Optimizing the Memory Bandwidth with Loop Fusion

Paul Marchal José Ignacio Gomez Francky Catthoor
IMEC/KULEUVEN DACYA U.C.M. IMEC/KULEUVEN
Heverlee, Belgium Madrid, Spain Heverlee, Belgium

marchal@imec.be

ABSTRACT

The memory bandwidth largely determines the performance
and energy cost of embedded systems. At the compiler level,
several techniques improve the memory bandwidth at the
scope of a basic block, but often fail to exploit all. We pro-
pose a technique to optimize the memory bandwidth across
the boundaries of a basic block. Our technique incremen-
tally fuses loops to better use the available bandwidth. The
resulting performance depends on how the data is assigned
to the memories of the memory layer. At the same time, the
assignment also strongly influences the energy cost. There-
fore, we combine in our approach the fusion and assignment
decisions. Designers can use our output to trade-off the en-
ergy cost with the system’s performance.

Categories and Subject Descriptors: B.3 Hardware-
Memory strutures[Scratchpad memories] D.3.4 SoftwarePro-
gramming languages[Optimisation]

General Terms: Algorithms, Performance, Design

Keywords: low power, loop fusion, memory bandwidth

1. INTRODUCTION

Two complementary techniques are often used to improve
the memory bandwidth. On the one hand designers exploit
a hierarchy of memory layers to hide the latency of the slow
memories. On the other hand, they use multiple memories
to increase the bandwidth on each layer.

In this paper, we focus on how to optimize the memory
bandwidth from the memory layer closest to the processor.
This layer contains multiple memories. Nowadays the com-
piler determines which memory operations are scheduled in
parallel. In the simplest case, it puts as many memory oper-
ations in parallel as load/store units exist on the processor.
It even schedules operations in parallel of which the corre-
sponding data resides in the same single-port memory. Since
those data cannot be accessed in parallel, the memory in-
terface has to serialize these accesses, thereby stalling the
processor. By distributing the data across multiple memo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

CODESH+ISSS 04, September 8-10, 2004, Stockholm, Sweden.

Copyright 2004 ACM 1-58113-937-3/04/0009 ...$5.00.

jilgomez@dacya.ucm.es

188

catthoor@imec.be

ries, we can execute more operations in parallel and avoid
stalls [13]. The compiler can also optimize the instruction
schedule to avoid simultaneous accesses to the same mem-
ory [17]. This can also be achieved with multiport memories,
but this comes at an energy/area penalty.

How we distribute the data has an important impact on
the energy cost. In low-power systems designers often com-
bine different sized memories in a single memory layer (e.g.,
[1]). For a high performance, designers should distribute the
data such that the compiler can schedule as many accesses
as possible in parallel. As a result, many data structures
are then usually assigned to energy inefficient memories. In
contrast for a low energy cost, designers should cluster the
frequently accessed data in the small, energy efficient mem-
ories. However, this restricts the number of accesses that
the compiler can schedule in parallel and thus limits the
system’s performance. Thus, a trade-off exists between per-
formance and energy consumption which current techniques
can automatically explore [17].

Unfortunately, today’s techniques only optimize the mem-
ory bandwidth per basic block. If we optimize the memory
bandwidth across the boundaries of a basic block, we can
obtain a higher performance for the same assignment, i.e.
energy cost. A well known global transformation is loop fu-
sion. By combining two loop bodies, fusion increases the
number of independent memory operations in each basic
block. Consequently, the compiler can better fill the memory
access slots. The question, then, is which loop pairs we best
fuse to optimize the memory bandwidth. Generally, fusing
loops with many empty memory access slots delivers the
largest performance gain. The data assignment determines
which loops have most empty access slots and thus which
loops should be fused. At the same time, data assignment
also determines the energy cost (as explained above). The
problem consists of finding the most energy efficient data as-
signment and the corresponding fusion decisions such that
the applications’ time-constraints are met.

To address the above problem, we present in this paper
an integrated data assignment/fusion approach. We have
constructed a source-to-source loop fusion tool and verified
our approach on the Trimaran VLIW simulator.

This paper is organized as follows. First, we discuss the
related work (Sect. 2), then we outline our approach with an
example (Sect. 3). Subsequently, we explain our technique
(Sect. 4-5) and finally, we quantify it (Sect. 6).

2. RELATED WORK

Memory optimization is a widely researched topic [10].

Several techniques have been introduced to optimize the
memory bandwidth. They mostly integrate memory band-
width optimization within the compiler/linker [13][9][4]. In
[13] the performance is maximized by distributing the data
across the different memories such that as many accesses
as possible can be executed in parallel. The authors of [9]
and [4] propose an instruction scheduling technique. They
expose the access latency of SDRAM memories to the com-
piler. The scheduling is done after the data has been as-
signed. [17] optimizes the memory bandwidth in a separate
step before compilation. They optimize the schedule of the
memory operations and the data assignment together. They
output a (partial) data assignment which constrains the final
instruction scheduling. It guarantees that enough memory
bandwidth exists to meet the deadline, while remaining as
energy-efficient as possible. Above techniques optimize the
memory bandwidth within the boundaries of a basic block.
This limits the performance if not enough independent mem-
ory operations are available in each basic block.

More global optimization techniques can further improve
the performance. In the past, several authors have proposed
techniques to globally schedule instructions to parallelize
code [6]. They do not focus on how to optimize the memory
bandwidth. [16] defines an operation schedule which reduces
the number of memory ports. However, it does not take into
account which data structures are accessed or how they are
mapped in the memory. Furthermore, the resulting schedule
is implemented with a dedicated controller, which is quite
different from commonly used processors.

Loop transformations are an interesting alternative to op-
timize the code across the boundaries of a basic block. Orig-
inally, they have been developed to extract parallelism [§]
increase regularity [3] and/or improve data locality [2]. One
particular transformation, loop fusion, is often used to in-
crease the size of a loop body. The compiler can then detect
more instruction level parallelism [11]. This is also what we
need for memory bandwidth optimization. However, cur-
rent techniques can only fuse loops which execute the same
number of iterations. In practice, this condition limits the
applicability of fusion. Several authors combine loop fusion
with loop shifting to increase its applicability (see [15] for
an overview), but target a different optimization objective.
They want to increase locality or the life-time of arrays. As
a result, the mechanism to decide which loops to combine
is different. We cannot thus directly reuse the above tech-
niques in our context.

3. MOTIVATIONAL EXAMPLE

In this section we illustrate why our integrated data as-
signment/fusion outperforms existing memory bandwidth
optimization techniques. The example consists of three
data-dominated loops (see code in Fig. 1-left) which are ex-
ecuted on a platform that consists of three memory ports
fully connected to three single-port memories: two 4kB ones
(0.11nJ/access) and a 2kB one (0.06nJ/access).

Because the applications are data dominated, the dura-
tion of the memory access schedule determines the perfor-
mance of the loops. We therefore assume that the remaining
operations can be performed in parallel with the memory ac-
cesses or take only limited time. We now study the influence
of loop fusion on the length of the memory access schedule
and the energy cost.

Most compilers are unaware of the underlying memory

189

int A[301];int B[100];int D[100]
int C[100]; int U[2];
int i,j;

int A[300];int B[100];int D[100]
int C[100]; int U[2];

for (int i=0; i<100; i++) // loop 2
for (i=0; i<100; i++) // loop 1 D[i] = C[i] + B[il;
Ali+1] = A[L] + 15
for (int i=0; i<2; i++){ // loop 1&3
for (int j=0; j<40; j++){

D[j]l = D[j-11+ DI[jl;

A[40%i+j] = A[40xi+j-1] + 1;

for (i=0; i<100; i++) // loop 2
D[i] = C[i] + B[il;

for (i=0; i<2; i++){ // loop3
for (j=0; j<40; j++) // loop31
D[j] = D[j-1]
+ D[j1;
U[i] = D[39];
}

}
U[i] = D[39];

// remainder of loop 1
for (int i=0; i<20; i++)
A[i+80] = A[i-1+80] + 1;

Figure 1: Motivational example: original code (left),
code after fusion (right)

architecture. During instruction scheduling, they simply
assume that any memory operation finishes after n-cycles.
When the executed operation takes longer than presumed,
the entire processor is stalled. As a result, often a large
difference exists between the expected and the effective per-
formance of the processor. For instance, a modulo scheduler
[12] generates a memory access schedule of the inner-loops
of 460 cycles' (Fig. 2-a). However, the actual performance
varies between 540 and 740 cycles. The schedule takes longer
than expected because the processor has at least to serialize
the parallel accesses to D in loop 31. Extra stalls occur de-
pending on whether the linker has assigned the C,B and/or
D to the same memory.

loopl: 100 it 200 cycles
Ld/st1Ld/st2 |Ld/st3

O,
o

lo0p2: 100 it 100 cycles

G0

loop3l: 80 it 160 cycles

0@,
o

expected perf.:
460 cycles

loopl: 100 it 200 cycles
Ld/st1 |Ld/st2 |Ld/st3

O,
o

1o0p2: 100 it 100 cycles

G0

loop31: 80 it 240 cycles

O,
©,
o

loopl: 100 it 200 cycles
Ld/st2| Ld/st3

,_
2
a

| oop2: it 300

3
R
S
S

cycles

- OO

| 0o

3
@
@
@
3

it 240 cycles

- OO

actual perf.: perf.:
540-740 cycles 540 cycles
(a) energy: 64.4nJ
(b) perf:
740 cycles

energy: 54.4nJ
(c)

Figure 2: Empty issue slots in the memory access
schedule of the inner-loops: (a) existing compiler;
(b) with fastest partial data assignment; (c) with
most energy efficient partial assignment

Because how the linker assigns the data to the memo-
ries has such a large impact on the performance of the sys-
tem, [17] optimizes the data assignment and/or the memory
schedule together. They impose restrictions on the assign-
ment such that the energy is optimized, but still guarantee
that the time-budget is met. The assignment constraints
are modeled with a conflict graph (e.g., Fig. 3-left). The

!Note how the modulo scheduler schedules read/write oper-
ations from the same instruction in the same cycle.

nodes correspond to the data structures of the application.
An edge between two data structures indicates that we need
to store the data in different memories. Hence, the corre-
sponding accesses to these data structures can be executed
in parallel. For instance the edge between A and C forces
us to store both data structures in different memories. The
schedule for this conflict graph takes 540 cycles (Fig. 2-b).
It consumes 64.4 nJ?, because the conflict edges force us
to store both C' and B in a large memory (see complete
assignment in Fig. 3-left).

partial
assi gnnent

conpl ete
assi gnnent

STt
AllC
Hi

Ener gy=64. 4nJ

partial
assi gnnent

®
® | ©
®

conpl ete
assi gnnent

N
e

Ener gy=54. 4nJ

Figure 3: Partial assignment expressed with a con-
flict graphs: (left) fast; (right) more energy-efficient

We can decrease its energy cost by reducing the number of
conflicts (see Fig. 3-right). We can then more easily derive
an energy efficient assignment. E.g., note how the small data
structures B, D and C can now be assigned in the smallest
most energy efficient memory. The energy consumption is
then 54.4nJ instead of the original 64.4nJ. Less conflicts also
implies that less memory accesses can execute in parallel.
The code now takes 740 cycles (Fig. 2-c). The energy savings
thus come at a performance loss.

However, many memory access slots remain empty. This
is mainly because: (1) inter-iteration dependencies. For in-
stance the minimum initiation interval of loop 1 is two, be-
cause A depends on itself. As a result, only 30% of the avail-
able memory slots is used; (2) we do not use power hungry
multi-port memories. Hence, we cannot schedule operations
that access the same data in parallel. E.g. in loop 31 we
cannot execute the accesses to D in parallel.

With loop fusion we can further reduce the execution time
of the code. There are two different ways to compact the
application’s schedule. On the one hand, we can fuse loops
1 and loop 2 for the fastest conflict graph (Fig. 3-left). The
resulting schedule takes 440 cycles (Fig. 4-a). On the other
hand, we can fuse loop 1 and loop 31 (Fig. 4-b). The sched-
ule takes then only 380 cycles compared to 540 cycles for the
non-fused code. We automatically generate the fused code
for this decision (Fig. 1-right). In both cases, the energy cost
remains the same because we keep the same conflict graph.
If we change the conflict graph, we need to take different
fusion decisions. E.g., for the more energy efficient conflict
graph (Fig. 4-c), it is more beneficial to fuse loop 1 and loop
2. The execution time is then 540 cycles compared to 740
cycles for the non-fused code.

The fusion decisions and consequently, the performance of
the application, thus heavily depend on the conflict graph.
The more conflicts the higher the application’s performance,
but the more energy hungry it becomes. The problem is
to detect the most energy-efficient conflict graph and fusion
decisions such that we can just meet the application’s time-
budget. We outline our approach to address this problem in
the next section.

*We compute the energy consumption
ZVmEM EVdsEm NrACCESS(dS)Eg‘:cess

as follows:

190

1 00p1-100p2: 100 it 200 cycles
Ld/st1|Ld/st2 |Ld/st3

0O
o

it 240 cycles

1o0p2: 100 it 100 cycles
Ld/stl |Ld/st2 |Ld/st3

loopl: 20 it 40 cycles

Io0p2: 100 it 300 cycles
Ld/st1|Ld/st2 |Ld/st3

(-1

1 00p31: 80

O,
2]

it 240

it 240 100

O,
o

cycles cycles

-]O0)O)

perf.
440 cycles
energy: 64.4nJ

(a)

00 00O

perf.
380 cycles
energy: 64.4nJ (energy: 54.4nJ

(b) (c)

Figure 4: Loop fusion fills the issue-slots: (a)-(b)
two possibilities for the fastest partial data assign-
ment (c) best fusion for the energy-efficient partial
assignment

perf.
540 cycles

4. CONSTRUCTING AN ENERGY/
PERFORMANCE TRADE-OFF

We follow a constructive approach to solve the above prob-
lem (Algo. 1). We generate several assignment/fusion solu-
tions for a range of time-budgets (line 11). Each solution
is optimized for energy. It comnsists of the fused code to-
gether with data assignment decisions needed to obtain the
predicted time-budget. The designer can then simply select
the solution which best fits his needs.

After generating our internal model from the input C-
code (line 3: £), we build the assignment which results in
the fastest possible solution (line 4). In this assignment,
accesses to different data can be scheduled in parallel. How-
ever, we exclude parallel accesses to the same data structure,
since this would require energy-hungry multi-port memories.
This assignment corresponds to a conflict graph in which
edges exist between each pair of data, but no self-edges. We
then fuse as many loops as possible and schedule as many
memory operations as possible in parallel. We call greedy-
loopfusion for this purpose (line 6). This function greedily
fuses as many loop pairs as beneficial for performance. It
takes the assignment constraints into account while deciding
which loops to fuse. We explain this function more in detail
in the next section. It returns the transformed loop nests
(L"), the resulting execution time and annotates the conflict
graph (see below). Thereafter, we quantify the energy cost
of the fusion decisions (line 7). Basically, we assign the ap-
plication’s data to the memories of our architecture while
optimizing the energy cost. The assignment takes all con-
flict constraints into account. We have implemented for this
purpose an integer linear program, but other optimization
heuristics can be used as well [14]. If the generated solu-
tion proves to be optimal for energy/performance, we store
it and dump its C-code after fusion (line 8).

During each following iteration of the algorithm (line 6-
10), we remove the conflict edge that has the smallest impact
on the performance, but increases the assignment freedom
the most (line 9). Hence, we can incrementally create more

energy-efficient data assignments, while keeping the perfor-
mance loss in each step limited. For this purpose, we anno-
tate each edge with the edge weight (eweight). It quantifies
each edge with the number of times that the compiler sched-
ules accesses to the corresponding data structures in parallel.
This number is a side-product of the greedyloopfusion func-
tion. The higher the edge weight, the more important this
edge is for the performance of the application. We remove
the edge which has the highest impact on the assignment
freedom because it affects most accesses (line 9: numera-
tor), but the smallest impact on the performance (line 9:
denominator). The edge weight heavily depends on which
operations are executed in parallel and thus on which loops
are fused. Whenever we rerun greedyloopfusion, different
loops may be fused and the edge weights can change con-
siderably. Therefore, to correctly steer the order in which
we remove edges, we update the weights after each fusion
decision(line 6.3).

Algorithm 1 Generating performance/energy trade-off

1: Input: Initial C-code

2: Algorithm:

3: Parse C-code and build a list of loop nests: £ = l1..l

4: Generate fastest possible assignment, i.e. a conflict
graph CFG(DS, E) with edges between each pair of dif-
ferent data structures

5: repeat

6: L' ,CFG’,time = GreedyLoopFusion(£, CFG) where

1. the fused loops £’
2. an estimation of the execution time: time

3. annotate e € E with eweight, the number of times
the corresponding data are accessed together.

7: Evaluate energy cost for £’
8: If Pareto-optimal, store <CFG, cost, time>-tuple and
generate C code from L', the set of transformed loops
9: Remove e(dsl,ds2) € E with highest
(NrAccess(ds1) + Nraccess(ds2))/eweight
10: until £ =0
11: Output:
solutions

Pareto-set of (code, CFG, cost, time)-

5. GREEDY LOOP FUSION

In applications, usually more than one pair of loops nests
which can be fused. To maximize the performance, we there-
fore fuse loops until no pair remains which reduces the ex-
ecution time after fusion. We explain here a heuristic to
decide which loops to combine first. The input of our algo-
rithm is an initial description of the loops, their statements
and iteration domains. We also take the data assignment
constraints into account, because they have a large impact
on the fusion decisions (see example in Sect. 3).

In our algorithm, we first enumerate all possible fusion
candidates (line 3). We represent them with a Fusion Graph
(FG) (similar to [5]). The nodes of the graph correspond to
the loops in the code. An edge between a pair of loops
marks fusible loops. We conservatively assume that loops
are only fusible when no (direct/or indirect) dependencies
exist between them (line 3.1). Furthermore, when fusing
two loops, the number of data structures which needs to be
stored on the local memories increases. To ensure that a
data assignment remains possible after fusion, in each iter-
ation the required memory size should not exceed the size

Algorithm 2 GreedyLoopFusion

1: Input:
1. fusion candidates: £ = [1..ly
2. assignment constraints: CFG(DS, E)

3. architecture description: memory latency, number
of ports, available size
2: Algorithm:
3: Build fusion graph FG(L,E):
An edge exists between two loops 11,12 if:
1. no dependences exists between 11 and 12

2. the required memory size by both loops does not
exceed the available size on the architecture.

4: Annotate each edge with fusion gain, i.e.

1. Compute the initial performance:
tr = ZVlkEE 1 * Mil’lH(lk, CFG)

2. Compute for each edge 11-12:

FusionGain(11, 12) = (MinII(11,CFG) +
MinlI(12, CFG) — MinlI(1112, CFG)) % i12) /t¢
where 712 is the number of iterations from both loops we
can fuse. where MinlI(1,CFQ) is the minimum initiation
interval of l;. This schedule is constrained to the partial

assignment, CFG.
while 311,12 € L; FusionGain(11,12) > o do
Select the loop pair (11,12) with the highest fusion gain
Fuse(11,12) and update FG
end while
Update the edge weights of CFG:
compute how many times the corresponding data are
accessed in parallel £’ from the schedule generated by
MinlII(];, CFG)
10: Output:

1. fused code and its performance: £ and t,
2. updated conflict graph: CFG'(D, E’)

provided by the architecture (line 3.2).

The edges are annotated with the fusion gain (line 4).
The fusion gain is an estimation of the relative system’s
performance gains after fusion. We first estimate the initial
application performance (tz). It is the sum of the schedule
length of each basic block in the code (line 4.1). We estimate
the schedule length of a basic block with an iterative mod-
ulo scheduler [12]. It is the product of its minimum initia-
tion interval (MinlI) with its number of iterations (ix). Our
modulo scheduler takes the number of memory ports and the
access latency into account. We only schedule the memory
operations and thus omit all other instructions. This sim-
plifies the performance estimation, but remains sufficiently
accurate because we focus on data dominated applications.
We also take the assignment constraints into account during
scheduling. Particularly, we only schedule memory opera-
tions in parallel if a conflict exists between their correspond-
ing data in the conflict graph. After computing the initial
performance, we compute for each pair of fusible loops the
performance gains after fusion (4.2). It is the product of the
fusion gain per iteration times the number of fused itera-
tions. The fusion gain per iteration is the difference of the
initiation interval of the fused length with the sum of those
of the original loops. Our fusion tool can also estimate 412,
how many iterations of two loop nests can be overlapped [7].

After computing the fusion gains, we iteratively fuse the
loop pair with the highest fusion gain (lines 5-8). We im-
pose that the fusion gain should be larger than a threshold «

application nr. loop nests max. depth | perfectly nested |

mm 2 3 no
dct/idct T 1 no
7gb2yuv 2 3 no
Fir T 3 no
wave 3 2 no
conv 1 4 no
cmp 1 2 yes

Table 1: The benchmark applications: number of
loops inside each application(2), maximum depth of
a loop nest(3), (im)perfectly nested(4)

(line 5). In this way, we prevent fusing loops which have no
impact on the performance, but would only generate extra
control overhead. We use loop morphing to fuse the loops
[7]. Despite this technique also combines loops with incom-
patible headers, the same limitations apply as for most loop
transformation techniques which are based on the polyhe-
dral model (see [15] for a description of the limitations).
After every fusion step, we also re-evaluate which loop pairs
can be combined and re-compute the fusion gains for the
newly generated loops.

As long as profitable loop pairs remain, we repeat lines
5-8. Thereafter, we generate information to decide which
conflict edges to remove first. We update the edge weights
of the conflict graph based on the newly generated loops and
their memory accesses schedule (line 9). The complexity of
our loop fusion algorithm is proportional with the number
of times we call the MinII -O(m %m) where m is the number
of fusible loops.

6. EXPERIMENTS

We quantify our approach with several tasks extracted
from multimedia applications (see Tab. 1). mm is a matrix
multiplication. fir is a finite impulse response filter. conv
convolves an image with a 3x3 convolution kernel. dct and
wave respectively stand for the DCT and wavelet transfor-
mation. c¢mp compares two images, writing the maximum
value of each pixel in a third matrix. Finally, rgb2yuv im-
plements a YUV to RGB transformation of an image. Real
systems (e.g., MPEG4 IM1 player and MPEG21 3D en-
coder) typically execute several of these image/video pro-
cessing tasks. To mimic their behavior, we combine these
media applications in typical tasks-sets or scenarios.

We measure the execution time of the fused code with the
Trimaran VLIW environment. We have modified its com-
piler to make it aware of the data assignment constraints.
Only if an edge exists between two data structures in a con-
flict graph, the compiler schedules the corresponding mem-
ory accesses in parallel. All other accesses are sequentially
scheduled. We estimate the energy cost of each fusion so-
lution after assigning the data to the available memories
[14]. As an example, we model a memory architecture which
consists of four single port memories a 1kB-0.05 nJ/access,
a 4kB-0.103 nJ/access, a 8kB-0.12 nJ/access and a 32kB-
0.229 nJ/access (based on Cacti 3.0). Each memory has a
two cycle access latency (configured in Trimaran). Obvi-
ously, other memory architectures can also be configured.

We first illustrate how our fusion approach generates a
performance/energy trade-off. In Fig. 5 we automatically
generate a trade-off for fir_wave_conv. Point 1 corresponds
to the fastest solution. We obtain it after applying greedy-
loopfusion on the original code and using the fastest assign-
ment. Its conflict graph thus contains many edges which
make it difficult to find an energy-efficient assignment. From

192

this starting point, our algorithm iteratively reduces the en-
ergy cost by removing conflicts. Then, it clusters more data
structures in energy efficient memories, but this increases
the execution time (see points 2-5). Since in each point
different assignment constraints are imposed, we also take
other fusion decisions. E.g., in point 1 we fuse four loops
whereas in point 6 we do not fuse any loop. No edges exist
in the conflict graph of point 6, Hence, no parallel accesses
are allowed. Fusion to enable more parallel accesses is then
not beneficial.

As a reference (original curve), we indicate the trade-off by
optimizing the data assignment/instruction scheduling, but
without fusion [17]. With fusion we obtain a similar perfor-
mance for a more energy efficient assignment. E.g., point
4 improves the performance of the fastest non-fused point
(point 1nf) with 12% and is still 5% more energy efficient.
Obviously, we can also improve the performance (e.g., com-
pare points 1 to 1nf). Finally, both curves overlap at their
end points, where fusion is not beneficial (6 and 3nf).

13000 -
12000 <1 e~ Fused ||
—&— Original
11000 \2\ ;
S 10000
2 1
& 9000 l{ nf
Q
{=]
£ 8000 T
7000
2k 6-3nf
6000 ‘ ‘ ‘ |
40000 50000 60000 70000 80000

Execution time (cycles)

Figure 5: Existing techniques vs. our fusion-based
approach for fir_.wave_conv

We can generate similar trade-offs for other benchmarks
(Fig. 6). The bars indicate the performance whereas the
curves indicate the energy cost. The leftmost point of each
benchmark represents the fastest and most energy consum-
ing point. Moving to the right, we reduce the energy con-
sumption at the expense of performance. The range of the
trade-off depends however strongly on the application. E.g.,
firwave_conv offers a 40% performance improvement. In
contrast, in mm_fir we can only improve the performance
by 25%. Two reasons exist for this. First, the access sched-
ule of the loops are more empty in some tasks than for oth-
ers. For instance, the loops of yuv and wave often perform
accesses to the same array. The compiler schedules these ac-
cesses sequentially, which results in longer and more empty
access schedules. When fusing these loops with other ones,
we can recuperate the empty access slots and find faster
access schedules. This explains the large performance im-
provement of fir_wave_conv: the execution of fir and conv
may be hidden in the loops of wave. Secondly, how well our
technique fuses loops also depends on the initial loop head-
ers. The more compatible they originally are, the less extra
control overhead we need when fusing them. Furthermore,
when the lengths of the loops are too unbalanced, the perfor-
mance improvement is limited. In spite of these variations,
we improve the performance on average with 27% compared
to the fastest schedule obtained by [17].

The more loops we fuse, the more data structures coex-
ist during the execution of the loop body and thus the more

Kelative Execution |1me
Relative Energy

fir_wave_conv yuv_dct

mm_cmp_fir_yuv_dct

Figure 6: Energy vs. performance trade-off

memory is required. Hence, how aggressively we can fuse de-
pends on the available memory size. We quantify the influ-
ence of memory size on the maximal attainable performance
in Fig. 7. To obtain the performance bound, we assume that
the memory layer consists of a single 4-port memory*. We
apply our loop fusion algorithm for different memory sizes.
We always use the fastest possible assignment. In this ex-
ample, every time the memory size is increased with 1024
bytes, the execution time reduces with 10%. Hence, the
performance gains attainable with fusion are limited by the
available memory size.

140000
130000
120000
110000
100000

90000

~J
.

80000 T T T T)
2048 3072 4096 5120 6000

Size (Bytes)

Figure 7: Influence of memory size on the maximal
attainable performance for mm_fir_wave_cmp

Execution time (cycles)

An alternative way exists to exploit fusion to reduce the
energy cost. With fusion we can use for the same perfor-
mance an architecture with slower memories. Since slower
memories consume less energy per access, this allows us
to reduce the energy cost. We quantify the potential en-
ergy savings in Tab. 2. For this experiment, we use a
VLIW architecture with four memory ports fully connected
to four 8kB memories. We measure the execution time
of mm_fir_wave_conv for the original non-fused and fastest
fused code. We repeat the experiment for an architecture
on which the memories have respectively two, three and four
nano seconds access-time. Under the assumption that the
processor runs at 1Ghz, this corresponds to a two, three
and four cycles latency for each memory access. The last
column indicates the energy consumption for each version.
The memory energy models were borrowed from a major
vendor for memories with two, three and four nano seconds
access-time. Since we use a homogeneous memory architec-

4This architecture is very power-hungry and not realistic for
low-power systems. However, we only use it to quantify the
upper bound of the performance.

193

Access Latency Execution Time (cycles) Energy
(cycles) Fused Non Fused (nJ)
2 123715 161665 23379
3 135675 185986 17051
4 172285 209507 14156

Table 2: Fusion enables more energy-efficient mem-
ory architectures

ture, the energy cost of the fused and non-fused code are
the same for each access latency.

The experiments show that the 3-cycles latency /fused ver-
sion executes faster than the 2-cyles latency/non-fused one.
At the same time, its energy cost is 30% cheaper, because in-
creasing the access latency from two to three cycles reduces
the energy per access. Similar results exist when increasing
the access latency from three to four cycles. With fusion
we can thus obtain the same performance with a cheaper
memory architecture. Our tool allows a designer to explore
which memory latency best fits his needs.

7. CONCLUSIONS

In this paper, we have discussed a loop fusion technique
to globally optimize the memory bandwidth. Our tool de-
cides which loops to fuse, while taking memory size, number
of ports, access latency and feasible data assignments into
account. Experimental results indicate that our approach
outperforms existing techniques both in energy and perfor-
mance. Despite our tool even fuses loops with incompatible
headers, fusion remains limited to regular code [15]. We are
currently removing this limitation to expand the applicabil-
ity of our technique.

8.. ADDITIONAL AUTHORS

Additional authors and acknowledgements: Sven Verdoorlaege (Kuleuven,
Leuven, email: skimo@kotnet.org), Luis Piuel (DACYA U.C.M., Madrid, email:
lpinuel@dacya.ucm.es). The authors also acknowledge the IWT Flanders and the
Spanish Grant TIC 2002-0750

OR&EEERE‘(NQ:E§ Stewart. Heterogeneous Memory

Management for Embedded Systems. In Proc. Cases, 2001.

F. Bodin, W. Jalby, C. Eisenbeis, and D. Windheiser. A quantitative
algorithm for data locality optimization. In Proc. Int. Wkshp. on Code
Generation, pages 119-145, 1991.

D. Gannon and W. Jalby abd K. Gallivan. Strategies for cache and local
memory management by global progra, optimizations. J. of Parallel and
Distributed Systems, 25:587—617, 1988.

P. Grun, N. Dutt, and A. Nicolau. Memory Aware Compilation through
Timing Extraction. In Proc. 37th Dac, pages 316-321, Jun. 2001.
K.McKinley, S. Carr, and C.Tseng. Improving data locality with loop
transformations. ACM Transactions on Programming Languages and Systems,
18(4):424-453, July 1996.

L. Lamport. The parallel execution of do-loops. Communications of ACM,
17(2):83-93, Feb. 1974.

P. Marchal, J.I. Gomez, and F. Catthoor. Loop morphing to improve the
performance on a VLIW. In accepted for ASAP 2004, 2004.

M.Wolf. Improving locality and parallelism in nested loops. Technical
report, Technical report CSL-TR-92-538, Stanford Univ., CA, USA, Sep.
1992.

P. Panda, N. Dutt, and A. Nicolau. Exploiting Off-Chip Memory Access
Modes in High-Level Synthesis. In Proc. Iccad, pages 333-340, Oct. 1997.
P.Panda, F.Catthoor, N.Dutt, K.Danckaert, E.Brockmeyer, C.Kulkarni,
A.Vandecappelle, and P.G.Kjeldsberg. Data and Memory Optimizations
for Embedded Systems. ACM Trans. on Design Automation for Embedded Systems
(TODAES), 6(2):142-206, Apr. 2001.

Y. Qian, S. Carr, and P. Sweany. Loop Fusion for Clustered VLIW
Architectures. In Proc. Joint Conference on Languages, Compilers and Tools for
Embedded Systems and Software and Compilers for Embedded Systems, pages 19-21,
June 2002.

B. Rau. Iterative Modulo Scheduling. Technical report, HP Labs, 1995.
M. Saghir, P. Chow, and C. Lee. Exploiting Dual Data Banks in Digital
Signal Processors. In ASPLOS, Jun. 1997.

A. Vandecappelle, M. Miranda, E. Brockmeyer, F. Catthoor, and

D. Verkest. Global Multimedia System Design Exploration using Accurate
Memory Organization Feedback. In Proc. 39th DAC, 1999.

S. Verdoorlaege, M. Bruynooghe, G. Janssens, and F. Catthoor.
Multi-dimensional incremental loop fusion for data locality. In Proceedings
2003 Application-specific Systems, Architectures and Processors, pages 17—27, 2003.

[9]

[10]

(1]

[12]
[13]

[14]

[16] W. Verhaegh, E. Aarts, P. van Gorp, and P. Lippens. A Two-stage Solution
Approach for Multidimensional Periodic Scheduling. IEEE Trans. Computer
Aided Design of Integrated Circuits and Systems, 10(10):1185-1199, Oct. 2001.

S. Wuytack, F. Catthoor, G. De Jong, and H. De Man. Minimizing the
required memory bandwidth in VLSI system realizations. IEEE Trans. VLSI
Systems, 7(4):433-441, Dec. 1999.

[17]

	Main Page
	CODES+ISSS'04
	Front Matter
	Table of Contents
	Author Index

