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ABSTRACT 
In this paper, we explore the system-level power-performance 
trade-offs available when implementing streaming embedded 
applications on fine-grained reconfigurable architectures. We 
show that an efficient hardware-software partitioning algorithm is 
required when targeting low-power. However, if the application 
objective is performance, then we propose the use of dynamically 
reconfigurable architectures. This work presents a configuration-
aware data size partitioning approach. We propose a design 
methodology that adapts the architecture and used algorithms to 
the application requirements. The methodology has been proven 
to work on a real research platform based on Xilinx devices. 
Finally, we have applied our methodology and algorithms to the 
case study of image sharpening, which is required nowadays in 
digital cameras and mobile phones.  

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles – 
adaptable architectures, heterogeneous (hybrid) systems. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
HW/SW partitioning, dynamically reconfigurable architectures, 
task/configuration scheduling, power-performance trade-offs. 

1. INTRODUCTION 
The continued progress of Reconfigurable Computing (RC) has 
enabled the Programmable-System-On-Chip to become a reality, 
combining a wide range of complex functions on a single die. An 
example is the Virtex-II Pro from Xilinx, which integrates a core 
processor (PowerPC405), embedded memory and configurable 
logic [1]. Additionally, the importance of having on-chip 
programmable logic regions in System-on-Chip platforms is 
becoming increasingly evident. Partitioning an application among 
software and programmable logic hardware can substantially 

improve performance, but such partitioning can also improve 
power consumption by performing computations more effectively 
and by allowing for longer microprocessor shutdown periods [11]. 

Dynamic Reconfiguration has emerged as a particularly attractive 
technique to increase the effective use of programmable logic 
blocks. Dynamic Reconfiguration allows the change of the device 
configuration on the fly during application execution. However, 
this attractive idea of time-multiplexing the needed device 
configuration does not come for free. The reconfiguration latency 
has to be minimized in order to improve application performance. 
Temporal partitioning [8] and multi-context scheduling [5] 
techniques can be used to minimize this penalty.  

We could summarize that there are many system-level approaches 
to reconfigurable computing, which could be divided in two broad 
categories: (1) HW/SW partitioning for statically reconfigurable 
architectures; and (2) temporal partitioning and task/configuration 
scheduling for dynamically reconfigurable architectures.  

In this paper, we explore the system-level power-performance 
trade-offs for reconfigurable computing. We show that the use of 
a particular approach  (i.e. HW/SW partitioning for statically 
reconfigurable or task/configuration scheduling for dynamically 
reconfigurable architectures) depends on the application 
requirements (i.e. power or performance). 

Moreover, we explain that in the task/configuration scheduling 
approach, the dynamically reconfigurable architecture should 
process large blocks of data, which require the use of external off-
chip memory resources. The execution of large blocks of data in 
part of the reconfigurable architecture is required to hide the 
reconfiguration process, which could be running in a different part 
of the reconfigurable architecture. Thus, this idea increases the 
performance because the reconfiguration latency is hidden, but it 
also increases the power-consumption due to the use of external 
memory resources. On the other hand, the approach based on 
HW/SW partitioning for statically reconfigurable architectures, 
processes small blocks of data that can be stored in on-chip 
memory resources, which means that we reduce the overall system 
power-consumption.  

The paper is organized as follows: section 2 explains the related 
work. In section 3, we introduce our target architecture. The 
proposed design methodology for embedded systems is presented 
in section 4. Section 5 introduces the concept of configuration-
aware data partitioning. In section 6, we explain the benchmarks, 
the experimental set-up and the obtained results. Finally, the 
conclusions of this paper are presented in section 7. 
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2. RELATED WORK 
In [4] an integrated algorithm for HW/SW partitioning and 
scheduling, temporal partitioning and context scheduling is 
presented. However, the paper does not address any power-
performance trade-offs. A technique for application partitioning 
between configurable logic and an embedded processor is given in 
[11]. This paper shows that such partitioning helps to improve 
both performance and energy. However, the paper only considers 
statically configurable logic, and does not consider run-time 
reconfigurable architectures. A different approach for coarse-
grained reconfigurable computing is presented in [10]. In the 
paper, a data scheduler algorithm is proposed to reduce the overall 
system energy. However, the paper does not consider the benefits 
of HW/SW partitioning.  

2.1 Contributions of this paper 
This paper explores the system-level power-performance trade-
offs for fine-grained reconfigurable computing. More in detail, the 
paper compares, in terms of energy savings and performance 
improvements, the two key approaches existing in reconfigurable 
computing: (1) partitioning an application between software and 
configurable hardware; and (2) task/configuration scheduling for 
dynamically reconfigurable architectures. To the best of our 
knowledge, this open issue has not been addressed in previous 
research efforts. 

3. TARGET ARCHITECTURE 
The target architecture is a heterogeneous architecture, which 
includes an embedded processor, a given number of dynamically 
reconfigurable processors (DRPs), an on-chip L2 multi-bank 
memory sub-system and external DRAM memory resources. An 
example of this architecture is shown in figure 1, where we can 
see a 4-DRP based architecture. This architecture follows the 
Chip Multi-Processor (CMP) paradigm. The data that must be 
transferred between tasks executed in the DRP processors is 
stored in the on-chip L2 memory sub-system. Each dynamically 
reconfigurable processor can be independently reconfigured. The 
proposed target architecture supports multiple reconfigurations 
running concurrently, which is not the case on most of the run-
time reconfigurable architectures proposed in the literature. 

Each DRP processor has a local L1 memory buffer. A hardware-
based data pre-fetching mechanism is proposed to hide the 
memory latency. Each DRP has a point-to-point link to the L2 
buffers (in order to simplify the figure 1, this is not shown in the 
picture). However, this is shown in figure 2.a., which shows the 
internal architecture of a DRP processor. There are three main 
components in this architecture: (1) the load unit; (2) the store 

unit; and (3) the dynamically reconfigurable logic. The DRPs are 
single-context devices. It can be observed in figure 2.a. that the 
load and store units have internal L1 data buffers. More in detail, 
each unit (i.e., load and store) has two internal buffers. This 
approach enables the possibility of having three processes running 
concurrently: (1) the load unit receiving data for the next 
computation; (2) the reconfigurable logic is processing data from 
a buffer in the load unit and storing this processed data in a buffer 
of the store unit; finally (3) the store unit is sending the previous 
processed data to the L2 memory sub-system.  

The on-chip L2 memory sub-system is based on a multi-bank 
approach (see figure 2.b). Each one of these banks is logically 
divided in two independent sub-banks (i.e. this enables reading 
from one sub-bank while concurrently writing to the other sub-
bank of the same physical bank). These buffers interact from one 
side with the data pre-fetch units (left-hand side of figure 2.b) 
using a crossbar, and from the other side with an on-chip bus that 
interacts with the external DRAM memory controller. In this L2 
memory sub-system there must be as many data pre-fetch units as 
number of DRP processors in the CMP architecture.  

Finally, the proposed architecture includes for each DRP a 
dedicated hardware-based configuration pre-fetch unit. This is not 
shown in the pictures in order to simplify the figures. Thus, the 
architecture supports the transfer of data in one DRP overlapped 
with the reconfiguration of a different DRP. 

4. DESIGN METHODOLOGY FOR 
EMBEDDED SYSTEMS 
The proposed design methodology for embedded systems is 
depicted in figure 3. We can observe that it is divided in three 
steps: (1) application phase; (2) static phase; (3) dynamic phase.  

4.1 Application Phase 
The proposed methodology assumes that the input application is 
specified as a task-graph, where nodes represent tasks (i.e. coarse-
grained computations) and edges represent data dependences. 
Each edge has a weight to represent the amount of data that must 
be transferred between tasks. There are no control dependencies. 
Finally, each task has associated a task type (i.e. in the task-graph 
specification we could have several tasks implementing the same 
type of computation).  
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Figure 1: Dynamically Reconfigurable CMP Architecture 
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Figure 2: (a) Dynamically Reconfigurable Processor; (b) 
Architecture of the L2 on-chip memory sub-system 
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4.2 Static Phase 
In this phase there are four main processes: (1) Task-level graph 
transformations; (2) HW/SW synthesis; (3) HW/SW partitioning; 
and (4) Priority task assignment. 

We can apply some task-level graph transformation techniques in 
order to increase the architecture performance. These 
transformations include: loop pipelining, loop unrolling and/or 
task (configuration) replication. The output of this step is the 
modified task graph. 

The HW/SW synthesis is the process of implementing the tasks 
found in the application. The output of this process is a set of 
estimators. Typical estimators are HW execution time, SW 
execution time, HW area and reconfiguration time. These 
estimators could be obtained using accurate implementation tools 
(i.e. compiler, logic synthesis and place&route tools) or using 
high-level estimation tools. 

The HW/SW partitioning process decides which tasks are mapped 
to hardware or software depending on: (1) the architecture 
parameters (i.e. number of DRP processors, external DRAM size, 
etc.); (2) the modified task-graph; and (3) the task’s estimators. 
Note that the application requirements do not affect directly the 
HW/SW partitioning process, but they do affect this process 
indirectly using the modified task-graph. The partitioning 
algorithm must take into account the configuration pre-fetch 
technique in its implementation.  

Finally, in the static phase we also find the Priority Task 
Assignment process. In this process, we statically assign to each 
task a priority of execution. This information will be used during 
run-time to decide the execution order of the tasks. An example of 
priority function is the critical-path analysis. 

4.3 Dynamic Phase 
This phase is responsible for the scheduling of the tasks but also 
for the scheduling of the DRP’s reconfigurations. The Task 
Scheduler and DRP Context Scheduler co-operate and run in 
parallel during application run-time execution. Their functionality 
is based on the use of a look-ahead strategy into the list of tasks 

ready for execution (i.e tasks which predecessors have finished its 
execution). At run-time, the task scheduler assigns tasks to DRP’s 
and decides the execution order of the tasks found in the list of 
ready for execution. The DRP context (configuration) scheduler is 
used to minimize reconfiguration overhead. The objective of the 
DRP context scheduler is to decide: (1) which DRP processor 
must be reconfigured, and (2) which reconfiguration context, or 
hardware task from the list of tasks ready for reconfiguration (i.e 
tasks which predecessors have initiated its execution), must be 
loaded in the DRP processor. This scheduler tries to minimize this 
reconfiguration overhead by overlapping the execution of tasks 
with DRP reconfigurations. These algorithms are implemented in 
hardware using the Dynamic Scheduling Unit (DSU) found in our 
architecture (see figure 1) [7]. Several research efforts in the field 
of SoC design propose moving into hardware functionality that 
traditionally has been assigned to operating systems [9]. 

5. RECONFIGURATION-AWARE DATA 
PARTITIONING 

5.1 Motivation 
It has been demonstrated that the parameters of the reconfigurable 
architecture (i.e. number of DRP processors; reconfiguration time) 
have a direct impact into the performance given by the HW/SW 
partitioning process [6]. The partitioning process must take into 
account the reconfiguration overhead, and also the configuration 
pre-fetching technique for reconfiguration latency minimization. 
This is summarized in the next expression, which shows how the 
execution time of a task mapped to hardware can be modified. 

( )EXERR
HW

i
HW

i TTETET −⋅+= α               (1) 
where: 
� αR is the probability of reconfiguration, which is a function 

of the number of tasks mapped to hardware and the number 
of DRP processors.  

� TR is the reconfiguration time needed for a DRP processor to 
change its context (configuration). 

� 
EXET  is the average executing time for all tasks.  

On the other hand, in the design of embedded systems, we would 
like to minimize the amount of accesses to external memory. 
Reducing the number of data transfer to external memory 
resources helps to reduce the overall system-level power 
consumption. Thus, data transfers between tasks should be kept to 
a size that fits into the on-chip L2 memory sub-system. 

In streaming embedded applications, we could assume that, in 
general, the execution time of a task implemented in hardware or 
software is proportional to the size of the data that must be 
processed. Thus, if the data is stored in on-chip memory resources 
with a smaller capacity, then we could conclude that the average 
execution time (TEXE) of the tasks will be smaller when compared 
to the reconfiguration time (we are assuming reconfiguration 
times in the order of 800us-1.4ms). If this is the case, and 
applying expression (1) we will have a significant reconfiguration 
overhead (because TR >> TEXE), which may prevent moving the 
task from software to hardware. In order to overcome this 
limitation and reduce the reconfiguration overhead, we could 
increase the amount of data to be processed by the task. Increasing 
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Figure 3: Design methodology for embedded systems 
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the amount of data means that we will be forced to use external 
memory resources. Using this approach, we increase the 
performance (because more tasks could be mapped to hardware) 
but we also increase the overall system-level power consumption. 

5.2 Data partitioning for reconfigurable 
architectures 
As previously stated, the data partitioning will mainly drive the 
use of a given approach: (1) hardware/software partitioning for 
statically reconfigurable architectures using on-chip memory 
resources; or (2) task/configuration scheduling for dynamically 
reconfigurable architectures using off-chip memory resources. 

Thus, the type of used data partitioning approach (off-chip or on-
chip memory) will be decided based on the application 
requirements. Also, the type of data partitioning will give us the 
number of iterations of the task graph. This is shown in figure 4, 
where we can observe an example of a linear task graph. In figure 
4.b. we can see a possible data partitioning. We can observe that 
the size of the blocks of data is large. The volume of the processed 
data must be such that, at least, the task execution time equals the 
reconfiguration time. However, the number of iterations of the 
task graph will be small. In the opposite case, we have the 
situation where we process small blocks of data, but we have a 
large number of iterations of the task graph (see figure 4.c). 

6. EXPERIMENTS AND RESULTS 

6.1 Image Sharpening Benchmarks 
The proposed dynamically reconfigurable architecture is 
addressing streaming data (computation intensive) embedded 
applications. That is, applications with a large amount of data-
level parallelism. It is not the goal of the proposed architecture to 
address control-dominated applications. 

Image processing applications are a good example of the type of 
applications that we are addressing. These kind of applications are 
becoming more and more sensible to power consumption, 
specially if we consider the increasing market-share of digital 
cameras or mobile phones with embedded cameras, which require 
of this type of image processing techniques. In this sense, we have 

selected three applications that implement an image sharpening 
application (see figure 5). 

The three benchmarks follow the same basic process: (1) 
transform the input image from RGB to YCrCb color space; (2) 
image quality improvements processing the luminance (mainly 
using sliding window operations like 3x3 linear convolutions); 
and finally (3) transform from YCrCb back to RGB color space.  

Three different input data-sets (image size) have been used in the 
three applications: (1) 256x256; (2) 512x512; and (3) 768x768.  

6.2 Prototype Implementation  
A prototype of the proposed architecture has been designed and 
implemented. The Galapagos system is a PCI-based system 
(64bit/66MHz). It is based on leading-edge FPGA’s from Xilinx 
and high-bandwidth DDR SDRAM memory (left-hand side of the 
figure 6). This reconfigurable system is based on a Virtex-II Pro 
device. The device used is a XC2VP20, which includes two 
PowerPC processors. The dynamically scheduling unit (DSU, in 
figure 1) and the data pre-fetch units of the L2 memory subsystem 
(see figure 2) have been mapped to the Virtex-II pro device. This 
device also includes the SDRAM memory controller. The design 
of these blocks has been done in verilog HDL, and the 
implementation has been done using Synplicity (synthesis) and 
Xilinx (place&route) tools. 

The DRP processors of our CMP architecture are implemented in 
the Galapagos system using three Virtex-II devices (i.e. 
XC2V1000). The load and store units have been implemented 
using Virtex-II on-chip memory resources. The size of the buffers 
in the load/store units is 2KB each buffer (i.e. 4KB for each unit). 
The width of the memory words is 64bits. Figure 6 shows a 
picture of the Galapagos system in a PC environment. 

6.3  Tasks Performance Results 
Figure 7 shows the execution time of the unsharp masking 
application running on: (1) an embedded processor, PowerPC405 
(300MHz), which processes blocks of data of 64x64pixels; (2) a 
DRP processor from the Galapagos System (60MHz) processing 
blocks of 64x64 pixels; and (3) a DRP processor processing 
blocks of data of 256x256 pixels. See figure 4. 

It is interesting to note the order of magnitude that has been 
obtained in the implementation of the blur task (3x3 linear 
convolution). It is not the objective of this paper to explain the 
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Figure 4: (a) Initial task graph; (b) data partitioning for 
dynamically reconfigurable architectures; (c) data 
partitioning for HW/SW partitioning 
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details of the implementation of the several tasks in hardware. 
These tasks have been designed in verilog HDL, simulated using 
Modelsim, and implemented using Synplicity (synthesis) and 
Xilinx (place&route) tools. 

In order to reduce the reconfiguration overhead, we have used the 
partial reconfiguration capability of the Virtex-II devices. In this 
sense, the Virtex-II resources used by the hardware tasks, have 
been fixed to be in the center of the device, where we time-
multiplex the required task (see figure 8). The left side and right 
side of the device are used by the load and store units of the DRP 
(see figure 2.a). The load and store units are not reconfigured. 

Using this capability of the Virtex-II devices, we have reduced the 
reconfiguration time of a Virtex-II device XC2V1000 from 8ms 
(full/complete device reconfiguration) to 1.4ms (partial device 
reconfiguration), using a reconfiguration clock of 66MHz.  

6.4 Tasks Power Results 
The power consumption for the implementation of the tasks is 
shown in figure 9. Figure 9.a. shows the power consumption for a 
hardware implementation (with on-chip and off-chip memory), 
while figure 9.b. shows the power consumption for a software 
implementation (embedded PowerPC405 processor core). 

The power consumption for a XC2V1000 device during 
configuration is 1300mW. There are three components to this 
power consumption: (1) 200mW used by the device itself [2]; (2) 
the power consumption of the configuration pre-fetch unit in the 
Virtex-II Pro (100mW); and (3) the power consumption of the 
external memory which stores the device configurations 
(1000mW)[3]. The power consumption of the device in the 
execution of a task has also two components: (1) the power 
consumption of the data pre-fetch units implemented in the 
Virtex-II Pro (150mW); and (2) the hardware task power 
consumption, which is in average 450mW (i.e. power of a 
hardware task running at 60MHz). This average result has been 
obtained implementing a gate-level accurate simulation after the 

place&route process for all the tasks. We should add 1000mW 
when using external memory resources. Finally, the power 
consumption when the device is in the idle state is 150mW [2]. 
This idle state represents the case when the device is powered but 
a clock-gating mechanism is applied to its input clock signal 
(remember that the clock signal of each DRP can be controlled 
independently; see figure 2.a). This power consumption in the idle 
state is required to store the configuration context in the device 
(i.e. SRAM cells that store the device configuration bits). The 
CPU power consumption is shown in figure 9.b., which in 
execution includes the power of the processor core [1] and the 
used on-chip memory resources (150mW). 

6.5 Energy-Performance Trade-Offs Results  
In this section, we explain the energy-performance trade-offs 
results obtained in the image sharpening benchmarks.  

More in detail, figure 10.a. shows the performance results, and 
figure 10.b shows the energy consumption results. In each picture 
we can observe the obtained results for the different used data-
sets. Also, for each data-set we present three results corresponding 
to the following implementations:  

(1) Dynamic reconfiguration (seq_rtr); In this case, we have to 
use external DRAM, in order to process an amount of data 
that, at least equals the reconfiguration time. That is, we 
should process “relatively” large blocks of data. Because the 
blocks of data are large, then we have to iterate the task-
graph a small number of times. Using this approach, all the 
tasks in the applications are mapped to hardware. 

(2) HW/SW partitioning (seq_hw_sw); In this case, we use on-
chip memory because we process small blocks of data. As the 
blocks of data are small, we have to iterate the task-graph a 
large number of times. Using this approach, we map to 
hardware the most three critical tasks. 

 
Figure 6: The prototyping platform – the Galapagos system 

 
Figure 8: Final place&route on the virtex-II device 
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(3) Software implementation (seq_sw); same as in (2). 

The performance results have been obtained from real executions 
on the Galapagos system. The execution generates a log file with 
the state changes of the three Virtex-II devices (i.e. DRP’s) and 
embedded CPU (i.e. PowerPC). We have obtained the energy 
from: (1) the power consumption of the components as described 
in figure 9; and (2) the execution log file (which gives information 
about the time that a device changes its state). 

In figure 10.a., we can observe that the software implementation 
obtains the worst performance results. The use of the HW/SW 
partitioning algorithm contributes to a major improvement in 
performance, since critical tasks are mapped to the configurable 
hardware. Moreover, we can see that the dynamic reconfiguration 
technique helps to improve performance even more. 

Figure 10.b. shows that HW/SW partitioning obtains better energy 
savings when compared to the software solution. We can also see 
that dynamic reconfiguration increases the energy consumption 
when compared to the HW/SW partitioning despite of its 
improvements in performance. Finally, in both figures we can 
observe that performance and energy are proportional to the size 
of processed data (input data-set). 

The results obtained show that the dynamic reconfiguration 
technique obtains an average performance improvement of 107% 
(execution time reduction) when compared to the HW/SW 
partitioning approach. However this benefits in terms of 
performance also come with an average increase of 27.16% in 
energy consumption for the image sharpening benchmarks. 

7. CONCLUSIONS 
In this paper we have explored the system-level power-
performance trade-offs for fine-grained reconfigurable computing. 
We have shown that the use of a given approach  (i.e. HW/SW 
partitioning for statically reconfigurable or task/configuration 
scheduling for dynamically reconfigurable architectures) depends 
on the application requirements (i.e. power or performance). 
Thus, in streaming applications when the objective is energy-
efficiency then HW/SW partitioning for statically reconfigurable 
logic is the most favorable solution. On the other hand, if the 
application objective is performance then task/configuration 
scheduling for dynamically reconfigurable architectures is the 
optimum solution. 
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Figure 10: (a) performance (execution time) results; (b) 
energy consumption results 
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