
VULNERABILITIES OF NETWORK CONTROL PROTOCOLS: AN EXAMPLE 

Eric C. Rosen 
Bolt Beranek and Newman Inc. 

On October 27, 1980, there was an unusual occurrence on the 
ARPANET. For a period of several hours, the network appeared to 
be unusable, due to what was later diagnosed as a high priority 
software process running out of control. Network-wide 
disturbances are extremely unusual in the ARPANET (none has 
occurred in several years), and as a result, many people have 
expressed interest in learning more about the etiology of this 
particular incident. The purpose of this note is to explain what 
the symptoms of the problem were, what the underlying causes 
were~ and what lessons can be drawn. As we shall see, the 
imme iate cause of the problem was a rather freakish hardware 
malfunction (which is not likely to recur) which caused a faulty 
sequence of network control packets to be generated. This faulty 
sequence of control packets in turn affected the apportionment of 
software resources in the IMPs, causing one of the IMP processes 
to use an excessive amount of resources, to the detriment of 
other IMP processes. Restoring the network to operational 
condition was a relatively straightforward task. There was no 
damage other than the outage itself, and no residual problems 
once the network was restored. Nevertheless, it is quite 
interesting to see the way in which unusual (indeed, unique) 
circumstances can bring out vulnerabilities in network control 
protocols, and that shall be the focus of this paper. 

The problem began suddenly when we discovered that, with 
very few exceptions, no IMP was able to communicate reliably with 
any other IMP. Attempts to go from a TIP to a host on some other 
IMP only brought forth the "net trouble" error message, 
indicating that no physical path existed between the pair of 
IMPs. Connections which already existed were summarily broken. 
A flood of phone calls to the Network Control Center (NCC) from 
all around the country indicated that the problem was not 
localized, but rather seemed to be affecting virtually every IMP. 

As a first step towards trying to find out what the state of 
the network actually was, we dialed up a number of TIPs around 
the co, ntry. What we generally found was that the TIPs were up, 
but that their lines were down. That is, the TIPs were 
communicating properly with the user over the dial-up line, but 
no connections to other IMPs were possible. 

We tried manually restarting a number of IMPs which are in 
our own building (after taking dumps, of course). This procedure 
initializes all of the IMPs' dynamic data structures, and will 
often clear up problems which arise when, as sometimes happens in 
most complex software systems, the IMPs' software gets into a 
"funny" state. The IMPs which were restarted worked well until 

I0 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1015591.1015592&domain=pdf&date_stamp=1981-07-01


they were connected to the rest of the net, after which they 
exhibited the same complex of symptoms as the IMPs which had not 
been restarted. 

From the facts so far presented, we were able to draw a 
number of conclusions. Any problem which affects all IMPs 
throughout the network is usually a routing problem. Restarting 
an IMP re-initializes the routing data structures, so the fact 
that restarting an IMP did not alleviate the problem in that IMP 
suggested that the problem was due to one or more "bad" routing 
updates circulating in the network. IMPs which were restarted 
would just receive the bad updates from those of their neighbors 
which were not restarted. The fact that IMPs seemed unable to 
keep their lines up was also a significant clue as to the nature 
of the problem. Each pair of neighboring IMPs runs a line 
up/down protocol to determine whether the line connecting them is 
of sufficient quality to be put into operation. This protocol 
involves the sending of HELLO and I-HEARD-YOU messages. We have 
noted in the past that under conditions of extremely heavy CPU 
utilization, so many buffers can pile up waiting to be served by 
the bottleneck CPU process, that the IMPs are unable to acquire 
the buffers needed for receiving the HELLO or I-HEARD-YOU 
messages. If a condition like this lasts for any length of time, 
the IMPs may not be able to run the line up/down protocol, and 
lines will be declared down by the IMPs' software. On the basis 
of all these facts, our tentative conclusion was that some 
malformed update was causing the routing process in the IMPs to 
use an excessive amount of CPU time, possibly even to be running 
in an infinite loop. (This would be quite a surprise though, 
since we tried very hard to protect ourselves against malformed 
updates when we designed the routing process.) As we shall see, 
this tentative conclusion, although on the right track, was not 
quite correct, and the actual situation turned out to be much 
more complex. 

When we examined core dumps from several IMPs, we noted that 
most, in some cases all, of the IMPs' buffers contained routing 
updates waiting to be processed. Before describing this 
situation further, it is necessary to explain some of the details 
of the routing algorithm's updating scheme. (The following 
explanation will of course be very brief and incomplete. Readers 
with a greater level of interest are urged to consult the 
references.) Every so often, each IMP generates a routing update 
indicating which other IMPs are its immediate neighbors over 
operational lines, and the average per-packet delay (in 
milliseconds) over that line. Every IMP is required to generate 
such an update at least once per minute, and no IMP is permitted 
to generate more than a dozen such updates over the course of a 
minute. Each update has a 6-bit sequence number which is 
advanced by 1 (modulo 64) for each successive update generated by 
a particular IMP. If two updates generated by the same IMP have 
sequence numbers n and m, update n is considered to be later 
(i.e., more recently generated) than update m if and only if one 
of the following two conditions hold: 

Ii 



(a) n > m, and n - m < 32 
(b) n < m, and m - n > 32 

(where the comparisons and subtractions treat n and m as unsigned 
6-bit numbers, with no modulus). When an IMP generates an 
update, it sends a copy of the update to each neighbor. When an 
IMP A receives an update ul which was generated by a different 
IMP B, it first compares the sequence number of ul with the 
sequence number of the last update, u2, that it accepted from B. 
If this comparison indicates that u2 is later than ul, ul is 
simply discarded. If, on the other hand, ul appears to be the 
later update, IMP A will send ul to all its neighbors (including 
the one from which it was received). The sequence number of ul 
will be retained in A's tables as the latest received update from 
B. Of course, ul is always accepted if A has seen no previous 
update from B. Note that this procedure is designed to ensure 
that an update generated by a particular IMP is received, 
unchanged, by all other IMPs in the network, in the proper 
sequence. Each routing update is broadcast (or flooded) to all 
IMPs, not just to immediate neighbors of the IMP which generated 
the update (as in some other routing algorithms). The purpose of 
the sequence numbers is to ensure that all IMPs will agree as to 
which update from a given IMP is the most recently generated 
update from that IMP. 

For reliability, there is a protocol for retransmitting 
updates over individual links. Let X and Y be neighboring IMPs, 
and let A be a third IMP. Suppose X receives an update which was 
generated by A, and transmits it to Y. Now if in the next 100 ms 
or so, X does not receive from Y an update which originated at A 
and whose sequence number is at least as recent as that of the 
update X sent to Y, X concludes that its transmission of the 
update did not get through to Y, and that a retransmission is 
required. (This conclusion is warranted, since an update which 
is received and adjudged to be the most recent from its 
originating IMP is sent to all neighbors, including the one from 
which it was received.) The IMPs do not keep the original update 
packets buffered pending retransmission. Rather, all the 
information in the update packet is kept in tables, and the 
packet is re-created from the tables if necessary for a 
retransmission. 

This transmission protocol ("flooding") distributes the 
routing updates in a very rapid and reliable manner. Once 
generated by an IMP, an update will almost always reach all other 
IMPs in a time period on the order of I00 ms. Since an IMP can 
generate no more than a dozen updates per minute, and there are 
64 possible sequence numbers, sequence number wrap-around is not 
a problem. There is only one exception to this. Suppose two 
IMPs A and B are out of communication for a period of time 
because there is no physical path between them. (This may be due 
either to a network partition, or to a more mundane occurrence, 
such as one of the IMPs being down.) When communication is 

12 



re-established, A and B have no way of knowing how long they have 
been out of communication, or how many times the other's sequence 
numbers may have wrapped around. Comparing the sequence number 
of a newly received update with the sequence number of an update 
received before the outage may give an incorrect result. To deal 
with this problem, the following scheme is adopted. Let tO be 
the time at which IMP A receives update number n generated by IMP 
B. Let tl be tO plus 1 minute. If by tl, A receives no update 
generated by B with a later sequence number than n, A will accept 
any update from B as being more recent than n. So if two IMPs 
are out of communication for a period of time which is long 
enough for the sequence numbers to have wrapped around, this 
procedure ensures that proper resynchronization of sequence 
numbers is effected when communication is re-established. 

There is just one more facet of the updating process which 
needs to be discussed. Because of the way the line up/down 
protocol works, a line cannot be brought up until 60 seconds 
after its performance becomes good enough to warrant operational 
use. (Roughly speaking, this is the time it takes to determine 
that the line's performance is good enough.) During this 
60-second period, no data is sent over the line, but routing 
updates are transmitted. Remember that every node is required to 
generate a routing update at least once per minute. Therefore, 
this procedure ensures that if two IMPs are out of communication 
because of the failure of some line, each has the most recent 
update from the other by the time communication is 
re-established. 

This very short introduction to the routing algorithm's 
updating protocol should provide enough background to enable the 
reader to understand the particular problem under discussion; 
further justification and detail can be found in the references. 

Let us return now to the discussion of the network outage. 
I have already mentioned that the core dumps showed almost all 
buffers holding routing updates which were waiting to be 
processed. Close inspection showed that all the updates were 
from a single IMP, IMP 50. By a strange "coincidence," IMP 50 
had been malfunctioning just before the network-wide outage 
occurred, and was off the net during the period of the outage. 
Hence it was not generating any updates during the period of the 
outage. In addition, IMP 29, an immediate neighbor of IMP 50, 
was also suffering hardware malfunctions (in particular, dropping 
bits), but was up (though somewhat flakey) while the network was 
in bad shape. Furthermore, the malfunction in IMP 50 had to do 
with its ability to communicate properly with the neighboring IMP 
29. Although we did not yet understand how it was possible for 
so many updates from one IMP to be extant simultaneously, we did 
understand enough to be able to get the network to recover. All 
that was necessary was to patch the IMPs to disregard any updates 
from IMP 50, which after all was down anyway. When the network 
is operating normally, broadcasting a patch to all IMPs can be 

13 



done in a matter of minutes. With the network operating as it 
was during the period of the outage, this can take as much as 3 
or 4 hours. (Remember that the IMPs are generally unmanned, and 
that the only way of controlling them from the NCC is via the 
network itself. This is perfectly satisfactory when an outage 
affects only a small group of IMPs, but is an obvious problem 
when the outage has network-wide effects.) This procedure was 
fully successful in bringing the network back up. 

When we looked closely at the dumps, we saw that not only 
were all the updates on the queue from IMP 50, but they all had 
one of three sequence numbers (either 8, 40, or 44), and were 
ordered in the queue as follows: 
8, 40, 44, 8, 40, 44, 8, 40, 44, ... Note that by the definition 
of later, 44 is later than 40 (44 > 40 and 44 - 40 < 32), 40 is 
later than 8 (40 > 8 and 40 - 8 < 32), and 8 is later than 44 
~--<--44 and 44 - 8 > 32). GiVen the presence of three updates 
from the same IMP with these three sequence numbers, this is what 
would be expected. Since each update is later than one of the 
others, a cycle is formed which keeps the three updates floating 
around the network indefinitely. Thus the IMPs spend most of 
their CPU time and buffer space in processing these updates. The 
problem was to figure out how these three updates could possibly 
have existed at the same time. After all, getting from update 8 
to update 40 should require 2 or 3 full minutes, plus 31 
intervening sequence numbers. So how could 8 still be around 
when 40 was generated, especially since no updates with 
intervening sequence numbers were present? 

Our first thought was that maybe the real-time clock in IMP 
50 was running one or two orders of magnitude faster than normal, 
invalidating our assumptions about the maximum number of updates 
which could be generated in a given time. An alternative 
hypothesis suggested itself however when we looked at the binary 
representations of the three sequence numbers: 

8 - 001000 

40 - i01000 

44 - i01100 

Note that 44 has only one more bit than 40, which has only one 
more bit than 8. Furthermore, the three different updates were 
completely identical, except for their sequence numbers. This 
suggests that there was really only one update, 44, whose 
sequence number was twice corrupted by dropped bits. (Of course, 
it's also possible that the "real" update was 8, and was 
corrupted by added bits. However, bit-dropping has proven itself 
to be a much more common sort of hardware malfunction than 
bit-adding, although spontaneously dropped bits may sometimes 
come back on spontaneously.) 

Surely, the reader will object, there must be protection 
against dropped bits. Yes there is protection, but apparently 

14 



not enough. The update packets themselves are checksummed, so a 
dropped bit in an update packet is readily detected. Remember 
though that if an update needs to be retransmitted, it is 
recreated from tabled information. For maximal reliability, the 
tables must be checksummed also, and the checksum must be 
recomputed every time the table is accessed. However, this would 
require either a large number of CPU cycles (for frequent 
checksumming of a large area of memory) or a large amount of 
memory (to store the checksums for a lot of small areas). Since 
CPU cycles and memory are both potentially scarce resources, this 
did not seem to us to be a cost-effective way to deal with 
problems that arise, say, once per year (this is the first such 
problem encountered in a year and a half of running this routing 
algorithm). Time and space can be saved by recomputing the 
checksum at a somewhat slower frequency, but this is less 
reliable, in that it allows a certain number of dropped bits to 
"fall between the cracks." It seems likely then that one of the 
malfunctioning IMPs had to retransmit update 44 at least twice, 
(recreating it each time from tabled information), retransmitting 
it at least once with the corrupted sequence number 40, and at 
least once with the corrupted sequence number 8. This would 
cause those three sequence numbers to be extant in the network 
simultaneously, even though protocol is supposed to ensure that 
this is impossible. 

Actually, the detection of dropped bits is most properly a 
hardware function. The next generation of IMP hardware (the "C30 
IMP") will be able to detect and correct all single-bit errors, 
and will detect all other bit errors. Uncorrectable bit errors 
will cause the IMP to go into its "loader/dumper." (An IMP in 
its loader/dumper is not usable for transferring data, and is 
officially in the "down" state. However, an IMP in its 
loader/dumper is easily controllable from the NCC, and can be 
restarted or reloaded without on-site intervention.) Current 
hardware does have parity checking (which should detect single 
dropped bits), but this feature has had to be turned off since 
(a) there are too many spurious parity "errors," i.e., most of 
the time when the machines complain of parity errors there don't 
really seem to be any, and (b) parity errors cause the machines 
to simply halt, rather than go into their loader/dumpers, which 
means that on-site intervention is required to restart them. 

Pending the introduction of improved hardware, what can be 
done to prevent problems like this from recurring in the future? 
It is easy to think of many ways of avoiding this particular 
problem, especially if one does not consider the problems that 
may arise from the "fixes." For example, we might be able to 
avoid this sort of problem by spending a lot more CPU cycles on 
checksumming, but this may be too expensive because of the side 
effects it would introduce. (Also, it is not clear that any 
memory checksumming strategy can be totally free of "cracks.") A 
very simple and conservative fix to prevent this particular 
problem from recurring is to modify clause (a) of the definition 

15 



of later so that the "<" is replaced by "<" (strictly less than). 
We M-implement this-fix, but it cannot be guaranteed that no 
related problems will ever arise. 

What is really needed is not some particular fix to the 
routing algorithm, but a more general fix. In some sense, the 
problem we saw was not really a routing problem. The routing 
code was working correctly, and the routes that were generated 
were correct and consistent. The real problem is that a freakish 
hardware malfunction caused a high priority process to run wild, 
devouring resources needed by other processes, thereby making the 
network unusable. The fact that the wild process was the routing 
process is incidental. In designing the routing process, we 
carefully considered the amount of resource utilization it would 
require. By strictly controlling and limiting the rate at which 
updates can be generated, we tried to prevent any situation in 
which the routing process would make excessive demands on the 
system. As we have seen though, even our carefully designed 
mechanisms were unable to protect against every possible sort of 
hardware failure. We need a better means of detecting that some 
high priority process in the IMP, despite all the safeguards we 
have built in, is still consuming too many resources. Once this 
is detected, the IMP can be automatically placed in its 
loader/dumper. In the case under discussion, we would have liked 
to have all the IMPs go into their loader/dumpers when the 
problem arose. This would have enabled us to re-initialize and 
restart all the IMPs much more quickly. (Although restarting 
individual IMPs did little good, restarting all the IMPs 
simultaneously would have cleared up the problem instantly, since 
all routing tables in all IMPs would have been initialized 
simultaneously.) It took us no more than an hour to figure out 
how to restore the network; several additional hours were 
required because it took so long for us to gain control of the 
misbehaving IMPs and get them back to normal. A built-in 
software alarm system (assuming, of course, that it was not 
subject to false alarms) might have enabled us to restore the 
network more quickly, significantly reducing the duration of the 
outage. This is not to say that a better alarm and control 
system could ever be a replacement for careful study and design 
which attempts to properly distribute the utilization of 
important resources, but only that it is a necessary adjunct, to 
handle the cases that will inevitably fall between the cracks of 
even the most careful design. 

REFERENCES 

"The New Routing Algorithm for the ARPANET," IEEE Transactions on 
Communications, May 1980, J.M. McQuillan, I. Richer, E.C. 
Rosen. 

The Updating Protocol of ARPANET' s New Routing 
Computer Networks, February 1980, E.C. Rosen. 

Algor i thm," 

16 


