
66 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 67 more queue: www.acmqueue.com

In today’s competitive, fast-paced computing industry,
successful software must increasingly be: (1) extensible
to support successions of quick updates and addi-

tions to address new requirements and take advantage of
emerging markets; (2) flexible to support a growing range
of multimedia data types, traffic flows, and end-to-end
QoS (quality of service) requirements; (3) portable to
reduce the effort required to support applications on het-
erogeneous operating-system platforms and compilers; (4)
reliable to ensure that applications are robust and tolerant
to faults; (5) scalable to enable applications to handle
larger numbers of clients simultaneously; and (6) afford-
able to ensure that the total ownership costs of software
acquisition and evolution are not prohibitively high.

Achieving these qualities is difficult, however, when:
1. Core concepts and software artifacts are continu-

ally rediscovered and reinvented—that is, when the same
functionality is rewritten and revalidated. Application
software has historically been developed largely from
scratch. This development process has been applied
many times in many companies, by many projects and
programmers in parallel. Even worse, it has been applied
by the same teams in a series of projects. Regrettably,
this continuous rediscovery and reinvention of core
concepts and code has kept costs high and quality low
throughout the software development life cycle. These

FrameLeveraging Application

DOUGLAS C. SCHMIDT, ANIRUDDHA GOKHALE,
AND BALACHANDRAN NATARAJAN,
VANDERBILT UNIVERSITY

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1016998.1017005&domain=pdf&date_stamp=2004-07-01

66 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 67 more queue: www.acmqueue.com

Leveraging Application

Why frameworks
are important and how to

apply them effectively

works

68 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 69 more queue: www.acmqueue.com

problems only get worse as hardware, networks, operating
systems, middleware, and compilers continue to evolve.
This “infrastructure churn” keeps shifting the founda-
tions of application software development, resulting in a
major source of accidental complexity, which arises from
limitations with tools and techniques used to develop
software.1

2. Software is developed monolithically—as tightly
coupled clumps of functionality that are not organized
modularly. The functions in monolithic software are
often tightly coupled via shared, global variables, and
diagrams of their control flow often look like spaghetti.
Monolithic software is therefore unnecessarily hard to
understand, maintain, and extend.2 Although monolithic
software may sometimes be appropriate in short-lived,
throw-away prototypes3 written by a single programmer,
it is poorly suited for applications that must be main-
tained and enhanced by multiple developers over longer
amounts of time.

To avoid the traps and pitfalls of writing and maintain-
ing monolithic software, a more effective way to achieve
quality software is to use frameworks.4,5 A framework is an
integrated set of software artifacts (such as classes, objects,
and components) that collaborate to provide a reusable
architecture for a family of related applications.6 In par-
ticular, frameworks decouple the application-dependent
portions of software from the application- and platform-
independent portions, thereby enhancing software exten-
sibility, flexibility, and portability in the following ways:
Design reuse—for example, by guiding application devel-
opers through the steps necessary to ensure successful
creation and deployment of complex software.
Implementation reuse—for example, by amortizing soft-
ware life-cycle costs and leveraging previous development
and optimization effort.
Validation reuse—for example, by amortizing the effort
of validating the application- and platform-independent
portions of software, thereby enhancing software reliabil-
ity and scalability.

Likewise, as frameworks mature and become com-
moditized in the form of COTS (commercial off-the-shelf)

products, they often become more affordable.
Although frameworks can be a powerful means to

reduce software cost and improve its quality, they can be
hard to understand, select, learn, use, debug, and opti-
mize. To help make it easier to apply frameworks in prac-
tice, this article examines key characteristics that underlie
various types of frameworks and explores key challenges
that arise when developing and reusing frameworks. It
then describes specific steps to address these challenges.

KEY CHARACTERISTICS OF FRAMEWORKS
Although frameworks are used in a wide range of differ-
ent domains—such as telecommunications, avionics,
manufacturing, and financial services—they share certain
defining characteristics.6 Figure 1 illustrates three of the
most important characteristics of frameworks that help
them achieve the qualities outlined at the beginning of
this article. These three characteristics are as follows:

A framework exhibits “inversion of control” at runtime
via callbacks. These callbacks invoke the hook methods of
application-defined components after the occurrence of

Relationships Between Framework Artifacts

������������
��������

�������������

���������� �����
����

��������

���������

���������

���������

���
�������
��������
���������
������������

�����
����

�����
����

FIG 1

Frameworks
Leveraging Application

68 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 69 more queue: www.acmqueue.com

an event, such as a mouse click or data arriving on a net-
work connection. When an event occurs, the framework
calls back to a virtual hook method in a preregistered
application component, which then performs applica-
tion-defined processing in response to the event. The
hook methods in the components decouple the appli-
cation software from the reusable framework software,
which allows each to change independently as long as
the interface signature and interaction protocols are not
modified. Since frameworks exhibit inversion of control,
they can simplify application design because the frame-
work—rather than the application—runs the event loop
to detect events, demultiplex events to event handlers,
and dispatch hook methods on the handlers that process
the events.

A framework provides an integrated set of domain-
specific structures and functionality based on patterns.
Patterns codify reusable design expertise that provides
time-proven solutions to commonly occurring software
problems that arise in particular contexts and domains.7
Frameworks can be thought of as concrete realiza-
tions of groups of related patterns (known as pattern
languages) that enable reuse of code by capturing the
common abstractions of an application domain—both
their structures and behaviors—while yielding control of
application-specific structure and behavior to application
developers. Frameworks reify the key roles, relationships,
and patterns of interactions among software components
in application domains as reusable code. They therefore
can increase the amount of software reused, which in
turn helps to reduce dramatically the amount of new soft-
ware that is (re)written, debugged, and maintained.

A framework is a semi-complete application. Devel-
opers form complete applications by extending and
customizing reusable components in the framework. In
particular, frameworks help abstract common flows of
control within applications in a domain into product-
line architectures and families of related components. At
runtime these components can collaborate to integrate
customizable application-independent reusable code with
customized application-defined code. Since a framework
is a semi-complete application, it enables larger-scale
reuse of software than can be achieved by reusing indi-
vidual components or stand-alone functions.

Developers in certain domains have applied frame-
works successfully for several decades. For example,
early frameworks, such as MacApp, X Windows, and
Interviews, originated in the domain of GUIs (graphical
user interfaces). JFCs (Java Foundation Classes), MFCs
(Microsoft Foundation Classes), and Qt are contemporary

GUI frameworks that are widely used to create graphical
applications on operating-system platforms. The broad
adoption of reusable GUI frameworks has yielded many
productivity and quality benefits for business and desktop
applications.

Application developers in more complex domains,
such as telecom, financial services, process manufactur-
ing, and aerospace, traditionally lacked reusable COTS
frameworks. Developers in these domains therefore built,
validated, and maintained their software from scratch.
Fortunately, the current generation of reusable applica-
tion server frameworks (such as JBoss, BEA’s WebLogic
Server, Microsoft’s .NET, and ACE), network service pro-
visioning frameworks (such as Cisco’s IOS and Element
Management frameworks), realtime and embedded-sys-
tems development and testing frameworks (such as Time-
Sys’s TimeStorm IDE and MathWorks’ Matlab Realtime
Workshop), IDE (integrated development environment)
frameworks (such as Eclipse, Microsoft’s Visual Studio,
and Sun’s NetBeans), and CAD-enabled product-data and
line-management frameworks (such as EDS’s Teamcenter
and EMG’s E-Matrix) are designed to address a broader
and deeper range of domains than GUIs.

KEY CHALLENGES IN DEVELOPING AND
REUSING FRAMEWORKS
Frameworks are a promising technology for instantiating
proven software designs and implementations to reduce
cost and improve quality of software. Developing and
using frameworks effectively, however, can involve con-
siderable time and energy, depending on the complexity
of the domain, the maturity of existing frameworks, the
availability of good documentation, the willingness of
other users who can help (e.g., mailing lists and other
newsgroups on the Internet), and the ability of develop-
ers to master key concepts, patterns, features, and tools
associated with frameworks. When confronted with these
challenges, software developers often need to perform the
following activities:
• Determine if a particular framework applies to their

problem domain and whether it has sufficient quality to
be an effective solution.

• Evaluate whether the time spent learning a framework
outweighs the time saved by reuse.

• Learn how to debug applications written using a frame-
work.

• Identify the performance implications of integrating
application logic into a framework.

• Evaluate the effort required to develop a new frame-
work.

70 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 71 more queue: www.acmqueue.com

This section explores each of these activities and
describes specific steps to succeed with frameworks in
practice.

DETERMINING FRAMEWORK
APPLICABILITY AND QUALITY
Frameworks are most applicable in problem domains
where there is considerable commonality in functionality
and QoS requirements of solution space, yet where each
solution may vary in certain respects, thereby neces-
sitating a framework to manage points of commonality
and variability. For example, Xerces provides a powerful
framework for parsing and validating the conformance of
XML data to a specific DTD (document type definition)
or schema. Xerces also enables the construction of data
from XML files to build applications, such as XML-savvy
Web servers, vertical applications that use XML as their
data format, and on-the-fly validation for XML editors.
The key commonality handled by the Xerces framework
in all these applications is the XML parsing required to
build applications that can then process the XML content
in different ways using different programming languages,
such as C++, Java, and Perl.

When deciding whether a framework can be used for
a particular application or domain include, you should
consider the following:
• Ask domain experts and product architects to identify

common functionality with other domains and con-
duct a study of available COTS frameworks to address
domain-specific and domain-independent functionality
during the design phase of a project.

• Conduct pilot studies that apply various COTS frame-
works to develop representative prototype applications.
Such pilot studies can be conducted as part of an itera-
tive development approach—for example, the Spiral
model or XP (extreme programming).

The goal here is to identify the capabilities of existing
frameworks and determine the level of effort required
to integrate domain- and product-specific logic with the
selected framework(s).

It’s important to recognize, however, that the suitabil-

ity of a framework for a particular application may not
be apparent until the learning curve has flattened, which
often occurs on the second and successive projects that
use the framework. Since application developers can take
six to nine months to become highly productive with
frameworks on their own, hands-on mentoring and train-
ing courses can help developers master a new framework
more quickly and effectively. Application developers can
also mitigate the effects of the learning curve by pro-
totyping and incrementally focusing on subsets of the
framework that are immediately applicable to their most
immediate task at hand.

Applicability is only part of the criteria for evaluating
a framework, however. The other part is quality—how to
differentiate a good framework from a bad framework.
Some specific issues to consider when evaluating the
quality of a framework include the following:
• Will the framework allow applications to cleanly decou-

ple the callback logic from the rest of the software—that
is, will the framework become too tightly coupled with
the development, debugging, future enhancement, and
maintenance of other parts of the software?

• Can applications interact with the framework via a
narrow and well-defined set of interfaces and facades?7
Does the framework document all the APIs that applica-
tions use to interact with the framework—for example,
does it define pre-conditions and post-conditions of
callback methods via contracts?

• Does the framework explicitly specify the startup,
shutdown, synchronization, and memory management
contracts available for the clients?

EVALUATING THE
ECONOMICS OF FRAMEWORKS
Although frameworks are designed as reusable software,
in practice their reusability often depends on how well
they model the commonalities and variabilities across
application domains, such as business data processing,
telecom call processing, graphical user interfaces, or real-
time middleware. By leveraging the domain knowledge
and prior efforts of experienced developers, frameworks

Frameworks
Leveraging Application

70 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 71 more queue: www.acmqueue.com

provide solutions to common problems, and ways to
extend and customize existing infrastructure to create
domain-specific solutions for domain-specific problems
and software design challenges. Unless the effort required
to learn the framework can be amortized over many proj-
ects, however, this investment may not be cost effective;
it may be better to build new capabilities in-house rather
than reuse existing frameworks.

Some specific steps to take when deciding whether to
reuse an existing framework or build the code include:8

• Determine effective framework cost metrics, which
measure the savings of reusing framework components
versus building applications from scratch.

• Conduct cost/effort estimations, which involves accu-
rately forecasting the cost of buying, building, or adapt-
ing a particular framework.

• Perform investment analysis and justification, which
determines the benefits of applying frameworks in
terms of return on investment.

Cocomo 2.0 is an example of a widely used software
cost model estimator that can help to predict the effort
for new software activities. The estimates from these types
of models can be used as a basis for determining the sav-
ings that could be incurred by using frameworks. A chal-
lenge confronting software development organizations,
however, is that many existing software cost/effort esti-
mation methodologies are not well calibrated to handle
reusable frameworks or standards-based frameworks that
provide subtle advantages, such as code portability or
refactoring. Additional research is therefore necessary to
characterize the appropriate techno/economic criteria for
selecting frameworks.

EFFECTIVE FRAMEWORK
DEBUGGING TECHNIQUES
Frameworks often hide interactions in a way that makes
it hard to debug applications that were developed using
frameworks. As was shown in figure 1, frameworks exhibit
inversion of control at runtime via callbacks to compo-
nent hook methods after the occurrence of an event.

Various issues complicate the debugging of applica-
tions developed using frameworks. For example, appli-
cation developers may not be intimately familiar with
a framework’s design and implementation, which may
lead to subtle bugs caused by misinterpretations of an
interface’s semantics and protocols. Moreover, complex
and error-prone memory management rules may be
required for languages like C++ that don’t support auto-
matic garbage collection. Some frameworks also require
application developers to follow subtle initialization and

termination protocols that designate the order in which
objects are created or destroyed. Failure to follow these
protocols correctly can cause problems that are hard to
trace and debug.

Traditional techniques for debugging applications—for
example, using a debugger to step through the applica-
tion and verifying the state information—are often inef-
fective for applications built using frameworks since bugs
commonly stem from faulty assumptions and miscon-
ceptions about the interactions hidden by a framework.
A more effective way of debugging framework-based
applications is to use tools that perform the following
functions:

• Track lifetimes of objects by monitoring their reference
counts.

• Monitor the internal request queue lengths and buffer
sizes maintained by the framework.

• Monitor the status of the network connections in dis-
tributed systems.

• Track the activities of designated threads in a thread
pool.

• Trace the SQL statements issued by servers to back-end
databases.

• Identify priority inversions in realtime systems.
• Track authentication and authorization activities.

Though there are many general-purpose software
debugging tools, few widely used commercial tools
support effective framework debugging. Projects often
must develop flexible framework debugging tools that
integrate the individual tool features listed above and
can be configured to suit the framework being debugged.
For example, debugging tools for enterprise application
frameworks provide some common capabilities, such as
tracking object lifetimes, network connections, threading
policies, database activity, and security.

Moreover, since frameworks are often specialized for

Frameworks often hide
interactions in a way that
makes it hard to debug applications
developed using them.

72 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 73 more queue: www.acmqueue.com

particular domains, good debuggers require a deep under-
standing of the framework’s design rules to be effective.
An example is OCI’s Ovation, an open source tool that
helps developers debug distributed applications by cap-
turing and visually presenting: interdependencies among
processes, threads, components, and objects; timing
information for messages in absolute time and relative to
user-defined milestones; and important epochs, such as
client/server pre- and post-invoke.

These are some specific steps to reduce complexities in
testing and debugging applications using frameworks:
• Perform design reviews early in the application devel-

opment process to convey the types of interactions
between the framework and the application logic. For
example, application developers should understand the
callback points in a framework and use these as starting
points to help debug their applications.

• Conduct code inspections that focus on common mis-
takes, such as incorrectly applying memory ownership
rules for preregistered components with the frameworks.

• Select good automated debugging tools, such
as memory bounds checkers and code coverage
instrumentation/analysis tools that help application
developers identify and pinpoint common problems.
Examples of these tools include Rational Purify, the
open source Valgrind, and Compuware Boundschecker.

• Develop automated regression tests that exercise various
framework capabilities in the context of application
scenarios to get a better understanding of the strengths
and weaknesses of the framework. Distributed continu-
ous quality assurance tools, such as those shown at
http://www.dre.vanderbilt.edu/scoreboard, can help to
identify problems throughout the development cycle.

IDENTIFYING FRAMEWORK MEMORY
AND PERFORMANCE OVERHEAD
Though well-written frameworks can enhance applica-
tion developer productivity, they can also incur signifi-
cant memory and performance overhead because of their
additional generality and capabilities. Understanding
these time- and space-overhead implications of frame-

works is essential for performance-sensitive applica-
tions that use frameworks along their critical paths. For
example, frameworks that are used to invoke remote
operations—such as CORBA (Common Object Request
Broker Architecture) and Java RMI (Remote Method Invo-
cation)—typically manage operating-system resources
(such as socket connections, threads, locks, and shared
memory), which can add considerable overhead if they
aren’t designed, implemented, or optimized properly.
Common sources of time/space overhead in frameworks
stem from the following factors:
Event dispatching latency—the time taken by a frame-
work to call back application handlers when events arrive.
Synchronization latency—the time spent trying to
grab and release locks along the critical path in single-
threaded and multi-threaded modes of operation within
a framework.
Resource management latency—the time spent trying
to allocate and release resources, such as memory, and
socket handles in single-threaded and multi-threaded
modes of operation.
Framework functionality latency—the time spent by the
thread of control within the framework for each opera-
tion it handles.
Dynamic memory overhead—which often involves
the resources used to address the sources of latency
just outlined. For example, a framework could cache
memory allocated dynamically to reduce event dispatch-
ing latency, which in turn could increase the runtime
memory of the applications that use the framework.
Static memory overhead—the amount of additional disk
space that an application needs when using a frame-
work—for example, as a result of additional framework
code that is linked into an application, even though the
application may not necessarily use it.

Specific steps to take when evaluating the performance
of applications developed using a framework include the
following:
• Conduct a systematic engineering analysis to determine

the features and properties (such as scalability, toler-
ance to commonly occurring faults, and predictability)

Frameworks
Leveraging Application

72 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 73 more queue: www.acmqueue.com

required from a framework. Frameworks often perform
well when a limited set of their features is used, but will
perform poorly when many features (or a certain combi-
nation of features) are used.

• Develop test cases to empirically evaluate the over-
head associated with every feature and combination of
features. Applications in different domains may require
different types of data. For example, realtime applica-
tions may require predictable low latency, whereas
scientific visualization applications may require high
throughput. The test cases should evaluate the required
characteristics.

• Locate third-party performance benchmarks and analy-
sis to compare with the data collected. Techniques for
developing benchmarks, including regression bench-
marking, are available as good reference material to
develop framework benchmarking testbeds.9

EVALUATING THE EFFORT TO DEVELOP
A NEW FRAMEWORK
Despite the depth and breadth of existing COTS frame-
works, developers can still encounter situations where
no existing frameworks are applicable for their domains
or product needs. For example, the event loop mecha-
nisms used to provide inversion of control in existing
frameworks don’t always integrate seamlessly with legacy
application components. Likewise, existing frameworks
may not be able to meet performance requirements or
may provide insufficient information via callbacks for
applications operating in certain domains (particularly
applications with stringent QoS requirements). Existing
frameworks may also be unusable because of lack of sup-
port for a particular programming language or operating
system. In these situations, software teams may need
to develop their own frameworks to accommodate the
requirements in their domain.

Given how hard developing software is in general,
it should be no surprise that developing high-quality,
extensible,5 and reusable frameworks is even harder.6
A key challenge of designing frameworks is to decom-
pose the framework’s capabilities into a set of reusable
classes, while simultaneously anticipating future uses and
changes. Some specific issues that should be addressed
when developing a new framework include:
• Determining which classes should be fixed, thus

defining the stable shape and usage characteristics of
the framework. If key interfaces in a framework aren’t
stable, users may have difficulty understanding and
applying the framework effectively and efficiently
because there will be too many degrees of freedom.

• Determining which classes should be extensible—for
example, by subclassing or template instantiation—to
support adaptation necessary to use the framework for
new applications. If a framework can’t be extended,
then users can’t customize it for their needs, which
makes it hard to accommodate a diverse set of applica-
tions and use cases that were not foreseen during the
framework’s initial design.

• Determining the right protocols for startup and shut-
down sequences of operations. If the application
developers cannot pick and choose the initialization and
termination sequences of framework operations, the life-
times of the application and framework can get coupled
in complex ways. This can reduce flexibility significantly.

• Developing the right memory management and reen-
trancy rules for the framework. If the framework can be
used by multiple threads, framework developers should
provide mechanisms to serialize access to shared data
and yet determine ways to provide increased concur-
rency for better performance by minimizing excessive
locking.

• Determining the right set of narrow interfaces for the
clients to use. Too narrow an interface can lead to
restrictions and place an undue burden on the applica-
tion, whereas too broad an interface can lead to confus-
ing API usage.

The diversity of the domains in which frameworks can
be applied makes defining a single universal strategy for
developing frameworks difficult; hard-won experience
and insights are crucial ingredients to success. In general,
however, well-designed frameworks are often developed
via a systematic process of identifying the commonality
and variability10 of policies and mechanisms in a par-
ticular application domain. The commonality should be
factored into stable reusable class interfaces. The vari-
ability should be factored into reusable classes whose
implementations conform to a common interface so they
can be substituted easily to meet the needs of particular
applications in particular contexts.

Fortunately, there are now many documented pat-
terns7 and pattern languages1 that can help guide and
accelerate the design and implementation of frameworks
by enabling developers to reuse higher-level software
application designs, such as publisher/subscriber architec-
tures, micro-kernels, and brokers.11 These design artifacts
represent some of the key strategic aspects of complex
software systems. If they are understood and applied
properly via frameworks, the impact of many vexing
complexities can be greatly alleviated. Even so, getting
the design and implementation of a framework right

74 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 75 more queue: www.acmqueue.com

may take a number of iterations. To get a good return on
the investment needed to develop a good framework,
therefore, this effort must be amortized over multiple
applications and projects—otherwise, the investment
may simply not be cost effective.

BENEFITS TO COME
The past decade has yielded significant progress in the
development and reuse of frameworks. As a result, we
now have frameworks based on open standards, such as
Java and CORBA, that provide a portable and interopera-
ble set of software artifacts, such as interoperable security,
distributed resource management, and fault-tolerance ser-
vices. In the future, many applications will be assembled
by integrating and scripting domain-specific and com-
mon “pluggable” framework components, rather than
being programmed from scratch as they are today. Key
topics and domains that will benefit from the foundation
work on frameworks conducted thus far include:

Distributed realtime and embedded systems. An
increasing number of patterns associated with frame-
works for concurrent and networked systems have been
documented recently.12,1 A key next step is to develop
frameworks for DRE (distributed realtime and embed-
ded) systems. This will extend earlier efforts to focus on
effective strategies and tactics for managing key QoS
properties in DRE systems, including network bandwidth
and latency, CPU speed, memory access time, and power
levels. Since developing high-quality DRE systems is dif-
ficult and remains something of a “black art,” relatively
few reusable patterns13 and frameworks14 exist for this
domain today. We expect an increased focus on DRE
systems in the future, however, as reusable framework
technology matures, together with the development
tools, techniques, and processes that enable frameworks
to be applied successfully in the DRE domain.

Mobile systems. Wireless networks are becoming
pervasive, and embedded devices are become smaller,
lighter, and more capable. Thus, mobile systems will
soon support many consumer communication and
computing needs. Application areas for mobile systems

include ubiquitous computing, mobile agents, personal
assistants, position-dependent information provision,
remote medical diagnostics and teleradiology, and home
and office automation.6 In addition, Internet services,
ranging from Web browsing to online banking, will be
accessed from mobile systems. Mobile systems present
many challenges, such as managing low and variable
bandwidth and power, adapting to frequent disruptions
in connectivity and service quality, diverging protocols,
and maintaining cache consistency across disconnected
network nodes. We expect that experienced developers of
mobile systems will capture their expertise in the form of
reusable frameworks to help meet the growing demand
for quality software in this area.

Adaptive QoS for COTS systems. Distributed appli-
cations, such as streaming video, Internet telephony,
and large-scale interactive simulation systems, have
increasingly stringent QoS. To reduce development cycle
time and cost, these applications are increasingly being
developed using multiple layers of COTS hardware,
operating systems, and middleware components. Histori-
cally, however, it has been hard to configure COTS-based
systems that can simultaneously satisfy multiple QoS
properties, such as security, timeliness, and fault toler-
ance.15 As developers and integrators continue to master
the complexities of providing end-to-end QoS guarantees,
it is essential that they create adaptive and reflective
frameworks to help others configure, monitor, and con-
trol COTS-based distributed systems that possess a range
of interdependent QoS properties.

Despite the many benefits of frameworks, however,
they are not silver bullets. In particular, they don’t
absolve developers from responsibility for solving all
complex concurrent and networked software analysis,
design, implementation, validation, and optimization
problems. Ultimately, there is no substitute for human
creativity, experience, discipline, diligence, and judgment.
When applied using the techniques described in this
article, however, frameworks can help to alleviate many
accidental and inherent complexities, thereby yielding
better-quality software with less overall time and effort. Q

Frameworks
Leveraging Application

74 July/August 2004 QUEUE rants: feedback@acmqueue.com QUEUE July/August 2004 75 more queue: www.acmqueue.com

REFERENCES
1. Schmidt, D. C., Stal, M., Rohnert, H., and Buschmann,

F. Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley &
Sons, New York: NY, 2000.

2. Fowler, M., Beck, K., Brant, J., Opdyke, W., and Rob-
erts, D. Refactoring—Improving the Design of Existing
Code. Addison-Wesley, Reading: MA, 1999.

3. Foote, B., and Yoder, J. Big Ball of Mud. In Pattern
Languages of Program Design 4, Foote, B., Harrison, N.,
and Rohnert, H., eds. Addison-Wesley, Boston: MA,
2000.

4. Fayad, M., Johnson, R., and Schmidt, D. C., eds. Imple-
menting Application Frameworks: Object-Oriented Frame-
works at Work. Wiley & Sons, New York: NY, 1999.

5. Fayad, M., Johnson, R., and Schmidt, D. C., eds.
Building Application Frameworks: Object-Oriented Foun-
dations of Framework Design. Wiley & Sons, New York:
NY, 1999.

6. Johnson, R. Frameworks = (patterns + components).
Communications of the ACM 40, 10 (Oct. 1997), 39-42.

7. Gamma, E., Helm, R. Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading: MA, 1995.

8. Fayad, M. E., and Hamu, D. S. Enterprise frameworks:
guidelines for selection. ACM Computing Surveys
(Mar. 2000).

9. Lockheed Martin Advanced Technology Labs, ATL
QoS Home Page; http://www.atl.external.lmco.com/
projects/QoS/.

10. Coplien, J., Hoffman, D., and Weiss, D. Commonality
and variability in software engineering. IEEE Software
15, 6 (Nov./Dec. 1998), 37-45.

11. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P., and Stal, M. Pattern-Oriented Software Architecture—
A System of Patterns. Wiley & Sons, New York: NY,
1996.

12. Lea, D. Concurrent Programming in Java: Design Prin-
ciples and Patterns, Second Edition. Addison-Wesley,
Boston: MA, 2000.

13. Noble J., and Weir, C. Small Memory Software: Patterns
for Systems with Limited Memory. Addison-Wesley,
Boston: MA, 2001.

14. Schmidt, D. C., and Huston, S. D. C++ Network Pro-
gramming, Volume 2: Systematic Reuse with ACE and
Frameworks. Addison-Wesley, Reading: MA, 2002.

15. Zinky, J. A., Bakken, D. E., and Schantz, R.
Architectural support for quality of service for CORBA
objects. Theory and Practice of Object Systems 3, 1
(1997), 1-20.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

DOUGLAS C. SCHMIDT, Ph.D (d.schmidt@vanderbilt.
edu), is a professor in the electrical engineering and
computer science department at Vanderbilt University and
a senior member of the Institute for Software Integrated
Systems.

He has published more than 250 technical papers and
books covering patterns, optimization techniques, and
empirical analyses of software frameworks that facilitate the
development of DRE (distributed realtime and embedded)
middleware running over high-speed networks and embed-
ded system interconnects. Schmidt has served as a deputy
office director and a program manager at DARPA (Defense
Advanced Research Projects Agency), where he led the
national R&D effort on middleware for DRE systems.
Schmidt has more than 15 years of experience leading the
development of ACE (Adaptive Communication Environ-
ment) and TAO, which are widely used, open source DRE
middleware frameworks.
ANIRUDDHA S. GOKHALE (a.gokhale@vanderbilt.edu)
is an assistant professor in the electrical engineering and
computer science department and a research scientist at
the Institute for Software Integrated Systems, both at
Vanderbilt University. His research interests are in realtime
component middleware optimizations, model-driven
software synthesis applied to component middleware-
based applications, and distributed resource management.
He is leading DARPA (Defense Advanced Research Projects
Agency) projects that involve modeling and middleware
solutions and distributed dynamic resource management.
In addition, he is heading the R&D efforts on an open
source model-driven middleware framework called
CoSMIC.

Gokhale was previously with Bell Laboratories, Lucent
Technologies. He received his B.E. in computer engineering
from the University of Pune, India; M.S. in computer science
from Arizona State University; and D.Sc. in computer sci-
ence from Washington University.
BALACHANDRAN NATARAJAN (bala@cs.wust.edu) is a
senior staff engineer at the Institute for Software Integrated
Systems and a Ph.D. student in electrical engineering and
computer science at Vanderbilt University. His research
focuses on applying patterns, optimization principles, and
frameworks to build high-performance, dependable, and
realtime distributed object computing systems. Natarajan
received his M.S. in computer science at Washington
University.
© 2004 ACM 1542-7730/04/0700 $5.00

mailto:feedback@acmqueue.com
www.acmqueue.com/forums
mailto:d.schmidt@vanderbilt. edu
mailto:d.schmidt@vanderbilt. edu
mailto:a.gokhale@vanderbilt.edu
mailto:bala@cs.wust.edu

