
Power-Performance Trade-Offs
for Reconfigurable Computing

Juanjo Noguera
Research & Development Dept.

InkJet Commercial Division - Hewlett-Packard

jnoguera@bpo.hp.com

Rosa M. Badia
Computer Architecture Dept. (DAC)

Technical University of Catalonia (UPC)

rosab@ac.upc.es

ABSTRACT
In this paper, we explore the system-level power-performance
trade-offs available when implementing streaming embedded
applications on fine-grained reconfigurable architectures. We
show that an efficient hardware-software partitioning algorithm is
required when targeting low-power. However, if the application
objective is performance, then we propose the use of dynamically
reconfigurable architectures. This work presents a configuration-
aware data size partitioning approach. We propose a design
methodology that adapts the architecture and used algorithms to
the application requirements. The methodology has been proven
to work on a real research platform based on Xilinx devices.
Finally, we have applied our methodology and algorithms to the
case study of image sharpening, which is required nowadays in
digital cameras and mobile phones.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles –
adaptable architectures, heterogeneous (hybrid) systems.

General Terms
Algorithms, Performance, Design.

Keywords
HW/SW partitioning, dynamically reconfigurable architectures,
task/configuration scheduling, power-performance trade-offs.

1. INTRODUCTION
The continued progress of Reconfigurable Computing (RC) has
enabled the Programmable-System-On-Chip to become a reality,
combining a wide range of complex functions on a single die. An
example is the Virtex-II Pro from Xilinx, which integrates a core
processor (PowerPC405), embedded memory and configurable
logic [1]. Additionally, the importance of having on-chip
programmable logic regions in System-on-Chip platforms is
becoming increasingly evident. Partitioning an application among
software and programmable logic hardware can substantially

improve performance, but such partitioning can also improve
power consumption by performing computations more effectively
and by allowing for longer microprocessor shutdown periods [11].

Dynamic Reconfiguration has emerged as a particularly attractive
technique to increase the effective use of programmable logic
blocks. Dynamic Reconfiguration allows the change of the device
configuration on the fly during application execution. However,
this attractive idea of time-multiplexing the needed device
configuration does not come for free. The reconfiguration latency
has to be minimized in order to improve application performance.
Temporal partitioning [8] and multi-context scheduling [5]
techniques can be used to minimize this penalty.

We could summarize that there are many system-level approaches
to reconfigurable computing, which could be divided in two broad
categories: (1) HW/SW partitioning for statically reconfigurable
architectures; and (2) temporal partitioning and task/configuration
scheduling for dynamically reconfigurable architectures.

In this paper, we explore the system-level power-performance
trade-offs for reconfigurable computing. We show that the use of
a particular approach (i.e. HW/SW partitioning for statically
reconfigurable or task/configuration scheduling for dynamically
reconfigurable architectures) depends on the application
requirements (i.e. power or performance).

Moreover, we explain that in the task/configuration scheduling
approach, the dynamically reconfigurable architecture should
process large blocks of data, which require the use of external off-
chip memory resources. The execution of large blocks of data in
part of the reconfigurable architecture is required to hide the
reconfiguration process, which could be running in a different part
of the reconfigurable architecture. Thus, this idea increases the
performance because the reconfiguration latency is hidden, but it
also increases the power-consumption due to the use of external
memory resources. On the other hand, the approach based on
HW/SW partitioning for statically reconfigurable architectures,
processes small blocks of data that can be stored in on-chip
memory resources, which means that we reduce the overall system
power-consumption.

The paper is organized as follows: section 2 explains the related
work. In section 3, we introduce our target architecture. The
proposed design methodology for embedded systems is presented
in section 4. Section 5 introduces the concept of configuration-
aware data partitioning. In section 6, we explain the benchmarks,
the experimental set-up and the obtained results. Finally, the
conclusions of this paper are presented in section 7.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’04, September 8–10, 2004, Stockholm, Sweden.
Copyright 2004 ACM 1-58113-937-3/04/0009...$5.00.

116

2. RELATED WORK
In [4] an integrated algorithm for HW/SW partitioning and
scheduling, temporal partitioning and context scheduling is
presented. However, the paper does not address any power-
performance trade-offs. A technique for application partitioning
between configurable logic and an embedded processor is given in
[11]. This paper shows that such partitioning helps to improve
both performance and energy. However, the paper only considers
statically configurable logic, and does not consider run-time
reconfigurable architectures. A different approach for coarse-
grained reconfigurable computing is presented in [10]. In the
paper, a data scheduler algorithm is proposed to reduce the overall
system energy. However, the paper does not consider the benefits
of HW/SW partitioning.

2.1 Contributions of this paper
This paper explores the system-level power-performance trade-
offs for fine-grained reconfigurable computing. More in detail, the
paper compares, in terms of energy savings and performance
improvements, the two key approaches existing in reconfigurable
computing: (1) partitioning an application between software and
configurable hardware; and (2) task/configuration scheduling for
dynamically reconfigurable architectures. To the best of our
knowledge, this open issue has not been addressed in previous
research efforts.

3. TARGET ARCHITECTURE
The target architecture is a heterogeneous architecture, which
includes an embedded processor, a given number of dynamically
reconfigurable processors (DRPs), an on-chip L2 multi-bank
memory sub-system and external DRAM memory resources. An
example of this architecture is shown in figure 1, where we can
see a 4-DRP based architecture. This architecture follows the
Chip Multi-Processor (CMP) paradigm. The data that must be
transferred between tasks executed in the DRP processors is
stored in the on-chip L2 memory sub-system. Each dynamically
reconfigurable processor can be independently reconfigured. The
proposed target architecture supports multiple reconfigurations
running concurrently, which is not the case on most of the run-
time reconfigurable architectures proposed in the literature.

Each DRP processor has a local L1 memory buffer. A hardware-
based data pre-fetching mechanism is proposed to hide the
memory latency. Each DRP has a point-to-point link to the L2
buffers (in order to simplify the figure 1, this is not shown in the
picture). However, this is shown in figure 2.a., which shows the
internal architecture of a DRP processor. There are three main
components in this architecture: (1) the load unit; (2) the store

unit; and (3) the dynamically reconfigurable logic. The DRPs are
single-context devices. It can be observed in figure 2.a. that the
load and store units have internal L1 data buffers. More in detail,
each unit (i.e., load and store) has two internal buffers. This
approach enables the possibility of having three processes running
concurrently: (1) the load unit receiving data for the next
computation; (2) the reconfigurable logic is processing data from
a buffer in the load unit and storing this processed data in a buffer
of the store unit; finally (3) the store unit is sending the previous
processed data to the L2 memory sub-system.

The on-chip L2 memory sub-system is based on a multi-bank
approach (see figure 2.b). Each one of these banks is logically
divided in two independent sub-banks (i.e. this enables reading
from one sub-bank while concurrently writing to the other sub-
bank of the same physical bank). These buffers interact from one
side with the data pre-fetch units (left-hand side of figure 2.b)
using a crossbar, and from the other side with an on-chip bus that
interacts with the external DRAM memory controller. In this L2
memory sub-system there must be as many data pre-fetch units as
number of DRP processors in the CMP architecture.

Finally, the proposed architecture includes for each DRP a
dedicated hardware-based configuration pre-fetch unit. This is not
shown in the pictures in order to simplify the figures. Thus, the
architecture supports the transfer of data in one DRP overlapped
with the reconfiguration of a different DRP.

4. DESIGN METHODOLOGY FOR
EMBEDDED SYSTEMS
The proposed design methodology for embedded systems is
depicted in figure 3. We can observe that it is divided in three
steps: (1) application phase; (2) static phase; (3) dynamic phase.

4.1 Application Phase
The proposed methodology assumes that the input application is
specified as a task-graph, where nodes represent tasks (i.e. coarse-
grained computations) and edges represent data dependences.
Each edge has a weight to represent the amount of data that must
be transferred between tasks. There are no control dependencies.
Finally, each task has associated a task type (i.e. in the task-graph
specification we could have several tasks implementing the same
type of computation).

L2 Buffers

DRAM

Dynamically Reconfigurable CMP Architecture

DSU

DRP2

L1

DRP0

L1

DRP3

L1

DRP1

L1

CPU

I D

Bank 0

Bank 1

Bank N

• • •

L2 Buffers

DRAM

Dynamically Reconfigurable CMP Architecture

DSU

DRP2

L1

DRP2

L1

DRP0

L1

DRP0

L1

DRP3

L1

DRP3

L1

DRP1

L1

DRP1

L1

CPU

I D

CPU

I D

Bank 0

Bank 1

Bank N

• • •

Figure 1: Dynamically Reconfigurable CMP Architecture

Load Unit

Rcfg Interface

Dynamically
Reconfigurable Logic

Store Unit

Clk

Configuration Data

Load
Data

Store
Data

(a) (b)

L2 Buffers

Bank 0

Bank 1

Bank 2

Bank 3

Pre-Fetch
Units

O
n-

C
hi

p
B

us

On-Chip Crossbar

Load Unit

Rcfg Interface

Dynamically
Reconfigurable Logic

Store Unit

Clk

Configuration Data

Load
Data

Store
Data

Load Unit

Rcfg InterfaceRcfg Interface

Dynamically
Reconfigurable Logic

Store UnitStore Unit

Clk

Configuration Data

Load
Data

Store
Data

(a) (b)

L2 Buffers

Bank 0

Bank 1

Bank 2

Bank 3

Pre-Fetch
Units

O
n-

C
hi

p
B

us

On-Chip Crossbar

L2 Buffers

Bank 0Bank 0

Bank 1Bank 1

Bank 2Bank 2

Bank 3Bank 3

Pre-Fetch
Units

O
n-

C
hi

p
B

us

On-Chip Crossbar

Figure 2: (a) Dynamically Reconfigurable Processor; (b)
Architecture of the L2 on-chip memory sub-system

117

4.2 Static Phase
In this phase there are four main processes: (1) Task-level graph
transformations; (2) HW/SW synthesis; (3) HW/SW partitioning;
and (4) Priority task assignment.

We can apply some task-level graph transformation techniques in
order to increase the architecture performance. These
transformations include: loop pipelining, loop unrolling and/or
task (configuration) replication. The output of this step is the
modified task graph.

The HW/SW synthesis is the process of implementing the tasks
found in the application. The output of this process is a set of
estimators. Typical estimators are HW execution time, SW
execution time, HW area and reconfiguration time. These
estimators could be obtained using accurate implementation tools
(i.e. compiler, logic synthesis and place&route tools) or using
high-level estimation tools.

The HW/SW partitioning process decides which tasks are mapped
to hardware or software depending on: (1) the architecture
parameters (i.e. number of DRP processors, external DRAM size,
etc.); (2) the modified task-graph; and (3) the task’s estimators.
Note that the application requirements do not affect directly the
HW/SW partitioning process, but they do affect this process
indirectly using the modified task-graph. The partitioning
algorithm must take into account the configuration pre-fetch
technique in its implementation.

Finally, in the static phase we also find the Priority Task
Assignment process. In this process, we statically assign to each
task a priority of execution. This information will be used during
run-time to decide the execution order of the tasks. An example of
priority function is the critical-path analysis.

4.3 Dynamic Phase
This phase is responsible for the scheduling of the tasks but also
for the scheduling of the DRP’s reconfigurations. The Task
Scheduler and DRP Context Scheduler co-operate and run in
parallel during application run-time execution. Their functionality
is based on the use of a look-ahead strategy into the list of tasks

ready for execution (i.e tasks which predecessors have finished its
execution). At run-time, the task scheduler assigns tasks to DRP’s
and decides the execution order of the tasks found in the list of
ready for execution. The DRP context (configuration) scheduler is
used to minimize reconfiguration overhead. The objective of the
DRP context scheduler is to decide: (1) which DRP processor
must be reconfigured, and (2) which reconfiguration context, or
hardware task from the list of tasks ready for reconfiguration (i.e
tasks which predecessors have initiated its execution), must be
loaded in the DRP processor. This scheduler tries to minimize this
reconfiguration overhead by overlapping the execution of tasks
with DRP reconfigurations. These algorithms are implemented in
hardware using the Dynamic Scheduling Unit (DSU) found in our
architecture (see figure 1) [7]. Several research efforts in the field
of SoC design propose moving into hardware functionality that
traditionally has been assigned to operating systems [9].

5. RECONFIGURATION-AWARE DATA
PARTITIONING

5.1 Motivation
It has been demonstrated that the parameters of the reconfigurable
architecture (i.e. number of DRP processors; reconfiguration time)
have a direct impact into the performance given by the HW/SW
partitioning process [6]. The partitioning process must take into
account the reconfiguration overhead, and also the configuration
pre-fetching technique for reconfiguration latency minimization.
This is summarized in the next expression, which shows how the
execution time of a task mapped to hardware can be modified.

()EXERR
HW

i
HW

i TTETET −⋅+= α (1)
where:
� αR is the probability of reconfiguration, which is a function

of the number of tasks mapped to hardware and the number
of DRP processors.

� TR is the reconfiguration time needed for a DRP processor to
change its context (configuration).

�
EXET is the average executing time for all tasks.

On the other hand, in the design of embedded systems, we would
like to minimize the amount of accesses to external memory.
Reducing the number of data transfer to external memory
resources helps to reduce the overall system-level power
consumption. Thus, data transfers between tasks should be kept to
a size that fits into the on-chip L2 memory sub-system.

In streaming embedded applications, we could assume that, in
general, the execution time of a task implemented in hardware or
software is proportional to the size of the data that must be
processed. Thus, if the data is stored in on-chip memory resources
with a smaller capacity, then we could conclude that the average
execution time (TEXE) of the tasks will be smaller when compared
to the reconfiguration time (we are assuming reconfiguration
times in the order of 800us-1.4ms). If this is the case, and
applying expression (1) we will have a significant reconfiguration
overhead (because TR >> TEXE), which may prevent moving the
task from software to hardware. In order to overcome this
limitation and reduce the reconfiguration overhead, we could
increase the amount of data to be processed by the task. Increasing

Application(s)
Task-graph

HW/SW
synthesis

Task-level
graph transformations

Modified
Task-graphEstimators

HW/SW
Partitioning

Dynamic Scheduling

Application
Requirements

RC Architecture
parameters

Priority Task
Assignment

Application
Phase

Static
Phase

Dynamic
Phase Task Scheduler DRP Context

Scheduler

Application(s)
Task-graph
Application(s)
Task-graph

HW/SW
synthesis
HW/SW

synthesis
Task-level

graph transformations

Modified
Task-graph
Modified

Task-graphEstimatorsEstimators

HW/SW
Partitioning

HW/SW
Partitioning

Dynamic SchedulingDynamic Scheduling

Application
Requirements

Application
Requirements

RC Architecture
parameters

RC Architecture
parameters

Priority Task
Assignment
Priority Task
Assignment

Application
Phase

Static
Phase

Dynamic
Phase Task SchedulerTask Scheduler DRP Context

Scheduler
DRP Context

Scheduler

Figure 3: Design methodology for embedded systems

118

the amount of data means that we will be forced to use external
memory resources. Using this approach, we increase the
performance (because more tasks could be mapped to hardware)
but we also increase the overall system-level power consumption.

5.2 Data partitioning for reconfigurable
architectures
As previously stated, the data partitioning will mainly drive the
use of a given approach: (1) hardware/software partitioning for
statically reconfigurable architectures using on-chip memory
resources; or (2) task/configuration scheduling for dynamically
reconfigurable architectures using off-chip memory resources.

Thus, the type of used data partitioning approach (off-chip or on-
chip memory) will be decided based on the application
requirements. Also, the type of data partitioning will give us the
number of iterations of the task graph. This is shown in figure 4,
where we can observe an example of a linear task graph. In figure
4.b. we can see a possible data partitioning. We can observe that
the size of the blocks of data is large. The volume of the processed
data must be such that, at least, the task execution time equals the
reconfiguration time. However, the number of iterations of the
task graph will be small. In the opposite case, we have the
situation where we process small blocks of data, but we have a
large number of iterations of the task graph (see figure 4.c).

6. EXPERIMENTS AND RESULTS

6.1 Image Sharpening Benchmarks
The proposed dynamically reconfigurable architecture is
addressing streaming data (computation intensive) embedded
applications. That is, applications with a large amount of data-
level parallelism. It is not the goal of the proposed architecture to
address control-dominated applications.

Image processing applications are a good example of the type of
applications that we are addressing. These kind of applications are
becoming more and more sensible to power consumption,
specially if we consider the increasing market-share of digital
cameras or mobile phones with embedded cameras, which require
of this type of image processing techniques. In this sense, we have

selected three applications that implement an image sharpening
application (see figure 5).

The three benchmarks follow the same basic process: (1)
transform the input image from RGB to YCrCb color space; (2)
image quality improvements processing the luminance (mainly
using sliding window operations like 3x3 linear convolutions);
and finally (3) transform from YCrCb back to RGB color space.

Three different input data-sets (image size) have been used in the
three applications: (1) 256x256; (2) 512x512; and (3) 768x768.

6.2 Prototype Implementation
A prototype of the proposed architecture has been designed and
implemented. The Galapagos system is a PCI-based system
(64bit/66MHz). It is based on leading-edge FPGA’s from Xilinx
and high-bandwidth DDR SDRAM memory (left-hand side of the
figure 6). This reconfigurable system is based on a Virtex-II Pro
device. The device used is a XC2VP20, which includes two
PowerPC processors. The dynamically scheduling unit (DSU, in
figure 1) and the data pre-fetch units of the L2 memory subsystem
(see figure 2) have been mapped to the Virtex-II pro device. This
device also includes the SDRAM memory controller. The design
of these blocks has been done in verilog HDL, and the
implementation has been done using Synplicity (synthesis) and
Xilinx (place&route) tools.

The DRP processors of our CMP architecture are implemented in
the Galapagos system using three Virtex-II devices (i.e.
XC2V1000). The load and store units have been implemented
using Virtex-II on-chip memory resources. The size of the buffers
in the load/store units is 2KB each buffer (i.e. 4KB for each unit).
The width of the memory words is 64bits. Figure 6 shows a
picture of the Galapagos system in a PC environment.

6.3 Tasks Performance Results
Figure 7 shows the execution time of the unsharp masking
application running on: (1) an embedded processor, PowerPC405
(300MHz), which processes blocks of data of 64x64pixels; (2) a
DRP processor from the Galapagos System (60MHz) processing
blocks of 64x64 pixels; and (3) a DRP processor processing
blocks of data of 256x256 pixels. See figure 4.

It is interesting to note the order of magnitude that has been
obtained in the implementation of the blur task (3x3 linear
convolution). It is not the objective of this paper to explain the

512

512

768

768

256
256

T1 T2 T3 T4 T5

64
64

256

256

512

512

768

768

(b) (c)

(a)

512

512

768

768

256
256

512

512

768

768

256
256

T1T1 T2T2 T3T3 T4T4 T5T5

64
64

256

256

512

512

768

768

64
64

256

256

512

512

768

768

(b) (c)

(a)

Figure 4: (a) Initial task graph; (b) data partitioning for
dynamically reconfigurable architectures; (c) data
partitioning for HW/SW partitioning

RGB2YCrCb

Blur

Add

Sub

YCrCb2RGB

RGB2YCrCb

Laplacian

Add

YCrCb2RGB

(a) (b) (c)

RGB2YCrCb

Sobel Vert.

Add

YCrCb2RGB

Sobel Horitz

Add

RGB2YCrCbRGB2YCrCb

Blur

AddAdd

SubSub

YCrCb2RGBYCrCb2RGB

RGB2YCrCb

Laplacian

Add

YCrCb2RGB

RGB2YCrCbRGB2YCrCb

LaplacianLaplacian

AddAdd

YCrCb2RGBYCrCb2RGB

(a) (b) (c)

RGB2YCrCb

Sobel Vert.

Add

YCrCb2RGB

Sobel Horitz

Add

RGB2YCrCbRGB2YCrCb

Sobel Vert.Sobel Vert.

AddAdd

YCrCb2RGBYCrCb2RGB

Sobel HoritzSobel Horitz

AddAdd

Figure 5: Image sharpening benchmarks; (a) unsharp masking;
(b) sobel filter; (c) laplacian filter

119

details of the implementation of the several tasks in hardware.
These tasks have been designed in verilog HDL, simulated using
Modelsim, and implemented using Synplicity (synthesis) and
Xilinx (place&route) tools.

In order to reduce the reconfiguration overhead, we have used the
partial reconfiguration capability of the Virtex-II devices. In this
sense, the Virtex-II resources used by the hardware tasks, have
been fixed to be in the center of the device, where we time-
multiplex the required task (see figure 8). The left side and right
side of the device are used by the load and store units of the DRP
(see figure 2.a). The load and store units are not reconfigured.

Using this capability of the Virtex-II devices, we have reduced the
reconfiguration time of a Virtex-II device XC2V1000 from 8ms
(full/complete device reconfiguration) to 1.4ms (partial device
reconfiguration), using a reconfiguration clock of 66MHz.

6.4 Tasks Power Results
The power consumption for the implementation of the tasks is
shown in figure 9. Figure 9.a. shows the power consumption for a
hardware implementation (with on-chip and off-chip memory),
while figure 9.b. shows the power consumption for a software
implementation (embedded PowerPC405 processor core).

The power consumption for a XC2V1000 device during
configuration is 1300mW. There are three components to this
power consumption: (1) 200mW used by the device itself [2]; (2)
the power consumption of the configuration pre-fetch unit in the
Virtex-II Pro (100mW); and (3) the power consumption of the
external memory which stores the device configurations
(1000mW)[3]. The power consumption of the device in the
execution of a task has also two components: (1) the power
consumption of the data pre-fetch units implemented in the
Virtex-II Pro (150mW); and (2) the hardware task power
consumption, which is in average 450mW (i.e. power of a
hardware task running at 60MHz). This average result has been
obtained implementing a gate-level accurate simulation after the

place&route process for all the tasks. We should add 1000mW
when using external memory resources. Finally, the power
consumption when the device is in the idle state is 150mW [2].
This idle state represents the case when the device is powered but
a clock-gating mechanism is applied to its input clock signal
(remember that the clock signal of each DRP can be controlled
independently; see figure 2.a). This power consumption in the idle
state is required to store the configuration context in the device
(i.e. SRAM cells that store the device configuration bits). The
CPU power consumption is shown in figure 9.b., which in
execution includes the power of the processor core [1] and the
used on-chip memory resources (150mW).

6.5 Energy-Performance Trade-Offs Results
In this section, we explain the energy-performance trade-offs
results obtained in the image sharpening benchmarks.

More in detail, figure 10.a. shows the performance results, and
figure 10.b shows the energy consumption results. In each picture
we can observe the obtained results for the different used data-
sets. Also, for each data-set we present three results corresponding
to the following implementations:

(1) Dynamic reconfiguration (seq_rtr); In this case, we have to
use external DRAM, in order to process an amount of data
that, at least equals the reconfiguration time. That is, we
should process “relatively” large blocks of data. Because the
blocks of data are large, then we have to iterate the task-
graph a small number of times. Using this approach, all the
tasks in the applications are mapped to hardware.

(2) HW/SW partitioning (seq_hw_sw); In this case, we use on-
chip memory because we process small blocks of data. As the
blocks of data are small, we have to iterate the task-graph a
large number of times. Using this approach, we map to
hardware the most three critical tasks.

Figure 6: The prototyping platform – the Galapagos system

Figure 8: Final place&route on the virtex-II device

1600mW600mW
Power

Execution

150mW150mW
Power

Idle/Wait

1300mWNot applyPower
Reconfiguration

DRP+Off-Chip
memory

DRP+On-Chip
memory

1600mW600mW
Power

Execution

150mW150mW
Power

Idle/Wait

1300mWNot applyPower
Reconfiguration

DRP+Off-Chip
memory

DRP+On-Chip
memory

450mW
Power

Execution

50mW
Power

Idle/Wait

Embedded CPU
(PowerPC405)

450mW
Power

Execution

50mW
Power

Idle/Wait

Embedded CPU
(PowerPC405)

(a) (b)
Figure 9: Hardware/Software task power-consumption

207us137us69us205us
Galapagos DRP
60MHz - 64x64

3276us

1266us

YCrCb2RGB

2184us

564us

Add/Sub

1092us3276us
Galapagos DRP

60MHz - 256x256

1860us852us
PowerPC

300MHz - 64x64

BlurRGB2YCrCb

207us137us69us205us
Galapagos DRP
60MHz - 64x64

3276us

1266us

YCrCb2RGB

2184us

564us

Add/Sub

1092us3276us
Galapagos DRP

60MHz - 256x256

1860us852us
PowerPC

300MHz - 64x64

BlurRGB2YCrCb

Figure 7: Hardware/Software task execution time

120

(3) Software implementation (seq_sw); same as in (2).

The performance results have been obtained from real executions
on the Galapagos system. The execution generates a log file with
the state changes of the three Virtex-II devices (i.e. DRP’s) and
embedded CPU (i.e. PowerPC). We have obtained the energy
from: (1) the power consumption of the components as described
in figure 9; and (2) the execution log file (which gives information
about the time that a device changes its state).

In figure 10.a., we can observe that the software implementation
obtains the worst performance results. The use of the HW/SW
partitioning algorithm contributes to a major improvement in
performance, since critical tasks are mapped to the configurable
hardware. Moreover, we can see that the dynamic reconfiguration
technique helps to improve performance even more.

Figure 10.b. shows that HW/SW partitioning obtains better energy
savings when compared to the software solution. We can also see
that dynamic reconfiguration increases the energy consumption
when compared to the HW/SW partitioning despite of its
improvements in performance. Finally, in both figures we can
observe that performance and energy are proportional to the size
of processed data (input data-set).

The results obtained show that the dynamic reconfiguration
technique obtains an average performance improvement of 107%
(execution time reduction) when compared to the HW/SW
partitioning approach. However this benefits in terms of
performance also come with an average increase of 27.16% in
energy consumption for the image sharpening benchmarks.

7. CONCLUSIONS
In this paper we have explored the system-level power-
performance trade-offs for fine-grained reconfigurable computing.
We have shown that the use of a given approach (i.e. HW/SW
partitioning for statically reconfigurable or task/configuration
scheduling for dynamically reconfigurable architectures) depends
on the application requirements (i.e. power or performance).
Thus, in streaming applications when the objective is energy-
efficiency then HW/SW partitioning for statically reconfigurable
logic is the most favorable solution. On the other hand, if the
application objective is performance then task/configuration
scheduling for dynamically reconfigurable architectures is the
optimum solution.

ACKNOWLEDGMENTS
Juanjo Noguera acknowledges the support of the HP-IPG
Resident Fellowship program.

This work is funded by CICYT-TIC project TIC2001-2476-CO3-
02 and DURSI project 2001SGR00226.

REFERENCES
[1] http://www.xilinx.com/virtex2pro
[2] http://www.xilinx.com/virtex
[3] http://www.micron.com
[4] K. Chatta, R. Vemuri, “Hardware-Software Codesign for

Dynamically Reconfigurable Architectures”. Proc. FPL’99.
[5] R. Maestre et al., “A Framework for Reconfigurable

Computing: Task Scheduling and Context Management”,
IEEE Trans. on VLSI Systems.Vol. 9, No. 6, Dec. 2001.

[6] J. Noguera, R. M. Badia, “HW/SW Codesign Techniques for
Dynamically Reconfigurable Architectures”, IEEE Trans. on
VLSI Systems. Vol. 10. Issue 4. August 2002.

[7] J. Noguera, R. M. Badia, “Multitasking on Reconfigurable
Architectures: Micro-architecture Support and Dynamic
Scheduling”. ACM TECS. May 2004.

[8] K. Purna, D. Bhatia, “Temporal Partitioning and Scheduling
Data Flow Graphs for Re-configurable Computers”, IEEE
Trans. on Computers, vol. 48, No. 6. June 1999.

[9] B. E. Saglam (Akgul) and V. Mooney, “System-on-a-Chip
Processor Synchronization Support in Hardware,” Proc. of
DATE'01, pp. 633-639, March 2001.

[10] M. Sánchez-Élez et al., “A Complete Data Scheduler for
Multi-Context Reconfigurable Architectures”, Proc.
DATE'02, Paris, France, 2002.

[11] G. Stitt, F. Vahid, S. Nemetebaksh; “Energy Savings and
Speedups from Partitioning Critical Software Loops to
Hardware in Embedded Systems”. ACM TECS. Jan.2004

(a)

(b)

0
100

200
300

400
500
600

700
800

Ex
ec

ut
io

n
Ti

m
e

(m
s)

256x256 512x512 768x768

Input image size

Unsharp Masking Benchmark

seq_rtr seq_hw_sw seq_sw

0

50

100

150

200

250

300

350

En
er

gy
 (m

J)

256x256 512x512 768x768

Input image size

Unsharp Masking Benchmark

seq_rtr seq_hw_sw seq_sw

(a)

(b)

0
100

200
300

400
500
600

700
800

Ex
ec

ut
io

n
Ti

m
e

(m
s)

256x256 512x512 768x768

Input image size

Unsharp Masking Benchmark

seq_rtr seq_hw_sw seq_sw

0

50

100

150

200

250

300

350

En
er

gy
 (m

J)

256x256 512x512 768x768

Input image size

Unsharp Masking Benchmark

seq_rtr seq_hw_sw seq_sw

Figure 10: (a) performance (execution time) results; (b)
energy consumption results

121

	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index

