
Online Appendix to
Exploiting k-Constraints to Reduce Memory
Overhead in Continuous Queries over
Data Streams

SHIVNATH BABU, UTKARSH SRIVASTAVA, and JENNIFER WIDOM
Stanford University

A. DETAILED EXAMPLES OF K-CONSTRAINTS

One application of a data stream management system is to support traffic mon-
itoring applications for a large network such as the backbone network of an
Internet Service Provider (ISP) [Caceres et al. 2000]. Such a system might run
continuous queries over streams of packet headers, flow records, and perfor-
mance measurements to monitor network health, detect equipment failures
and attacks, etc. We describe a number of k-constraints that arise in this
application.

Example A.1. Some routers on the network are usually configured to re-
port traffic statistics for recently expired flows [NETFLOW 2003]. (Here a flow
denotes the collection of packets sent in one TCP connection from a source to a
destination.) A typical setting expires a flow and outputs a flow record when a
“finish” packet arrives in the flow (voluntary closure) or when no packets arrive
in the flow for a timeout interval of 15 s (forced closure). Consider the stop time
attribute of the resulting flow record stream which denotes the arrival time of
the last packet in the flow. The values of this attribute are nondecreasing over
voluntarily closed flows, but forced closures create a scrambling of stop time
values in the stream as a whole. If the router reports at most n flows every
second to limit the bandwidth consumed by monitoring applications, any two
stop time values that are out of order in the flow record stream will be at most
15n tuples apart, so the flow record stream satisfies OA(15n) over the stop time
attribute.

Example A.2. Network measurement streams are often transmitted via
the UDP protocol instead of the more reliable but higher cost TCP protocol to
minimize the monitoring load placed on the network [NETFLOW 2003]. Since
UDP can deliver packets out of order, it can create some scrambling in values

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or a fee.
C© 2004 ACM 0362-5915/04/0900-0001 $5.00

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004, Pages 1–8.

2 • S. Babu et al.

of stream attributes that are otherwise ordered. For example, if the minimum
and maximum network delay from the data collection device to the stream
processing system are dmin and dmax seconds, respectively, and the device limits
its bandwidth consumption to n tuples per second, then any two tuples that
arrive out of transmission timestamp order at the processing system will be at
most (dmax − dmin)n tuples apart, creating an OA((dmax − dmin)n) constraint on
the transmission timestamp.

Example A.3. An interesting continuous query in network monitoring,
termed trajectory sampling, maintains a summary of routes taken by packets
through the network [Duffield and Grossglauser 2000]. To support this query,
devices on links across the network sample packets continuously with the prop-
erty that a packet chosen by any one device will be chosen by all other devices
that observe the packet [Duffield and Grossglauser 2000]. Consider the re-
sulting merged stream of tuples with schema (pkt id,link id) sent by these
devices. pkt id is a unique identifier for a packet and link id represents a link
where the packet was observed [Duffield and Grossglauser 2000]. If there are
m devices sampling at the rate of s packets per second, and d represents the
maximum delay of packets through the network, then any two tuples in the
stream with the same value of pkt id are separated by no more than m × s × d
tuples with a different value of pkt id, creating a CA(m × s × d) constraint on
the pkt id attribute.

Example A.4. If the amount of traffic destined to a peer ISP on a net-
work link L exceeds a certain threshold, a network analyst might want to
drill down into a sample of this traffic. A continuous query for this purpose
joins two streams: S1(pkt hdr, peer id, timestamp) and S2(peer id, num bytes,
timestamp). S1 is a stream of packets sampled from L containing the packet
header (pkt hdr), the destination peer ISP (peer id), and the packet arrival
time at the granularity of 5-min intervals (timestamp). S2 is a stream of mea-
surements containing the total observed traffic (num bytes) on L destined to
peer ISP (peer id) for each 5-min interval (timestamp). Clearly each packet on
S1 is destined to a unique peer and arrives at a unique 5-min interval making
S1 � S2 a many-one natural join. Furthermore, if the number of peer ISPs is
less than 25, ignoring the effects of computational and network latency for sim-
plicity, the unique joining S2 tuple of any tuple s1 ∈ S1 will have arrived within
25 S2 tuples that arrive after s1, providing the basis for a RIDS(k) constraint
over the many-one join from S1 to S2.

B. BASIC QUERY PROCESSING ALGORITHM FOR DAG-SHAPED
JOIN GRAPHS

We describe how the basic query processing algorithm for DT-shaped joins
graphs needs to be extended to handle DAG-shaped join graphs. Theorem 3.2
does not hold when a query’s join graph is DAG-shaped instead of DT-shaped,
as illustrated by the following simple example.

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.

Exploiting k-Constraints to Reduce Memory Overhead • 3

Fig. 18. Join graphs and synopses used in examples for DAG-shaped and cyclic join graphs.

Fig. 19. Procedure invoked when a tuple s arrives in stream S in a DAG-shaped join graph.

Example B.1. Consider a query Q with the DAG-shaped join graph and
synopses shown in Figure 18(a). Suppose tuple s = (3, 4) arrives in stream S1.
Although both child tuples of s are in the respective Yes components, clearly
s >< GS1 (Q) is empty.

If there exist two or more vertex-disjoint paths from stream S to stream
X ∈ GS(Q), denoted P1, P2, . . . , Pl , l ≥ 2, then s >< GS(Q) is nonempty only
if s joins with the same tuple x ∈ X for each of these chains of many-one joins
Pi, 1 ≤ i ≤ l , from S to X . Notice that each pair of these vertex-disjoint paths
Pi, Pj , i �= j , produces a directed acyclic subgraph in GS(Q).

The modified algorithm for synopsis maintenance in DAG-shaped graphs is
shown in Figure 19. Lines 17–35 in Figure 19 provide the extra checks to handle

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.

4 • S. Babu et al.

directed acyclic subgraphs of GS(Q). These checks are invoked only if all of s’s
child tuples are in the corresponding child Yes components. The procedures in
Figures 3, 4, and 5 remain unchanged for DAG-shaped join graphs. Result gen-
eration proceeds exactly as in the DT-shaped case since Theorems 3.4 and 3.5
also hold for DAG-shaped join graphs.

C. BASIC QUERY PROCESSING ALGORITHM FOR CYCLIC JOIN GRAPHS

We use the following example to illustrate the problems that cyclic join graphs
introduce.

Example C.1. Consider the cyclic join graph and synopses in Figure 18(b).
Tuple s3 = (3, 1) is in S(S3).Unknown since its child tuple in S1 has not
arrived yet, and tuple s2 = (2, 3) is in S(S2).Unknown since its child tuple
s3 ∈ S(S3).Unknown. Suppose tuple s1 = (1, 2) arrives in S1. If we follow the
basic query processing algorithm for DT-shaped or DAG-shaped join graphs, s1
will be inserted into S(S1).Unknown since s1’s child tuple s2 ∈ S(S2).Unknown.
This step would lead to a deadlock because of the cyclic dependency among
tuples s1, s2, and s3. Notice that s1, s2, and s3 join with each other resulting
in s1→GS1 (Q) �= φ, s2→GS2 (Q) �= φ, and s3→GS3 (Q) �= φ. Thus, s1, s2, and s3
should be inserted into the respective Yes components by Definition 3.1, and
result tuple (1, 2, 3) must be produced.

Now suppose tuple s′
1 = (4, 2) arrives in S1. Although s′

1’s child tuple is in
Yes, clearly s′

1→GS1 (Q) = φ. This problem is similar to the problem introduced
by DAG-shaped join graphs (Example B.1).

Figure 20 gives the extended query processing algorithm that handles cyclic
join graphs. The main modification is that before we insert a tuple s into
S(S).Unknown because its child tuple s′ is in S(S′).Unknown, we need to check
if a cyclic relationship exists between S and S′ that permits us to move all
tuples in the cycle to their respective Yes or No synopsis components. An ad-
ditional modification that is similar in spirit to the modification required for
DAG-shaped graphs is needed to handle the fact that a cycle introduces a pair
of vertex-disjoint paths from S to S for each stream S in the cycle. For result
generation, there may be more than one minimal cover in a cyclic join graph,
so we need to compute the minimal covers and then apply Theorem 3.4 which
holds for cyclic join graphs as well.

D. PROOFS OF THEOREMS

D.1 Some Useful Lemmas

LEMMA D.1. A tuple s ∈ S joins with at most one tuple in each stream R ∈
GS(Q), R �= S.

PROOF. By induction on the length of the unique directed path from S to R,
denoted lS→R . Clearly, lS→R ≥ 1. If lS→R = 1, then R is a child of S, and the
theorem holds because of the many-one join from S to R. This step forms the
basis of the induction. As the induction hypothesis, suppose the theorem holds
whenever lS→R < n. If lS→R = n, n > 1, consider the first stream T in the

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.

Exploiting k-Constraints to Reduce Memory Overhead • 5

Fig. 20. Procedure invoked when a tuple s arrives in stream S in a cyclic join graph.

directed path from S to R. A tuple s ∈ S can join with at most one tuple t ∈ T .
Since lT→R < n, by the induction hypothesis t joins with at most one tuple in
R. By transitivity, s can join with at most one tuple in R. Hence, the theorem
holds for lS→R = n.

LEMMA D.2. If a tuple s ∈ S is part of a query result tuple, then s ∈ S(S).Yes.

PROOF. Let t be the query result tuple that s is part of. Consider the projec-
tion of t onto the streams in GS(Q), denoted αs. The existence of αs shows that
s >< GS(Q) �= φ, which means that s ∈ S(S).Yes by Definition 3.1.

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.

6 • S. Babu et al.

LEMMA D.3. Consider a stream R that is reachable from a stream S in G(Q)
by following directed edges. The insertion of a tuple s ∈ S into S(S).Yes cannot
happen before the insertion of its unique joining tuple r ∈ R into S(R).Yes. (We
say an event e1 happens before an event e2 if the set of tuples that have been
processed completely when e1 happens is a strict subset of the set of tuples that
have been processed completely when e2 happens.)

PROOF. The proof follows from Definition 3.1 of Yes synopsis components.

D.2 Proof of Theorem 3.2

Definition 3.1 says that tuple s ∈ S(S).Yes for a stream S if s >< GS(Q) �= φ.
Theorem 3.2 says that s ∈ S(S).Yes for a DT-shaped join graph GS(Q) if s
satisfies all filter predicates on S, and all children of s are in the respective Yes
components. We have to prove that the statements in Definition 3.1 and those
in Theorem 3.2 are equivalent for DT-shaped join graphs.

We will first prove the forward direction: If s >< GS(Q) �= φ, then s satisfies
all filter predicates on S, and all child tuples of s are in the respective Yes
components. If s >< GS(Q) �= φ, then clearly s satisfies all filter predicates on
S. The rest of the proof assumes this fact. The proof is by induction on the length
of the longest directed path starting at S, denoted lS . If lS = 0, then S has no
children, and the claim holds. This step forms the basis of the induction. As
the induction hypothesis, let the claim hold whenever lS < n. We now consider
a stream S with lS = n, and a tuple s ∈ S such that s >< GS(Q) �= φ. By
Lemma D.1, s joins with a unique tuple in each stream R ∈ GS(Q), R �= S.
Therefore, s must generate a unique result tuple in GS(Q), denoted αs (αs is a
joined tuple containing one tuple each from all streams in GS(Q)). Now consider
stream R ∈ Children(S). If r ∈ R is the unique child tuple of s, then αs must
contain r as its component tuple from R. We claim r >< GR(Q) �= φ. The proof
is straightforward. By definition, GR(Q) ⊂ GS(Q) for DT-shaped graphs. Thus,
r will join with the same tuples in streams T ∈ GR(Q), that are contained in
αs. Also, l R < n by property of DT-shaped graphs. Given r >< GR(Q) �= φ and
l R < n, by the induction hypothesis we know that all child tuples of R are in
the respective Yes components, which puts r ∈ S(R).Yes. Thus, we have proved
that all child tuples of s are in the respective Yes components.

We will now prove the reverse direction: If s satisfies all filter predicates
on S, and all child tuples of s are in the respective Yes components, then
s >< GS(Q) �= φ. Again the proof is by induction on the length of the longest di-
rected path starting at S, denoted lS . If lS = 0 the claim clearly holds. This step
forms the basis of the induction. As the induction hypothesis, let the claim hold
whenever lS < n. We now consider a stream S with lS = n. Let R1, R2, . . . , Rm
be the children of S. Consider a tuple s ∈ S that satisfies all filter predicates
on S, and all child tuples of s are in the respective Yes components. For any
child tuple ri ∈ Ri of s, 1 ≤ i ≤ m, ri ∈ S(Ri).Yes means that all child tuples of
ri are their Yes components. Since l Ri < n by property of DT-shaped graphs, by
the induction hypothesis we know ri >< GRi (Q) �= φ. Consider the joined tuple
t consisting of s, αr1 , αr2 , . . . , αrm , where αri is the unique result tuple generated
by ri in GRi (Q) (recall Lemma D.1). We claim that t is a result tuple of GS(Q).

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.

Exploiting k-Constraints to Reduce Memory Overhead • 7

The proof is straightforward. By property of DT-shaped graphs, no stream is
common between GRi (Q) and GR j (Q), for 1 ≤ i ≤ m, 1 ≤ j ≤ m, and i �= j ,
and there are no join predicates involving a stream in GRi (Q) and a stream in
GR j (Q). Also, the union of all streams in GRi (Q), 1 ≤ i ≤ m, and S together con-
stitute all streams in GS(Q). Since ri >< GRi (Q) �= φ, 1 ≤ i ≤ m, we know that
αri satisfies the filter and join conditions over streams in GRi (Q). The remaining
filter predicates in GS(Q) are those over S, which are given to be satisfied by s.
The remaining join predicates in GS(Q) are those involving S and one of its chil-
dren, all of which are satisfied by s, r1, r2, . . . , rm since r1, r2, . . . , rm are the child
tuples of s. Thus, t is a result tuple of GS(Q) which implies s>< GS(Q) �= φ.

D.3 Proof of Theorem 3.3

We will prove that for a tuple s ∈ S(τ), if s fails a filter predicate on S or if
a child tuple of s is in the respective No component (i.e., if Theorem 3.3 adds
s to S(S).No), then s >< GS(Q) = φ at all times ≥ τ . Clearly, if s fails a filter
predicate on S, s >< GS(Q) = φ. We will assume this fact in the rest of the
proof.

The proof is by induction on the length of the longest directed path starting at
S, denoted lS . If lS = 0 the claim clearly holds. This step forms the basis of the
induction. As the induction hypothesis, let the claim hold whenever lS < n. We
now consider a stream S with lS = n. Let r ∈ R(τ) be the child tuple of s such
that r ∈ S(R).No at time τ either because r fails a filter predicate on R or be-
cause a child tuple of r is in the respective No component. Since l R < n by prop-
erty of DT-shaped graphs, the claim holds for r ∈ R. Thus, r >< GR(Q) = φ for
all times ≥ τ . We will prove by contradiction that s>< GS(Q) = φ at all times ≥
τ . Suppose s >< GS(Q) �= φ at time τ ′ ≥ τ . Let αs be the unique result tuple
that s generates in GS(Q) at time τ ′ (recall from Section D.2 that αs is a joined
tuple containing one tuple each from all streams in GS(Q)). By the property
of DT-shaped graphs, GR(Q) ⊂ GS(Q). Thus, the existence of αs implies the
existence of αr , which will be the projection of tuple αs on to the streams in
GR(Q). The existence of αr contradicts the fact that r >< GR(Q) = φ. Thus,
we have shown by contradiction that s >< GS(Q) = φ at all times ≥ τ , which
completes the proof.

D.4 Proof of Theorem 3.4

The proof is by contradiction. Suppose a query result tuple t is generated when
a tuple s is inserted into the Yes synopsis component of a stream S such that
S is not part of any minimal cover. Consider a minimal cover of Q , denoted ρ.
Let R be a stream in ρ such that S is reachable from R. (R is not reachable
from S. Otherwise, ρ − {R} ∪ {S} would be a minimal cover, which would give a
contradiction.) Let r and s be the component tuples in t from streams R and S
respectively. By Lemma D.2 r ∈ S(R).Yes and s ∈ S(S).Yes. By Lemma D.3 we
know that the insertion of r into S(R).Yes cannot happen before the insertion of
s into S(S).Yes which contradicts the fact that t is generated when s is inserted.
(Given our definition of “happens before” in Lemma D.3, it is possible that
neither the insertion of r into S(R).Yes nor the insertion of s into S(S).Yes

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.

8 • S. Babu et al.

happens before the other. However, since R is not reachable from S, we will
always have to infer s ∈ S(S).Yes before we can infer r ∈ S(R).Yes.)

D.5 Proof of Theorem 3.5

Theorem 3.5 has a straightforward proof from graph theory.

D.6 Proof of Theorem 5.2

We will prove that if the three conditions in Theorem 5.2 are satisfied for a
tuple s ∈ S, then no future result tuple can have s as its component tuple from
S. The proof is by contradiction. Assume that a future result tuple t has s as
its component tuple from S. Since t is a future result tuple, t must contain at
least one tuple that arrived after the conditions in Theorem 5.2 were satisfied.
Without loss of generality, let this tuple be r ∈ R. By Lemma D.2, all component
tuples of t belong to the respective Yes components of the streams, including
all component tuples of t from streams in the minimal cover ρ in Theorem 5.2.
From Condition C3 in Theorem 5.2, we can infer that R /∈ ρ. Since ρ is a cover
of G(Q), there exists a stream U ∈ ρ such that R is reachable from U . Let
tuple u ∈ U be the component tuple of t from U . From Conditions C2 and C3 in
Theorem 5.2 we can infer that u was inserted into S(U).Yes before the arrival
of r which contradicts Lemma D.3.

The astute reader might have noticed that the proof did not use the fact
that ρ ⊆ Parents(S). Although this condition is not necessary for Theorem 5.2
to hold, it gives us an efficient way to evaluate Condition C3 using CA(k) or
OAP(k) constraints on attributes in Parents(S) involved in joins with S.

ACM Transactions on Database Systems, Vol. 29, No. 3, September 2004.

