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The dictionary defines forensics as “the use of science and 
technology to investigate and establish facts in criminal 
or civil courts of law.” I am more interested, however, 
in the usage common in the computer world: using 
evidence remaining after an attack on a computer to 
determine how the attack was carried out and what the 
attacker did.

The standard approach to forensics is to see what can 
be retrieved after an attack has been made, but this leaves 
a lot to be desired. The first and most obvious problem 
is that successful attackers often go to great lengths to 
ensure that they cover their trails. The second is that 
unsuccessful attacks often go unnoticed, and even when 
they are noticed, little information is available to assist 
with diagnosis. 

OBFUSCATION AFTER A SUCCESSFUL ATTACK 
Once an attack has succeeded, the attacker generally has 
complete access to the attacked system. The wily hacker 
can then remove evidence of the attack by modifying 
logs, deleting core dumps, and so forth. Indeed, many 
attacks install new software and modify the system so 
that the new software can’t be seen using standard utili-
ties such as ps. Once this has taken place, it can be very 

Good detective work means 
paying attention before, during, 
and after the attack. 
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difficult to clean the system, let alone determine what 
has happened.

UNSUCCESSFUL ATTACKS
Far more attacks fail than succeed. The most popular 
form of attack, despite years of warnings, is still the buffer 
overflow. In this attack, typically, some code is deposited 
on the stack and the return address of a function call 
is corrupted to cause the planted code to be called. The 
difficulty, from the attacker’s point of view, is that the 
exact address the code will end up at is heavily dependent 
on the exact build of the target system (e.g., operating 
system, compiler version, exact compilation flags used, 
version of target code, options used when building, librar-
ies linked in). Because of this, the attacker often has to try 
many slightly different versions of the attack until one 
works. An example that I’m personally familiar with is the 
Slapper worm, as I found and fixed the vulnerabilities that 
it exploited in OpenSSL.1 The code contained an amaz-
ingly long table, part of which is provided in figure 1. 

This table is used to determine addresses for the attack 
to use, but as can be seen, even when the worm is sure of 
the platform and Apache version (which may not always 
be the case), it sometimes still needs to try multiple 
addresses. If it uses the wrong addresses, then the usual 
result is that the target segfaults (segmentation faults), 
rather than succumbing to the attack. 

In the good old days, this would have resulted in a 
core dump, which could potentially be a useful diagnostic 
tool (though bear in mind that since the stack is corrupt, 
even a core dump can be of limited use). Unfortunately, 
security concerns with core dumps, which can contain 
passwords, private keys, and so forth,  have meant that 
most systems don’t produce core dumps by default from 
the kinds of software that are likely to be targeted (e.g., 
sendmail, Apache, IMAP servers). Of course, this can 
generally be fixed, but you have to remember to do that 
before you get attacked. 

Even given a core dump, determining how the attack 
worked can be difficult, since the direct evidence has 
already gone, and since many successful attacks corrupt 
important data structures, such as the stack or heap. 
Also, it is an unfortunate trend that many widely used 
packages disable stack frames as a performance enhance-

ment, making core dumps very difficult to interpret. For 
example, in GCC (Gnu Compiler Collection) this is the 
-fomit-frame-pointer flag. If frame pointers are omitted, 
debuggers cannot display stack backtraces.

Despite these problems, it is certainly worth ensuring 
that services are run such that core dumps can be pro-
duced and that they are compiled so the core dumps are 
useful: in general, enabling debugging information and 
not disabling stack frames is the optimal approach.

CLASSES OF ATTACK
Attention is, unsurprisingly, focused on attacks that use 
the Internet as a transport medium—but there is another 
class of attack of concern to some: local attacks. These 
are worth discussing even in relation to Internet-based 
attacks. Broadly speaking, Internet-based attacks can be 
divided into two types: protocol attacks and malware. 
Of course, these problems are common to all networks; 
there’s really nothing special about the Internet except its 
ubiquity.

PROTOCOL ATTACKS
Protocol attacks rely on flaws in protocols or implementa-
tions of protocols to cause undesired behavior in the soft-
ware implementing the protocol. The best-known class 
of protocol attack is the widely discussed buffer overflow, 
but there are many others: less well-known examples are 
version-downgrade and related security-reducing attacks, 
or attacks that rely on unexpected input to cause incor-
rect behavior (for example, using “..” in paths to access 
directories outside the published tree, or SQL injection to 
cause arbitrary SQL to be executed by the server).

Others, such as cross-site scripting or cookie hijacking, 
are arguably not strictly protocol attacks, but I will clas-
sify them as such for two reasons:  
1.  They are based entirely on I/O to a program. 
2.  They do not use executable code as their primary 

means of exploitation—primary because buffer over-
flows usually do carry executable code as their payload, 
whereas malware uses locally executable code to gain 
control in the first place.

MALWARE
Malware is a term used to describe the range of software 
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that ultimately relies on 
being executed in order to 
perform its “evil” (for want 
of a better word) mission. 
It covers viruses, Trojans, 
and worms, though the 
boundaries between these 
are beginning to become 
blurred. In general, these 
attacks rely on user 
error or ignorance to get 
executed, a well-known 
recent example being the 
MyDoom virus, which led 
recipients to believe they 
were being resent an e-mail 
that couldn’t be delivered 
the first time around, 
thus enticing them to 
double-click the attach-
ment, which then did Bad 
Things. 

AFTER-THE-FACT 
FORENSICS 
Usually, a new attack, be 
it malware or a protocol 
attack, is discovered after 
the attack has succeeded, 
because the behavior of the 
victim machine is altered. 
For example, in an article 
in process with Richard 
Clayton of the University 
of Cambridge Computer 
Laboratory, we are look-
ing at the use of infected 
machines for the send-
ing of spam by (among 
other things) analyzing 
the mail logs of a large 
Internet service provider. 
Interestingly, Clayton’s 
software, designed to 
spot machines sending 
spam, rapidly picked up 
the spread of MyDoom, 
because it radically altered 
the e-mail habits of 
infected machines. More 

struct archs {
char* desc;
int func_addr; /* objdump -R /usr/sbin/apache | grep free */
} architectures[] = {
{ "Caldera OpenLinux (apache-1.3.26)", 0x080920e0 },
{ "Cobalt Sun 6.0 (apache-1.3.12)", 0x8120f0c },
{ "Cobalt Sun 6.0 (apache-1.3.20)", 0x811dcb8 },
{ "Cobalt Sun x (apache-1.3.26)", 0x8123ac3 },
{ "Cobalt Sun x Fixed2 (apache-1.3.26)", 0x81233c3 },
{ "Conectiva 4 (apache-1.3.6)", 0x08075398 },
{ "Conectiva 4.1 (apache-1.3.9)", 0x0808f2fe },
{ "Conectiva 6 (apache-1.3.14)", 0x0809222c },
{ "Conectiva 7 (apache-1.3.12)", 0x0808f874 },
{ "Conectiva 7 (apache-1.3.19)", 0x08088aa0 },
{ "Conectiva 7/8 (apache-1.3.26)", 0x0808e628 },
{ "Conectiva 8 (apache-1.3.22)", 0x0808b2d0 },
{ "Debian GNU Linux 2.2 Potato (apache_1.3.9-14.1)", 0x08095264 },
{ "Debian GNU Linux (apache_1.3.19-1)", 0x080966fc },
{ "Debian GNU Linux (apache_1.3.22-2)", 0x08096aac },
{ "Debian GNU Linux (apache-1.3.22-2.1)", 0x08083828 },
{ "Debian GNU Linux (apache-1.3.22-5)", 0x08083728 },
{ "Debian GNU Linux (apache_1.3.23-1)", 0x08085de8 },
{ "Debian GNU Linux (apache_1.3.24-2.1)", 0x08087d08 },
{ "Debian Linux GNU Linux 2 (apache_1.3.24-2.1)", 0x080873ac },
{ "Debian GNU Linux (apache_1.3.24-3)", 0x08087d68 },
{ "Debian GNU Linux (apache-1.3.26-1)", 0x0080863c4 },
{ "Debian GNU Linux 3.0 Woody (apache-1.3.26-1)", 0x080863cc },
{ "Debian GNU Linux (apache-1.3.27)", 0x0080866a3 },
/* targets de BSD */
{ "FreeBSD (apache-1.3.9)", 0xbfbfde00 },
{ "FreeBSD (apache-1.3.11)", 0x080a2ea8 },
{ "FreeBSD (apache-1.3.12.1.40)", 0x080a7f58 },
{ "FreeBSD (apache-1.3.12.1.40)", 0x080a0ec0 },
{ "FreeBSD (apache-1.3.12.1.40)", 0x080a7e7c },
{ "FreeBSD (apache-1.3.12.1.40_1)", 0x080a7f18 },
{ "FreeBSD (apache-1.3.12)", 0x0809bd7c },
{ "FreeBSD (apache-1.3.14)", 0xbfbfdc00 },
{ "FreeBSD (apache-1.3.14)", 0x080ab68c },
{ "FreeBSD (apache-1.3.14)", 0x0808c76c },
{ "FreeBSD (apache-1.3.14)", 0x080a3fc8 },
{ "FreeBSD (apache-1.3.14)", 0x080ab6d8 },
…
{ "Slackware 8.0 (apache-1.3.22)", 0x08102b78 },
{ "Slackware 8.1 (apache-1.3.26)", 0x080b2100 },
}; FIG 1 

Excerpt of Slapper Worm Table
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often, the owner of the machine starts to notice suspi-
cious symptoms: the CPU is always at 100 percent usage, 
Internet access is suddenly slow, some programs don’t 
seem to work “quite right,” and so on. An example of 
this occurred many years ago when I was working in 
typesetting. Ventura Publisher, a very popular typeset-
ting program of the ’80s, suddenly stopped working on 
one machine. A few days later, another stopped. I was 
called in to investigate. I discovered the virus later named 
Bethlehem had infected the machines—but it had a bug. 
When it infected a .EXE file, its check for its own presence 
failed, and so it kept reinfecting them until they were too 
large to fit into memory.

Once this altered behavior has been noticed, the task 
is then to figure out what went wrong. Usually this is a 
messy affair, involving poking through logs, checking old 
e-mails, checking the disk for unexpected executables, 
and so forth. Sophisticated malware even covers its own 
tracks and modifies system binaries to hide its continued 
activities (this is what “rootkits” do), leading to great dif-
ficulty in tracking it down. Indeed, the standard advice is 
to take the machine offline, remove its disk and mount 
it read-only in another machine, and run all sorts of cun-
ning diagnostics to try to reverse-engineer the malware 
(using, for example, The Coroner’s Toolkit, created by 
Dan Farmer and Wietse Venema).2

Of course, most of the world hardly needs to worry 
about this—most of the world is neither an early victim 
nor the people who have to figure out what went wrong 
and how to fix it. Most of the world can sit around quite 
happily and wait for someone else to worry about it, 
figure out what’s going on, and tell them; then they can 
start worrying about how they are going to defend against 
the problem, or start complaining about how ineffective 
XYZ’s security is.

It is those who have to diagnose the problems, and 
how they can make their lives easier, that I am most 
interested in.

BEFORE-THE-FACT FORENSICS 
The lazy and easy answer to this is, in general, logging. 
And, for the most part, most software will, if configured 
correctly, produce huge amounts of logs. But, as my 
friend and sometime collaborator Tina Bird has been 

pointing out for years, these logs are often close to useless 
for both detection and diagnosis. Why? Because, in order 
to diagnose logic faults and other bugs in the software, 
they are typically designed to be read manually by the 
programmer, or at least someone well acquainted with 
the code, in conjunction with a pretty firm knowledge 
of inputs and outputs from the program. They have not 
been designed to help with malicious attacks, nor have 
they been designed to be automatically analyzed. The 
problem with the former is obvious—but the problem 
with the latter may be less clear: one of the characteristics 
of attacks is that they are not always detected very soon 
after they occur; indeed, some are never detected. This 
may be either because the machine goes out of use before 
anyone notices (and this can be periods of years—the 
behavior of machines used for spam makes it quite clear 
that infected machines are ready in a pool, undetected, 
waiting to be used!) or, perhaps more interestingly, 
because the attack fails, so there’s nothing obvious to 
notice. 

How can this situation be improved? Interestingly, 
detailed logs of what is happening inside a program, 
which is what we usually get in logs, are probably not 
of much use; generally, successful attacks do not travel 
down the paths we expect inside the code, so the logging 
tends either not to occur or to be difficult to relate to the 
cause. Far more useful is knowing exactly what the inputs 
and outputs were, because then we can repeat the attack 
at our leisure, using debuggers, code instrumentation, or 
whatever to diagnose the vector of attacks.

BUT ISN’T LOGGING EVERYTHING 
A PROBLEM? 
Yes, it is. The volumes involved are often huge, and most 
likely to be hugest in the places the attacks are most likely 
to occur. There is no magic bullet here, but there are some 
strategies that can help to mitigate the problem. 

For example, I recently wrote a forensic logging 
module for Apache called mod_log_forensic. It logs twice: 
once at the start of a request and once at the end. Since 
most attacks on Apache fail (as discussed earlier), 99 
percent of the usefulness of the module would be retained 
if we kept logs that related only to failed attacks. How do 
we spot those? That’s easy: they’re the ones that log at the 
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beginning of the request, but not the end (because the 
server died in the middle). To reduce the log size of busy 
sites, I have considered having an external program filter 
the logs, holding the pre-request component for a time, 
and logging to disk only if the corresponding post-request 
entry does not arrive. This could be made more sophisti-
cated by making the program aware of the death of the 
server and logging in that case, but this approach worries 
me—forensic logging should be lightweight and robust, 
lest it become a target for attacks itself. 

Although there is an element of risk here, an attack 
that succeeds the first time, or in a short time frame, 
could kill the log-reducing filter and cause the log not 
to make it to disk at all; or attacks of interest might be 
directed at a CGI (common gateway interface) and thus 
not cause the death of the server itself. In some environ-
ments, particularly where usage is very high and there is 
no external CGI, this approach would make sense. Bear in 
mind that in-process CGI such as mod_perl or mod_php 
would still show up in the logs.

Mod_log_forensic also interacts with another popular 
module: mod_unique_id. If this module is in use, then 
mod_log_forensic will use its ID instead of its own; thus, 
the forensic log can be tied into the access log, as well as 
logs produced by CGIs. Mod_unique_id also handles log 
pooling (where a farm of machines all share a common 
log), which mod_log_forensic does not do on its own 
(there is a risk of ID collision). 

Mod_log_forensic doesn’t log any output from the 
server, because (in theory, at least) the output should be 
deterministic, or if not, irrelevant. Of course, other appli-
cations may have different requirements with respect to 
input and output. 

Also recently added to Apache are forensic modules 
mod_log_backtrace and mod_whatkilledme. These 
modules log only when something goes drastically 
wrong, which means they are far lower volume, but again 
increase the risk that the event of interest will not be 
logged. Mod_log_backtrace also suffers from the major 
disadvantage that it tells you where you were when you 
died, but not what killed you. Mod_whatkilledme may tell 
you that, but only if what killed you didn’t corrupt it (this 
can’t happen in mod_log_forensic, because it logs before 
anything else happens, not after). 

Another tactic that can be used to reduce volume is to 
log only a subset of the input. In fact, mod_log_forensic 
does this—it does not log data fed to CGIs (or modules) 
via HTTP POST requests. This is done for two reasons, 
the main one being pragmatic: POST requests tend to 
be large. The second reason is that Apache doesn’t have 

a mechanism to allow arbitrary modules access to POST 
data, so such logging would have to be done by the mod-
ule handling the request (if it is mod_cgi, then that can 
be configured to log the request data).

In the end, what to log, how to reduce volume, and 
the risk incurred by doing so are highly dependent on the 
application. But the good news is that it’s usually largely 
in the control of the application authors, if they decide to 
do it, rather than being a random assortment of inciden-
tal information gathered more by luck than judgment.  

MAKE SURE LOGS ARE USEFUL
A detail that is often missed until too late is that you 
must take care with forensic logs to ensure that they can 
be used to accurately reconstruct the attack. For example, 
astonishingly, until recently Apache didn’t prevent care-
fully constructed requests from causing fake entries in the 
access logs. 

It is also important that the logs can be analyzed auto-
matically. When the time comes to look at a few dozen 
gigabytes of log, the last thing you want to have to do is 
to read them individually. 

Luckily, these two details are easily handled, and at the 
risk of teaching my grandmother to suck eggs, I’ll outline 
the general strategy.

LAYOUT 
The layout should be easily parsable by tools such as grep, 
sed, awk, and perl. What this means in general is that it 
should:  
1. Be entirely composed of readable ASCII. 
2. Have unambiguous markup.
3. Be line-oriented.
4.  Not have overly long lines (though I would rather use 

custom versions of grep than compromise log quality 
by artificially shortening lines). 
Since in almost all cases, what is being logged is under 

the control of the attacker, you should not rely on any 
protocol rules being followed to enforce these constraints. 

Generally, successful attacks do not 
travel down the paths we expect inside the code.
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This means that you should use escaping for non-ASCII 
characters (in most cases, control characters, too, to avoid 
attacks that are designed to exploit the terminal program 
used to display the log—yes, these attacks have been seen 
in the wild). To have unambiguous markup you need 
to choose a field separator that is also escaped when it 
occurs in the fields, and if fields are named rather than 
positional, then, ideally, use a second separator for those. 

For the sake of illustration, here’s what I did for 
mod_log_forensic. First, rather than logging the raw 
input, I log the HTTP request after initial parsing, so it has 
been decomposed into individual headers and the request 
line itself. This was a calculated risk—the downside 
being that bugs in the parsing code would be exploited 
before the log occurred, but the upside being that the log 
itself is far more easily parsed. It also happened that this 
approach disturbed the structure of the server much less 
than logging raw input would have (in fact, it disturbed it 
not at all; mod_log_forensic is a standard module). Fields 
are separated by vertical bars (hex 7c) and field compo-
nents by colons (hex 3a). For the preprocessing log, the 
first field is a + followed by the unique ID; the second 
is the request; and the remaining fields are the headers, 
in the format <header name>:<header contents>. The 
entry is terminated by a newline (hex 0a). All characters 
below hex 20 and above hex 7e are URL-escaped (that is, 
replaced by %xx where “xx” is the hex value), as are the 
colon, vertical bar, and percent. In the case of a post-
processing entry, the entire line is a — followed by the 
unique ID.  

PROTECTING LOGS
As I said before, successful attackers often go to great 
lengths to remove logs that disclose their activities. 
Indeed, there are widely available tools for covering tracks 
after an attack. So, how do you ensure the logs do not 
go missing once attacked? The most obvious tactic is to 
log to a different machine, though this can be expensive 
and introduce another vulnerability, at least to a logging 
denial-of-service. 

A less obvious tactic would be to write logs to write-
once media; it’s worth remembering, however, that not 
all write-once media is really write-once—for example, 
WORM (write once, read many) disks can be erased once 

written. In the more likely case of logging on a different 
machine, the obvious mechanism to use is the existing 
capability of syslog to send messages to another machine. 
Because you might well want to do sophisticated filter-
ing (such as suggested for mod_log_forensic)—which 
should really be run on the logging machine and not the 
machine generating the logs, to protect the filters from 
the attacker—you should probably consider syslog-ng3 as 
the logging platform. This easily allows an external filter 
to be plugged in. A useful resource for logging strategies 
in general can be found at the log analysis Web site.4

PLAN FOR THE INEVITABLE
Piecing together what happened to a system from dis-
tributed information not intended to be used for that 
purpose is a frustrating and unsatisfactory process. It is far 
better to plan for the inevitable attacks and ensure that 
necessary information is securely gathered, and remains 
available even if an attack is successful—and if you are 
writing code, make sure that necessary information is 
available in the first place! Q 
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