
34 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 35 more queue: www.acmqueue.com

The term virtual machine initially described a 1960s
operating system concept: a software abstraction
with the looks of a computer system’s hardware

(real machine). Forty years later, the term encompasses
a large range of abstractions—for example, Java virtual
machines that don’t match an existing real machine.
Despite the variations, in all definitions the virtual
machine is a target for a programmer or compilation
system. In other words, software is written to run on the
virtual machine.

A CROSS-SECTION VIEW
One way to view the different virtual machine abstrac-
tions is as “slices” of the hardware/software stack. A
modern computer system is composed of layers, begin-
ning with the hardware and including layers of an
operating system and application programs running on
top of the operating system (see figure 1). Virtualization
software abstracts virtual machines by interposing a layer
at various places in the system. Three examples of these
virtualization layers include hardware-level virtualization,
operating system–level virtualization, and high-level
language virtual machines.

Hardware-level virtualization. Here the virtualiza-
tion layer sits right on top of the hardware exporting the
virtual machine abstraction. Because the virtual machine

Virtual
The Reincarnation of

Virtual
MachinesFO

CU
S

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1016998.1017000&domain=pdf&date_stamp=2004-07-01

34 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 35 more queue: www.acmqueue.com

Virtual Machines
MENDEL ROSENBLUM,
STANFORD UNIVERSITY AND VMWARE

Virtualization
makes a
comeback.

36 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 37 more queue: www.acmqueue.com

looks like the hardware, all the software written for it will
run in the virtual machine. This is actually the original
virtual machine definition from the 1960s, including
older technology such as VM/370 on IBM mainframes—
as well as VMware virtualization technology on x86-based
machines, as illustrated in Figure 2. (For more on this, see
Bob Supnik’s “Simulators: Virtual Machines of the Past
{and Future]” on page 52 of this issue.)

Operating system–level virtualization. In this case the
virtualization layer sits between the operating system
and the application programs that run on the operating
system. The virtual machine runs applications, or sets of
applications, that are written for the particular operating

system being virtualized. FreeBSD Jails are an example
of this technology (For more on this, see Poul-Henning
Kamp and Robert Watson’s “Building Systems to Be
Shared” on page 42 of this issue.)

High-level language virtual machines. In high-level
language virtual machines, the virtualization layer sits as
an application program on top of an operating system.
The layer exports an abstraction of the virtual machine
that can run programs written and compiled to the par-
ticular abstract machine definition. Any program written
in the high-level language and compiled for this virtual
machine will run in it. Smalltalk and Java are two exam-
ples of this kind of virtual machine (For more on this, see
“Interview: James Gosling” on page 24 of this issue.)

ATTRIBUTES OF VIRTUAL MACHINES
Although the chief attractions for running in a virtual
machine environment differ among the various types, all
share a common set of attributes.

Software compatibility. The virtual machine provides
a compatible abstraction so that all software written for
it will run on it. For example, a hardware-level virtual
machine will run all the software, operating systems, and
applications written for the hardware. Similarly, an oper-
ating system–level virtual machine will run applications
for that particular operating system, and a high-level
virtual machine will run programs written in the high-
level language.

The virtual machine abstraction frequently can mask
differences in the hardware and software layers below the
virtual machine. One example is Java’s claim that you can
“write once, run anywhere.”

Isolation. The virtual machine abstraction isolates the
software running in the virtual machine from other vir-
tual machines and real machines. This isolation provides
that bugs or hackers can be contained within the virtual
machine and thus not adversely affect other parts of the
system. In addition to data isolation, the virtualization
layer can execute performance isolation so that resources
consumed by one virtual machine do not necessarily
harm the performance of other virtual machines. Tradi-
tionally, operating systems are not as fair in performing
resource balancing and starvation prevention as virtual

Virtual
MachinesFO

CU
S

Modern Computer System Structure

��

���������������������������������������

��� �������� ������

��������

��������

FIG 1

��

�����������������������������

Virtual Machine Monitor

�����

���

����
��������

�������
��������

�����������������
������������������������

�����

���

�����������������
������������������������

FIG 2

Virtual Machines
The Reincarnation of

36 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 37 more queue: www.acmqueue.com

machine environments tend to be.
Encapsulation. The software layer exporting the virtual

machine abstraction is an example of what is known as
a level of indirection. This layer can be used to manipulate
and control the execution of the software in the virtual
machine. It can also use this indirection to enhance the
software or to provide a better execution environment.
For example, virtual machines for high-level languages
typically support runtime checks that can reduce a class
of programming errors. These include type-safe, memory-
safe, and garbage-collected memory management. Over-
all, the layer provides a better execution environment for
the programming.

Performance. Adding a layer of software to a system
adds overhead, which can adversely affect the perfor-
mance of the software running in the virtual machine.
The benefits of successful virtual machine systems far
outweigh any overhead that they introduce.

HARDWARE-LEVEL VMMS: WHY THE COMEBACK?
Although hardware-level virtual machines were popular
in both the research and commercial marketplace during
the 1960s and 1970s, they virtually disappeared during
the 1980s and 1990s. By the time high-level language
virtual machines such as Java appeared, few systems were
being run, apart from IBM’s mainframe and AS/400 busi-
ness systems.

Hardware-level virtual machines are exported by a
thin layer of software called the virtual machine moni-
tor (VMM). The VMM runs directly on the hardware of
the real machine, exporting an abstraction of the virtual
machine that looks like the hardware. By making the
virtual machine match the hardware interface, the virtual
machine is capable of running all software written for the
hardware.

The chief challenge for the VMM is to pass the real
hardware to the virtual machine in a safe, transparent,
and efficient way. Safe means that regardless of what the
software virtual machine does, it should not be able to get
out of its isolated environment and affect other virtual
machines or the VMM. Since the software running in
the virtual machine thinks it’s actually running on raw
hardware, the VMM is responsible for maintaining this
illusion by effectively “lying” to the software about the
true state of the hardware.

The trick used during the 1960s was to configure hard-
ware in such a way that the VMM can get control when-
ever it needs to maintain safe control and to fool the
software into thinking that it has the hardware to itself.
This hardware support, called hardware virtualization,

allows the VMM to run virtual machines in an isolated
and protected environment. It’s also transparent to the
software running in the virtual machine, which thinks
that it is in exclusive control of the hardware. Much
work was done during the 1960s and 1970s to make this
mapping simple and fast so that the VMM could function
with only small performance and resource overhead.

Since the late 1990s there has been a renewed interest
in VMMs, not only in the traditional area of servers, but
also as an extension of desktop computing environments.
In 1999, for example, VMware introduced the hosted
VMM. It was capable of extending a modern operating
system to support a virtual machine that acts and runs
like the hardware-level VMM of old (see figure 3).

ATTRIBUTES OF VMMS
Primary attributes exported by modern VMMs are soft-
ware compatibility, isolation capability, encapsulation,
and low overhead/high performance.

Software compatibility. By making the virtual machine
abstract, the real hardware, all operating systems, and
applications developed for the hardware will run in the
virtual machine. VMware’s products export an x86-based
computer capable of running all of Microsoft’s operat-
ing systems including DOS, Windows 3.1, Windows 95,
Windows 98, Windows NT, Windows 2000, Windows ME,
and Windows XP—as well as other x86 operating systems,
such as Linux and FreeBSD.

Of all the virtualization software forms described here,
the hardware-level virtualization runs the most software.
To maintain compatibility, it needs only to match the
hardware interface, which tends to evolve much slower
than the software interfaces, such as those between the
application and the operating system.

Isolation capability. VMMs are able to leverage the

�����������

Hosted Virtual Machine Monitor Architecture

���������
����

��������

������� ���

FIG 3

38 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 39 more queue: www.acmqueue.com

hardware production mechanism of the machine to
isolate virtual machines from one another. Traditional
VMMs use the MMU (memory management unit) of the
CPU, as well as other production mechanisms, to control
the access of software running in a virtual machine. This
approach leads to a relatively small amount of software
responsible for the isolation of virtual machines.

The small size of the isolation code helps provide
a very high level of assurance that true isolation is
achieved. Code that runs in a virtual machine cannot
access other virtual machines or the monitor. The VMM
is able to control which resources are accessible to each
virtual machine. This isolation can handle both accidents
and malicious attacks. Regardless of what the software in
the virtual machine does, it cannot break the protection
and illusions set up by the VMM.

Compared with the size and complexity of a modern
operating system, which can consist of millions of lines of
code, the small size of the VMM further increases the con-
fidence of achieving true isolation. For example, the code
responsible for maintaining isolation and running in the
most privileged mode of the CPU in a modern operating
system is hundreds of thousands of lines. The isolation
code of a traditional VMM that has good virtualization
support from the hardware can be measured in the tens
of thousands of lines.

Traditionally, the isolation provided by the VMM has
been compared with the isolation provided by having
separate physical machines. This is much higher than
that experienced with modern operating systems.

Encapsulation. Hardware-level virtual machines encap-
sulate all software that runs on the hardware, thus giving
the VMM the unique ability to manage the hardware
resources, as well as manipulate and control the entire
software stack. The monitor allows the software running
in the virtual machine to be effectively decoupled from
the hardware. This decoupling provides for many of the
unique features of hardware-level virtual machines.

Because all of the virtual machine software is encapsu-
lated, the monitor can transparently manage the software
and hardware in the virtual machine. The monitor can
use this capability to run multiple virtual machines simul-
taneously on the same physical machines—or migrate
running virtual machines between different hardware

platforms. The monitor effectively controls all of the
hardware. It also maps it to whatever virtual machines
need the resource.

The virtualization layer can also smooth out minor
differences between hardware platforms to allow the same
virtual machine to run on them. The VMM provides a
conversion layer than can map the virtual devices of a
virtual machine onto different physical devices.

Finally, the encapsulation of all the software in the
virtual machine allows the monitor to manage the entire
software stack. The virtual machine abstraction can be
used to provision software on a machine, as well as man-
age and load-balance it. The monitor can save or check-
point the execution state of a virtual machine and restore
it some other time. This capability allows it to effectively
undo the execution of a virtual machine.

Low overhead/high performance. The techniques used
by VMMs to safely map the virtual machine directly onto
the hardware of the real machine result in performance
close to that of the real machine. The job of the VMM is
to set up the hardware so that the virtual machine’s vir-
tual hardware is mapped directly onto the real hardware
resources. Because the two interface definitions (virtual
and real) match, an executing virtual machine can run at
full speed on the real hardware. For example, the virtual
CPU is emulated by the VMM by simply scheduling the
virtual machine to run a real CPU. Similarly, virtual I/O
devices such as disks are emulated using real disks.

Using hardware virtualization results in VMM over-
head measured in a small percentage. Software running
in a virtual machine spends most of its execution time
directly using the hardware resources; the performance is
the same as the underlying hardware. The VMM overhead
occurs when the VMM needs to get control to maintain
safe isolation, or maintain the transparent illusion. These
events occur relatively infrequently in most workloads.

Hardware virtualization was common during the
1960s and 1970s, but by the 1990s had disappeared from
most popular hardware platforms. It appears to be mak-
ing a comeback, however.

VMM TECHNOLOGY
Today, VMMs are seeing a resurgence in use in more
traditional server environments, as well as on desktop

Virtual
MachinesFO

CU
S

Virtual Machines
The Reincarnation of

38 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 39 more queue: www.acmqueue.com

machines. Some of the reasons for this are application
compatibility, program testing and development, acceler-
ated application deployment, data isolation, and logical
partitioning.

Application compatibility. When upgrading an operat-
ing system or migrating to a different operating system,
it’s not uncommon to find that some applications don’t
work on the new operating system. Maintaining 100 per-
cent backward compatibility is extremely difficult when
modifying complex software systems such as modern
operating systems. This becomes an impossible task when
the modifications include fixing bugs and closing security
holes that the application has come to rely on.

By using a hosted VMM such as the VMware’s Work-
station, it’s possible to run both the new and old oper-
ating systems simultaneously on the same personal
computer. Application programs that will not run on the
new operating system can be run in the old environment,
which is contained in a virtual machine.

Program testing and development. The ability to
handle multiple, different, complete operating system
environments is extremely useful in the development and
testing of software. A software engineer can keep a library
of virtual machines of different software configurations to
develop or test against. Similarly, a system administrator
can keep an older version, the current version, and maybe
newer versions of software on hand to aid in deployment
and backward-compatibility phases.

Accelerated application deployment. Preconfigured
virtual machines that contain a suite of application pro-
grams that are configured and ready to run can be used
to accelerate the deployment of applications. The virtual
machine can be run without the time-consuming tasks of
installing and configuring the suite of other dependent
software applications on existing machines. This deploy-
ment mechanism can be particularly useful for demon-
strating complex software environments—for example,
big application suites or client-server applications that
would otherwise require multiple machines. Consider a
modern Web server that may need a full SQL database,
middleware applications, PHP servers, Perl modules, and
much more, all installed and running before the new
application of a discussion board can be installed.

Data isolation. The strong isolation properties of
hardware-level virtual machines can be used to segregate
data within one system. The NetTop system from the NSA
(National Security Agency) uses the isolation property to
allow the same workstation to access both classified net-
works and the public Internet. Two virtual machines are
used—one connected only to the classified network, and

the other connected to the public network. The isolation
property assures that a malicious attacker coming from
the public network cannot access classified data.

Logical partitioning. Hardware-level virtualization can
be used to partition a physical box to support multiple
virtual machines with a technique called logical partition-
ing. By using another technique called server consolida-
tion, you can consolidate multiple servers into a smaller
number of boxes and then manage them from the central
console. Not only is less hardware needed to support the
same number of servers, the management console can use
the control features of the layer to observe, stop, reboot,
load-balance, and otherwise manage the server with
greater ease than if they were running on physical boxes.
The smaller number of physical machines also reduces
the power, cooling, floor space, etc. of the servers—which
can result in reduced costs. Finally, the isolation property
of virtual machines means that a failure or compromise
in one server will not affect the rest of the servers on the
machine. For example, a failure of a print server will not
take down the Exchange server. Of course, this logical
partitioning assumes that the separate application servers
tend to be underutilized and idle most of the time.

The sophisticated resource management accomplished
by the VMM guarantees servers a certain amount of
hardware resources. A misbehaving server cannot effect a
denial-of-service attack by consuming all resources of the
physical machine. In this way, each isolated server is still
guaranteed a certain level of performance when com-
bined on the single hardware platform.

LESSONS FROM THE PAST
Hardware-level virtual machine technology has been
around for more than 40 years, so it’s worthwhile looking
at the past to learn some lessons for the future. One of
the interesting questions concerns VMMs and operating
systems. Both systems “believe” they should control the
resources of the computer system. But the experience has

Code that runs in a
virtual machine cannot access other
virtual machines or the monitor.

40 July/August 2004 QUEUE rants: feedback@acmqueue.com

been that neither VMMs nor modern operating systems
alone have been able to do this flawlessly.

For example, IBM’s VM/CMS used a VMM running
multiple virtual machines, each with a single-user oper-
ating system instead of a multi-user operating system
such as Unix. When it became clear that a better solu-
tion would be a real multi-user operating system, IBM
deemphasized VMM-based solutions in favor of MVS, its
multi-user operating system. With regard to backward
compatibility, modern multi-user operating systems have
problems sufficiently serious that VMM technology is
being reintroduced. Clearly, we must determine a balance
between implementing functionality with a VMM and
implementing it within the operating system.

We must also determine which software really con-
trols the hardware resources: the VMM or the operating
system. Running both a VMM and an operating system
that makes resource decisions inside the VM can result in
a suboptimal decision. For example, what should decide
when a page of memory is no longer needed and thus can
be written (i.e., “paged out”) to disk—the VMM or the
operating system running in the virtual machine? These
resource management decisions become particularly
important when running software that’s highly sensi-
tive to timing (e.g., realtime control). Solutions to these
problems have included letting the software in the virtual
machine “know” that it’s running in a virtual machine—
and communicating with the VMM on resource manage-
ment decisions.

THE FUTURE OF HARDWARE VIRTUAL MACHINES
Although hardware-level virtualization went from being
widely used during the 1970s to near extinction in the
1980s, it has come back in a strong way. The success
of VMware’s products in the commercial marketplace,
together with recent hardware support for virtualization
such as Intel’s Vanderpool technology and extensions to
IBM’s Power architecture, indicate that it is a technology
just now beginning to be fully realized and that it is here
to stay.

Computing trends indicate that the data center of the
future will likely include a hardware-level virtualization
layer and a control system. Services will run in virtual
machines and will be mapped onto available hardware

resources. Not only will this greatly ease the management
of data centers, it will also ease the handling of new hard-
ware, as well as failed hardware. The failure of a single
physical box will reduce the pool of available resources,
not the availability of a particular service.

Similarly, virtual machine technology will be used to
allow aggressive innovation in the area of system soft-
ware, providing the ability to maintain backward compat-
ibility. Virtual machines will allow for the support of old
applications, as well as the current versions, and will test
the deployment of new versions that are all based on the
same hardware.

One consequence of Moore’s law of semiconductor
growth has been the exponential increase in the perfor-
mance of computing systems. The overhead of a well-
tuned hardware virtualization system is extremely small
compared with the performance increase. This means
that the computing industry can, for only a few percent-
age points of performance, realize the huge benefits of
hardware-level virtualization. Such benefits include the
management of both the hardware and the software that
runs in virtual machines—currently a large expense in
modern computing environments. Q

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

MENDEL ROSENBLUM, associate professor in the com-
puter science department at Stanford University, cofounded
VMware in 1998 and serves as its chief scientist. He received
a B.A. in mathematics from the University of Virginia (1984)
and an M.S. (1989) and Ph.D. (1992) in computer science
from the University of California at Berkeley. He was recipient
of the 1992 National Science Foundation’s National Young
Investigator award, the 1994 Alfred P. Sloan Foundation
Research Fellowship, and was a cowinner of the 1992 ACM
Doctoral Dissertation Award and the 2002 ACM/SIGOPS
Mark Weiser Award for creativity and innovation in operating
systems research. His research interests include system soft-
ware, distributed systems, and computer architecture. Rosen-
blum has published material on disk storage management,
computer simulation techniques, scalable operating system
structure, virtualization computer security, and mobility.
© 2004 ACM 1542-7730/04/0700 $5.00

Virtual
MachinesFO

CU
S

Virtual Machines
The Reincarnation of

mailto:feedback@acmqueue.com
www.acmqueue.com/forums

