
50 June 2004 QUEUE rants: feedback@acmqueue.com QUEUE June 2004 51 more queue: www.acmqueue.comForensics

BE
N

 LA
UR

IE,
 A

. L
. D

IG
ITA

L

Network

Surviving
Network AttacksFO

CU
S

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1016978.1016982&domain=pdf&date_stamp=2004-06-01

50 June 2004 QUEUE rants: feedback@acmqueue.com QUEUE June 2004 51 more queue: www.acmqueue.com

The dictionary defines forensics as “the use of science and
technology to investigate and establish facts in criminal
or civil courts of law.” I am more interested, however,
in the usage common in the computer world: using
evidence remaining after an attack on a computer to
determine how the attack was carried out and what the
attacker did.

The standard approach to forensics is to see what can
be retrieved after an attack has been made, but this leaves
a lot to be desired. The first and most obvious problem
is that successful attackers often go to great lengths to
ensure that they cover their trails. The second is that
unsuccessful attacks often go unnoticed, and even when
they are noticed, little information is available to assist
with diagnosis.

OBFUSCATION AFTER A SUCCESSFUL ATTACK
Once an attack has succeeded, the attacker generally has
complete access to the attacked system. The wily hacker
can then remove evidence of the attack by modifying
logs, deleting core dumps, and so forth. Indeed, many
attacks install new software and modify the system so
that the new software can’t be seen using standard utili-
ties such as ps. Once this has taken place, it can be very

Good detective work means
paying attention before, during,
and after the attack.

52 June 2004 QUEUE rants: feedback@acmqueue.com QUEUE June 2004 53 more queue: www.acmqueue.com

difficult to clean the system, let alone determine what
has happened.

UNSUCCESSFUL ATTACKS
Far more attacks fail than succeed. The most popular
form of attack, despite years of warnings, is still the buffer
overflow. In this attack, typically, some code is deposited
on the stack and the return address of a function call
is corrupted to cause the planted code to be called. The
difficulty, from the attacker’s point of view, is that the
exact address the code will end up at is heavily dependent
on the exact build of the target system (e.g., operating
system, compiler version, exact compilation flags used,
version of target code, options used when building, librar-
ies linked in). Because of this, the attacker often has to try
many slightly different versions of the attack until one
works. An example that I’m personally familiar with is the
Slapper worm, as I found and fixed the vulnerabilities that
it exploited in OpenSSL.1 The code contained an amaz-
ingly long table, part of which is provided in figure 1.

This table is used to determine addresses for the attack
to use, but as can be seen, even when the worm is sure of
the platform and Apache version (which may not always
be the case), it sometimes still needs to try multiple
addresses. If it uses the wrong addresses, then the usual
result is that the target segfaults (segmentation faults),
rather than succumbing to the attack.

In the good old days, this would have resulted in a
core dump, which could potentially be a useful diagnostic
tool (though bear in mind that since the stack is corrupt,
even a core dump can be of limited use). Unfortunately,
security concerns with core dumps, which can contain
passwords, private keys, and so forth, have meant that
most systems don’t produce core dumps by default from
the kinds of software that are likely to be targeted (e.g.,
sendmail, Apache, IMAP servers). Of course, this can
generally be fixed, but you have to remember to do that
before you get attacked.

Even given a core dump, determining how the attack
worked can be difficult, since the direct evidence has
already gone, and since many successful attacks corrupt
important data structures, such as the stack or heap.
Also, it is an unfortunate trend that many widely used
packages disable stack frames as a performance enhance-

ment, making core dumps very difficult to interpret. For
example, in GCC (Gnu Compiler Collection) this is the
-fomit-frame-pointer flag. If frame pointers are omitted,
debuggers cannot display stack backtraces.

Despite these problems, it is certainly worth ensuring
that services are run such that core dumps can be pro-
duced and that they are compiled so the core dumps are
useful: in general, enabling debugging information and
not disabling stack frames is the optimal approach.

CLASSES OF ATTACK
Attention is, unsurprisingly, focused on attacks that use
the Internet as a transport medium—but there is another
class of attack of concern to some: local attacks. These
are worth discussing even in relation to Internet-based
attacks. Broadly speaking, Internet-based attacks can be
divided into two types: protocol attacks and malware.
Of course, these problems are common to all networks;
there’s really nothing special about the Internet except its
ubiquity.

PROTOCOL ATTACKS
Protocol attacks rely on flaws in protocols or implementa-
tions of protocols to cause undesired behavior in the soft-
ware implementing the protocol. The best-known class
of protocol attack is the widely discussed buffer overflow,
but there are many others: less well-known examples are
version-downgrade and related security-reducing attacks,
or attacks that rely on unexpected input to cause incor-
rect behavior (for example, using “..” in paths to access
directories outside the published tree, or SQL injection to
cause arbitrary SQL to be executed by the server).

Others, such as cross-site scripting or cookie hijacking,
are arguably not strictly protocol attacks, but I will clas-
sify them as such for two reasons:
1. They are based entirely on I/O to a program.
2. They do not use executable code as their primary

means of exploitation—primary because buffer over-
flows usually do carry executable code as their payload,
whereas malware uses locally executable code to gain
control in the first place.

MALWARE
Malware is a term used to describe the range of software

Forensics

Surviving
Network AttacksFO

CU
S

Network

52 June 2004 QUEUE rants: feedback@acmqueue.com QUEUE June 2004 53 more queue: www.acmqueue.com

that ultimately relies on
being executed in order to
perform its “evil” (for want
of a better word) mission.
It covers viruses, Trojans,
and worms, though the
boundaries between these
are beginning to become
blurred. In general, these
attacks rely on user
error or ignorance to get
executed, a well-known
recent example being the
MyDoom virus, which led
recipients to believe they
were being resent an e-mail
that couldn’t be delivered
the first time around,
thus enticing them to
double-click the attach-
ment, which then did Bad
Things.

AFTER-THE-FACT
FORENSICS
Usually, a new attack, be
it malware or a protocol
attack, is discovered after
the attack has succeeded,
because the behavior of the
victim machine is altered.
For example, in an article
in process with Richard
Clayton of the University
of Cambridge Computer
Laboratory, we are look-
ing at the use of infected
machines for the send-
ing of spam by (among
other things) analyzing
the mail logs of a large
Internet service provider.
Interestingly, Clayton’s
software, designed to
spot machines sending
spam, rapidly picked up
the spread of MyDoom,
because it radically altered
the e-mail habits of
infected machines. More

struct archs {
char* desc;
int func_addr; /* objdump -R /usr/sbin/apache | grep free */
} architectures[] = {
{ "Caldera OpenLinux (apache-1.3.26)", 0x080920e0 },
{ "Cobalt Sun 6.0 (apache-1.3.12)", 0x8120f0c },
{ "Cobalt Sun 6.0 (apache-1.3.20)", 0x811dcb8 },
{ "Cobalt Sun x (apache-1.3.26)", 0x8123ac3 },
{ "Cobalt Sun x Fixed2 (apache-1.3.26)", 0x81233c3 },
{ "Conectiva 4 (apache-1.3.6)", 0x08075398 },
{ "Conectiva 4.1 (apache-1.3.9)", 0x0808f2fe },
{ "Conectiva 6 (apache-1.3.14)", 0x0809222c },
{ "Conectiva 7 (apache-1.3.12)", 0x0808f874 },
{ "Conectiva 7 (apache-1.3.19)", 0x08088aa0 },
{ "Conectiva 7/8 (apache-1.3.26)", 0x0808e628 },
{ "Conectiva 8 (apache-1.3.22)", 0x0808b2d0 },
{ "Debian GNU Linux 2.2 Potato (apache_1.3.9-14.1)", 0x08095264 },
{ "Debian GNU Linux (apache_1.3.19-1)", 0x080966fc },
{ "Debian GNU Linux (apache_1.3.22-2)", 0x08096aac },
{ "Debian GNU Linux (apache-1.3.22-2.1)", 0x08083828 },
{ "Debian GNU Linux (apache-1.3.22-5)", 0x08083728 },
{ "Debian GNU Linux (apache_1.3.23-1)", 0x08085de8 },
{ "Debian GNU Linux (apache_1.3.24-2.1)", 0x08087d08 },
{ "Debian Linux GNU Linux 2 (apache_1.3.24-2.1)", 0x080873ac },
{ "Debian GNU Linux (apache_1.3.24-3)", 0x08087d68 },
{ "Debian GNU Linux (apache-1.3.26-1)", 0x0080863c4 },
{ "Debian GNU Linux 3.0 Woody (apache-1.3.26-1)", 0x080863cc },
{ "Debian GNU Linux (apache-1.3.27)", 0x0080866a3 },
/* targets de BSD */
{ "FreeBSD (apache-1.3.9)", 0xbfbfde00 },
{ "FreeBSD (apache-1.3.11)", 0x080a2ea8 },
{ "FreeBSD (apache-1.3.12.1.40)", 0x080a7f58 },
{ "FreeBSD (apache-1.3.12.1.40)", 0x080a0ec0 },
{ "FreeBSD (apache-1.3.12.1.40)", 0x080a7e7c },
{ "FreeBSD (apache-1.3.12.1.40_1)", 0x080a7f18 },
{ "FreeBSD (apache-1.3.12)", 0x0809bd7c },
{ "FreeBSD (apache-1.3.14)", 0xbfbfdc00 },
{ "FreeBSD (apache-1.3.14)", 0x080ab68c },
{ "FreeBSD (apache-1.3.14)", 0x0808c76c },
{ "FreeBSD (apache-1.3.14)", 0x080a3fc8 },
{ "FreeBSD (apache-1.3.14)", 0x080ab6d8 },
…
{ "Slackware 8.0 (apache-1.3.22)", 0x08102b78 },
{ "Slackware 8.1 (apache-1.3.26)", 0x080b2100 },
}; FIG 1

Excerpt of Slapper Worm Table

54 June 2004 QUEUE rants: feedback@acmqueue.com QUEUE June 2004 55 more queue: www.acmqueue.com

often, the owner of the machine starts to notice suspi-
cious symptoms: the CPU is always at 100 percent usage,
Internet access is suddenly slow, some programs don’t
seem to work “quite right,” and so on. An example of
this occurred many years ago when I was working in
typesetting. Ventura Publisher, a very popular typeset-
ting program of the ’80s, suddenly stopped working on
one machine. A few days later, another stopped. I was
called in to investigate. I discovered the virus later named
Bethlehem had infected the machines—but it had a bug.
When it infected a .EXE file, its check for its own presence
failed, and so it kept reinfecting them until they were too
large to fit into memory.

Once this altered behavior has been noticed, the task
is then to figure out what went wrong. Usually this is a
messy affair, involving poking through logs, checking old
e-mails, checking the disk for unexpected executables,
and so forth. Sophisticated malware even covers its own
tracks and modifies system binaries to hide its continued
activities (this is what “rootkits” do), leading to great dif-
ficulty in tracking it down. Indeed, the standard advice is
to take the machine offline, remove its disk and mount
it read-only in another machine, and run all sorts of cun-
ning diagnostics to try to reverse-engineer the malware
(using, for example, The Coroner’s Toolkit, created by
Dan Farmer and Wietse Venema).2

Of course, most of the world hardly needs to worry
about this—most of the world is neither an early victim
nor the people who have to figure out what went wrong
and how to fix it. Most of the world can sit around quite
happily and wait for someone else to worry about it,
figure out what’s going on, and tell them; then they can
start worrying about how they are going to defend against
the problem, or start complaining about how ineffective
XYZ’s security is.

It is those who have to diagnose the problems, and
how they can make their lives easier, that I am most
interested in.

BEFORE-THE-FACT FORENSICS
The lazy and easy answer to this is, in general, logging.
And, for the most part, most software will, if configured
correctly, produce huge amounts of logs. But, as my
friend and sometime collaborator Tina Bird has been

pointing out for years, these logs are often close to useless
for both detection and diagnosis. Why? Because, in order
to diagnose logic faults and other bugs in the software,
they are typically designed to be read manually by the
programmer, or at least someone well acquainted with
the code, in conjunction with a pretty firm knowledge
of inputs and outputs from the program. They have not
been designed to help with malicious attacks, nor have
they been designed to be automatically analyzed. The
problem with the former is obvious—but the problem
with the latter may be less clear: one of the characteristics
of attacks is that they are not always detected very soon
after they occur; indeed, some are never detected. This
may be either because the machine goes out of use before
anyone notices (and this can be periods of years—the
behavior of machines used for spam makes it quite clear
that infected machines are ready in a pool, undetected,
waiting to be used!) or, perhaps more interestingly,
because the attack fails, so there’s nothing obvious to
notice.

How can this situation be improved? Interestingly,
detailed logs of what is happening inside a program,
which is what we usually get in logs, are probably not
of much use; generally, successful attacks do not travel
down the paths we expect inside the code, so the logging
tends either not to occur or to be difficult to relate to the
cause. Far more useful is knowing exactly what the inputs
and outputs were, because then we can repeat the attack
at our leisure, using debuggers, code instrumentation, or
whatever to diagnose the vector of attacks.

BUT ISN’T LOGGING EVERYTHING
A PROBLEM?
Yes, it is. The volumes involved are often huge, and most
likely to be hugest in the places the attacks are most likely
to occur. There is no magic bullet here, but there are some
strategies that can help to mitigate the problem.

For example, I recently wrote a forensic logging
module for Apache called mod_log_forensic. It logs twice:
once at the start of a request and once at the end. Since
most attacks on Apache fail (as discussed earlier), 99
percent of the usefulness of the module would be retained
if we kept logs that related only to failed attacks. How do
we spot those? That’s easy: they’re the ones that log at the

Forensics

Surviving
Network AttacksFO

CU
S

Network

54 June 2004 QUEUE rants: feedback@acmqueue.com QUEUE June 2004 55 more queue: www.acmqueue.com

beginning of the request, but not the end (because the
server died in the middle). To reduce the log size of busy
sites, I have considered having an external program filter
the logs, holding the pre-request component for a time,
and logging to disk only if the corresponding post-request
entry does not arrive. This could be made more sophisti-
cated by making the program aware of the death of the
server and logging in that case, but this approach worries
me—forensic logging should be lightweight and robust,
lest it become a target for attacks itself.

Although there is an element of risk here, an attack
that succeeds the first time, or in a short time frame,
could kill the log-reducing filter and cause the log not
to make it to disk at all; or attacks of interest might be
directed at a CGI (common gateway interface) and thus
not cause the death of the server itself. In some environ-
ments, particularly where usage is very high and there is
no external CGI, this approach would make sense. Bear in
mind that in-process CGI such as mod_perl or mod_php
would still show up in the logs.

Mod_log_forensic also interacts with another popular
module: mod_unique_id. If this module is in use, then
mod_log_forensic will use its ID instead of its own; thus,
the forensic log can be tied into the access log, as well as
logs produced by CGIs. Mod_unique_id also handles log
pooling (where a farm of machines all share a common
log), which mod_log_forensic does not do on its own
(there is a risk of ID collision).

Mod_log_forensic doesn’t log any output from the
server, because (in theory, at least) the output should be
deterministic, or if not, irrelevant. Of course, other appli-
cations may have different requirements with respect to
input and output.

Also recently added to Apache are forensic modules
mod_log_backtrace and mod_whatkilledme. These
modules log only when something goes drastically
wrong, which means they are far lower volume, but again
increase the risk that the event of interest will not be
logged. Mod_log_backtrace also suffers from the major
disadvantage that it tells you where you were when you
died, but not what killed you. Mod_whatkilledme may tell
you that, but only if what killed you didn’t corrupt it (this
can’t happen in mod_log_forensic, because it logs before
anything else happens, not after).

Another tactic that can be used to reduce volume is to
log only a subset of the input. In fact, mod_log_forensic
does this—it does not log data fed to CGIs (or modules)
via HTTP POST requests. This is done for two reasons,
the main one being pragmatic: POST requests tend to
be large. The second reason is that Apache doesn’t have

a mechanism to allow arbitrary modules access to POST
data, so such logging would have to be done by the mod-
ule handling the request (if it is mod_cgi, then that can
be configured to log the request data).

In the end, what to log, how to reduce volume, and
the risk incurred by doing so are highly dependent on the
application. But the good news is that it’s usually largely
in the control of the application authors, if they decide to
do it, rather than being a random assortment of inciden-
tal information gathered more by luck than judgment.

MAKE SURE LOGS ARE USEFUL
A detail that is often missed until too late is that you
must take care with forensic logs to ensure that they can
be used to accurately reconstruct the attack. For example,
astonishingly, until recently Apache didn’t prevent care-
fully constructed requests from causing fake entries in the
access logs.

It is also important that the logs can be analyzed auto-
matically. When the time comes to look at a few dozen
gigabytes of log, the last thing you want to have to do is
to read them individually.

Luckily, these two details are easily handled, and at the
risk of teaching my grandmother to suck eggs, I’ll outline
the general strategy.

LAYOUT
The layout should be easily parsable by tools such as grep,
sed, awk, and perl. What this means in general is that it
should:
1. Be entirely composed of readable ASCII.
2. Have unambiguous markup.
3. Be line-oriented.
4. Not have overly long lines (though I would rather use

custom versions of grep than compromise log quality
by artificially shortening lines).
Since in almost all cases, what is being logged is under

the control of the attacker, you should not rely on any
protocol rules being followed to enforce these constraints.

Generally, successful attacks do not
travel down the paths we expect inside the code.

56 June 2004 QUEUE rants: feedback@acmqueue.com

This means that you should use escaping for non-ASCII
characters (in most cases, control characters, too, to avoid
attacks that are designed to exploit the terminal program
used to display the log—yes, these attacks have been seen
in the wild). To have unambiguous markup you need
to choose a field separator that is also escaped when it
occurs in the fields, and if fields are named rather than
positional, then, ideally, use a second separator for those.

For the sake of illustration, here’s what I did for
mod_log_forensic. First, rather than logging the raw
input, I log the HTTP request after initial parsing, so it has
been decomposed into individual headers and the request
line itself. This was a calculated risk—the downside
being that bugs in the parsing code would be exploited
before the log occurred, but the upside being that the log
itself is far more easily parsed. It also happened that this
approach disturbed the structure of the server much less
than logging raw input would have (in fact, it disturbed it
not at all; mod_log_forensic is a standard module). Fields
are separated by vertical bars (hex 7c) and field compo-
nents by colons (hex 3a). For the preprocessing log, the
first field is a + followed by the unique ID; the second
is the request; and the remaining fields are the headers,
in the format <header name>:<header contents>. The
entry is terminated by a newline (hex 0a). All characters
below hex 20 and above hex 7e are URL-escaped (that is,
replaced by %xx where “xx” is the hex value), as are the
colon, vertical bar, and percent. In the case of a post-
processing entry, the entire line is a — followed by the
unique ID.

PROTECTING LOGS
As I said before, successful attackers often go to great
lengths to remove logs that disclose their activities.
Indeed, there are widely available tools for covering tracks
after an attack. So, how do you ensure the logs do not
go missing once attacked? The most obvious tactic is to
log to a different machine, though this can be expensive
and introduce another vulnerability, at least to a logging
denial-of-service.

A less obvious tactic would be to write logs to write-
once media; it’s worth remembering, however, that not
all write-once media is really write-once—for example,
WORM (write once, read many) disks can be erased once

written. In the more likely case of logging on a different
machine, the obvious mechanism to use is the existing
capability of syslog to send messages to another machine.
Because you might well want to do sophisticated filter-
ing (such as suggested for mod_log_forensic)—which
should really be run on the logging machine and not the
machine generating the logs, to protect the filters from
the attacker—you should probably consider syslog-ng3 as
the logging platform. This easily allows an external filter
to be plugged in. A useful resource for logging strategies
in general can be found at the log analysis Web site.4

PLAN FOR THE INEVITABLE
Piecing together what happened to a system from dis-
tributed information not intended to be used for that
purpose is a frustrating and unsatisfactory process. It is far
better to plan for the inevitable attacks and ensure that
necessary information is securely gathered, and remains
available even if an attack is successful—and if you are
writing code, make sure that necessary information is
available in the first place! Q

REFERENCES
1. For more on the Slapper story, see my rant: Secu-

rity: Why do I bother? O’Reilly Network; http://
www.oreillynet.com/pub/wlg/2004.

2. The Coroner’s Toolkit; see: http://www.porcupine.org/
forensics/tct.html.

3. Scheidler, B. syslog-ng. http://www.balabit.com/
products/syslog_ng/.

4. Bird, T., and Ranum, M. Loganalysis.org,
http://www.loganalysis.org/.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

BEN LAURIE is technical director of A. L. Digital and
author of the Apache-SSL Web server. He is a founding
director and head of security of the Apache Software
Foundation. He is also a core member of the OpenSSL
Project, the world’s most widely used cryptographic
library, and numerous other Internet projects. His main
interests are security, cryptography, privacy, civil liberties,
and beer.

Forensics

Surviving
Network AttacksFO

CU
S

Network

feedback@acmqueue.com
www.acmqueue.com/forums

