gifford, K. L. Johnson, M. F. Kaashoek, and

J. W. O’Toole Jr. Overcast: Reliable Multicasting with an Overlay
Network. In Proceedings of the Fourth Symposium on Operating
System Design and Implementation (OSDI), October 2000.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh. In
Proceedings of SOSP, 2003.

J. Liebeherr and M. Nahas. Application-layer Multicast with
Delaunay Triangulations. In Proceedings of IEEE Globecom,
November 2001.

S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered
multicast. In Proceedings of ACM SIGCOMM, August 1996.

T. S. E. Ng and H. Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proceedings of INFOCOM, June
2002.

T.S.E. Ng, Y. Chu, S.G. Rao, K. Sripanidkulchai, and H. Zhang.
Measurement-Based Optimization Techniques for
Bandwidth-Demanding Peer-to-Peer Systems. In Proceedings of
IEEE Infocom, 2003.

V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai.
Distributing Streaming Media Content Using Cooperative
Networking. In Proceedings of NOSSDAV, May 2002.

Planetlab. http://www.planet-lab.org/.

S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level Multicast using Content-Addressable Networks. In
Proceedings of NGC, 2001.

Real broadcast network. http://www.real.com/.

R. Renesse, Y. Minsky, and M. Hayden. A Gossip-Style Failure
Detection Service. Technical Report TR98-1687, Cornell University
Computer Science, 1998.

J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy. STUN -
Simple Traversal of UDP Through Network Address Translators.
IETF-Draft, December 2002.

W. Wang, D. Helder, S. Jamin, and L. Zhang. Overlay Optimizations
for End-host Multicast. In Proceedings of Fourth International
Workshop on Networked Group Communication (NGC), October
2002.

S. Q. Zhuang, B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Bayeux: An Architecture for Scalable and Fault-Tolerant Wide-Area
Data Dissemination. In Proceedings of NOSSDAV, April 2001.

