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ABSTRACT
Internet end users and ISPs alike have little control over how pack-
ets are routed outside of their own AS, restricting their ability to
achieve levels of performance, reliability, and utility that might oth-
erwise be attained. While researchers have proposed a number of
source-routing techniques to combat this limitation, there has thus
far been no way for independent ASes to ensure that such traffic
does not circumvent local traffic policies, nor to accurately deter-
mine the correct party to charge for forwarding the traffic.

We present Platypus, an authenticated source routing system built
around the concept of network capabilities. Network capabilities
allow for accountable, fine-grained path selection by cryptograph-
ically attesting to policy compliance at each hop along a source
route. Capabilities can be composed to construct routes through
multiple ASes and can be delegated to third parties. Platypus caters
to the needs of both end users and ISPs: users gain the ability to
pool their resources and select routes other than the default, while
ISPs maintain control over where, when, and whose packets tra-
verse their networks. We describe how Platypus can be used to ad-
dress several well-known issues in wide-area routing at both the
edge and the core, and evaluate its performance, security, and inter-
actions with existing protocols. Our results show that incremental
deployment of Platypus can achieve immediate gains.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching net-
works; C.2.2 [Network Protocols]: Routing protocols

General Terms
Design, Security, Performance, Measurement

Keywords
Source routing, Authentication, Overlay networks, Capabilities

1. INTRODUCTION
Network operators and academic researchers alike recognize that

today’s wide-area Internet routing does not realize the full potential
of the existing network infrastructure in terms of performance [31],
reliability [1, 4, 20], or flexibility [12, 17, 40]. While a number
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of techniques for intelligent, source-controlled path selection have
been proposed to improve end-to-end performance [31, 37], relia-
bility [1, 4, 20, 41], and flexibility [10, 14, 17, 36, 40], they have
proven problematic to deploy due to concerns about security and
network instability. We attempt to address these issues in develop-
ing a scalable, authenticated, policy-compliant, wide-area source
routing protocol.

We argue that many of the deficiencies of today’s routing in-
frastructure are symptoms of the coupling of routing policy and
routing mechanism [33]. In particular, today’s primary wide-area
routing protocol, the Border Gateway Protocol (BGP), is extraordi-
narily difficult to describe, analyze, or manage [24]. Autonomous
systems (ASes) express their local routing policy during BGP route
advertisement by affecting the routes that are chosen and exported
to neighbors. Similarly, ASes often adjust a number of attributes on
routes they accept from their neighbors according to local guide-
lines [27]. As a result, configuring BGP becomes an overly com-
plex task, one for which the outcome is rarely certain. BGP’s com-
plexity affects Internet Service Providers (ISPs) and end users alike;
ISPs struggle to understand and configure their networks while end
users are left to wonder why end-to-end connectivity is so poor.

One approach to reducing this complexity is to consider an alter-
nate approach to routing, where the issues of connectivity discovery
and path selection are separated. Removing policy constraints from
route discovery presents an opportunity for end users and edge net-
works: routes previously hidden by overly conservative policy fil-
ters can be revealed by ASes and traversed by packets. In this paper
we consider one such approach based upon source routing. The key
challenge becomes determining whether a particular source route
is appropriate. ASes have no incentive to forward arbitrary traffic;
currently they only wish to forward traffic for their customers or
peers. We argue, however, that this is simply a poor approxima-
tion of the real goal: ASes want to forward traffic only if they are
compensated for it. Henceforth, we will consider traffic policy com-
pliant at a particular point in the network if the AS can identify the
appropriate party to bill, and that party has been authorized by the
AS to use the portion of the network in question.

We present the design and evaluation of Platypus, a source rout-
ing system that, like many source-routing protocols before it, can
be used to implement efficient overlay forwarding, select among
multiple ingress/egress routers, provide virtual AS multi-homing,
and address many other common routing deficiencies. The key ad-
vantage of Platypus is its ability to ensure policy compliance dur-
ing packet forwarding. Platypus enables packets to be stamped at
the source as being policy compliant, reducing policy enforcement
to stamp verification. Hence, Platypus allows for management of
routing policy independent of both route export and path selection.

Platypus uses network capabilities, primitives that are placed
within individual packets, to securely attest to the policy compli-
ance of source routing requests. Network capabilities are i) trans-
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ferable: an entity can delegate capabilities to others, ii) composable:
a packet may be accompanied by a set of capabilities, and iii) cryp-
tographically authenticated. Capabilities can be issued by ASes to
any parties they know how to bill. Each capability specifies a de-
sired transit point (called a waypoint), a resource principal respon-
sible for the traffic, and a stamp of authorization. By presenting a
capability along with a routing request, end users and ISPs express
their willingness to be held accountable for the traffic, and the in-
cluded authorization ensures the policy compliance of the request.

In addition to its design, we also aim to understand how Platypus
might be deployed in today’s Internet. Incremental deployability is
key in our setting, as it would be unreasonable to expect ASes to
cooperate in the deployment of a system that affects local policy. To
this end, we present results from wide-area measurements and per-
formance evaluation of a prototype UNIX-based Platypus router,
which indicate that incremental deployment of Platypus is feasible
and may yield substantial benefit even using only a few routers.

2. OVERVIEW & APPLICATIONS
It is well known that multiple paths often exist between any two

points in today’s Internet. The central tenet of any source-routing
scheme is that no single route will be best for all parties. Instead,
sources should be empowered to select their own routes according
to whatever criteria they determine. Protocols for efficient wide-
area route discovery and selection, however, are beyond the scope
of this paper. We assume that the network is configured (using BGP,
for example) with a set of default routes and that certain motivated
parties become aware of alternative paths, either through active
probing [4, 35] or route discovery services [26]. Platypus builds
on this basic infrastructure, allowing entities to select paths other
than the default. Packets may specify a set of waypoints to be tra-
versed on the way to a destination, but are not required to specify
each router along the path. A source-routed packet is forwarded us-
ing default paths between the specified waypoints; an end-to-end
path is therefore a concatenation of default paths.

Platypus is designed to be deployed selectively by ASes at choice
locations in their networks. To support incremental deployment,
Platypus waypoints are specified using routable IP addresses. When
source routing a packet, the routing entity, which may be an end
host or a device inside the network, encapsulates the payload and
replaces the original destination IP address of the packet with the
address of the first waypoint. The original destination IP address is
stored in the packet for replacement at the last waypoint. When a
Platypus packet arrives at a waypoint, the router updates the Platy-
pus headers and forwards the packet on to the next waypoint.

2.1 Sample applications
We motivate the design of Platypus by describing several possi-

ble applications below. These examples are meant to be illustrative,
not necessarily comprehensive.

2.1.1 Efficient overlay routing/On-demand transit
Consider the partial network topology shown in Figure 1. Nodes

A, B, and C are all willing to cooperate to forward each other’s
traffic. Assume that A wishes to send a packet to B, but the default
route A → R3 → R4 → B is unsatisfactory, perhaps because
the link R3 ↔ R4 is congested or down. With prior overlay sys-
tems [4], A could use C as a transit point by tunneling its traffic
directly to C, who would then forward it along to B. While effec-
tive at avoiding the bad link, this route is clearly sub-optimal for all
involved, since:

1. C is forced to forward each packet itself, consuming both
its bandwidth (in both directions) and processor resources.

R1 R2

R3 R4

R5 R6

R7

R8

A B

C

Figure 1: A simple network topology. HostsA, B, and C all
have different ISPs.

It would prefer that R8 forward the traffic instead; likewise,
R8 would prefer that R7 forward the traffic.

2. Any path from A to B through R7 is likely suboptimal unless
the R5 ↔ R6 link is congested.

3. If avoiding R3 ↔ R4 is the objective, an alternate route
exists using the R1 ↔ R2 link. If C’s ISP also owns R1 and
R2, C should be able to authorize use of the link R1 ↔ R2.

The first issue could be addressed by traditional source-routing
schemes, requiring that A specify the route R3 → R5 → R7 →
R6 → R4 → B. The challenge is in communicating to C’s ISP
that such a route request is reasonable. In this case, assuming C’s
ISP is not a transit provider, it is permissible only because C is a
customer of the ISP and is willing to be charged for A’s traffic.
With existing source-routing mechanisms, an AS cannot determine
whether a forwarding request complies with local policy, and, if so,
who to charge for the service. Currently, an AS assumes that pack-
ets should arrive at its border only if it advertised a route to their
destinations. In our example, a packet destined for B should not
arrive at R5 from R3; it should go directly to R4. Source-routed
packets can obviously be made to explicitly transit any AS, violat-
ing this precondition. While ISPs can (and do) use filters to prevent
unauthorized traffic from entering their network, filters can only
act upon information contained within a packet—source and des-
tination addresses, protocol, type of service, etc.—and current net-
work location. These attributes are insufficient to determine policy
compliance or the responsible party in this case. Nothing about the
source-routed packet from A to B indicates C’s cooperation (and
resulting policy compliance).

In Platypus, C, by virtue of being a customer of its ISP, may
have authority to source route through any of the ISP’s routers. In
that case, C’s ISP would issue C a capability and a secret key that
can be used to stamppackets. The capability would name C as
the resource principal—the party responsible for all traffic bearing
the capability. Platypus ensures the policy compliance of a given
source route by requiring that source-routed packets contain a ca-
pability for each waypoint in a packet’s source route. Because the
secret key needed to stamp packets is known only to the indicated
resource principal (or its associates), properly stamped packets cer-
tify their policy compliance and allow waypoints to appropriately
account for usage.
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We posit that ASes conduct a priori negotiations with customers
and each other to determine mutually agreeable policies about who
may source route traffic through which waypoints (similar to to-
day’s peering agreements [27]). Efficiently describing or construct-
ing such policies is a complex problem on its own; we do not dis-
cuss it here. Instead, we assume the output of this process is a set of
rights which can be encoded as a matrix of binary entries: for each
waypoint in the network, a given resource principal may or may not
forward traffic through it. Capabilities expire periodically and can
be revoked, allowing ASes to dynamically update their policies.

Returning to our example, C could transfer its capability to A,
allowing A to construct a source route that can alleviate all three
issues, depending on the waypoint specified in the capability. If the
capability specifies R7 as a waypoint, the first problem is solved.
If, on the other hand, the waypoint simply refers to any router
within C’s ISP, the second problem is addressed automatically by
the intra-AS routing protocol, which forwards the packet along the
most efficient route from R5 (which would serve as the waypoint).
Finally, if C were to request a capability specifically naming R1 as
a next hop, even the third issue can be addressed.

While we have described A, B, and C as end hosts for simplic-
ity, Platypus is designed to allow in-network stamping. Hence, each
of these entities could correspond to entire ASes, allowing the ex-
ample to be recast as a type of secondary transit, where C—a stub
domain—can resell its transit privileges to other, non-adjacent stub
domains without prior involvement of its provider.

2.1.2 Preferential egress points
Continuing to focus on ISPs, we observe that it is often the case

that ISPs would like to select egress peering points based upon the
peer injecting the traffic. However, since multiple upstream ASes
often peer at the same ingress point of an ISP’s network, it can be
difficult to separate an individual AS’s traffic to perform selective
forwarding. Currently the only effective means of specifying egress
points based upon upstream AS is through inter-provider MPLS,
which to our knowledge is rarely deployed. Platypus can address
this need, requiring cooperation only between the peering ASes.
Upstream ASes can be issued capabilities with waypoints corre-
sponding to the desired egress routers. These ASes stamp traffic
with the appropriate capability at their peering router, thereby di-
recting their traffic to the appropriate egress router.

2.1.3 Preferential ingress points
Multi-homed stub ASes often select multiple upstream providers

and send different traffic through each depending on network con-
ditions and destination—so-called policy routing. Unfortunately, a
stub AS remains at the mercy of its upstream providers to con-
trol how incoming traffic arrives; there currently exists no widely
deployed mechanism to affect ingress points [1]. Using Platypus,
however, an AS could delegate multiple capabilities naming way-
points corresponding to its different upstream providers. Just as
with toll-free phone numbers, a stub AS may be willing to be the re-
source principal responsible for incoming traffic if it can affect how
that incoming traffic arrives. While the design of a mechanism for
broadcasting capabilities and associated secret keys is outside the
scope of this paper (although likely as simple as leveraging DNS
or HTTP), Section 4.3 details how capabilities can be restricted to
only allow traffic to be sent to a specified destination.

2.1.4 Virtual multi-homing
A stub AS with a single upstream connection is currently limited

to the default routes of its provider. Without multi-homing, an AS
is incapable of selecting backbone providers to carry its traffic—it

must use the backbone selected by its upstream AS. With Platypus,
however, a stub AS could request capabilities from providers of its
choice, and place these on its out-bound traffic indicating which
of its regional provider’s upstream backbones to use for particu-
lar traffic—in effect making the AS virtually multi-homed. Thus, a
stub AS could implement its own policy routing without the need
for any configuration on the part of its upstream provider.

As a concrete example, suppose an AS, X, wishes to choose be-
tween two indirectly upstream providers A and B. X’s ISP, Y , need
not provide Platypus support. At the X ↔ Y gateway, X classifies
traffic it wishes to route through either A or B and stamps them
with appropriate capabilities. Though Y doesn’t support Platypus
forwarding, it faithfully delivers packets to A’s or B’s edge routers,
which are aware of Platypus headers, and, thus, deliver the packets
as X desired. In such a scenario A and B clearly have a financial
motivation to provide such a service since they can bill X, while
X benefits by having choice in its indirect upstream providers, po-
tentially providing fail-over or optimized routing. X’s provider, Y ,
has no disincentive to allow Platypus-enabled packets to traverse
its network since it has an already established relationship with X.

2.2 Challenges
As these examples demonstrate, source routing can be used to

address a number of issues with the existing routing infrastructure.
We believe, therefore, that the unavailability or limited deployment
of source routing protocols stems not from a lack of utility, but,
instead, from the omission of two key features: a mechanism for
accountable and composable authorization, and the ability for ISPs
to effectively manage link utilization. The need for authorization
should be clear from the examples. The relationship to load man-
agement, however, is a bit more subtle. Recent research indicates
that self-interested source routing can achieve performance gains
even in wide deployment, but raises concerns about possible neg-
ative interactions with traffic engineering—highly reactive sources
may make existing traffic engineering mechanisms ineffective by
constantly changing fine-grained route requests [28].

3. NETWORK CAPABILITIES
Platypus addresses both of these issues through the use of net-

work capabilities. Abstractly, a network capability is made up of
two fields: a waypoint and a resource principal identifier. The way-
point specifies a topological network location through which the
packet should be routed and the resource principal specifies the en-
tity willing to be charged for the routing request. (For now, we will
consider waypoints to correspond to a specific router within an AS.
We return to evaluate how adjusting the topological granularity of
Platypus waypoints in affects their utility in section 6.2.)

In Platypus, packets are stamped with a source-routing request
by inserting a Platypus header immediately after the IP header of
each packet and including some number of capabilities, encapsulat-
ing the existing payload. Figure 2 shows the Platypus header format
with one capability attached. The header contains fields for the pro-
tocol version (currently 0), a set of bit flags (whose use is described
in Section 4.2), a length field (specified in terms of 32-bit words), a
pointer to the current capability (also in terms of 32-bit words), and
an encapsulated protocol field to facilitate de-encapsulation. Capa-
bilities are appended immediately after the Platypus header, and
may be added by in-network stampers while the packet is in transit.

Since anyone can use a capability to forward packets through the
specified waypoint and bill the indicated resource principal, Platy-
pus must ensure that eavesdroppers watching packets in the net-
work cannot use capabilities they observe in flight for their own
packets. Similarly, attackers should not be able to modify capa-
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4 bytes

Version Flags Capability List
Length

Capability List
Pointer

Encapsulated
Protocol

Original Source AddressPlatypus header

Final Destination Address

Waypoint address

Resource principal

Capability, c

Key ID Flags

Binding, b

Figure 2: Platypus header format with a single capability and
binding attached.

bilities or construct new ones that enable them to use waypoints
for which they are not authorized, or to bill other resource princi-
pals. To prevent this, each capability in a packet is accompanied
by a binding that cryptographically ensures the capability is valid
and being used by the appropriate party. Bindings are a function
of the capability, the packet contents, and a secret known only to
the owner of the capability. When a Platypus packet arrives at a
waypoint, the Platypus router validates the corresponding capabil-
ity and its binding. If the capability/binding pair is valid, the router
updates the waypoint pointer (indicating the packet has already
passed through this waypoint), sets the packet’s current destina-
tion IP to the waypoint field of the next capability in the capability
list, replaces the current source IP with its own (to prevent ingress
filters from dropping the packet), and forwards the packet on. If
no additional capabilities remain, the router replaces the original
destination address.

3.1 MAC-based authentication
Platypus prevents the forging of capabilities or their bindings

through what is known as the “double MAC” trick [2], which we
have proven to be secure if the underlying MAC is a pseudorandom
function, as most modern MACs are believed to be. We define a se-
cret temporal key, s = MACk(c), generated from the capability, c,
using a message authentication code (MAC) such as HMAC [18].
The MAC is keyed with k, the key of the specified waypoint. This
value s is securely transferred to the resource principal (in a man-
ner described in Section 4). In order to use a capability, an indi-
vidual packet must be stamped with the capability and a binding,
b = MACs(MASK(P )), where MASK(P ) is the invariant [13]
contents of the packet (not including Platypus headers) with the real
source and destination addresses substituted and the packet length
field omitted. Both b and c are included in the packet, as shown
in Figure 2. In this way, the binding is dependent upon both the
secret key s and the packet’s contents, and thus cannot be reused
for other packets. Similarly, any changes to the capability c would
render bindings computed with the secret temporal key s invalid.

Figure 3 presents pseudocode for Platypus packet verification
and forwarding. To verify a packet’s binding (and, therefore, capa-
bility), a Platypus router only needs the local waypoint key, k, since
b′ = MACMACk(c)(MASK(P )) = MACs(MASK(P )). If b �= b′,
either the capability or the binding (or both) has been forged and
the packet should be discarded. An advantage of this construction
is that the router needs to maintain only a constant amount of state

R: Revocation set, ID: Current key ID
PROCESS(P : Packet)

c ← ∗(P.phdr.ptr)

if |c.id−ID| > 1 or c ∈ R then
ICMPERROR(P )

s ← MACk(c.way‖c.rp‖GETTIME(c.id))

b′ ← MACs(MASK(P ))

if c.b = b′ then
ACCOUNT(c.rp, P )

if P.phdr.src = 0 then
P.phdr.src ← P.src

P.phdr.ptr ← P.phdr.ptr + |c|
if P.phdr.ptr ≥ P.phdr.len then

P.dst ← P.phdr.dst

else
c ← ∗(P.phdr.ptr)

P.dst ← c.way

FORWARD(P )

else
ICMPERROR(P )

Figure 3: Pseudocode for Platypus forwarding.P is a packet,
P.src is the packet’s source IP address, andP.phdr is the Platy-
pus header in whichsrc (dst) is the source (destination) ad-
dress,ptr is the pointer to the current capability and len is
the length of the capability list. c is a capability, c.way is the its
waypoint field, c.rp is its resource principal field,c.id is its key
ID, and c.b is the binding.‖ denotes concatenation.

irrespective of the number of resource principals. In addition, re-
jected packets elicit ICMP responses to the sender to quell further
invalid transmissions (subject to standard ICMP rate limiting).

3.2 Key expiration and timing
If temporal secret keys were never to expire, ASes would have no

means to enforce changing policies—resource principals could use
their capabilities forever. In addition, if a key were transferred to a
third party or compromised, the resource principal would have no
way to regain control over its associated capability. To address these
issues, Platypus provides automatic key expiration. Once a tempo-
ral secret key expires, resource principals must retrieve a new one
from the key server. To simplify the task of authenticating resource
principals to the key server, we introduce the notion of a capability
master key, ck, which is shared between the resource principal and
the key server. The capability master key is not used to generate ca-
pabilities or bindings, it is only needed to retrieve a new temporal
secret key from the key server.

Platypus is designed to avoid the need for tight time synchroniza-
tion between stamping parties and Platypus routers. Each capability
includes a key identifier (key ID) which is a small (4-bit) integer
that identifies the temporal secret used to compute each packet’s
binding. This key ID value changes on a regular basis (e.g., every
hour) and a new corresponding temporal secret generated. Since the
key ID space is small, the key ID may wrap around often, yielding
what would be identical temporal secrets if s = MACk(c). We ad-
dress this issue by incorporating the current time during generation
of temporal secrets.1 In this way, temporal secrets are guaranteed
to be unique despite key ID wraparound.
1Specifically, for a given time t, where t is the seconds part of a 32-bit UNIX times-
tamp in UTC, and an expiration interval of 2n , the corresponding key ID i = (t >>
n) & 0xF. That is, the key ID is the last 4 bits of t after removal of the lower n bits;
the key ID changes every 2n seconds. To compute a temporal secret s as in Figure 3, a
call to GETTIME(i) = ((t >> n) & 0xFFFFFFF0) | i, which returns the time value
that corresponds to the given key ID.
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Waypoint Key k Revocation List R Capability Master Key ck Temporal Secret Key s Binding b
Key Server • • • ◦
Platypus Router • • ◦ ◦
Resource Principal • • ◦
Trusted Third Party • ◦
Others •

Table 1: Capability knowledge hierarchy.• denotes that the value is/can be known,◦ indicates it is generated on the fly.

To ensure that both stamping agents and routers agree on the
current key ID, capabilities are associated with a key expiration in-
terval upon issuance. The length of the expiration interval presents
a natural tradeoff between control and overhead—short expiration
intervals provide fine-grained control over secrets, but require more
frequent key lookup. Expiration intervals must be chosen based
upon operational experience with Platypus to suit the needs of the
issuing AS and its resource principals. Our only synchronization
requirement is that stampers have clocks that do not drift on the
order of the expiration interval. In addition, to allow for transitions
between secrets, we consider 3 secrets to be valid at any time: those
for the current, previous, and next key IDs. To combat clock drift
between Platypus routers, we expect that the routers are loosely
time synchronized using a standard service such as NTP [25].

3.3 Security
Security in Platypus is provided by the fact that not all parties

have the information needed to bind known capabilities to new
packets or create new, usable capabilities. Table 1 shows the types
of information known to various parties. To generate a temporal se-
cret key, a party must have the waypoint key, k, which is known
only to the router and the router’s key server. Binding a capabil-
ity to a packet requires only the temporal secret key, s, which is
generated based upon k and the current time. Knowledge of one
capability’s temporal secret key, however, does not allow a party to
generate temporal secrets for others. Resource principals wishing
to transfer rights for a particular waypoint to trusted third party can
pass both the capability and corresponding temporal secret key.

While the capability can be passed in the clear, the temporal se-
cret key must be communicated privately, ensuring that only the
chosen third parties are able to receive it. These third parties can
then use s to generate bindings to stamp their own packets. Others,
including those sniffing packets on the network, can see capabilities
and their bindings, but lack the secret s required to generate valid
bindings. Periodic key expiration ensures that third parties cannot
use temporal secrets indefinitely. In addition, any temporal secret
key may be revoked by the resource principal through communica-
tion with the key server as will be described in Section 4.1.

Unfortunately, since bindings include almost all the invariant
contents of a packet, intermediate nodes are restricted in power. For
example, since the binding covers the payload (including TCP port
numbers) Platypus packets are not compatible with port-altering
network address translators (NATs), nor can they be fragmented.
We do not consider the inability to fragment a significant limita-
tion, as hosts typically perform path MTU discovery for all des-
tinations. The NAT restriction, however, may be more significant.
Any port-altering NATs traversed by Platypus packets on their way
to a waypoint must be Platypus-aware. Once a packet has passed
through its final Platypus waypoint, however, it may pass through
NATs without ill effect. Similarly, packets may traverse any number
of NATs before being stamped. Since most NATs are deployed at
the edges of networks, the above suffices when packets are stamped
inside the network. End hosts wishing to stamp their own packets,
however, cannot be behind a port-altering NAT.

4. CAPABILITY MANAGEMENT
Platypus gains significant flexibility from the ability to trans-

fer capabilities. Entities can collect capabilities from multiple re-
source principals, constructing source routes to which no single
entity would otherwise have rights. We describe capability man-
agement in two phases: First, we discuss how resource principals
obtain temporal secrets for their own capabilities. We then present
two schemes for the restricted delegation of a resource principal’s
capabilities.

4.1 Distribution
To bootstrap the capability distribution process, we expect that

each AS provides an interface (likely a Web server) through which
resource principal accounts are established. This can occur in many
ways. For example: the server and resource principal set up a secure
channel (using SSL, for example), and, after negotiating payment,
the server sends a resource principal ID, randomly generated capa-
bility master key ck , and the capability information to the resource
principal.

To look up the current temporal secret s associated with a capa-
bility, a resource principal generates a request by encoding the ca-
pability and a special request opcode as a string and prepends it to
the key-lookup subdomain (specified during the bootstrap process)
in a DNS TXT lookup request, which is routed by DNS to an ap-
propriate key server. For example, a request for a capability issued
by ucsd.edu with key-lookup subdomain platypus.ucsd.edu

would be <request>.platypus.ucsd.edu. The DNS response
is a similarly encoded DNS TXT record containing the temporal
secret for the requested key ID encrypted under the capability mas-
ter key. The resource principal decrypts and verifies the response,
yielding the current temporal secret s for the specified capability.

The use of DNS for key lookup may seem clumsy; a more natural
approach might be to contact the key server directly. To contact the
server, however, a resource principal would have to first perform
a DNS lookup for the key server and then transmit its lookup re-
quest, requiring multiple round trips. Instead, Platypus piggybacks
the request for a key, shortening the lookup latency to about one
RTT, allowing for extremely short expiration intervals. By using
DNS to distribute keys, Platypus realizes caching, distributed au-
thority, and failure resistance without having to build a separate
key distribution infrastructure. In particular, Platypus key lookups
are cacheable since requests are plain text and replies are encrypted
under the capability master key for the requested capability. If mul-
tiple requests are made for the same shared capability, DNS caching
will automatically decrease the load on the key server.

While expiration provides for coarse-grained control of tempo-
ral secrets, a resource principal may want to immediately revoke
the current temporal secret when it suspects compromise. Platypus
enables such revocation: to revoke a particular temporal secret, the
resource principal computes the MAC of the capability and the cur-
rent time under the capability master key and sends the {capability,
time} pair, MAC, and the revocation opcode encoded as a DNS re-
quest. Platypus routers periodically receive updated revocation lists
from their associated key servers and consult the revocation list

171



whenever validating capabilities. The revocation list for the current
key ID is flushed before key ID rotation.

4.2 Reply capabilities
Protocols such as TCP work best when forward and reverse path

characteristics are similar. In order to use Platypus source routes,
however, both ends of a flow must have their own capabilities and
perform their own routing. Fortunately, it may often be the case
that a flow is for the benefit of only one party—an HTTP flow,
for example—who may wish to be solely responsible for the flow.
Platypus allows for resource principals to include a capability and
its corresponding temporal secret as part of a packet stream for the
recipient to use in response.

For concreteness, we describe reply capabilities in the context of
an HTTP flow. Suppose the client possesses a capability to route
through some Platypus router to reach a Web server. The client
wishes to provide a capability to the server for reply packets back
to the client. (Obviously, the server or some router near the server
must support Platypus stamping to make this possible.) Platypus
allows for an in-band exchange of capabilities and temporal secrets
by conducting a Diffie-Hellman key exchange using a special reply
capability flag in the Platypus header. We omit the details for space,
but once the capability and corresponding secret is transferred to
the server (requiring a three-way handshake; conveniently the se-
cret can be included on the first TCP data segment—the HTTP
GET—if no server authentication is required), the server simply
uses it to stamp all packets destined for the client.

There must be some degree of trust in this relationship: the client
must expect that the server is going to send it useful data if it is
willing to be provide a capability for the traffic. However, the client
may not wish to divulge its capability and temporal secret key en-
tirely. In particular, the client may want to transfer the appropriate
capabilities with a restriction that they be used only to send pack-
ets to its address. Thus, the server would only be able to use the
restricted capability to route to the client, who would be able to de-
tect any abuse. Such a restricted delegation mechanism is of use in
a more general setting; we turn to this problem next, and use the
fully restricted variant for reply capabilities.

4.3 General delegation
In general, a resource principal may want to specify a particular

IP address prefix to which a third party may send packets using the
principal’s capability. Furthermore, the third party should be able
to sub-delegate (specify a subnet of the previously delegated pre-
fix) the capability without needing to contact the resource principal
or key server. Platypus therefore allows the minting of delegated
capabilities, which are derived from normal capabilities, but lim-
ited in their scope. To facilitate the use of delegated capabilities,
we extend the capability format as follows. First, when a packet is
stamped with a delegated capability, a bit is set in the flags field of
the capability specifying that the capability is a delegated capabil-
ity. Immediately before the associated binding, the stamper places
the constraining prefix (a 32-bit value), the prefix length (an 8-bit
value), and a delegation ID (a 24-bit value). These values allow a
Platypus router to verify both that the binding is valid and that the
destination of the packet is within the restricted prefix. In addition,
the delegation ID can be used by the resource principal in conjunc-
tion with the ISP to track the use of delegated capabilities.

Table 2 presents two distinct protocols for constructing delegated
capabilities: chaining delegationand XOR delegation. The two pro-
tocols address different design points and exploit a natural trade-off
between the security of delegation and the complexity of delegated-
capability verification; ASes would likely select one or the other de-

pending on the delegation habits of their resource principals. Either
scheme can be used to create reply capabilities by simply restricting
the prefix to the client’s IP address.

Chaining delegation is simply a multi-round variant of the double-
MAC with similar security guarantees. Since chaining includes bits
of the prefix itself, the chain values cannot be precomputed by
routers. Thus, while requiring no additional state at the router, this
scheme can require significant computation at Platypus routers (one
invocation of F —which is likely to be implemented as a MAC in
practice—for each bit in the delegated prefix).

Alternatively, XOR delegation is amenable to precomputation,
allowing individual routers to trade off storage for per-packet com-
putation, but admits a certain amount of collusion between third
parties. By allowing precomputation of the sequence of values used
to generate the key under which bindings are computed, verification
of delegated capabilities can occur at roughly the same speed as
non-delegated capabilities. For each temporal secret s there exists
a sequence of pseudorandom values di,0 and di,1, one of which is
selected according to whether bit i of the prefix is a 1 or 0. XORing
these values yields a pseudorandom key under which MACs can be
computed. Delegation is secure in that third parties who receive a
dp for some prefix p cannot compute the values for di,b for i ≤ |p|
since those values are computed using sj values where j < |p|.
Since XOR is commutative and intermediate values are distributed,
the scheme is vulnerable to collusion between parties with different
delegated prefixes for the same capability. For example, two parties
with capabilities delegated from the same resource principal capa-
bility with prefixes of Hamming distance one can extract the di,b

values for the position i at which their prefixes differ.

5. IMPLEMENTATION
We have built prototype software components for UNIX that pro-

vide Platypus stamping, key distribution, and forwarding services.
Each is described in turn below, as well as several issues that arise
with respect to cryptographic primitives and protocol interactions.

5.1 Forwarding and key distribution
We have implemented Platypus forwarding functionality both as

a user-space daemon process, prd, and a kernel module, prkm. We
have written prd for both FreeBSD and Linux; prkm is currently
available only for Linux 2.6. The user-space implementation, prd,
works in conjunction with our key-distribution daemon, pkd; the
two share a key database and run as separate threads of the same
process. pkd services DNS key lookup and revoke requests for a
delegated subdomain as described earlier. Our prototype of prkm,
unlike pkd, currently does not support revocation.

The two Platypus router implementations differ mainly in the
mechanisms they use to intercept Platypus packets. The user-space
forwarding daemon, prd, captures Platypus packets using raw sock-
ets, while the Linux kernel module registers itself with the IP stack
as a protocol handler for Platypus protocol packets. After process-
ing and validating any attached capabilities, the routers either re-
inject the packet into the local IP stack for delivery or forward it
to the next Platypus hop or final destination. User-level packet cap-
ture and forwarding requires multiple user/kernel context switches,
resulting in poor forwarding performance, thus motivating the need
for an in-kernel implementation. prkm processes Platypus packets
entirely inside the kernel. Upon a packet arrival, in the kernel soft-
IRQ context, prkm verifies the packet; if the binding is valid, the
packet is updated and forwarded. By binding interrupt handling for
different network interfaces to different CPUs on a machine, prkm
can provide good scaling across multiple processors.
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Chaining Delegation XOR Delegation

Delegation RP s0 ← s ⊕ H(c.id) RP s0 ← s, dp ← H(s) ⊕ H(c.id)
for i ← 1 to |p| for i ← 1 to |p|

si ← Fsi−1(pi) si ← Fsi−1 (i)
dp ← dp ⊕ Fsi−1 (pi‖i)

(s|p|, p) =⇒ TP (dp, s|p|, p) =⇒ TP

Sub-delegation TP for i ← (|p| + 1) to |p′| TP dp′ ← dp

si ← Fsi−1(p′i) for i ← (|p| + 1) to |p′|
si ← Fsi−1 (i)
dp′ ← dp′ ⊕ Fsi−1 (p′i‖i)

(s|p′|, p′) =⇒ TP’ (dp′ , s|p′|, p′) =⇒ TP’

Stamping TP b ← MACs|p|(MASK(P )) TP b ← MACdp (MASK(P ))

Verification PR Verify s0 ← s ⊕ H(c.id) PR Precompute for i ← 1 to 32
for i ← 1 to |p| si ← Fsi−1 (i)

si ← Fsi−1(pi) di,0 ← Fsi−1 (0‖i), di,1 ← Fsi−1 (1‖i)
b

?
= MACst (P ) PR Verify dp ← H(s) ⊕ H(c.id) ⊕ L|p|

i=0 di,pi

p
?
=|p| P.dst b

?
= MACdp (P )

p
?
=|p| P.dst

Table 2: Two protocols for IPv4 capability delegation.p represents a constraining IP prefix,pi is theith bit of p, |p| denotes the length
of p, p′ is the prefix corresponding to the subnet ofp to be delegated,c.id is the delegation ID,Fk is a pseudorandom function keyed
by k, and H is a hash function. RP is the resource principal, TP and TP’ are third parties, and PR is the Platypus router.⊕
denotes bit-wise XOR.

5.2 Stamping
To use Platypus, packets must be stamped with the capabilities

appropriate for their selected route. Our current user-level imple-
mentation stamps (and routes) packets at the source using a user-
level stamp daemon, psd. psd is implemented as a FreeBSD user-
level process that receives stamp registration requests from appli-
cation processes through a UNIX domain socket. Applications reg-
ister requests in one of two fashions. First, they may pass psd a
socket descriptor using sendmsg() requesting that all packets sent
using that socket be stamped with a specified set of capabilities.
Alternatively, processes may request that all packets sent on behalf
of a particular user be routed and stamped in the specified fashion.
By using a divert socket to intercept outgoing IP packets matching
the set of registered stamp requests after kernel IP processing, psd
can encapsulate, stamp, and resend packets transparent to in-kernel
protocol stacks. In addition, we have developed a prototype Linux
kernel module, pskm, that performs in-network stamping using a
mechanism similar to that of prkm.

5.3 Cryptographic issues
Our prototype Platypus implementation uses UMAC, a MAC de-

signed for efficient implementation on modern processors [7]. Un-
fortunately, UMAC requires a per-key setup phase that takes sig-
nificantly longer than a single MAC computation. Hence, we main-
tain a capability cache with recent key IDs and their correspond-
ing UMAC contexts. Cached contexts, if available, are used during
binding computation, amortizing the key setup over many packets
with the same capability. In a PC-based router, this context cache
can easily be made large enough to cache most active resource prin-
cipals: in our unoptimized implementation, each context uses only
316 bytes. Luckily, MACs well suited for hardware implementation
have negligible key-setup time, so no cache would be needed.

The use of UMAC for capability verification raises two issues.
First, UMAC requires unique nonces in addition to a key for each
MAC computation; its designers suggest the use of a 32-bit or 64-
bit counter, depending on the lifetime of the key. While nonces need
not be private for security of the MAC, they must be unique across

all MAC computations with a given key. Our prototype uses the IP
ID field and 4 bytes of the encapsulated packet (corresponding to
the TCP sequence number) to provide a 48-bit nonce for binding
computation.2 Also, due to the double MAC, the nonce used for
the first MAC (to generate the key s) must be different from that of
the second MAC (to generate bindings) since the former is fixed for
the lifetime of s whereas the latter changes per packet. For the first
MAC, we use the upper (32−n) bits of the current time, where 2n

is the key expiration interval.

5.4 Protocol interactions
We have attempted to design around possible negative interac-

tions between Platypus and existing protocols. In particular, proper
ICMP delivery is complicated by source routing. Since ICMP re-
sponses can occur for many reasons, the appropriate recipient of
such messages can be ambiguous. For example, should an ICMP
time expired message be sent to the last Platypus waypoint in the
source route, the stamper, or the original source? The cause of
such expiration may be due to in-network stamping or other prob-
lems such as routing loops. Further complicating the matter, non-
Platypus routers may generate ICMP responses for source-routed
packets and send them to the last waypoint in the source route. In
both of the two primary cases—end-host stamping and in-network
stamping—the end-host perceives its Platypus-enabled connectiv-
ity to be the same as ordinary network connectivity, thus we send all
ICMP packets back to the original source address. The first 64 bits
of the Platypus header contain the original source address, enabling
RFC-compliant routers to include the original source address in
ICMP error response packets; Platypus routers forward such ICMP
packets along to the source, subject to standard ICMP rate limiting.

Since Platypus uses DNS for key lookup requests, we must con-
sider whether to stamp DNS packets themselves. We have chosen
not to, for three reasons. First, DNS requests are typically local
and thus will likely not benefit from Platypus-style routing. Sec-
ond, initial Platypus key-lookup requests via DNS would need to be
2Some OSes zero the IP ID field for packets with the “don’t fragment” bit set; this
typically occurs after path MTU discovery. To ensure the uniqueness of nonces, a
stamper may place a random IP ID in such packets before stamping.
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Packet size 68 byte 348 byte 1500 byte
Packet processing

Null 172 ns 173 ns 181 ns
UMAC 695 ns 998 ns 1908 ns

Destination cache lookup 289 ns
IP hdr build and verify 145 ns
Packet transmission 1480 ns 1482 ns 1493 ns

Table 3: Micro-benchmarks for prkm. All times are as measured
by the CPU cycle counter.

stamped with a valid key, creating a bootstrapping problem. Finally,
stamping DNS packets would require running a Platypus router at
DNS servers or transparently de-encapsulating DNS requests in the
network, complicating deployment.

6. EVALUATION
In this section we consider both the performance of our prototype

router and stamper, and, more importantly, how the effectiveness of
source routing is impacted by waypoint granularity.

6.1 Forwarding and stamping performance
Our experimental testbed consists of a central Linux-based router

that performs both forwarding and stamping and several load gen-
erators connected through a gigabit Ethernet switch. The server is
configured with two 64-bit, 2.2-GHz AMD Opteron 248 proces-
sors, two GB of PC2700 DDR memory, and three Intel Pro/1000
XT gigabit NICs; our tests used two of the NICs installed on a 100-
Mhz, 64-bit PCI-X bus. The load generating machines have 1.1-
GHz Pentium III processors and Intel Pro/1000 XT gigabit NICs.

First we consider the absolute performance of forwarding and
stamping. Figure 4 compares the performance of Linux’s in-kernel
IP forwarding to prkm’s forwarding performance and pskm’s stamp-
ing performance for worst-case (minimum-size) packets. For for-
warding tests, the load generators each direct identical 68-byte (20-
byte IP header + 28-byte Platypus header + 20-byte TCP header,
excluding the Ethernet header) Platypus packets at the router which
validates the bindings and forwards the packets to the indicated
waypoint. For stamping, the load generators send 40-byte packets
which are stamped and forwarded by the router (by insertion of the
28-byte Platypus header with a capability and binding). To increase
the offered load in a controlled fashion, we first saturate one router
interface and then load the two interfaces at equal levels.

As seen in the figure, prkm is capable of forwarding packets with
full UMAC authentication at a maximum loss-free forwarding rate
of approximately 767 Kpps (using a warm UMAC context cache;
initializing the context takes 41.3 µs), which is only slightly less
than the performance of native Linux. To help calibrate for the fact
that the kernel’s forwarding code is more streamlined than that of
prkm, we plot the performance of the prkm forwarding path with-
out verification (labeled null forwarding in the figure). The results
indicate that a significant portion of the performance degradation is
due to factors other than capability verification. When forwarding
MTU (1500-byte) packets, prkm is able to fully validate at approx-
imately 2.5 Gbps without loss. Stamping performance is slightly
worse: pskm is capable of loss-free stamping at approximately 633
Kpps. These results indicate that Platypus software routers and in-
network stampers can yield good performance on modern hard-
ware, enabling low-cost deployment of Platypus.

In addition to absolute forwarding numbers, we measured the
amount of time actually spent validating bindings, as this latency
may be observed by end hosts (as opposed to forwarding perfor-
mance, which is largely a concern of the ISP). Table 3 shows micro-
benchmarks of prkm in its several stages. We performed these mea-
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Figure 4: 68-byte packet forwarding/stamping performance.

surements by averaging three runs of prkm forwarding 1,000,000
packets spaced 16 µs apart. For tests in which packet size affected
performance, we benchmarked forwarding of 68-byte, 348-byte,
and 1500-byte packets (including IP and Platypus headers, but ex-
cluding Ethernet headers), which correspond to minimum, mod-
erate, and maximum packet sizes. Packets arrive at prkm’s packet
handler from the Linux ip local deliver routine which is tasked
with passing packets to the appropriate protocol handler. Packet
processing includes time to parse the packet headers, verify the
binding, and update Platypus headers. Destination cache lookup
includes retrieval of a dst entry structure, and IP header build-
ing and verification includes time to place a new IP header on the
packet. Finally, packet transmission time includes time until the
packet is queued for transmission by the device. While the valida-
tion time is highly dependent upon packet size, it is less than other
overheads even for large packets. In the worst case, binding valida-
tion adds less than two µs to forwarding latency.

6.2 Waypoint granularity
We now consider the impact of waypoint granularity on the ef-

fectiveness of Platypus-like source routing. Clearly, the finer the
waypoint granularity, the more control Platypus can assert over
a packet’s path. Intuitively, however, intra-AS traffic engineering
goals are likely best met by exporting only coarse-grained way-
points to external entities. While we lack sufficient information
(such as actual AS topologies with traffic matrices) to address the
traffic engineering issues, we attempt in this section to provide
some insight into the level of granularity necessary to effectively
impact a specific end-to-end path characteristic.

We consider clustering the routers into groups which could be
represented by a single Platypus waypoint. In particular, we study
the impact on end-to-end one-way path latency of routing indirectly
through a waypoint of varying granularity. Previous research in-
dicates that it is often possible to achieve significant performance
improvements by inserting one level of indirection in a packet’s
route [4, 31]. However, for deployment reasons, we would like to
know how well chosenan indirection point must be to provide sub-
stantial benefit. Thus, we consider how the best achievable path
latency increases as waypoint granularity is reduced. Intuitively,
since POPs represent a collection of routers in a region, and net-
works are dense near large cities and sparse elsewhere, similarly
performing routers can be naturally clustered together. It may be
sufficient to place Platypus routers in only a few locations, as speed
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(a) Global Crossing (1072 interfaces).
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(b) Sprint (1401 interfaces).
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(c) Qwest (2022 interfaces).
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Figure 5: Impact of cluster size on indirection effectiveness. For each ISP, we vary the number of clusters generated based
upon observed latencies between the two specified measurement points and every known router interface. For each indicated
source/destination pair, we plot the measured one-way path latency using the ISP’s optimal indirection router (opt) against the
calculated path latency through the center of the optimal cluster. Data points represent averages; ten different clusterings were
generated for eachk-means input size. Error bars show the standard deviation.

of light delays comprise most of the delay seen by packets in un-
congested wide-area backbones. Thus, multiple, local waypoints
would not significantly affect latency (but, conversely, might be
useful for load balancing, for example). Note that we are not ar-
guing that path latency is the most important metric of interest,
nor that improving path latency is the best application of Platypus.
Rather, we claim only that latency is a relatively easily measured
and well-understood path property that provides initial insight.

We begin by considering the router IP addresses reported by
the Skitter project [9] for four major international ISPs: UUNet,
Sprint, Qwest, and Global Crossing. We then selected five geo-
graphically diverse monitoring locations in the RON testbed [4],
UC San Diego, Nortel (Nepean, Ontario, Canada), Coloco (Laurel,
Maryland), Lulea (Sweden), and KAIST (Korea). From each mon-
itoring location, we used ICMP timestamp probes to measure both
the forward and reverse path latencies for each known router inter-
face of the ISP in question [23]. This set of measurements was col-
lected over a period of six days between January 22–27, 2004. We
obtained approximately 240 measurements for each location/router
pair and use the mean value. With this data, we compute a one-
way, indirect end-to-end path delay between any two monitoring
locations through each router interface.

To study the utility of various waypoint granularities, we gen-
erated different sized router clusters based upon the observed path
latencies. We then calculated the end-to-end path latency between
each pair of observation points using the router closest to center
of the optimal cluster as the indirection point and compared this
to the latency through the optimal router interface (which may or
may not be a member of the optimal cluster). Figure 5 shows the
results for each of the four ISPs studied. As expected, the more
clusters (corresponding to a finer waypoint granularity), the closer
the performance of the optimal cluster comes to performance of the
optimal router. Somewhat surprisingly, however, the best cluster
centers approach the optimal at a relatively small number of clus-
ters even for UUNet, an extremely large ISP. These results indicate
that a small number of indirection points are likely sufficient for
substantial benefit; this applies equally to Platypus and any overlay
or source-routing system. How waypoint granularity affects other
metrics remains an open question for future work, but the low num-
ber of clusters required to achieve near-optimal latencies give rea-
son for optimism.

We note in parting that the clusters we used are unlikely to re-
sult in the best performance, or even necessarily make operational
sense, so we expect that intelligent placement would require even
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fewer waypoints than our results indicate. We obtained our clus-
ters by running the k-means [22] clustering algorithm over the la-
tencies observed from the Coloco and Lulea measurement points.
Each k-means run was given an argument n representing the de-
sired number of clusters; during the run, the algorithm selected n
clusters randomly and proceeded to improve or discard the clusters.
By adjusting n we could vary the number of clusters requested, but
had no control over the exact number of clusters generated or which
routers would be clustered together. As such, we consider these re-
sults as an upper bound of achievable cluster-path latency.

7. DISCUSSION
Platypus represents one approach to capability-based source rout-

ing. During its design, we have considered issues of performance,
security, accounting, and the effect of source-routed traffic upon the
network. In this section we discuss these considerations.

7.1 Route setup
In its current incarnation, Platypus represents an extreme in terms

of routing flexibility: each packet can be routed independently. A
less radical approach observes that it is often the case that packets
are part of a larger series of packets, or flow. Further, existing trans-
port protocols like TCP are typically more effective when all pack-
ets experience similar path characteristics. Hence, all packets in a
flow should generally be directed along the same route. It would
suffice, then, to specify the desired route once per flow. Implement-
ing such an RSVP-like scheme is tricky, however, as packets must
be labeled as belonging to the same flow, initial packets in the flow
could be lost, routers may reboot and lose flow state, etc. Neverthe-
less, existing hardware is extremely efficient at switching packets
along previously configured routes. Hence, we are interested in de-
veloping ways for Platypus routers to cache forwarding directives
for traffic flows. In particular, we are optimistic that we can harness
the existing MPLS [29] label swapping support in deployed routers
to implement a great deal of the Platypus forwarding functionality.
By decoupling verification from forwarding, and offloading the ini-
tial verification and path setup to a dedicated Platypus router, it may
be possible to switch Platypus packets using MPLS while retaining
many of the features of our initial design.

7.2 Distributed accounting
While Platypus specifies a resource principal per capability, we

have yet to discuss how accounting would actually be implemented.
Fine-grained flow accounting is an established problem in other
contexts, but Platypus complicates the use of several common ap-
proaches. For example, many end hosts receive flat-rate pricing for
their Internet service. ISPs can provide this service with bounded
risk because the rate at which an end host can inject packets into the
network is limited by the capacity of its access link. More sophis-
ticated pricing plans may depend on the actual utilization, which
requires the ISP to meter a customer’s traffic, but such metering
can be done at the customer’s access link.

In Platypus, however, a customer may authorize third parties to
inject packets into its ISP as part of a source route. Any accounting
scheme that only charges customers for packets that traverse their
access link clearly will not properly account for the customer’s ad-
ditional use. A straightforward approach would maintain counters
for each resource principal at all Platypus routers within an AS, and
bill for the total consumption. While auditing challenges may dis-
suade many ISPs from per-packet accounting, aggregate rate limit-
ing is likely to be needed to support those customers that wish to
pay a flat rate for a fixed amount of bandwidth. In order to imple-
ment such a pricing model in Platypus, an AS must have some way

to restrict bandwidth consumption for a particular resource princi-
pal at one or more routers. One possible approach to this problem
is to construct a distributed token bucket that limits the aggregate
rate of all packets with a given resource principal identifier.3

7.3 Replay attacks
In the context of rate-based accounting, a simple model in which

resource principals can use a fixed, aggregate bandwidth will likely
suffice. However, while (modulo cryptographic hardness assump-
tions) packet bindings cannot be forged, they may be replayed by
an adversary, who may wish to waste a resource principal’s limited
bandwidth for a given capability. Since capabilities expire periodi-
cally, a natural countermeasure to replay attacks is to track packets
that traverse a router within some time window and only count each
distinct packet once. A Bloom filter allows for tracking of packets
in such a way, but may fill up over time, resulting in false positives.
This issue can be addressed by maintaining a small circular array
of Bloom filters which are cleared as they fill up [2, 32]. While
an adversary may be able to log all packets and replay them after
the corresponding Bloom filter is emptied, if the filters are emptied
only at key expiration intervals, stored packets cannot be replayed.

7.4 Scalability
While we have thus far only addressed the deployment of Platy-

pus in several limited settings, the system’s potential scalability in
real-world deployment is of obvious interest. In this section we dis-
cuss the scalability of our current design.

Careful selection of MAC algorithms is crucial for peak verifica-
tion performance. We use UMAC in our software implementation,
but expect PMAC would be selected for hardware implementations.
While we do not have raw figures on its performance, its inherently
parallelizable design makes PMAC is ideal for hardware imple-
mentation [8]. Hardware implementations of AES already achieve
raw throughput of 48 Gbps [30], giving reason to believe that hard-
ware can be built to perform PMAC computation at high speeds.
Since MAC computations are done with local information only, ca-
pability issuers can choose a MAC algorithm appropriate to their
forwarding hardware or software.

Platypus’s double-MAC design requires constant state for capa-
bility verification, regardless of the number of resource principals.
ISPs may wish to keep additional accounting state for billing pur-
poses, however. In the extreme case of per-packet billing, an ISP
would need to keep a packet counter corresponding to each re-
source principal. While deployments of Platypus in the core may
only need to handle a few thousand resource principals (for ex-
ample, UUNet’s 2,569 peers [34] may each represent a principal),
deployments for a broadband ISP may have many more (the largest
of which, Comcast, currently has 5.7 million customers [21]). Re-
cent work has shown that approximate counters with bounded error
can be maintained per flow at very high speeds (OC-768) [19].

We contend that Platypus key management can also be scaled to
support large numbers of resource principals. For key distribution,
it is unlikely that all requests will arrive exactly at key ID-change
boundaries, since Platypus does not require tight time synchroniza-
tion between resource principals and routers. Even in such an un-
likely event, Platypus key servers need only perform two MAC and
one block-cipher calls for each request; servicing ten million such
requests in one second is well within the limits of approximately
20 well-provisioned key servers. Furthermore, since key lookup
requests and responses are small, each lookup requires only one
packet receipt and transmission on the part of a key server.

3To our knowledge, while work exists on distributed counting [39], none exists on
distributed token buckets; we are actively investigating how one might be designed.
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Key servers must periodically distribute revocation lists to Platy-
pus routers; while distribution can occur off the critical path, lookup
cannot, so revocation lists must be stored in high-speed memory.
In our current design, each revocation entry is twelve bytes, so
a 16-MB SRAM chip could store just under 1.4 million revoked
capabilities. In the case of Comcast, that would correspond to al-
most a quarter of all its users’ capabilities in any given expiration
interval—a fraction much larger than we expect in practice.

7.5 Traffic engineering
Conventional wisdom holds that widespread source routing de-

ployment would complicate traffic-engineering efforts. While there
admittedly is cause for concern, we have reasons for optimism. Re-
cent simulations by Qiu et al.show that while source-routed traffic
can have deleterious interactions with intra-AS traffic engineering
mechanisms in extreme cases, certain techniques may be able to
mitigate these effects [28]. In their studies, however, source-routed
traffic was capable of completely specifying intra-AS paths. Our
measurements indicate that such fine-grained intra-AS hop selec-
tion may not be necessary; hence, we expect that Platypus can be
deployed in concert with existing traffic engineering techniques.
Furthermore, while we have thus far equated waypoints and phys-
ical router interfaces, waypoints can be more flexible in practice.
Our design for Platypus is meant to allow ISPs to specify any glob-
ally routable IP address within their IP space as a Platypus way-
point and dynamically adjust the actual (set of) internal router(s) to
which the IP corresponds in response to traffic load. We intend to
explore this expanded ISP control in future work.

Independent of its interaction with traditional traffic engineering,
Platypus opens up a new dimension for traffic provisioning: time.
Routing in today’s Internet has no temporal dimension—the adver-
tisement of a route makes it immediately available. With Platypus,
however, routes may have time-limited availability; that is, a route
is available only when users possess the correct temporal secrets.
By appropriately choosing expiration intervals and expressing route
selection policy upon key lookup, ISPs can control the temporal as-
pects of traffic flow; in this way, Platypus may even serve to help
achieve traffic engineering goals. While it is technically possible
to implement a similar scheme using BGP, it has been shown that
rapid, repeated announcement and withdrawal of routes can have a
destabilizing effect on the routing system [20].

8. RELATED WORK
Source routing has been included as a feature in many Inter-

net architectures over the years. For example, Nimrod [10] defined
mechanisms for packets to be forwarded in both flow-based and
source-routed, per-packet fashions. Similarly, IPv6 provides sup-
port for the source demand routing protocol, SDRP [14]. SDRP
allows for hosts to specify a strict or loose source route of ASes or
IP addresses through which to route a packet. More recently, Yang
described a new addressing architecture called NIRA [40] with the
explicit goal of providing AS-level source routing. NIRA path se-
lection consists of two stages: an initial discovery phase followed
by an availability phase in which a host determines the quality of a
particular route. A contemporary proposal, BANANAS, allows for
explicit path selection in a multi-path environment, but does not al-
low for the insertion of arbitrary intermediate hops [38]. None of
these proposals, however, have addressed the need to verify policy
compliance of the specified route on the forwarding plane. To the
best of our knowledge, we are the first to present a fully decentral-
ized, authenticated source-routing architecture.

Frustrated with the lack of control provided by current wide-area
Internet routing, researchers have proposed circumventing it en-

tirely by forwarding packets between end hosts in an effort to con-
struct routes with more desirable path characteristics [4, 31]. Unfor-
tunately, the effectiveness of any overlay-based approach is funda-
mentally limited by both the number and the locations of the hosts
involved in the overlay. We believe Platypus addresses both of these
issues: overlay networks can view far away Platypus routers as ad-
ditional members of the overlay and use nearby Platypus routers to
increase the efficiency of their forwarding mechanisms.

Stoica et al.suggest that indirection be explicitly supported as an
overlay network primitive; in the Internet Indirection Infrastructure
(i3) packets may include a set of indirection points through which
they wish to be forwarded [36]. Unlike Platypus waypoints, how-
ever, i3 IDs specify logical entities, not necessarily network routing
hops. Each ID is associated with one or more application-installed
triggers that can involve arbitrary packet processing; there are no
guarantees about the topological location of the overlay node(s) re-
sponsible for a particular ID.

Packet-level authentication credentials have been suggested in a
number of other contexts. IPsec-enabled packets may contain an
authentication header with information similar to a network capa-
bility [6], except without a routing request. In order to verify au-
thentication headers, however, IPsec routers must hold one key for
each source, far more than with Platypus. Per-packet authenticators
have also been proposed to prevent DoS attacks [3, 5]; it would
be straightforward to implement a similar scheme using Platypus.
Perhaps the most closely related use is due to Estrin et al., who
introduced the notion of visas that confer rights of exit from one
organization and entry into another [15]. Stateless visas provide a
mechanism for per-packet authentication between two independent
organizations, but not for expressing routing requests. Visas are the
result of a bilateral agreement between a packet’s source and desti-
nation; each packet contains exactly two visas—one for the source
organization and one for the destination. In contrast, network capa-
bilities are concerned with authentication and routing through inter-
mediate ASes. In a subsequent paper [16], the authors also consid-
ered implementing preventative security measures within Clark’s
policy routing framework [11].

9. CONCLUSIONS & FUTURE WORK
Capabilities are well known in the operating systems literature,

but have failed to catch on in many mainstream systems, likely
because they are perceived as too heavyweight a mechanism to
address the relatively simple access problems of single-user sys-
tems. In contrast, we believe capabilities are extremely well-suited
for use in wide-area Internet routing. Unlike today’s PCs, which
typically are used by at most a small number of users with sim-
ilar goals and policy constraints, the Internet serves an extremely
large number of users with an even larger number of motivations,
all attempting to simultaneously share widely distributed resources.
Most importantly, there exists no single arbiter (for example, a sys-
tem administrator or user logged in at the console) who can make
informed access decisions.

Looking forward, while much work has gone into understand-
ing existing Internet routing policy and describing how to specify
it better, we believe that much of the complexity of Internet rout-
ing policy stems from inflexibility of existing routing protocols. We
aim to study how one might implement inter-AS traffic engineering
policies through capability pricing strategies. For example, an AS
with multiple peering routers that wishes to encourage load balanc-
ing may be able to do so through variable pricing of capabilities for
the corresponding Platypus waypoints. While properly modeling
the self-interested behavior of external entities may be difficult, we
are hopeful that this challenge is simplified by the direct mapping
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between Platypus waypoints and path selection (as compared, for
example, to the intricate interactions of various BGP parameters).
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