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ABSTRACT
The current Internet today hosts several extensions for indirection
like Mobile IP, NAT, proxies, route selection and various network
overlays. At the same time, user-controlled indirection mechanisms
foreseen in the Internet architecture (e.g., loose source routing) can-
not be used to implement these extensions. This is a consequence of
the Internet’s indirection semantics not being rich enough at some
places and too rich at others. In order to achieve a more uniform
handling of indirection we propose SelNet, a network architecture
that is based on a virtualized link layer with explicit indirection sup-
port. Indirection in this context refers to user-controlled steering of
packet flows through the network. We discuss the architectural im-
plications of such a scheme and report on implementation progress.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]: Network
Architecture and Design

General Terms
Design, Reliability

Keywords
Virtualized Link Layer, Indirection, Underlay Networks, Network
Architecture

1. INTRODUCTION
One of the requirements on the Internet today that was not part of

the original design is that of indirection. Indirection enables such
applications as mobility, proxies and route selection. Current so-
lutions to these problems inside the Internet architecture include
Mobile IP for mobility [11], application-specific solutions for prox-
ies [3] and overlay networks for route selection [1]. These systems
try to provide indirection by either extending the network layer or
by building an application-layer network since the functionality that
they require is not present in the current Internet. However each
system is separate from the other and each requires deployment of
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separate infrastructure. Loose-source routing would have been one
potential way to implement these services at the network layer but
it has been disabled in most ISP networks for performance and se-
curity reasons because it was difficult to control and manage.

SelNet is a virtualized link layer (VLL), it sits at layer 2.5 and
provides a completely flat topology with no structure to the network
layer. It provides explicit indirection hooks to the network layer for
control purposes. These indirection hooks occupy a similar space
to ARP in IPv4 or Router Discovery in IPv6 in that they provide a
mapping between a network layer address and a link layer address.
Internally SelNet uses a label-switching approach for forwarding
packets through the VLL. Due to its virtualization properties SelNet
does not influence the topology or technology of the underlying link
layer. It is based on the network pointers approach detailed in [13].

SelNet proposes a uniform approach to managing indirection. It
resolves all address resolution activities into its own internal VLL
representation. By requiring explicit resolution of addresses, Sel-
Net becomes a natural point to handle mobility, route selection,
NAT and other indirection requirements. Our contribution is the
architectural principle that indirection should be implemented to-
wards the bottom of the network stack since it is a generalizable
principle applicable to many systems. We argue that a uniform
approach to performing and managing indirection will help cre-
ate more efficient indirection structures instead of multiple par-
tially overlapping structures. Additionally, contrary to existing ap-
proaches, SelNet addresses packet processing functions in the net-
work rather than nodes. Examples of packet processing functions
are simple forwarding, multicast fan-out, media transcoding or com-
pression. We note that there is significant benefit, in terms of flex-
ibility and potential system lifetime, in not specifying how nodes
are addressed, but rather leaving that to the protocol stacks which
are hosted by SelNet.

1.1 Diagnosis
In the Internet a node is able to communicate with any other node

in the Internet without prior invitation i.e., signaling. This unre-
stricted model of universal connectivity, although desirable for its
simplicity and user empowerment, allows unsolicited communica-
tion and therefore opens up the way for Denial of Service (DoS)
attacks. This connectivity model does not allow for per-application
expressions of connectivity requirements. There is much debate
about NAT and its site isolation principle1 breaking the fundamen-
tal principles of the Internet, but it illustrates that there is a real
desire for controlling or limiting universal connectivity. We be-
lieve that individual expressions of connectivity requirements will
1We note here that although address space reuse was the original
goal of NAT, site isolation has become its most compelling feature.
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allow for a better balance between the users of the network and
the network operators. For example, a video conferencing applica-
tion that needs a certain port range open on a NAT box in order to
receive incoming packets should be able to express these require-
ments. Furthermore, the Internet’s transparency to applications in
that they do not have any knowledge about the network in-between
them is widely held as favorable, but also limits the influence users
can have on the path. In practice a default route entry is used. This
causes difficulty for any application that wishes to take an indirect
route to its destination.

The main cause of this current architectural stress is how the
change in requirements which are being placed on the Internet af-
fect the properties listed above. Mobility makes transparency harder
to achieve since the network needs to be consulted about the cur-
rent location of the end-point. Site isolation defies the principle of
universal connectivity as it removes a section of the network from
the globally addressable space. Additionally, the need to protect
against distributed denial of service (DDoS) attacks make it unde-
sirable to keep unsolicited communication as a fundamental princi-
ple. In order for the Internet to keep its phenomenal growth, it will
have to change to satisfy these new requirements.

2. RELATED WORK
Related work in this area can be divided into two main areas: one

is other underlay techniques, the second is indirection architectures.

2.1 Underlay Networks
Multi Protocol Label Switching (MPLS) is an underlay network

which uses label switching into the network for faster and simpler
packet forwarding. In order to achieve this goal a label is added
to the packet when it enters an MPLS enabled network. This label
identifies an action in the next hop, telling it how to forward the
labeled packet. When the packet has reached the boundary of the
MPLS enabled network the label is removed and regular IP rout-
ing is performed. IP forwarding is computationally more expen-
sive than label switching since inexact matching (e.g., longest pre-
fix matching) needs to be performed as opposed to exact matching
for label switching.

SelNet, like MPLS, also introduces label switching between the
network and link layer. This makes MPLS a natural target for in-
ternetworking with SelNet. In [16], we attempted to internetwork
MPLS and SelNet so that an underlay path could be built which was
partially an MPLS path and partially a SelNet path. IP traffic could
then flow over this multi-hop path without any IP routing taking
place. We discovered that the crucial difference between MPLS and
SelNet is that MPLS labels must be distributed among all MPLS
routers in the MPLS network whereas with SelNet the labels are lo-
cal to each SelNet node, but we can also choose to globally assign
some selectors although this is not mandatory. MPLS labels are
used to address paths whereas the SelNet labels address functions.
This allows us greater flexibility and control over packet processing
since we can redirect SelNet packets to functions rather than just to
nodes. This property is useful for extending the functionality of the
network.

2.2 Indirection Architectures
The fact that the Internet suffers from being overly direct has

also been observed by the Internet Indirection Infrastructure (i3)
project [12]. In order to provide indirection they use a Rendezvous
approach i.e., meeting at the middle, at their i3 servers. For look-
ing up the appropriate server they use the Chord Distributed Hash

Table (DHT) lookup service. A receiver puts a key called a trigger
into the lookup service. This trigger is then used by the sender to
route a packet through the i3 overlay network to the receiver. The
goals of SelNet and i3 are very similar however the approaches are
very different. i3 restricts itself to IP names as the only type of
addresses and to IP forwarding as the single supported packet pro-
cessing function. The i3 proposal is positioned architecturally as
an overlay network i.e., above IP, whereas SelNet is an underlay
network i.e., below IP. We see these two systems as being essen-
tially complementary in nature since SelNet could be one mecha-
nism used to redirect certain packets to the i3 service for further
processing e.g., end-system multicast or a lookup service for track-
ing end host mobility.

Plutarch [5] is a network architecture proposal for bridging dis-
junct networking contexts to form a cohesive network. It is com-
prised of contexts which are groups of network elements (hosts,
switches, routers etc.) that are homogeneous in terms of naming,
addressing, routing and transport protocol. Contexts are bridged to-
gether by the use of interstitial functions (IFs) which are inserted
between contexts to map between them. IFs are used to provide in-
direction by being able to chose which context to map a particular
packet flow onto. Plutarch is intended to be a architecture which
can express the heterogeneity of the current Internet as well as fu-
ture networking systems by dividing them into homogeneous con-
texts. Plutarch and SelNet share a common approach of making
the heterogeneity inherent in the Internet explicit and controllable.
Plutarch does not specify mechanisms to actually perform this task,
but rather leaves it to the actual implementation details of each par-
ticular context.

Active Names [15] is a network architecture that virtualizes the
name resolution process in order to interpose new services. Ac-
tive Names provides indirection through this virtualization since re-
quests can be redirected to any arbitrary service. This system shares
many similarities with SelNet, especially in the goals of the project.
However, the architectural choices that are made are quite different.
Active Names inserts itself into the name resolution activity (e.g.,
a DNS lookup) whereas SelNet inserts itself into the link layer ad-
dress resolution activity (e.g., ARP). Since SelNet is designed to
interface to network resolution activities, we need to sit below the
network layer. Active Names, on the other hand, is concentrating
on introducing extensibility into the name resolution process. Ad-
ditionally, the Active Names system is invoked once per-connection
which is acceptable for the applications that they specify, however
we wish to be able to cope with more dynamic networks which may
change their properties during their lifetime.

The Resilient Overlay Networks (RON) project [1] builds an over-
lay network on top of IP in order to get around the lack of loose
source routing in the current IPv4 Internet. The general approach
is to set up a group of RON nodes at various places in the Inter-
net which form an overlay mesh over the Internet topology. The
intent behind this is that when the default route through the Inter-
net to a particular destination fails, there will exist an alternative
route through the RON mesh since multiple providers will be pro-
viding the connectivity of the mesh. As a short term solution, RON
is attractive and appears to work well, however, we agree with the
authors of [6] that overlay approaches such as these will not work
in the long term due to the complexity of adding additional control
mechanisms on top of the network and the topology and capacity
mismatch between the overlay and the underlying network. We ad-
vocate an underlay approach which attempts to strikes a balance
between the needs of the users and the network operators.
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3. SELNET
SelNet consists of two parts: XRP (eXtensible Resolution Proto-

col) and SAPF (Simple Active Packet Format). XRP is a uniform
interface to access and configure SelNet’s resources. SAPF is a
minimal packet format providing basic demultiplexing functional-
ity through the use of selectors2. In this section we show how this
architecture works and how the associated “virtualized link layer”
model permits us to embed different network personalities and to
extend and redefine their services. Throughout this section of the
paper, we assume that every node in the network is SelNet capable.
We then discuss in section 4.1 a more realistic scenario where we
show SelNet’s ability to co-exist with the existing network infras-
tructure through partial deployment.

3.1 Static Forwarding in SelNet
SelNet positions itself as an underlay network, which means that

it sits below the network layer and exports an indirection primitive
to the upper layers of the protocol stack. As a virtual link layer,
it allows us to use any available datagram service as a link layer
to SelNet e.g., ethernet, or IP itself. In the following example we
assume that we map the virtual link layer to a real ethernet thus
reconstructing the current Internet model.

socketsocket

App

Node A Node B Node C

App

s FWD (Node B, sel t) [LL(node B),
sel t, payload]

t FWD (Node C, sel u) [LL(node C),
sel u, payload]

u Deliver()

selnet_demux(sel s,payload)

write (payload) read (payload)

Figure 1: Forwarding in a static SelNet setup. (FWD= forward-
ing function, LL=link layer)

The simplest example of how SelNet functions is to describe how
forwarding is done in a static environment. Packet forwarding in-
side SelNet’s virtual link layer is based on “selectors”: Each SelNet
packet on the wire carries beside its link layer destination address
an additional address field called selector. This packet format is
defined by SAPF (Simple Active network Packet Format). The se-
lector address, an flat 64-bit value, identifies the function which is
to process an incoming packet (similar to a flow or path ID). The
payload is some form of arbitrary content which is handled by what-
ever function is assigned to the selector in question. Selectors have
different values depending on how they are assigned.

Figure 1 shows a scenario where selectors are static and pre-
allocated. In this example an application on Node A wishes to
communicate with an application on Node C. In order to do so,
the application on Node A opens a socket to SelNet and writes to
it, thus invoking the selnet demux operation. When this operation
is called, the forwarding function is invoked since the selector s,
which is internally bound to the socket, is used in this example to
communicate with the remote application. The forwarding function
performs two tasks: it rewrites the selector from s to t since selector
s is only valid inside Node A, and then sends the packet with the
rewritten selector to Node B. Selector t on Node B corresponds to
the forwarding function which will carry the packet over the next
hop to Node C. Once again the selector is rewritten, this time from
t to u.

2Thus giving the name “Selector Network” to SelNet

When the packet reaches the destination i.e., Node C, selector u

is demultiplexed and the payload is passed to the function which is
associated with selector u. In this case, it is a local delivery func-
tion which passes the payload of the packet through a socket to the
application. In the next section we show how dynamic resolution is
used to establish selectors in nodes in the network.

Note that it is not necessary to rewrite applications to use selector
sockets instead of IP. Because SelNet positions itself as a (virtual)
link layer, an adaption layer can be inserted between the IP layer
and SelNet which maps IP addresses to selectors in the same way
as IP addresses are mapped to ethernet addresses. Thus, existing
applications can still continue to access networking functionality
via the IP sockets API although IP traffic is carried over SelNet.

3.2 Generalized ARP replacement
In the previous example we showed how SelNet works when se-

lectors are statically assigned (e.g., by an authority such as IANA).
Static, global selectors function only when all nodes independently
agree on the assignment. This is because there is no distribution
mechanism in SelNet for distributing labels as there is in MPLS,
for example. However, selectors can also be dynamically assigned
by communicating nodes since selectors only have validity on the
node that assigns them.

In SelNet, dynamic forwarding state can be set up in a way simi-
lar to ARP. First, the source node puts a query on a link which asks
about how to reach a given target address. Then the target node will
reply with its link layer address as well as a selector which identifies
the requested target. In SelNet, this ARP style resolution is carried
inside an “eXtensible Resolution Protocol” (XRP) packet format,
which is the standard signaling means of SelNet.

More specifically, if a node A wants to communicate with node
B, node A broadcasts a resolution request (RREQ) to the “well
known” XRP selector. This request specifies the address that node
A wishes to resolve (e.g., the IP address of B) and how the res-
olution should be done. This could be a ARP-style resolution,
which would return a complete link layer + selector address pair,
or a DNS-style resolution where only a translation between name
spaces occur (e.g., from logical name to IP address), or a combined
resolution (i.e., from logical name to link layer + selector address
pair).

Figure 2 shows this process in more detail. Before sending out a
RREQ, Node A installs a function at a new selector to handle any
resolution reply. This function is identified by the selector ‘r’ in
figure 2. Let’s assume that B is the node that A wants to reach.
B receives the RREQ (carrying the target address as well as A’s
reply details) (1), it decides that it should send back a reply and
prepares itself for receiving IP packets from A. To this end, node
B creates a local selector entry ‘d’ (either randomly assigned or
by other means) for the delivery of packets to its IP stack. The
combination of B’s link layer address ethb and the selector ‘d’ is
then sent back in a RREP to A’s link layer address and selector ‘r’
(2). Based on the RREP, node A will install a forwarding entry with
selector ‘f’ pointing to the pair ethb+‘d’ (3).

Once this resolution step has completed, the system is now at the
state where forwarding can take place as described in section 3.1.

3.3 Indirection via Multi-hop Resolution
The examples above show how forwarding is performed in Sel-

Net and how state can be dynamically installed on nodes in the Sel-
Net network. To create indirection, we combine these two processes
to perform multi-hop resolution dynamically and thereby forward
packets via an intermediate node. This process allows SelNet to
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Figure 3: Dynamic Forwarding with SelNet

Node B
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xrp
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d

ETHa ETHb

ETHa ETHb

resolution target: IP addr of B

payload: IP packet

f fwd(ETHb,d)

r rrep()

RREP (to  < ETHa, r >)

result:  < ETHb, d >

DATA (to  < ETHb, d >)

xrp

r

d

rrep()

deliver()
SelNet()

deliver()

SelNet()

SelNet()

reply to:  < ETHa, r >

(1)

(2)

(3)

Figure 2: SelNet performing an ARP-style resolution.

setup a custom forwarding path through the network similar to a
loose source route enabling potential indirection. With this for-
warding path the sender does not know the location of the desti-
nation, it is abstracted away behind the selector that the sender uses
to get to the next hop on the path.

We have implemented an ad-hoc routing protocol called LUNAR
using SelNet for forwarding and demultiplexing which uses exactly
this approach [14]. The corresponding configuration can be seen in
figure 3. For the sake of brevity we do not include all the details of
the XRP message contents. When the intermediate node between
Node A & Node B receives A’s RREQ, the address to resolve is
checked if it matches the intermediate node’s address. If this is not
the case, then the request is routed towards the destination. How
this routing decision is made is not specified by SelNet since rout-
ing is not part of the link layer of the protocol stack. It could be
made by consulting IP routing tables, a lookup to a Peer-to-Peer
infrastructure or, in the case of LUNAR, simply rebroadcasting to
reach nodes outside of the source node’s radio range. The resolution
process can be viewed as the recursive application of the resolution
process detailed section 3.2. Once the forwarded RREQ reaches
Node B, the destination is checked to see if it matches Node B’s ad-

dress. If the match is successful, Node B sends a RREP to the for-
warding function on the intermediate node. The RREP contains a
selector pointing to Node B. Any packet sent from the intermediate
node to that selector will end up at Node B and be demultiplexed up
to the appropriate function. This is the same forwarding technique
detailed in section 3.1. In this example, as in the previous sections,
that function is the IP stack. The intermediate node then sends a
RREP to Node A which contains a selector pointing to the interme-
diate node. When a packet is sent to that selector it is forwarded to
the intermediate node and demultiplexed up to the function which
will forward the packet to the network selector pointing to Node B.

The SelNet’s resolution request/reply model allows late binding
to be performed on which addressing schemes are supported by the
network. This late binding can also be used to handle mobility as a
resolution step needs to be performed before communication, thus
ensuring that the most current version of the address mappings are
discovered prior to communication. This removes the need for a
separate system such as Mobile IP to handle mobility as the under-
lying SelNet infrastructure will not be as direct and transparent as
the current Internet architecture.

3.4 NAT
NAT is a very difficult entity for the current Internet architecture

to cope with as it breaks the fundamental principles of transparency
and universal connectivity. However it does provide site isolation
in a very cost-efficient way by not requiring the network or end sys-
tems to change. SelNet is able to provide site isolation functionality
through the XRP resolution process. However, due to the indirec-
tion hooks that SelNet has, we are also able to selectively restore
symmetric connectivity for those nodes behind the NAT which are
explicitly authorized.

In order for a SelNet node inside of an isolated realm to be exter-
nally reachable, it must send an XRP message to a SelNet waypoint
node (that replaces the NAT), requesting visibility. The waypoint
node has to approve this XRP request before the appropriate entries
are added to a name map. This name map depends upon which
naming schemes are being run on top of SelNet. When a node out-
side of the isolated realm wishes to contact a node inside the realm,
the corresponding resolution request will reach the waypoint. The
request, if approved by the waypoint policy, will be forwarded to
the potential destination. The destination can also choose to grant
the resolution request or to deny it. A reply to the waypoint permits
to either install the appropriate forwarding state on the waypoint,
or to send back an error code in the XRP reply to the source node.
This process allows symmetric connectivity to be selectively en-
abled, whilst keeping the power of veto with the waypoint node
(that replaces the NAT).
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3.5 Route Selection & Scalability
Since SelNet’s selectors are opaque i.e., it is not known from the

selector value itself what semantics are bound to it, we can attach
different functions to selectors. In this section we show how selec-
tors can be used to identify long-lived and public forwarding paths
e.g., a transatlantic link or autonomous systems, rather than only
local, small-scale network paths.

Resolution of delivery paths triggered by end users will not scale
if these requests require discovery and resolution over the full path
across the entire network. For scaling reasons, some form of ag-
gregation will be needed. This implies a reduction of information
complexity from a large number of intermediate nodes constituting
a path to a single identifier representing a path through the network.
One of the effects of this is that if a handful of paths exist between
a source and a destination exist, it becomes feasible to allow end
users to select one of these paths through the network for their traf-
fic. This is analogous to Least Cost Routing consumer devices in
the telecoms world which chose a provider to route over depending
on cost.

The SelNet model for core nodes in the network is to make them
as simple as possible i.e., to function as layer 2.5 switches which
are only forwarding packets. We imagine various routing protocols
running on top of SelNet and feeding SelNet with the appropriate
information that it needs to set up paths. We agree with the authors
of [7] that physically separating the route computation process from
the routers themselves is a good strategy for reducing router com-
plexity.

SelNet NodeDemultiplexForwarding function
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Sprint Grenoble
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Figure 4: Highway routing with SelNet. Selector Stacks shown
with attached payload.

3.5.1 Mapping a Destination to a Selector Stack
A first example involves an equivalent to autonomous systems

on which IP routing is based today. Like MPLS, we envisage la-
bel stacks (selector stacks) inside packets. Instead of mapping a
destination address to the next-hop autonomous system, SelNet can
map a destination to a selector stack which describes a loose source
route through the network. The process works as follows: When a
source node requests the resolution of a destination, it will obtain
a selector that points to a special local forwarding function. This
forwarding function will add the selector which points to a rout-
ing function on the next-hop node. Additionally each packet sent
to this function will be augmented by a selector pointing to the re-
solved loose source route. In other words, The front-most selector
identifies a resolved path to the routing function which, instead of
doing label switching, will pop the front-most selector from the se-
lector stack. The second selector will then be demultiplexed into
the node’s SAPF table to invoke the function that will handle this
packet. Typically in the core of the network this will be a simple
forwarding function. The second selector functions as a path selec-
tor similar to PathIDs in BANANAS [9].

Consider now the case where each selector in this selector stack

representing a loose source route maps to an autonomous system.
This means that forwarding such a packet consists of taking the next
selector from the stack and treat it as an entry point to a path to the
named autonomous system. This path will be labeled with a stati-
cally assigned selector such as those discussed in section 3.1. Be-
cause connectivity at the AS level is long lived, we can proactively
install such delivery paths and share them between many users. The
difference to the IP case is that for IP, the mapping from IP destina-
tion number to AS number is implicitly done at each ingress point,
while here this mapping is exposed to the end nodes and thus be-
comes “selectable”. This allows the potential for the end-users to
chose one of a set of paths through the network.

3.5.2 Mapping a Destination to a Data Highway
In the previous example we used selectors to identify trans-AS

paths. Another routing abstraction, which extends the loose source
routing concept, consists in using selectors to work with multi-exit
data highways. Instead of resolving a destination to a path (identi-
fied by an entry selector), or a series of paths with mandatory way-
points (identified by a stack of selectors), we resolve a destination
to a “highway-name + exit-name” pair. The highway name (se-
lector value) specifies which route, among several possible ones if
several providers exist, should be used to reach the destination. The
exit name, represented by another selector value, specifies which
exit on that highway to take. The exit identified in this way roughly
corresponds to the waypoints that a packet will have to traverse.
The advantage of this approach is that it provides a level of ab-
straction which the providers can use to dynamically change their
network topology without affecting the traffic flowing through their
network. As long as the exit-names are kept in the same order, it
does not matter how the network is actually structured.

For example, there might be different transatlantic highways start-
ing from New York to Geneva passing through London and having
an exit at Grenoble. A user in Boston who wants to send a packet to
Grenoble has several options now. In one case she could compose a
packet with a source route “Boston/Sprint-Highway(NY,Geneva)+exit
at Grenoble/default Grenoble router” and issue two resolution re-
quests: one “name lookup RREQ” for the selectors to use for the
highway and the exit points, and one RREQ to get a path to Boston.
The latter selector permits to reach Boston, the former selectors to
build a selector stack. In the Boston node, a packet’s front selector
would be popped, which diverts the packet to the transatlantic high-
way; Each intermediate node on this highway will check whether
it matches the exit name. The Grenoble node will match and pop
again a selector, finding that it has to be forwarded to the default
local delivery function. This process can be seen in figure 4.

Let us further assume that the operator of this highway estab-
lishes a shortcut from London to Grenoble e.g., to counter some
flash crowd problems. In this case, the packet would already by
picked out of the data stream in London and reach Grenoble by this
temporary bypass. Thus, the use of selectors offers traffic engineer-
ing flexibility on both sides.

Note that except resolution requests at the edge (Boston and pos-
sibly also at Grenoble), no end user state had to be stored inside the
core network. Because highway and exit points are long-lived, their
selector would be cached at the edge and corresponding RREQs
would not need to go transatlantic. Note also that the only user-
specific packet processing inside the core relates to fast selector
stack inspections and forwarding decisions.
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4. DISCUSSION
Here we discuss some of the architectural consequences and is-

sues that arise from the design choices of SelNet.

4.1 Deployment
During the discussion in this paper, we have assumed a network

where all nodes are running SelNet. This was deliberately chosen
to show SelNet’s capability as a stand-alone network architecture.
Since deployment on the current Internet is an extremely slow pro-
cess, we discuss here how SelNet’s underlay approach allows for
incremental deployment.

One typical way of running SelNet is to use it as an underlay to
IP. This means that any IP traffic sent from a SelNet node has the
SAPF header inserted between the IP header and the Ethernet (or
other link layer) header. The SAPF header allows the packet to be
demultiplexed to the correct SelNet packet processing context on
arrival. This method of deployment clearly positions SelNet as a
virtualized link layer.

However, it is very likely that we would like to start SelNet de-
ployment only in a handful of local area networks. These LANs
may well be geographically distributed, but connected via the Inter-
net. In which case, tunneling SelNet traffic over the Internet is one
way of achieving SelNet connectivity between these LANs. Using
an approach similar to Minimal IP Encapsulation we can insert the
SAPF header between the transport and network layer headers so
that SelNet traffic can be a) effectively routed through the Internet
and b) correctly demultiplexed at the receiving node. Our current
implementation of SelNet runs over both Ethernet and UDP. We
chose UDP for implementation purpose rather than IP for speed of
prototyping. Despite the additional overhead incurred from using
tunnels, in our experience SelNet is still usable. This mix of both
underlay and overlay approaches shows a promising direction for
pragmatic future deployment.

4.2 Resilience
Since SelNet introduces some forwarding state on intermediate

nodes, it must have some resilience properties to ensure recovery
in the event of failure. Consider the example in figure 3, once the
multi-hop path has been established SelNet will periodically refresh
the selectors using a soft-state approach. Usually applications will
do this matching the time cycles of ARP (120 seconds between re-
freshes). However, this can be configured on a per-application ba-
sis. Referring back to figure 3, if Node A fails then the selectors
present at both Node B and the intermediate node will be garbage
collected after a certain timeout. Once the Node A comes back on-
line, the selectors will not be present at the intermediate node, so
Node A will have to perform the resolution again in order to ensure
that a path still exists between it and its destination.

Whilst such an approach works for small networks, if SelNet is
to scale up, then there must be some way of performing soft state
recovery so that the maintenance load of XRP does not get out of
hand. Inspired by the work done in [4] and [8] we propose a mech-
anism which uses reliable triggers (i.e., the full set of forwarding
state) hop-by-hop to install state and then an end-to-end soft state
refresh mechanism to ensure that these triggers are kept up-to-date
and are re-installed correctly in advent of failure. This means that
the full transmission of state happens at the beginning of the con-
nection and in the case of failure. State is kept up-to-date by pe-
riodic refreshing. Thus the transmission of the full set of state is
infrequent so the load is not too great, but the state is kept consis-
tent by periodic refreshing by more lightweight mechanisms.

4.3 Security considerations
We outline in this section how access control and DDoS protec-

tion are performed in SelNet. Traditional measures of privacy, in-
tegrity and authentication are dealt with by standard cryptosystem
approaches.

Typically, solutions that introduce more flexibility into the net-
work are rightly considered as security risks as they provide a hook
into the system which could be used to break in or take down the
system. One such system was the original IP loose source routing
which was usually switched off by ISP networks due to security,
performance and business concerns. There are two reasons why
we feel that SelNet is a better solution for network operators than
loose source routing: firstly, it requires explicit agreement from the
operator that a certain route is allowed to be taken and secondly,
the network operator can choose exactly which routes are exposed
to the users and which are not. These bilateral agreements are en-
forced by the XRP access control mechanisms detailed in the next
section.

4.3.1 Access control via XRP
Access control is an important part of the SelNet architecture.

By providing fine-grained access control to the user and network
operator, we hope that more services will be introduced in a secure
way. This is in contrast to the unsolicited communication princi-
ple that underlies the Internet architecture. We share the view of
the authors of [2] who see security as an enabler of new function-
ality rather than constricting it. Access control is provided in Sel-
Net through XRP. In SelNet no communication can take place until
resolution is complete. Therefore it is much easier for a communi-
cation instance to be approved by intermediate nodes (typically an
XRP policy box). In the Internet architecture, any node can send
to any other node without prior agreement. This makes security
difficult as legitimate communication is hard to distinguish from a
malicious attack. Firewalls are an attempt to introduce some access
control into the network, but they often cause problems by inad-
vertently blocking legitimate communication due to their lack of
ability to discriminate between permitted and non-permitted traffic.

In XRP intermediate nodes have to approve both the destination
and method of reaching destination. That is, before a selector can
be sent back to the destination, the XRP resolution request has to be
processed. These approval policies can be complex or trivial. For
example, route all IPv4 traffic by default or route only traffic which
conforms to a policy. The key point here is: Who is allowed to do
what indirection? By allowing the approval policies to be calibrated
as required, we can have access control suitable for certain areas of
the network. For example, the core transit networks will very likely
have very simple policies due to processing constraints whereas the
edge or access networks will likely have more complex policies to
match their application complexity.

4.3.2 Protection against DDoS
Since unsolicited communication is permitted by the Internet ar-

chitecture, a node cannot express which packets it wishes to receive
and which is does not. In [10] the authors also note this problem
with the current architecture. We believe that SelNet can help with
these DDoS attacks because an XRP resolution request would be
sent to the nearby XRP processing box and that is the limit to where
the DDoS attack could go without explicit authorization of the XRP
box. Even if the local box is being DDoS’d, it is a simpler problem
to handle than a DDoS which traverses multiple IP networks which
obscures the identity of the original (potentially spoofed) sender.
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One proposal to counter DDoS attacks is Pushback. Pushback is
a way of installing filters on intermediate nodes in the network in
order to block certain address ranges which are known to be DDoS-
ing other machines. SelNet, through XRP, provides a mechanism
with which an end node can instruct intermediate nodes (for exam-
ple, firewall or edge router) that certain types of packets should be
blocked. Due to the extensible nature of XRP, we can easily deploy
additional indirection schemes. We note here that this indirection
scheme redirects certain packets into a black hole rather than to an-
other packet processing function.

5. CONCLUSIONS AND OUTLOOK
The contribution of the SelNet network architecture is twofold:

one is the architectural approach of placing indirection at the bot-
tom of the protocol stack and the second is how to maintain flex-
ibility in the face of changing requirements which SelNet aims to
achieve by the usage of explicit resolution mechanisms and address-
ing packet processing functions rather than nodes.

The main advantages of SelNet are flexibility, performance and
security: Being an underlay network also means that we are not
constrained by the network layer stack like an overlay network.
Since the addressable units of our architecture are functions rather
than nodes, we allow for greater flexibility and extensibility than
architectures which mandate an addressing mechanism for nodes.
With label switching, packet forwarding is faster than with IP [17].
and we do not incur the packet header overhead of an overlay ap-
proach. Since SelNet is underneath the network layer, it is easier to
secure SelNet since resolution is an explicit activity that must take
place before data forwarding on the network layer can take place.

We have the core infrastructure of SelNet implemented and we
have a real-world implementation of a simple distributed proxy sce-
nario which we will continue to develop. Additionally we have a
version of SelNet based on LUNAR implemented for NS-2 and one
element of future work is to investigate user-controlled route selec-
tion and the general scalability of SelNet.
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