
Dual-Pipeline Heterogeneous ASIP Design

Swarnalatha Radhakrishnan, Hui Guo, Sri Parameswaran
School of Computer Science & Engineering

University of New South Wales, Sydney, Australia

{swarnar, huig, sridevan}@cse.unsw.edu.au

ABSTRACT
In this paper we demonstrate the feasibility of a dual pipeline
Application Specific Instruction Set Processor. We take a
C program and create a target instruction set by compiling
to a basic instruction set, from which some instructions are
merged, while others discarded. Based on the target instruc-
tion set, parallelism of the application program is analyzed
and two unique instruction sets are generated for a hetero-
geneous dual-pipeline processor. The dual pipe processor is
created by making two unique ASIPs (VHDL descriptions)
utilizing the ASIP-Meister Tool Suite, and fusing the two
VHDL descriptions to construct a dual pipeline processor.
Our results show that in comparison to the single pipeline
Application Specific Instruction Set Processor, the perfor-
mance improves by 27.6% and switching activity reduces
by 6.1% for a number of benchmarks. These improvements
come at the cost of increased area which for benchmarks
considered is 16.7% on average.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture styles—
heterogeneous systems, pipeline processors

General Terms
Design

Keywords
Instruction Set Generation, Dual-pipeline, ASIP, Superscalar

1. INTRODUCTION
Embedded systems are becoming more ubiquitous, cheaper

and increasingly pervasive. They are in application specific
equipment such as telephones, PDAs, cars, cameras etc..
Functionality within an embedded system is usually imple-
mented using either general purpose processor(s), ASIC(s)
or a combination of both. General Purpose Processors (GPP)
are programmable, but consume more power than any alter-
nate method due to execution units which are not efficiently
utilized in the application. Programmability, availability of
tools, and ability to rapidly deploy GPPs in embedded sys-
tems are all reasons for the common use of GPPs in em-
bedded systems. ASICs on the other hand, are low power
devices, having a small foot print, but are not upgradable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’04,September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

and are complex to design, resulting in drawn out time to
market.

A compromise solution between these two extremes, are
Application Specific Instruction Set Processors (ASIPs). These
are processors, with customised instructions advantageous
to the particular program or class of programs. An ASIP will
execute an application with great efficiency for which it was
designed, though they are capable of executing any other
program (usually with greatly reduced efficiency). ASIPs
are programmable, quick to design and consume less power
than GPPs (but more than ASICs). Programmability allows
the ability to upgrade, and reduces software design time.
Tools such as ASIP-meister [2], Tensilica [3], ARC [1], en-
able rapid creation of ASIPs.

Embedded systems differ from general purpose computing
machinery since a single application or a class of applica-
tions are repeatedly executed. Thus, processing units can
be customised without compromising functionality. ASIPs
in particular are suited for utilisation in embedded systems
where customisation allows increased performance, yet re-
duces power consumption by not having unnecessary func-
tional units.

1.1 Motivation for this work
Superscalar, multiple pipeline processors are common in

most modern GPPs, usually dedicating a few issues for gen-
eral processing and others for floating point processing. Due
to the (general) nature of GPPs, it is impossible to tailor
pipelines to be more precise.

Since the application to be executed is well understood
in the case of an ASIP, it is possible to accommodate cus-
tomized versions of the instruction pipelines to improve per-
formance at minimal area cost. However, research so far
has only focussed on single pipeline structures. This limits
instruction parallelism. ASIPs with multiple pipelines en-
able the execution of multiple instructions simultaneously.
A processor so designed, allows a greater design space to be
explored by the designer, and allows code generated for a
single pipeline processor to be utilized without major modi-
fication. This method of parallelizing execution is somewhat
similar to the VLIW approach, though in the case of VLIW,
the compiler must necessarily be more complex.

This paper describes a two pipeline heterogeneous proces-
sor to demonstrate the feasibility of multiple pipeline ASIP
processors. Each of the pipelines can be created with a sub-
set of the total set of instructions. They can share some
components such as the register file, parts of the controller
etc. A processor thus created will be a heterogeneous multi-
pipeline (superscalar) processor. Heterogeneity of the pro-
cessor arises by the differing sets of instruction issued to the
two pipes. Since the application is well understood, it is
possible to do so, improving performance and reducing the
area cost required.

1.2 Related Work
A number of researchers from around the globe have been

working to both systematise and automate the process of
ASIP design.

The overall design flow for ASIPs involves a combina-

12

tion of instruction generation and design space exploration
tools. In [4, 17, 22] tool suites take a specification (written
in an architectural description language) and generate re-
targetable compilers, instruction set simulators (ISS) of the
target architecture, and synthesisable HDL models of the
target processor. The generated tools allow valid assembly
code generation and performance estimation for each spec-
ified architecture. In [21] the design flow consists of gener-
ating instructions automatically, inserting instructions, and
performing a heuristic design space exploration. Automatic
instruction generation locates the regular templates derived
from program dependence graphs, and implements the most
suitable ones as extensible instructions, enhancing perfor-
mance of the application program. Their design flow takes
an application, which is profiled, and from the profile a pro-
gram dependence graph is created. Blocks within the graph
are ranked, and the highest ranking blocks are implemented
as instructions.

In [6], the authors searched for regularity in sequential,
parallel and combined sequential/parallel basic instructions
in a dataflow graph. New sets of instructions were gener-
ated by combining basic instructions. Kastner et al. in [14]
searched for an optimal cover of a set of regular instructions,
and then constructed an optimal set of sequential instruc-
tions. Zhao et al. in [23] used static resource models to
explore possible new instructions that can be added to the
data path to enhance performance.

A system called PEAS-III for the creation of pipelined
ASIPs is described in [16]. A parallel and scalable ASIP ar-
chitecture suitable for reactive systems is described in [19].
A novel approach to select the Intellectual Properties (IP)
and interfaces for an ASIP core to accelerate the applica-
tion is proposed in [7]. A Hardware/Software partitioning
algorithm for automatic synthesis of a pipelined ASIP with
multiple identical functional units with area constraints is
introduced in [5]. The code generation for time critical loops
for Very Large Instruction Word (VLIW) ASIPs with het-
erogenous distributed register structure is addressed in [11].
In [12] a methodology for early space exploration of VLIW
ASIPs with a clustered datapath is proposed. A methodol-
ogy to customize the existing processor instruction set and
architecture is presented in [9]. In[8] using power estimation
techniques from high level synthesis, a low power ASIP is
synthesized from a customized ASIC. Case study of power
reduction is given in [10]. Evaluation of the effect of register
file size in ASIP performance and power is done in [13].

In [15], Kathail et al. proposed a design flow for a VLIW
processor consisting of a selection of Non-Programmable
hardware Accelerators (NPAs), design space exploration of
implementing different combinations of NPAs, and evalua-
tion of the designs. An NPA is a co-processor for functions
expressed as compute-intensive nested loops in C.

In [20] the author discusses a decoupled Access/Execute
architecture, with two computation units containing own
instruction streams. The processor decouples data accesses
and execution (for example ALU instructions). One of them
does all the memory operations, while both can perform
non-memory access operations. The architecture issues two
instructions per clock cycle. The two instruction streams
communicate via architectural queues.

Our architecture is somewhat similar to the one proposed
in [20]. We customise the processor for a particular applica-
tion, while the processor in [20] is generic. They use separate
register files for each pipe, with a common copy area. We
use a global register file. We also avoid an instruction queue,
preferring a compile time schedule of instructions and avoid
data hazards by inserting NOPs appropriately.

1.3 Contributions
For the first time we create a dual pipeline ASIP and

demonstrate that it is feasible to utilize such a processor to
extend the design space of an application. In particular:

• a simple heterogeneous architecture has been proposed
with data access instructions allocated to one pipe,
instruction fetch and branch instructions allocated to
the other pipe, and all other instructions implemented
on one or both pipes (note we have an ALU on one
pipe, and if necessary some of the operations within
the ALU can be duplicated on the other);

• and, a methodology containing an algorithm with poly-
nomial complexity has been proposed to determine
which instructions should be in both pipes.

1.4 Paper Organization
The rest of the paper is organized in the following way.

Section 2 describes the architecture template of the dual
pipeline processor to be implemented. The following sec-
tion describes the methodology taken to design dual pipeline
processor. Simulations and results are given in section 4. Fi-
nally, the paper is concluded in section 5.

2. ARCHITECTURE
Our goal is to design an application-specific dual pipeline

processor to improve performance, reduce energy consump-
tion with minimal area penalty.

The architecture template adopted is shown in Figure 1.

pipe 2pipe 1
 DBUS

controller
1

REGISTERFILE

Instruction
Memory

Program
Counter

Shifter

IBUS

controller
2

DMAU

Data
Memory

DBUS IBUS

Shifter

Multiplier

ALU Adder

Figure 1: Architecture Template

The two-pipeline processor has two functional data paths.
Both paths share the same register file, data memory and
instruction memory. The register file has two-ports to enable
data traffic on both pipeline paths at the same time.

The control unit on one of the pipelines, controls the in-
struction fetch from the instruction memory and dispatches
instructions to both paths. The other path controls data
memory access to transfer data between register file and
data memory. Each path has a separate control unit that
controls the operation of the related functional units on that
path. We separate the instruction fetch and data fetch into
two separate pipes to reduce the controller complexity. Some
instructions will appear on both paths. The functional units
in each path are determined by the instruction set designed
for that path.

In the example template shown in Figure 1, some of the
instructions allocated to the left pipe are ALU, multiply, and
shift instructions. The add and shift instructions can also be
executed on the right pipe (as shown in Figure 1). Thus it
is possible to execute two add instructions simultaneously,
one by the ALU on the left and one on the adder on the
right. A methodology for determining the functional units
that have to be duplicated is given in section 3.

Based on the architecture, we attempt:

• to efficiently exploit parallelism by dual pipelines;

13

• to minimize additional area cost;

• and, to minimize the total energy consumption.

3. METHODOLOGY
Our design approach for a given application consists of

three tasks: target instruction set generation (Phase I);
dual pipeline instruction set creation (Phase II); and, dual
pipeline ASIP construction and code generation (Phase III).
The design flow is shown in Figure 2.

Compile
Assembly code & Base

Instruction Set
Analyse &
re-order

Specific
instruction
generation

1-pipeline code

C Program

Design Library

Processor
generation

2-pipeline
code

2-pipeline
processor

Code
generation

2-pipeline
ISA generation

Perf. & Area
Constraints

Phase I

Phase II

Phase III

Figure 2: Design Flow

3.1 Target Instruction Set Generation
The first step of the methodology is the identification of

the target instruction set. This step is marked Phase I in
Figure 2.

A C program is compiled and assembly code is produced
for a base RISC machine. The instruction set is first reduced
by eliminating all un-used instructions.

The generated assembly code contains a number of merge-
able instruction blocks. The instructions within a block are
highly data dependent, which hinders parallel processing.
Where possible, a specialized instruction is created for each
of these blocks, and replaces them. However, specialized
instructions may require more functional units in the pro-
cessor, resulting in extra chip area. Therefore we create
instructions only for those blocks with high execution fre-
quency, such as blocks within loops. Methods for creation
of specialized instructions are given in [18] and [21].

Figure 3 gives an example of how an assembly code is
transformed by replacing blocks by specialized instructions.

Figure 3(a), shows an assembly code (AC) of a loop body
produced by a compiler (the code was slightly modified to
enhance explanation of methodology). Without loss of func-
tional correctness, some instructions (in bold font) are re-
ordered (RAC - reordered assembly code), as shown in Fig-
ure 3(b). Figure 3(b) contains six basic blocks (in rect-
angles). These blocks can be divided into two groups: G1
and G2. Blocks in G1 – load data to a register from mem-
ory using an indirect addressing mode with an offset. G2
stores data to memory from a register, the memory is also
addressed indirectly with an offset. For these blocks, two new
instructions are generated: Sldr and Sstr. By merging in-
structions in those blocks, we obtain the new code as shown
in Figure 3(c) (NAC - new assembly code), where high-
lighted new instructions replace the corresponding blocks in
Figure 3(b).

Thus final instruction set is given in Figure 4, as the target
instruction set (TIS) of the processor for the example given
in Figure 3.

mov r7, r0
mov r6, r1
mov r1, r7
sub r1, r1,#8
mov r3, r7
sub r3, r3, #12
ldr r3, [r3]
lsl r2, r3, #2
sub r3, r7, #4
ldr r3, [r3]
add r3, r2, r3
ldr r2, [r1]
ldr r3, [r3]
cmp r2, r3
ble .L4
mul r0, r5
mul r5, r6
mov r1, r7
sub r1, r1, #8
mov r3, r7
sub r3, r3, #12
ldr r3, [r3]
lsl r2, r3, #2
sub r3, r7, #4
ldr r3, [r3]
add r3, r2, r3
ldr r3, [r3]
str r3, [r1]
mov r1, r3
mov r0, r3

mov r7, r0
mov r6, r1

G1 mov r3, r7
sub r3, r3, #12
ldr r3, [r3]
lsl r2, r3, #2

G1*sub r3, r7, #4
ldr r3, [r3]
add r3, r2, r3

G1 mov r1, r7
sub r1, r1, #8
ldr r2, [r1]
ldr r3, [r3]
cmp r2, r3
ble .L4
mul r0, r5
mul r5, r6

G1 mov r3, r7
sub r3, r3, #12
ldr r3, [r3]
lsl r2, r3, #2

G1*sub r3, r7, #4
ldr r3, [r3]
add r3, r2, r3
ldr r3, [r3]

G2 mov r1, r7
sub r1, r1, #8
str r3, [r1]
mov r1, r3
mov r0, r3

mov r7, r0

mov r6, r1

Sldrr3, [r7, #12]

lsl r2, r3, #2

Sldrr3, [r7, #4]

add r3, r2, r3

Sldrr2, [r7, #8]

ldr r3, [r3]

cmp r2, r3

ble .L4

mul r0, r5

mul r5, r6

Sldrr3, [r7, #12]

lsl r2, r3, #2

Sldrr3, [r7, #4]

add r3, r2, r3

ldr r3, [r3]

Sstrr3, [r7, #8]

mov r1, r3

mov r0, r3

(a) (b) (c)

Figure 3: Specific Instruction Generation
(a)Original Assembly Code (b)Re-ordered As-
sembly Code (c)New Assembly Code

 Sldr Rn, [Rm, #N]
Sstr Rn, [Rm, #N]

 lsl Rn, Rm, #N
 add Rn, Rm, Rn
 ldr Rn, [Rm]
 cmp Rn, Rm
 ble address
 mov Rn, Rm
 mul Rn, Rm

Figure 4: Target Instruction Set

3.2 Dual Pipeline Instruction Set Generation
Dual pipeline instruction set generation is where the tar-

get instruction set is divided into two sets (some instructions
can be in both sets). This is shown as Phase II in Figure 2.

Given the target instruction set, TIS, we proceed to create
a heterogeneous dual pipeline ASIP processor. Both pipes
can have differing instructions, allowing the processor to be
small, yet have fast processing speed. Take the code in Fig-
ure 3(c) for example. Instruction cmp can be implemented
in just a single pipeline. If cmp is implemented in both
pipes, the extra resource in one path will not be used. Thus
we implement cmp in just one path.

A primitive processor provides functionality for memory
accesses, ALU calculations and control. The memory access
instructions can be paired together with ALU instructions,
and can be scheduled to execute simultaneously, such that a
memory instruction fetches data from memory for later use
by an ALU instruction, while the ALU instruction produces
results for storage (later) by another memory access instruc-
tion. Therefore, we separate the two pipe instruction sets,
IS1 and IS2 by allocating memory access instructions to one
pipeline and basic ALU instructions to other. Rest of the
instructions (ALU, and specially created non-memory ac-
cess instructions) are then spread over the two pipes, with
some overlap of instructions in both pipes. Branches are
only implemented on the instruction fetch pipe.

The implementation efficiency of an instruction in both
pipes is proportional to the number of times that instruction
can be executed in parallel, and is inversely proportional to
the additional area cost of the instruction. The more fre-
quently an instruction is executed in parallel with another
instruction of the same type, the greater the implementation
efficiency.

We define the following terms, to explain the rest of the
paper.

Definition 1: Dependency Graph, G. The graphical rep-

14

resentation depicting the dependency of instructions in an
instruction trace, where nodes represent instructions, and
directed edges represent dependency. A node has a type
that corresponds to the type of instruction it represents. An
instruction is dependent on another if the first instruction
can only be executed after the second is completed. Some
dependent instructions can be executed simultaneously (for
example see lines 4 and 5 in Figure 6(b), which can be exe-
cuted together due to the pipeline execution).

Definition 2: Connected Graph, g. The subgraph of G,
where all nodes in g are connected by directed edges.

Definition 3: Associated Graph Set, Ψ. The set of con-
nected graphs that contain nodes of a given type. For an
instruction, Ins1 in the instruction set, its Associated Graph
Set is denoted by Ψi.

Definition 4: Dependency Depth. The depth of a node
in a connected graph, g, from the starting nodes. A starting
node is not dependent on any other nodes and has a depth
of 1. The total depth of graph g is denoted by dg.

1

5

4

32

6 7

8

9

10

Ins1

Ins2 Ins3

Ins4

Ins1

Ins1 Ins1

Ins4

Ins1

Ins2

g1 g2

Figure 5: Example of Instruction Graph

Figure 5 shows an example. The graph represents a trace
of 10 instructions with the following instruction set: Ins1,
Ins2, Ins3 and Ins4. Nodes that represent same type of
instructions are shaded similarly for clarity. There are two
connected sub-graphs: g1 and g2. For Ins1, its Associated
Graph Set, Ψ1 = {g1, g2}. For Ins3, its Associated Graph
set, Ψ3 = {g1}. For Ins1 in sub-graph g1, the depth of node
1 is 1 and the depth of node 5 is 4.

It is possible for any instructions with the same depen-
dency depth to be grouped in pairs for parallel execution.
Take the instruction nodes 6 and 7 of graph g2, in Fig-
ure 5, as an example. Both have the same depth, therefore
they can be grouped into a parallel execution pair. For in-
structions in different connected graphs, because there is
no dependency, they can always form the parallel execu-
tion pairs. For example, instruction node 6 in g2 can be
paired with any instruction node in g1. But this inter-graph
matching may result in longer execution. For example, by
grouping instruction nodes 5 and 6, g1 and g2 are put in
sequence. The overall execution time will be at least 8 in-
struction cycles. As such, it is advisable to match parallel
instructions locally within connected graphs. Only left-over
instructions are considered for inter-graph matching. The
following definition formalizes the parallelizability.

Definition 5: Instruction parallelizability, σ. The po-
tential for an instruction to be executed in parallel with
another instruction of the same type. For instruction Insi,
it is defined as

σi =
1

N
(LPi + GPi), (1)

where N is the total number of instructions in the target
instruction set; and LPi denotes the intra-graph parallelism
of Instruction i, and is defined as

LPi =
∑

g∈Ψi

dg∑
j=1

bkj

2
c, (2)

where kj is the number of nodes (representing Insi) of depth
j in graph g, |Ψi| is the number of elements in set Ψi; and

GPi = (

∑
g∈Ψi

∑dg

j=1 kj mod 2

|Ψi|)× b|Ψi|
2
c, (3)

where the first part of the product stands for average left-
over instructions per connected graph. Therefore, GPi gives
an approximate value of possible instruction matching pairs
across the connected graphs.

We use the σ value to estimate how often two of the same
instruction type can be scheduled simultaneously.

Definition 6: instruction cost, c. The area overhead,
due to augmenting the basic processor by implementing the
instruction.

Based on the above definitions, we define the implemen-
tation efficiency for an instruction as follows.

Definition 7: Implementation efficiency, η. Given an
instruction, Insi, from the target instruction set, assume the
cost for the instruction is ci and its parallelizability is, σi, the
implementation efficiency of implementing the instruction in
both pipes is ηi = σi/ci

In order to determine whether to implement an instruction
in two pipes, we set a criteria value, denoted by Θ. An
instruction is implemented in both pipes if η ≥ Θ. The
value Θ could be derived in many different ways. We use
an average-value based scheme by using the average value
of σ and c over all instructions, which can be implemented
on both pipeline paths. Assume the number of instructions
(implementable in both paths) in the instruction set is m,

c̄ =
1

m

m∑
i=1

ci, σ̄ =
1

m

m∑
i=1

σi (4)

Taking these two average values, we have Θ = σ̄/c̄
Any instruction with η ≤ Θ is deemed not efficient and

will only be implemented in one of the pipes.
To illustrate the methodology, we continue the example

in Figure 3(c), and the target instruction set shown in Fig-
ure 4. The LOAD/STORE instructions are in one set, and
basic ALU and branch instructions are in another set. We
allocate instructions ldr, Sstr and Sldr, to set IS1, and ALU
instructions, add and lsl and branch instruction ble to set
IS2. All other instructions,mov, add, cmp, lsl and mul, are
checked for implementation efficiency. Assume the costs of
each instruction are given. The implementation efficiency
values for all non-memory access instructions are calculated
and listed in Table 1. Note that some specialized instruc-
tions too can be implemented in both pipes (though that is
not the case in this example).

Ins. c σ η
add 0.02 0 0
cmp 0.01 0 0
lsl 0.04 0 0

mov 0.004 0.22 55
mul 0.12 0.11 0.92

Table 1: Area Efficiency

From the table, m = 5, σ̄ = 0.066 and c̄ = 0.98. Hence,
Θ = 0.067. Therefore, mov is the only instruction which is
implementable in both pipes. Thus mov is implemented on
both pipes, as shown in Figure 6(a). Based on the instruc-
tion set allocation to the pipes, and dependency (as shown
in the (b), where the left column labels the instruction, and
the right column gives the parent instruction(s)), two paral-
lel code sequences are hand generated, as shown in figure(c)
(we aim to automate this step at a later stage). Note, NOP
instructions indicate cases where there are no parallel exe-
cution pairs. NOP instruction is implemented here by using
a mov instruction – moving data between the same regis-
ter, thus saving area. Note that naming dependency is also
considered as illustrated in Figure 6(b) (in bold).

The two set instruction generation approach is given as
an algorithm and is depicted in Figure 7.

The complexity of the algorithm given in Figure 7 is O(n)
where n is the number of instructions in a trace of the ap-
plication.

15

App. AC AC CC CC SA SA Clk. per Clk.per AC % Perf % SA %
Single Parallel Single Parallel Single Parallel Single (ns) Parallel (ns) Penal. Impr. Red.

PNF 22159 26194 24272230 20547000 3029453359 2777023291 13.417 13.104 18.2 17.3 8.3
BS 22858 26569 11989268 8218985 1065312576 1014212135 13.888 13.415 16.2 33.8 4.8

GCD 22165 25779 8222364 7119392 1112552403 1060485171 13.703 12.974 16.3 18.0 4.7
MM 27711 32180 74272740 51202126 8715574361 7704880016 13.749 13.049 16.1 34.6 11.6
IS 22458 26269 19123756 14021924 1690419837 1652783482 13.631 11.876 17.0 36.1 2.3
SS 22858 26569 26152656 19876018 2198453345 2085369586 13.659 13.335 16.2 25.8 5.1

Table 2: Simulation Results

 movr7, r0 mov r6, r1

 NOP Sldr r3, [r7, #12]

 lslr2, r3, #2 Sldr r3, [r7, #4]

 addr3, r2, r3 Sldr r2, [r7, #8]

 NOP ldr r3, [r3]

 cmpr2, r3 NOP

 ble.L4 NOP

 mul r0, r5 Sldr r3, [r7, #12]

 mul r5, r6 NOP

 lslr2, r3, #2 Sldr r3, [r7, #4]

 addr3, r2, r3 NOP

 NOP ldr r3, [r3]

 NOP Sstr r3, [r7, #8]

 movr1, r3 mov r0, r3

(c)

1 mov r7, r0

2 mov r6, r1

3 Sldrr3, [r7, #12] -- 1

4 lsl r2, r3, #2 -- 3

5 Sldrr3, [r7, #4] -- 1,4

6 add r3, r2, r3 -- 4,5

7 Sldrr2, [r7, #8] -- 1,6

8 ldr r3, [r3] -- 6

9 cmp r2, r3 -- 7,8

10 ble .L4 -- 9

11 mul r0, r5 --

12 mul r5, r6 -- 2

13 Sldrr3, [r7, #12] -- 1,9

14 lsl r2, r3, #2 -- 13

15 Sldrr3, [r7, #4] -- 1,14

16 add r3, r2, r3 -- 14,15

17 ldr r3, [r3] -- 16

18 Sstrr3, [r7, #8] -- 1,17

19 mov r1, r3 -- 17

20 mov r0, r3 -- 17

IS2 IS1

lsl Rn, Rm, #N Sldr Rn, [Rm, #N]

add Rn, Rm, #N ldr Rn, [Rm]

cmp Rn, Rm Sstr Rn, [Rm, #N]

ble address mov Rn, Rm

mov Rn, Rm

mul Rn, Rm

(a)

(b)

Figure 6: Two Instruction Sets and Parallel Se-
quences

3.3 Dual Pipeline Processor and Code Gener-
ation

Finally we construct the dual pipeline processor and gen-
erate machine code for the application. This is shown as
Phase III in Figure 2.

Given the two instruction sets, we generate a two-pipe
processor in two steps as illustrated in Figure 8.

Step1:
Create VHDL descriptions for each instruction set by us-

ing ASIPMeister, a single-pipe ASIP design software tool.
The tool takes as input the instruction set, constraints, and
microcode for each instruction, and produces a synthesiz-
able VHDL description for the processor. We create two
separate processors, one for each instruction set.

Step2:
Construct the VHDL description for the dual pipe proces-

sor by modifying and integrating the two single-pipe VHDL
descriptions as per designated architecture shown in Fig-
ure 1.

The instruction code for the dual pipe processor is gener-
ated by merging the two parallel assembly sequences (cre-
ated during the previous stage - two instruction set gener-
ation). The merge is performed in two steps. First, each
of the two parallel sequences is assembled by the GCC and
object code obtained. Next, the two sets of binary code for
each of the parallel sequences are merged such that a parallel
instruction pair from both sequences forms a single instruc-
tion line. Each line in the code contains two instructions,

/* Algorithm: Given the assembly program (NAC) and
Target Instruction Set (TIS), find two instruction sets,
IS1 and IS2 for two pipes*/
/* Initialize the two instruction sets with Load/Store
instructions and ALU/CTRL instructions in TIS*/
IS1 = LoadStore(TIS);
IS2 = ALU(TIS) + CTRL(TIS);
/* Get all non-memory instructions in TIS
and check their area efficiency */
TIS = TIS - IS1

⋃
CTRL(TIS);

/* Calculate η for each instruction and Theta
Calc(η, Θ);
/* Determine whether to implement instruction in one or two
pipes*/
for all Insi ∈ TIS

if ηi ≤ Θ
/* One pipe, if instruction is
an ALU instruction, it is already assigned to
IS2, no further assignment is required.
Otherwise, */
if Insi is not an ALU instruction

IS2 ⇐ Insi;
endif

else
/* Two pipe impelemtation. If it is an ALU
instruction, further assign it to IS1;
otherwise, assign it to both sets */
if Insi is not an ALU instruction

IS2 ⇐ Insi;
endif
IS1 ⇐ Insi

endif
endfor
/* Based on the generated IS1 and IS2, create two
parallel sequences */
parallel seq(IS1,IS2)

Figure 7: Dual Instruction Set Generation Algo-
rithm

one for each pipeline. Thus the resulting code forms code
for the two pipe processor.

This phase is presently hand generated, though automa-
tion is possible.

4. SIMULATIONS AND RESULTS
With the proposed methodology, we designed six dual

pipe processors for the following programs: Greater Com-
mon Divisor (GCD), Prime Number Finder (PNF), Ma-
trix Multiplication (MM), Bubble Sort(BS), InSort(IS) and
ShellSort(SS).

The base instruction set chosen was similar to the THUMB
(ARM) instruction set. In order to verify the effective-

ASIPMeister

ASIPMeister

IS1

IS2

1−Issue(IS1)

1−Issue(IS2)

2−Issue(IS1,IS2)
 Integrator

Figure 8: 2-Pipline Processor Generation

16

0

5

10

15

20

25

30

35

40

PNF BS GCD MM IS SS

Benchmarks

%

Area Cost

Perf. Improv.

Switch. Act.
Reduction

Figure 9: 2-pipes .vs. 1-pipe

ness of the created two-pipe processors, and our design ap-
proach, we also implemented those functions with single-
pipe ASIPs produced by ASIPMeister. The verification sys-
tem for single-pipe and two-pipe processors are shown in
Figure 10. Note that the simulated results are for the in-
struction set after Phase I. All applications used the same
sample data set for both single and parallel implementations.

SYNPLIFY
ASIC

ModelSim

Data
processing

Area and clk.
period

Performance

Switching
activity

Single/Dual Pipe
Processor

Single/Dual Pipe
Code

Figure 10: Synthesis/Simulation System

Given an application program, we generate a specific pro-
cessor and related executable code. The execution of the
program on the designed processor is simulated using Mod-
elSim simulator, which measures the time taken to complete
the program in terms of clock cycles (CC). We also obtain
switching activity by modifying the output files of Modelsim.
The ASIC implementation of the processor is simulated by
Synplify ASIC 3.0.1, which provides the area cost in number
of cells. The system was synthesized to a cell library of 0.35
microns from AMI.

The simulation results are shown in Table 2. The first col-
umn gives the name of the application, the second and third
the area cost of single and parallel implementations respec-
tively, the fourth and the fifth columns give the number of
clock cycles for execution of the application, and the sixth
and the seventh gives the switching activity when the appli-
cation was executed. Eight and ninth columns give the clock
period for the processors designed (results obtained from
Synplify ASIC). Tenth, eleventh and the twelfth columns
give the percentage increase in area, percentage speed im-
provements, and percentage switching activity reductions.
These three columns (10,11 and 12) are plotted in Figure 9.

As can be seen from the table, there is up to 36% improve-
ment in speed. The speed improvement is at the cost of some
extra chip area. The two-instruction sets in each design
were created with very little overlap, i.e., few instructions
were in both pipes. The clock period reductions came from
the decreased controller complexity. The extra area cost
mainly comes from the second controller, additional func-
tional blocks and data buses for parallel processing, which
is common to all dual-pipe designs. Therefore, the extra
area cost is almost same for all the design, which is around
16%.

Switching activity reductions are obtained by reduced switch-
ing in program counter and simplified functional circuitry.
For example, two parallel add instructions can have less
number of switches than the two instructions executed in
a single pipe, since addition is implemented with an adder
instead of an ALU in second pipe.

5. CONCLUSIONS
In this paper we have described a system which expands

the design space of ASIPs, by increasing the number of
pipelines. We allocate load/store operations to one of the
pipes, and in general ALU operation to the other pipe. If
there are additional ALU operations which can be paral-
lelized, then they are spread over the next pipe. We see
speed improvements of up to 36% and switching activity
reductions of up to 11%. The additional area costs approx-
imately 16%.

6. REFERENCES
[1] Arctangent processor. ARC International.

(http://www.arc.com).

[2] Asip-meister. (http://www.eda-meister.org/asip-meister/).

[3] Xtensa processor. Tensilica Inc. (http://www.tensilica.com).

[4] N. Binh, M. Imai, and Y. Takeuchi. A performance
maximization algorithm to design asips under the constraint of
chip area including ram and rom size. In ASP-DAC, 1998.

[5] Nguyen Ngoc Binh, Masaharu Imai, Akichika Shiomi, and
Nobuyuki Hikichi. A hardware/software partitioning algorithm
for designing pipelined asips with least gate counts. In Proc. of
the 33rd DAC, pages 527–532. ACM Press, 1996.

[6] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh.
Instruction generation and regularity extraction for
reconfigurable processors. In CASES, 2002.

[7] Hoon Choi, Ju Hwan Yi, Jong-Yeol Lee, In-Cheol Park, and
Chong-Min Kyung. Exploiting intellectual properties in asip
designs for embedded dsp software. In Proceedings of the 36th
DAC, pages 939–944. ACM Press, 1999.

[8] J.G. Cousin, M. Denoual, D. Saille, and O. Sentieys. Fast asip
synthesis and power estimation for dsp application. IEEE Sips
2000 : Design and Implementation, October 2000.

[9] Kayhan K et.al. An asip design methodology for embedded
systems. In Proceedings of the seventh international workshop
on Hardware/software codesign, pages 17–21. ACM Press,
1999.

[10] Tilman Glokler and Heinrich Meyr. Power reduction for asips:
A case study.

[11] M. Jacome, G. de Veciana, and C. Akturan. Resource
constrained dataflow retiming heuristics for vliw asips. In
Proceedings of the seventh CODES, pages 12–16. ACM Press,
1999.

[12] Margarida F. Jacome, Gustavo de Veciana, and Viktor
Lapinskii. Exploring performance tradeoffs for clustered vliw
asips. In Proceedings of the 2000 ICCAD, pages 504–510.
IEEE Press, 2000.

[13] M. K. Jain, L. Wehmeyer, S. Steinke, P. Marwedel, and
M. Bal-akrishnan. Evaluating register file size in asip design. In
CODES, 2001.

[14] R. Kastner, S. Ogrenci-Memik, E. Bozorgzadeh, and
M. Sar-rafzadeh. Instruction generation for hybrid
reconfigurable systems. In ICCAD, 2001.

[15] V. Kathail, shail Aditya, R. Schreiber, B. R. Rau, D. C.
Cron-quist, and M. Sivaraman. Pico: Automatically designing
custom computers. In Computer, 2002.

[16] Akira Kitajima, Makiko Itoh, Jun Sato, Akichika Shiomi,
Yoshinori Takeuchi, and Masaharu Imai. Effectiveness of the
asip design system peas-iii in design of pipelined processors. In
Proc. of the 2001 ASP-DAC, pages 649–654. ACM Press, 2001.

[17] S. Kobayashi, H. Mita, Y. Takeuchi, and M. Imai. Design space
exploration for dsp applications using the asip development
system peas-iii. In ASSP, 2002.

[18] J. Lee, K. Choi, and N. Dutt. Efficient instruction encoding for
automatic instruction set desifn of configurable asips. In
ICCAD, 2002.

[19] A. Pyttel, A. Sedlmeier, and C. Veith. Pscp: a scalable parallel
asip architecture for reactive systems. In Proceedings of DATE,
pages 370–376. IEEE Computer Society, 1998.

[20] James E. Smith. Decoupled access/execute computer
architectures. ACM Trans. Comput. Syst., 2(4):289–308, 1984.

[21] F. Sun, S. Ravi, A. Raghunathan, and N. Jha. Synthesis of
custom processors based on extensible platforms. In ICCAD,
2002.

[22] J.-H. Yang, B.-W. Kim, et al. Metacore: an application specific
dsp development system. In DAC, 1998.

[23] Q. Zhao, B. Mesman, and T. Basten. Practical instruction set
design and compiler retargetability using static resource
models. In DATE, 2002.

17

	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index

