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ABSTRACT
Defending against DoS attacks is extremely difficult; effective so-
lutions probably require significant changes to the Internet architec-
ture. We present a series of architectural changes aimed at prevent-
ing most flooding DoS attacks, and making the remaining attacks
easier to defend against. The goal is to stimulate a debate on trade-
offs between the flexibility needed for future Internet evolution and
the need to be robust to attack.
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C.2.0 [COMPUTER-COMMUNICATION NETWORKS]:
General - Security and Protection

General Terms
Design, Security
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1. INTRODUCTION
Denial-of-Service (DoS) attacks are one of the most significant

problems currently facing the Internet and its users. For many users
these attacks are merely an irritation - even if they understand the
reason for the poor performance they occasionally observe. How-
ever, for the Internet to achieve its full potential, it has to be able to
offer highly reliable service, even in the face of hostility.

We will examine some significant changes to the Internet archi-
tecture aimed at making the Internet more robust. Such changes
should not be made lightly - any widespread change has real costs
associated with it. In writing this paper we are only too aware
that the problem of DoS attacks can not be completelysolved by
the architecture we propose. The problem needs to be tackled on
many fronts simultaneously. However we do believe that architec-
tural changes are necessary. The only question is what form those
changes must take? In this paper we will take a fairly radical posi-
tion, with the aim of stimulating this debate.
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2. THE NATURE OF THE PROBLEM
The first step in considering a security problem is to consider

the nature of the threat. In [9], the Internet Architecture Board
provides a detailed discussion of the nature of DoS attacks on In-
ternet systems, and we strongly recommend this document. Ba-
sically all systems are vulnerable to some form of attack, be they
clients, servers, firewalls, routers or links. Attacks can attempt to
exhaust processing power, memory, bandwidth, quotas, disk-space,
and pretty much any other “consumable” that a system requires to
perform its job.

One modern PC connected to a high-speed network can source
around 1Gb/s of traffic, which is enough to saturate many network
links and, if the traffic is carefully crafted, enough to overload many
large servers. However, traffic from a single machine is relatively
easily filtered. Although automated mechanisms to push-backsuch
filters towards the source are not widely deployed, there are few
technical problems in doing so[13][10].

Unfortunately source-address spoofingmakes it harder to push-
back filters without causing collateral damage. Further, many DoS
attacks are reflectionattacks[16], where the attacker sends traffic to
a third party, spoofing the source address of the victim. The third
party then replies to the victim, overwhelming them. The attacker
can then use many third parties to spread his attack, so now the
traffic is “originating” from all over the Internet. In addition, some
reflection attacks manage to amplifythe original attack because the
responses sent by the third party are larger or more numerous[6][9]
than the original messages sent by the attacker.

The biggest DoS problem is caused by distributeddenial of ser-
vice (DDoS) attacks, where the attacker compromises a large num-
ber of systems and then uses these “zombie” systems to attack
the victim. DDoS attacks of sufficient scale provide the firepower
needed to overwhelm almost all victims. They can also be com-
bined with spoofing or reflection to make the attack even more dif-
ficult to defend against. Currently most DDoS attacks do not bother
to spoof the source addresses because, as no automatic push-back
mechanism is widely deployed, it takes so long to shut down each
zombie that there is no need to hide their identity.

DDoS is principally an issue due to widespread exploitation of
software vulnerabilities, which permit the control of large numbers
of compromised systems. To gain sufficient scale, such exploitation
is typically automated using worms, viruses, or automated scanning
from already-compromised hosts (so called “bots”). Fast-spreading
worms are extremely hard to combat in the current Internet Archi-
tecture, so these are a particular concern[14]. Although viruses and
bots are a serious issue, their spread rate is slower, which permits a
wider range of defense options.
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3. DEFENSE
It is important to begin by recognizing that it is not possible to

completely protect all servers against all DDoS attacks. If a suffi-
ciently subtle attacker with sufficiently many compromised hosts at
his disposal can mimic legitimate traffic well enough that the victim
cannot tell good from bad, there is little that can be done beyond
load-shedding, adding server resources, and minimizing collateral
damage. However, our ultimate goal is that this is the only way to
persistently DoS-attack a server, and that routers and client systems
are invulnerable to DoS attacks.

Viewing the problem from a high level, there are many tracks
we can take to make a network architecture that is more resilient to
DoS than the current Internet:

• Significant improvements in end-system software security will
reduce the ease with which systems are compromised, and
hence make the construction of zombie-armies more diffi-
cult. However, we do not expect this to be sufficient by itself.

• Reducing the ability of worms and viruses to spread quickly
will reduce the threat of very large scale DoS attacks. Fast
spreading worms are a particular threat, because they outpace
the speed of any possible human mediated response.

• Preventing source-address spoofing will aid the shutdown of
attacks that do occur using push-back mechanisms.

• Preventing reflection attacks will also aid the shutdown of
attacks and prevent innocent third parties from being impli-
cated or harmed by reactive defenses.

• Without source-address spoofing and reflection attacks, auto-
mated push-back mechanisms would be much more accurate
and effective.

• Large-scale wide-area distribution of key services such as
DNS would localize attacks, reducing the attacker’s advan-
tage and minimizing collateral damage.

• Hosts not wishing to receive incoming connections attempts
from the public Internet should not have do so.

• Router-to-router traffic should be effectively isolated from all
other traffic to reduce DoS threats to routers. Although this
is at least as important as the points above, it is not the main
focus of this paper, so we will not discuss it further.

In this paper we do not discuss the protocol and implementation
detailsneeded to ensure that transport protocols and applications
are robust to DoS. Instead we concentrate on architectural changes
that more widely restrict an attacker’s freedom and permit more
effective defense.

3.1 Advertised Service
In the Internet architecture, a route advertisement is effectively a

service advertisement for all the hosts on that subnet, saying “route
packets to these hosts”. However, such a service advertisement is
rather more liberal than is generally desired. What is mostly desired
is the ability to route service requests to a server for that service,
and to route responses back to the client and nothing else. This is
of course an over-generalization, but we shall use this as a starting
point for a revised service model. Such a service model would have
immediate implications for DoS:

• A client could not send any request to another client, which
prevents a whole category of DoS attack, and also prevents
client-to-client worms.

• If the server to which a client initiates communication is the
only host that can send packets back to that client, then no
other server can DoS that client. This also prevents many
reflection attacks.

4. TOWARDS A DOS-RESISTANT
ARCHITECTURE

How might we implement such desired restrictions without en-
countering scalability issues? In this section we will propose a set
of architectural changes that, taken together would greatly limit the
scope for attack. The aim is to allow all the desired modes of inter-
action between systems, but greatly restrict everything else.

Step 1: Separate Client and Server Addresses
The IP address space1 can be divided into a set of client addresses
and a set of server addresses. The aim is to allow clients to initiate
connections to servers, but not to allow clients to initiate connec-
tions to clients, nor servers to initiate connections to servers.

The benefits of this depend on where the restriction is enforced.
Even if it were only enforced by the recipient, this would immedi-
ately reduce the threat from worms. A worm would have to spread
from client→server→client, exploiting two separate vulnerabili-
ties. This greatly slows the worm because the server→client phase
depends on clients choosing to contact an infected server. Very fast
spreading worms would no longer be possible. Worms that attempt
to spread via contagion are still possible, but are significantly more
likely to be spotted in the client→server phase in time to react by
the sort of organized honeypots proposed in [20].2

In addition, many reflection DoS attacks on servers (such as
bang.c[9]) are prevented. A reflection attack on a server would re-
quire server→client→server communication, and most clients are
not going to respond to a new connection request from a server3.

In the current Internet, some of these benefits arise from the use
of Network Address Translators. However, NATs only benefit those
clients who chose to use them; attackers simply choose to attack
from hosts that are not behind NATs. By formalizing the asymme-
try and accepting it as a key part of the architecture, the benefits can
be much more widespread, as we will show below. In addition the
downside of NATs not being a consistent part of the architecture
can be avoided.

Clearly if many hosts have both client and server addresses then
some of the benefits are lost; we hope that few hosts will need both
globally-reachableclient and globally-reachable server addresses.
Typically a server should not be initiating wide-area outgoing con-
nections, and most clients only need to accept incoming connec-
tions to permit local management. Obvious exceptions are peer-
to-peer applications, and telephony-style applications. We will dis-
cuss these special cases in Section 5.1.

Step 2: Non-global Client Addresses
A client address does not need to have any global significance. It
only needs to have significance along the path between the client
and the server, so that packets from the server can be returned to
the client. In fact, a client wants its address to not have global
significance - this prevents distributed DoS attacks on the client

1Typically we are thinking about IPv6 addresses here due to the
additional flexibility available from longer addresses.
2The state of the art in honeypots still needs to advance somewhat
before this could be considered a solved problem.
3The exceptions would be stateless reflection such as responding
to an ICMP echo request.
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FIGURE 1—Path-based Addressing

or its access network unless each attacking host can figure out a
workable address to route traffic towards the client.

One way to allocate client addresses in a non-global manner
would be for the source address to be constructed domain-by-domain
as the packets travel from client to server. This is illustrated in fig-
ure 1. On entry to a domain, a local routing ID (indicating the next
domain toward the client) would be pre-pended to the source ad-
dress. Packets being forwarded back towards the client would then
be forwarded by the usual longest-prefix-match forwarding mecha-
nisms within each domain (in this case the prefix is the local ID for
the next domain). As the packet leaves each domain heading back
towards the client, the local ID is removed.

It is likely that such address prepending can be done at line-speed
in some of todays backbone routers with only firmware upgrades.

The goal is that even if one malicious server in the Internet knows
a client’s address, no-one elsewhere in the Internet who is given that
address can easily deduce a workable client address to reach the
client from their location. The simple prepending scheme above
provides this protection to some degree, but it is possible that more
security is required. This can be achieved at the expense of addi-
tional forwarding cost by encrypting the client address before pre-
pending the local ID in the client-to-server path, and decrypting it in
the return path after removing the local ID. For example, the router
with interface C in figure 1 would receive client→server packets
with source address BA and forward then on with source address
C f (BA) where f (x) is a shared key encryption function4. Whether
such additional security is really necessary is an open question, but
the architecture would permit it as a matter of local policy. In prac-
tice it is likely that only a few core ISPs need to do this to gain most
of the benefits.

Such path-based client addresses have some useful properties:

• The make complete source-address spoofing impossible for
clients. A client address will always reveal the path back to
the origin domain, although it may not reveal the precise host
at that domain. This should allow pushback mechanisms to
function effectively against traffic sourced by clients.

• In contrast to the current Internet, the path between client and
server would be symmetric at the domain level (although not
at the router level). The economic implications of this are not
completely clear to us. However, at the very least it should
simplify many network monitoring functions for transit ISPs.

Perhaps more importantly, if an ISP monitors that there is
a large amount of traffic in one direction but no appropri-
ate responses in the reverse path, then the ISP can conclude
by itself that this traffic is malicious. This may allow link-
saturation attacks to be identified and shut down. However,
such a deduction may require collating information from mul-
tiple routers within the ISP’s domain, so may not be easy
without substantially improved network monitoring tools.

4All the border routers of a domain share the same key

• All reflection attacks against remote client targets are pre-
vented. A reflection attack would need to go
client→server→client, but path-based addresses do not al-
low the spoofing of a remote victim’s client address.

• Many routing DoS attacks on client systems, such as an-
nouncing bogus routes, are prevented as client routes are sim-
ply not announced inter-domain.

It is important to note that such client addresses are inherently
changeable. If the client moves location, or the inter-domain rout-
ing between client and server changes, then the client’s address as
seen by the server will change. This mechanism therefore requires
that transport connections have access to a more stable ID above the
IP layer. Proposals such as HIP[15] would provide such a suitable
ID, although other simpler forms of ID might also suffice.

Another implication for transport protocols becomes clear if we
consider what happens when routing changes in such a way that the
original server→client inter-domain path becomes unusable. The
server has no way to reach the client until it next receives a packet
from the client indicating a new valid path. This is primarily a
problem if a connection is idle when a change occurs, and the server
then wishes to re-start communication. Periodic “keepalives” are
one way to solve this. Alternatively a client can passively monitor
the inter-domain route for this server and deduce when it needs to
send a keepalive to update the server’s knowledge of the its address.
To do this a client would need access to the BGP AS Path for the
route used to reach the server. For many practical reasons with
BGP as it is currently deployed, this is not quite as simple as it
might seem, but the general idea is feasible.

Step 3: RPF Checking of Server Addresses
Using path-based client addresses severely restricts source-address
spoofing by a client, but it does not restrict spoofing by servers.
However, the domain-level symmetry that emerges from using client-
based addresses means that packets traveling from server→client
follow the reverse client→server inter-domain path. The allows do-
main boundary routers to perform a reverse-path forwarding (RPF)
check on the source address of server→client packets. This check
largely prevents a server from spoofing the address of a server in a
different domain.

When combined with path-based client-addresses, one effect of
this is to make it much harder to launch blind DoS attacks on on-
going communications, such as injecting a TCP Reset into a con-
nection whose existence can be inferred.

Step 4: State Setup Bit
Not all packets are equal. Packets that require the recipient to set up
new state are more risky from a DoS point of view than those that
don’t. It is useful to single these packets out for special handling in
a manner that is independent of the upper layer protocol.

Packets that will cause transport communication state to be set
up (especially connection setup) should set a new state-setup bit in
the IP header. Other packets would leave this bit unset. This serves
a number of purposes:

• It provides a generic protocol-independent way to identify
packets that need special validation. A server receiving a
connection setup request with this bit not set would simply
discard the packet.

• Stateful firewalls can validate packets with this bit set before
instantiating state. We will discuss what form this validation
might take below.
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• Packets without this bit set can be safely dropped by state-
ful firewalls if no matching state is found. This provides
a way for firewalls to permit evolution of network proto-
cols without always needing to know the protocol seman-
tics, and provides a way for firewalls to do some degree of
transport-independent validation of encrypted traffic such as
IPsec-protected connections.

• Server addresses cannot send packets with the state-setup bit
set - all routers would drop such packets. This prevents all
unsolicited state-holding DoS attacks initiated from server
addresses.

• Sites might rate-limit at their outgoing firewall the number of
state-setup packets per second sent by some clients.

Step 5: Nonce Exchange and Puzzles
We need mechanisms to validate a client and to add asymmetric
costs to communication so as to tilt the balance of control towards
the server. Doing this under heavy load on the server itself is hard,
so we need to off-load some of this checking. As the validation
point needs to be upstream of links that are vulnerable to saturation
attacks, this implies the use of external firewalls to validate flows.

The simplest form of validation a firewall could perform would
be to validate that the client’s address is valid. Although complete
client source-address spoofing is not possible with the path-based
addresses described above, the client still has some ability to obfus-
cate the true origin or to launch reflection DoS attacks on clients in
the same domain as itself. Thus pushback mechanisms might inflict
some collateral damage on clients co-located with an attacker.

One feasible mechanism to do address validation would be a sim-
ple nonce-echo. On receiving a state-setup packet, a firewall could
bounce the packet back to the sender with a nonce appended. The
sender would then echo the nonce-packet back, whereupon the fire-
wall would check the nonce, strip it off, instantiate any appropriate
state, and forward the packet on towards the intended destination.

Such a simple validation could be performed by an edge site’s
outgoing stateful firewall to validate the source address on an out-
going request. This is in the site’s own interest because it would
prevent the other clients at that site from suffering collateral dam-
age from any pushback that a DoS attack launched by that client
might incur.

Going beyond source-validation, we can also add transport pro-
tocol independent mechanisms to push cost onto the client to limit
the sustained attack rate that a client can maintain. CPU puzzles
are one such mechanism; the goal is to make the client perform a
CPU-intensive task before connection setup is permitted. The hope
is that a normal client will not be excessively delayed in solving
the puzzle, but that an attacker (who wants to initiate a great many
connections and so needs to solve many puzzles) will be CPU lim-
ited, and so his rate of attack will be much lower. An example of
such a puzzle would be to provide a random bit-string to the client,
and require the client to find a text where the first n bits of the MD5
hash match the bit-string. Such a puzzle is expensive to solve, but
cheap to check. There are also puzzles limited by other resources
such as memory bandwidth, which might be more appropriate in
some cases.

Just as firewalls can validate source addresses, they can also is-
sue puzzles to impose cost on the clients before allowing traffic
through. The idea of IP-layer puzzles is not new[8], but our archi-
tecture provides the right framework to make puzzle deployment
safe and effective. In particular, the state-setup bit would provide an
appropriate signal to issue a puzzle, and the addressing architecture

makes it hard to use malicious puzzle requests or spoofed responses
as a DoS attack in their own right.

Puzzles at the IP/transport level do not solve application-level
DoS problems or complexity attacks, but they do at least constrain
the rate of incoming incoming connections. The application may
well need to do its own DoS prevention; what form this might take
depends on the nature of the application itself.

Such puzzles also do not prevent massivelydistributed DoS at-
tacks because the connection setup rate from each attacking zombie
is so low as to not be CPU constrained. Our hope is to make it much
harder to compromise so many client hosts in the first place.

Step 6: Middlewalls
Firewalls are normally deployed at site borders, with the goal of
limiting the types of traffic allowed into or out of a site to protect
the hosts inside. However, in the case of DoS, traditional site fire-
walls may well be too close to the destination to provide sufficient
protection.

Pushback mechanisms can provide reactive protection back into
the core of the network when an end-system or network link dis-
covers it is under attack. Unfortunately to pushback each source
in a large distributed DoS attack is likely to be relatively expensive
in terms of network state, and requires each source to be identified
and pushed back individually. Such identification may be difficult
- it may be hard to tell good traffic from bad if an attack is not too
blatant. Non-source-specific pushback is still feasible, but pushes
back good and bad traffic alike.

We do not wish to re-invent virtual circuits in the Internet, but the
only way to throttle requests through a bottleneck is to have some
form of access control upstream of that bottleneck. We envisage
very simple special-purpose high-speed firewalls being deployed
in the core of the Internet at inter-domain boundaries to serve this
purpose. Such middlewallswould not normally filter traffic, but
a server under stress may issue a middlewall solicitation message
to request the assistance of one or more middlewalls. Such a re-
quest could be specific - sent along the path back towards a source
(another benefit of routing symmetry), or it could be non-specific,
flooded in the inter-domain routing information. On receipt of such
a request for help, the middlewall would start performing source-
validation, and issuing puzzles on behalf of the server.

The use of middlewalls to perform source-validation or issue
puzzles opens up the question of how multiple firewalls in a path
should interact. We would prefer to avoid adding multiple round-
trip times to connection setup, but at this stage this seems simplest.
In general though, unlike a site firewall, a middlewall should be
transparent unless its help is actively solicited by a server, so the
additional delay would not normally be incurred.

The economics of middlewalls are not completely clear, but they
seem tractable. In the case of a specific request, the middlewall
might charge the end-system for the service. Even in the case of a
non-specific request, it might still be in a transit ISP’s interest for
its middlewall to help out because the middlewall may allow an ISP
to avoid forwarding a flood of attack traffic that might disrupt other
customers.

Step 7: Multicast
Traditional IP multicast[7] (so called ASM) has no wide-area role
in a DoS-resistant Internet. The ability for any host anywhere in
the Internet to simply start sending and cause routers worldwide to
instantiate forwarding state presents an insuperable DoS problem.
This is made even worse by the ability of a sender to send to any ex-
isting multicast group without the consent of receivers or the other
senders.
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In contrast, Source-Specific Multicast (SSM [4]) is relatively ro-
bust against DoS attacks. With SSM, a receiver joins explicitly to
a specific source address to receive a specific multicast group. This
means that there is no way for a multicast sender to be malicious
without the active participation of the multicast receivers. However,
there are two remaining DoS vulnerabilities with SSM:

• Receivers can join many non-existent multicast groups on
many potential sources. This can be a state-holding attack
on the routers along the path to these non-sources.

• A receiver can join many high-bitrate groups causing high
packet loss on network links towards the receiver.

The latter is really a self-DoS. However, even this can be prevented
to a reasonable extent if the router at the congested link simply
unsubscribes groups that do not appear to be utilizing congestion
control.

The former problem is really two separate issues. First, receivers
should not be able to join a group where the sender is never going
to be active. This can be solved using cryptographically generated
addresses (CGA [2][5]) where a router can validate that the group
address must have been chosen by the owner of the sender’s key.
However, CGA might be too heavyweight and a DoS risk in its own
right.

Alternatively, a two-pass multicast join mechanism can first val-
idate group liveness (or the sender’s intent to send), then on the
second pass actually instantiate forwarding state. This would be
done by allowing a join-probe to propagate upstream towards the
sender without instantiating any state until it reaches the sender’s
subnet, or until it reaches a router with active multicast join state.
The join-probe would accumulate the entire hop-by-hop path, and
an affirmative join response travelling the reverse path could be
used to instantiate the join state. The same domain-border encryp-
tion mechanism used for client addresses could be used to prevent
spoofed join responses.

Second, we want to make it hard for a receiver to join so many
low-rate multicast groups that the routers can’t hold the forwarding
state. This is mainly an issue close to the receiver itself, because
the backbone already needs to transit most of these groups in the
absence of any DoS attack. A partial solution is for routers to have
a threshold for the number of groups that can be joined. If this
threshold is exceeded, then a join-failure message is propagated
downstream for all groups. A site firewall or router close to a likely
malicious receiver can then use this to trigger a limiting mechanism
that reduces the large number of groups that any single receiver
has joined. Receivers that have not joined many groups would be
unaffected.

With our addressing architecture, only server addresses can send
multicast traffic and only client addresses can receive it. We also
note that multicast sender need not be reachable via unicast - this is
already possible today using a multicast-only SAFI in BGP4+[3].

With these mechanisms in place, SSM should be rather resistant
to DoS attack. This makes it a useful building block for wide-area
information services such as DNS which would otherwise be high-
profile targets for DoS attack.

4.1 Architectural Summary
The seven steps above, taken together, provide an enhanced In-

ternet Architecture that is much more robust to DoS attack than the
current Internet. The changes are largely independent of applica-
tions, so should permit the Internet to continue to evolve success-
fully, and the benefits are many. Worms cannot spread rapidly. Re-
flection DoS attacks are almost completely eliminated, and where

they remain feasible, they are only against local targets. Clients
are almost completely protected from direct attack and compro-
mise5, and they are protected from non-local DoS attacks except
by servers with whom they have chosen to communicate. Servers
are protected against DoS attack from other servers - as clients now
become hard to directly compromise, this provides not insignifi-
cant protection in its own right. The routing architecture means
that complete source-address spoofing by clients or servers is not
possible, and this in turn means that pushback mechanisms become
easier to deploy against known attackers. Client address validation
using nonces further reduces the chance of collateral damage from
such pushback. The use of middlewalls to validate CPU-puzzles
can make the remaining DoS attacks impossible to sustain except
through overwhelming numbers of attacking zombie hosts. Even
then, if the attacking hosts are readily identified, it should be fea-
sible for middlewalls to do client-address validation, and then use
pushback to shut them down. We note that with a huge attack this
may entail too much filter state in the network, but this architecture
would permit the deployment of specialist high-speed filter gate-
ways that could do this filtering.

The remaining problems are primarily those in which huge num-
bers of attacking client zombies cannot be distinguished from legit-
imate clients. In such cases we have succeeded in our design goal
which is to force the attacker to be indistinguishable from a flash
crowd. In fact we have gone rather further than this by removing
a number of key vectors for infection that can currently be used to
create large DDoS zombie armies in the first place.

To get this far though, we have sacrificed a significant amount of
flexibility that was permitted in the original Internet architecture.
We believe that some such medicine is necessary, and the debate
should not be whetherwe change the architecture, but rather howit
should be changed?

In any event, it is important to examine what we have given up
in such an architecture, and we discuss this next.

5. LOSS OF SYMMETRY
The most significant effect of our architectural changes is the loss

of symmetry between clients and servers. For the most part, this is
beneficial to both clients and servers, but a number of applications
require special consideration.

5.1 Peer-to-Peer Applications
Peer-to-peer applications are possible because the peers can be

both clients and servers, forming a mesh of connectivity that can
support all manner of functionality. Some people might make value
judgements about the importance of such applications. The truth
is no-one knows how Internet applications will need to evolve in
future, so it is important to examine options for supporting all ap-
plications.

There is no technical reason why hosts that need both client and
server functionality with global scope should not have both client
and server global-scope addresses. However, if most hosts have
both client and server addresses, then many of the architectural
benefits are lost, so it behooves us to examine alternative ways to
support such applications.

Peer-to-peer applications all need some form of rendezvous to
discover the addresses of peers before any direct peer-to-peer con-
nections can be established. For scalability reasons the solution
of relaying all communication through the rendezvous agent is not
viable. If we assume the peer-to-peer mechanism provides suffi-

5They are however still vulnerable to viruses and trojan horses,
which will require alternative means of protection.
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FIGURE 2—Using a broker to setup a peer-to-peer session

cient bootstrap capability to allow indirect signaling between two
peers, then we can use this to bootstrap a client-to-client connec-
tion. From the point of view of preventing DoS, the key property of
such connections is that they are simultaneously set up from both
ends.

Our forwarding rules do not permit packets with client addresses
as both source and destination. We could relax these rules, but there
are a number of ways we can achieve client-to-client connections
without doing so. We shall present one such mechanism as a proof
of concept.

To be valid, all packets require a server address as source or des-
tination. We can use a broker (Fig. 2) to bootstrap this:

1. Each client connects to a local broker on its local server ad-
dress6, sends its HIP ID7, and obtains a global address from
the broker’s address pool.

2. Over the peer-to-peer signaling channel, each client informs
the other client of its own HIP ID and the pool address of its
broker.

3. Each client sends the remote client’s HIP ID to the local bro-
ker.

4. Each client connects to the remote broker on its pool address
and provides both its own HIP ID and that of the remote
client.

5. Each broker now returns the remote client’s address to the
local client.

At this point the peers now know enough to communicate. Data
packets are sent using the pool server address as the source, and the
remote client address as the destination.

This should be acceptable to middlewalls, as state is setup in the
initial request to the broker. However, the traffic does not appear
to be bi-directional to an observer, because neither addresses or
paths are symmetric. In addition, if the original inter-domain route
fails, the clients will need to send via the broker to re-establish
communication.

It might seem that this re-introduces DoS vulnerabilities that we
tried hard to remove, but this is mostly not so. As packets reach
each client sourced from a server address (the broker’s pool ad-
dress) the state-setup bit cannot be set in them, so this mechanism
cannot set up any incoming connection state. At the application

6How it learns this address is not critical - we can assume it learns
this in a similar manner to how it learns about DNS servers and
default routers.
7Other forms of persistent ID might be possible in place of a HIP
ID

level, it is up to both parties to agree to communicate - if either does
not wish to communicate, then no DoS attack can be performed.

An alternative mechanism might be for one of the clients to ob-
tain a temporary use “server” address on a short-term lease from
its broker. As above, the broker can be used to discover the remote
client’s address, so only a connection setup from the remote client
would be accepted on the leased address. The lease would need to
be renewed frequently, or it would cease to be locally routed, giving
fail-safe functionality in the event of a DoS attack.

Unfortunately, whatever the addressing solution, one vulnerabil-
ity is re-introduced; it appears to be possible for worms to spread
rapidly through peer-to-peer networks. This seems to be an inher-
ent problem with the peer-to-peer model rather than a deficiency
in our architecture. If people ever become serious about prevent-
ing the spread of worms, then peer-to-peer architectures may be an
inevitable casualty.

5.2 Internet Telephony
Internet telephony has similar issues to peer-to-peer applications,

but we must consider the signaling pathway and the media-data
pathway separately.

The media-data pathway is similar to the peer-to-peer case; once
call-setup signaling has completed, both parties wish to setup a di-
rect connection carrying, for example, RTP[18], over DCCP[11].
The same broker mechanism used for peer-to-peer can be used for
the media data pathway, allowing audiovisual data to flow end-to-
end with minimal delay.

The signaling channel is somewhat different. SIP[17] generally
assumes that a SIP terminal device can accept incoming connec-
tions to make the “phone” ring. With our architecture, no client-
only host can do this. However, SIP also makes extensive use of
proxies for call routing, personal mobility, device mobility, and
so on. Although most current devices don’t take advantage of it,
SIP largely separates the process of sending and responding to a
SIP message from the process of setting up the transport level con-
nections to carry those messages. Thus a SIP terminal can simply
register with a proxy and leave the signaling transport connection
open. Incoming calls will come into this proxy, and the existing
connection can carry them to the client host.

In this scenario, the SIP proxy is an obvious DoS target, but this
is no different from its current role, and our architecture helps with
its defense. We note that SIP proxies are themselves one of the
class of devices that will need both client and server addresses.

6. TRANSITION AND APPLICATIONS
Any significant change to the Internet architecture cannot be suc-

cessful unless there is both an incremental transition plan and eco-
nomic incentive for change. In our case we presuppose an IPv6 In-
ternet to allow sufficient space for the client-address path-encoding.
There are two possible transition plans - deploy IPv6 and transition
from there, or skip the regular IPv6 addressing stage. In practice
it does not matter greatly. The only difference is that in the former
there are three classes of unicast address - client, server, and unre-
stricted. Unrestricted addresses obviously allow an attacker some
freedom, but in the face of attack, a server or firewall could prefer-
entially drop service to unrestricted addresses.

IPv6 itself faces significant hurdles to deployment, despite now
being supported on most current operating systems and routers.
For the most part this appears to be because there are no short-
term benefits from deployment and significant short-term costs. A
DoS-resistant architecture utilizing IPv6 can use the same routers
and routing protocol implementations as vanilla IPv6. End-systems
would require HIP or a similar persistent identification mechanism
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to be deployed, but such a mechanism is likely to be needed in
any event for mobile systems. The additional benefits of a DoS-
resistant IPv6 architecture should be much greater in terms of ro-
bustness, uptime, and the associated lower network management
costs than the current IPv4 Internet.

6.1 DNS
No discussion of DoS is complete without mentioning the Do-

main Name System. DNS is central to the operation of the Internet,
but it is also a centralized architecture which provides a central
point of attack - deny service to the root nameservers or the GTLD
servers for any significant duration, and the DoS effects will be
serious. Current attempts to replicate the root nameservers using
BGP anycast[1] are a step in the right direction, but even so the
root nameservers would be vulnerable to a sufficiently large attack.

A viable solution might use IP multicast. The DNS zone files for
the root and top-level domains contain perhaps tens of millions of
entries - a significant amount, but a single PC is capable of holding
the entire database. If signed zone files were continuously mul-
ticast from the master root nameserver and, as appropriate from
the zone masters for the top-level domains, every well-connected
site around the world could simply cache the entries. The master
servers need not be unicast-reachable, so would be protected from
DoS attack. This would not replace the request/response mech-
anism, but it would become the principal way most nameservers
would receive the top part of the DNS tree. Nameservers which
know they have incomplete data (due to packet loss or server restart)
could still query directly as they do today, but the consequences of
a successful DoS attack on the request/response servers would be
minimized.

We also note that the inability to spoof server addresses largely
prevents DNS cache poisoning DoS attacks.

With current DNS deployments, the normal mode of operation
is for clients to query a client-side DNS server that relays requests
to remote servers in search of an answer. Clearly such client-side
DNS servers need both a client address and a server address. We
have no problem with this for relays that need such functional-
ity, but we note that often client-side DNS servers do not need
their server address to be globally-reachable. In addition, DNS
deployment guidelines recommend disabling relaying on authori-
tative servers, so these will not need a globally routable client ad-
dress.

6.2 SMTP, NNTP and SIP
A number of protocols explicitly build in the capability to relay at

the application level. The addressing requirements of mail transfer
agents, SIP proxies, and NNTP relays are similar to those of DNS
servers. Sometimes they need both globally routable client and
server addresses; in many cases either the client or server address
could be local. Obviously the potential for attack is reduced if as
many relays as possible do not have both client and server addresses
that are globally routable. To avoid ambiguity, we recommend that
non-globally-routableserver addresses are still globally unique.

7. RELATED WORK
This work builds upon the pushback mechanism[13], but we be-

lieve it provides a framework in which pushback can be deployed
more effectively and safely.

A number of other mechanisms for defending against DoS at-
tacks have been proposed. The use of CPU puzzles at the TCP/IP
layer has been suggested by several researchers [8]. We believe that
puzzles have a definite role to play, and our architecture provides
a clean framework for their deployment. However, they are proba-

bly too difficult to deploy without such a framework, because they
potentially open up new DoS possibilities.

The use of capabilities to give explicit permission to send was
suggested in [19]. Such a mechanism is viable, but is somewhat
heavyweight to be the first line of defense, especially as a defense
against attacks on clients. If necessary though, capabilities could
be deployed within our framework, to aid in the defense of servers,
as an alternative to CPU puzzles.

The Internet Indirection Infrastructure (i3) has also been sug-
gested as a mechanism to aid in the defense of servers from DoS
attack[12]. i3 does this by obfuscating the true address of a server,
and ensuring that access is routed through large numbers of “trig-
gers” which are disposable, and hence can be changed to shut down
specific attackers or reduce overall server load. This is in fact a
much more radical departure from the current Internet architecture
than our proposal, and it is probably too early to tell if non-technical
issues such as trust between multiple competing i3 providers can be
solved.

There are also a number of commercial products that advertise
protection against DoS attack, but publicly available information is
somewhat sketchy on how these actually work.

8. CONCLUSIONS
We have outlined a set of changes to the Internet architecture,

including the explicit separation of the IP address space into client
and server addresses, along with associated rules restricting how
those addresses can be used. These changes significantly limit the
modes of interaction between Internet systems, in such a way that
the vast majority of the desirable interactions are allowed, and a
large number of undesirable interactions are disallowed. Taken to-
gether, these changes significantly improve the ability to defend
against DoS attack. They also increase the difficulty involved in
building large DDoS attack networks, and the hope is that the re-
maining ways to compromise systems are more easily detected or
prevented.

We do not expect these changes to be popular at first, as people
have become rather used to the flexibility inherent in the current
architecture. However, we do believe that the problems are severe
enough to merit such solutions. Without changes on this scale, the
Internet cannot fulfil our aspirations for digital convergence, be-
cause it simply will not be robust enough to use for many serious
applications. As anyone responsible for running a high-profile net-
work understands, there are no easy solutions. It is time to take a
hard look at the architecture itself and question what we got right
and what we cannot live with anymore.
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