
ar
X

iv
:c

s/
02

08
02

7v
1

 [
cs

.D
C

]
 1

9
A

ug
 2

00
2

A Unified Theory of Shared Memory Consistency

ROBERT C. STEINKE and GARY J. NUTT

University of Colorado at Boulder

The traditional assumption about memory is that a read returns the value written by the most
recent write. However, in a shared memory multiprocessor several processes independently and
simultaneously submit reads and writes resulting in a partial order of memory operations. In
this partial order, the definition of most recent write may be ambiguous. Memory consistency
models have been developed to specify what values may be returned by a read given that memory
operations may only be partially ordered. Before this work, consistency models were defined
independently. Each model followed a set of rules which was separate from the rules of every
other model. In our work we have defined a set of four consistency properties. Any subset of the
four properties yields a set of rules which constitute a consistency model. Every consistency model
previously described in the literature can be defined based on our four properties. Therefore, we
present these properties as a unfied theory of shared memory consistency.

Our unified theory provides several benefits. First, we claim that these four properties capture
the underlying structure of memory consistency. That is, the goal of memory consistency is to
ensure certain declarative properties which can be intuitively understood by a programmer, and
hence allow him or her to write a correct program. Our unified theory provides a uniform, formal
definition of all previously described consistency models, and in addition some combinations of
properties produce new models that have not yet been described. We believe these new models will
prove to be useful because they are based on declarative properties which programmers desire to
be enforced. Finally, we introduce the idea of selecting a consistency model as an on-line activity.
Before our work, a shared memory program would run start to finish under a single consistency
model. Our unified theory allows the consistency model to change as the program runs while
maintaining a consistent definition of what values may be returned by each read.

Categories and Subject Descriptors: []:

General Terms: Theory

Additional Key Words and Phrases:

1. INTRODUCTION

Shared memory is a powerful abstraction for interprocess communication. The
concept of shared memory originated from multiprogramming on uniprocessors and
bus-based multiprocessors. In these environments there is a simple model of the
memory system enforced in hardware. The model can be stated as:

—There is a physical memory cell that represents each variable. The state of this
memory cell is the state of the variable.

—Memory operations take place sequentially. They are atomic and there is a total
order on all memory operations. Read operations return the current state of the
physical memory cell. Write operations change the current state of the physical

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–47.

http://arXiv.org/abs/cs/0208027v1

2 · R. Steinke and G. Nutt

memory cell and the change becomes observable to all processes simultaneously.

—The operations of each process take place in the order specified by its program.

These conditions are enforced by the hardware architecture. In a multipro-
grammed uniprocessor there really is only one process submitting memory opera-
tions at a time. In a bus-based multiprocessor with no cache, the bus serves as a
serialization mechanism that allows operations to reach memory sequentially.

For many years these assumptions were implicit and any computer scientist
would tell you, “That’s just how memory works.” Then two things happened.
The first is that memory systems in multiprocessors got more and more compli-
cated [Dubois and Scheurich 1990; Dubois et al. 1986; Gharachorloo et al. 1990;
Lenoski et al. 1990]. The second is the invention of distributed shared memory
(DSM) for the message-passing multicomputer [Amza et al. 1996; Bennett et al.
1990; 1995; Bershad et al. 1993; Bershad and Zekauskas 1991; Li 1986; Li and
Hudak 1989]. Caching and out-of-order instruction dispatching can pose a problem
for multiprocessors. The hardware of each processor enforces the restriction that
the processor sees its own memory operations in the order specified by its program,
but this does not automatically protect processors from seeing each other’s oper-
ations out of order. DSM provides the illusion of a shared address space on top
of hardware that only supports message passing. In DSM systems, asynchronous
messages and replicated copies of data can cause the same problems.

These problems led to the concept of consistency models. A consistency model
is a specification of the allowable behavior of memory. It can be seen as a contract
between the memory implementation and the program utilizing memory [Tanen-
baum 1995]. The input to memory is a set of memory operations (reads and writes)
partially ordered by program order. The output of memory is the collection of val-
ues returned by all read operations. A consistency model is a function that maps
each input to a set of allowable outputs. The memory implementation guarantees
that for any input it will produce some output from the set of allowable outputs
specified by the consistency model. The program must be written to work cor-
rectly for any output allowed by the consistency model. This idea was originally
described by Lamport when he defined sequential consistency [Lamport 1979]. A
sequentially consistent multiprocessor allows conventional reasoning about the cor-
rectness of programs. Essentially, it allows the programmer to treat the machine
as a multiprogrammed uniprocessor. Enforcing sequential consistency can be very
costly. Soon weaker consistency models were discovered that were less expensive in
terms of communication. Multiprocessors were generally used for large numerical
programs that were already programmed with a constrained programming style to
avoid data race conditions. With slight modifications to the programming style,
algorithms could still be written to execute correctly for non-sequentially consistent
memory systems.

With consistency models, the concept of shared memory is no longer tied to the
physical implementation of memory cells. A programmer can write a correct pro-
gram using the abstractions of concurrent processes and shared memory with little
knowledge about the underlying implementation that will eventually execute the
program. All that the programmer needs to know is the consistency model enforced
by memory. To give the memory implementor more flexibility for optimization, the

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 3

Application Program

Consistency Model
6

?

Read and Write
Operations?

6Values Returned
by Reads

Shared Memory API

Memory Implementation (Black Box)

Fig. 1. Shared Memory as an API

memory might enforce fewer guarantees. Or to make the programmer’s job eas-
ier the memory might enforce more guarantees. Many choices have been made
along this ease of use to efficient implementation continuum. The results are the
consistency models described in the literature [Ahamad et al. 1991; Bershad and
Zekauskas 1991; Dubois et al. 1986; Gao and Sarkar 2000; Gharachorloo et al.
1990; Goodman 1989; Herlihy and Wing 1990; Hutto and Ahamad 1990; Iftode
et al. 1996; Keleher et al. 1992; Lamport 1979; Lipton and Sandberg 1988]

This leads to the idea of shared memory as an application programming inter-
face (API) as shown in Figure 1. The program and memory agree on a consistency
model. Then the program executes using the shared memory API, and the pro-
gram’s processes share information in a common address space. No knowledge is
needed of the memory implementation.

This work also introduces the idea of on-line consistency model transitions. Prior
to this research, the selection of a consistency model was seen as an off-line activity.
A program would be written to operate under a particular consistency model, and
it would be up to the user to run the program on a system which supported that
consistency model. Instead, with consistency model transitions a program is allowed
to select and change the consistency model at run-time. The consistency model
becomes a tunable parameter to the shared memory API. This allows a program
to select different consistency models for different phases of a computation. This
requires that consistency models be extended with a transition theory to specify
the allowed behavior of the memory system when processing pending operations
submitted under more than one consistency model.

One hypothesis of our work was that every consistency model is composed of
various consistency properties, system-wide conditions that must be enforced, and
that these properties can be combined in arbitrary ways to produce a lattice of
consistency models. By defining every consistency model as a set of primitive prop-
erties, transitions between models can be described as the addition or removal of
various properties. For evaluation and validation, the new properties proposed in
this paper are compared against existing definitions of consistency models. Exist-
ing consistency models fall into two classes, Either Non-synchronized or Synchro-
nized models. Non-synchronized models have uniform consistency restrictions for
all operations. Synchronized models have special operations (called synchroniza-
tion operations) which have greater consistency restrictions than other operations.
Non-synchronized consistency models from the literature are simulated by combi-
nations of properties in the lattice. Synchronized models have two distinct types of

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · R. Steinke and G. Nutt

operations that have different consistency requirements. Therefore, synchronized
consistency models are simulated by consistency transitions

The first contribution of this work is the discovery of four fundamental consis-
tency properties: process order, data order, write-read-write order, and anti order.
These properties provide alternate definitions of well known non-synchronized con-
sistency models and reveal a fundamental structure behind the models. Every
non-synchronized model described in the literature can be formally described by
some combination of these properties. The second contribution of this work is the
concept of a consistency lattice. In the lattice, each pair of models has a unique
least upper bound and a unique greatest lower bound. These define the minimum
model required to enforce all conditions of both models, and the maximum set of
conditions enforced by both models respectively. This lattice allows simple, direct
comparison of models, and is a valuable resource for any application environment
that uses more than one consistency model. The third contribution of this work
is the new consistency models revealed by the structure of the lattice. Generating
every possible combination of properties produces five combinations that are well
defined consistency models that have not previously been discovered. The fourth
contribution of this work is a transition theory that can be used to simulate well
known synchronized consistency models.

FIXME Insert roadmap here.

2. RELATED WORK

2.1 Shared Memory

A common trend in the literature is the development of uniform frameworks and
notation to represent several previously defined consistency models [Adve and Hill
1993; Adve and Gharachorloo 1996; Bataller and Bernabeu 1997; Mosberger 1993].
Our unified theory is an improvement over these methods because we expose the
underlying structure of declarative properties enforced by various models, and we
predict new models that have not yet been discovered. There are currently two
common methods of characterizing consistency models. One method is to describe
restrictions on the way in which processes are allowed to issue memory operations
which we will call the “issue” method (e.g. see [Adve and Gharachorloo 1996].)
Another method is to describe restrictions on the apparent order of events visible
to processes which we will call the “view” method (e.g. see [Bataller and Bernabeu
1997].) Adve and Gharachorloo [Adve and Gharachorloo 1996] use the “issue”
method of defining consistency models. They identify two conditions that together
will enforce sequential consistency. They call these the process order property, and
the write atomicity property.

Process order property. Program order must be maintained among operations
from individual processes.

Write atomicity property. In cache based systems with multiple copies of a mem-
ory location, writes must be atomic.

The first condition can be enforced by having a process not issue an operation un-
til all previous operations are complete. Complete means that a read has returned
its value, or a write has been applied and acknowledged. The second condition can

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 5

be enforced by a cache coherence protocol which does not acknowledge writes until
every copy is updated or invalidated. Adve and Gharachorloo use this implemen-
tation of sequential consistency as a basis for their definitions of other consistency
models. Every other model is allowed to violate some of the restrictions required
for sequential consistency. Violating a restriction allows for optimization in the
implementation. They identify five optimizations that may be allowed.

—Allow a read to be issued before a previous write is complete.

—Allow a write to be issued before a previous write is complete.

—Allow a read or write to be issued before a previous read is complete.

—Allow a read to view another process’ write before the write is applied everywhere.

—Allow a read to view one’s own write before the write is applied everywhere.

The first optimization combined with the last two result in processor consistency
as it was defined for the DASH multiprocessor [Lenoski et al. 1990]. All five opti-
mizations combined result in slow consistency [Hutto and Ahamad 1990] which is
used for non-synchronizing operations in synchronized consistency models such as
release and weak consistency. For each consistency model, Adve and Gharachorloo
describe a “safety net” which would enforce sequential consistency on top of that
model. These safety nets consist of replacing certain operations with special pur-
pose synchronization operations such as test and set or acquire/release. They also
describe the concept of a programmer centric framework where for any consistency
model a programmer can determine what synchronizations must be performed for
a program to simulate sequential consistency on top of that model.

The goal of consistency models in this view is to simulate sequential consistency
with an efficient implementation. The tradeoff is speed versus complexity exposed
to the programmer. Their work does not characterize the order of events as seen
by any particular process in a non-sequential execution. Instead, they character-
ize what changes a programmer must make to a program to simulate sequential
consistency. Other work taking this view has been done to present an efficient,
sequentially consistent interface to the programmer through instruction level par-
allelism and speculative execution [Gniady et al. 1999; Ranganathan et al. 1997;
Ranganathan et al. 1997]. The logic being that speculative rollback will gener-
ally occur in situations where the processes would be waiting on synchronization
operations anyway so little time would actually be lost.

We believe that using weaker consistency models soley to simulate sequential
consistency with an efficient implementation should not be the only goal of shared
memory research. Our work is based on the idea of declarative consistency proper-
ties weaker than sequential consistency, but still intuitively useful to programmers.
Therefore, we found the formalisms of the “issue” method less useful to us.

An alternative to the “issue” method is the “view” method where each process has
a view of the order of events in the system. For example, PRAM consistency [Lipton
and Sandberg 1988] states that each process must see all operations to occur in
an order that respects program order, but different processes may see different
orders. This essentially places restrictions on when operations may become visible
to other processes, and not on when they may be issued. For our purposes, the
view method of defining consistency models is most appropriate. What matters is

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · R. Steinke and G. Nutt

the possible orders of events from the process’ (programmer’s) point of view. The
programmer does not care how the shared memory is implemented. If two different
implementations produce the same set of possible views they should be considered
equivalent. For this reason, our work uses view based definitions of consistency
models. We believe they are more independent of implementation details. Several
surveys of view based definitions have been presented in the literature [Bataller and
Bernabeu 1997; Mosberger 1993; Tanenbaum 1995]. These view based definitions
are presented in Subsections 2.2 and 2.3.

The only prior comparison in the literature of the issue and view methods is
by Mustaque Ahamad, et. al. [Ahamad et al. 1992]. In their paper they com-
pare Goodman’s definition of processor consistency (which is view based) to the
DASH definition (which is issue based.) Their conclusion was that both definitions
are weaker than sequential consistency, and stronger than both PRAM and cache
consistency. This is the strength relationship commonly understood for processor
consistency, and the two models have often been considered equivalent. However,
Ahamad, et. al. showed that the two definitions are not equivalent, and are in fact
incomparable. This showed that it is not trivial to compare consistency models de-
fined under the two formalisms. More work relating the two formalisms is needed.
However, this paper concentrates on view based definitions. Generally, issue based
definitions have a view based definition that is analogous.

The most closely related work to this paper is the Mume project [Bataller and
Bernabeu-Auban 1998] which specifies three consistency properties (orderings): to-
tal order, total order with mutual exclusion, and causal order. The Mume project
showed that these orderings can be used to provide an alternative and equivalent
specification of existing consistency models. However, unlike our work, there is no
notion of combining properties in arbitrary ways to produce a lattice of consistency
models, or of consistency transitions within that lattice.

2.2 Consistency Model Definitions

Leslie Lamport defined sequential consistency [Lamport 1979]:

Definition 2.1. A multiprocessor is Sequentially Consistent if the result of any
execution is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.

Lamport also gave two implementation requirements which, if met, would enforce
sequential consistency.

R1. Each processor issues memory requests in the order specified by its program.

R2. Memory requests from all processors issued to an individual memory module
are serviced from a single FIFO queue. Issuing a memory request consists of entering
the request on this queue.

Linearizability [Herlihy and Wing 1990] also called atomic memory [Lamport
1986] is essentially sequential consistency with a real-time constraint. Each opera-
tion is given a begin time and end time in reference to a global Newtonian clock.
For an execution to be linearizable, it must be sequentially consistent, and the

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 7

p1 (w, p1, x, 1) (r, p1, y,⊥)

p2 (w, p2, y, 2) (r, p2, x,⊥)

Fig. 2. An execution that is processor, but not sequentially consistent.

sequential total order must correspond to an order realizable by placing each oper-
ation at a single point in time between its begin and end times. Essentially, if two
operations’ time spans do not overlap they cannot be re-ordered even in the absence
of any other dependency. Even though linearizability is stronger, sequential consis-
tency is the strongest consistency model used in practice [Adve and Gharachorloo
1996; Tanenbaum 1995]. Sequential consistency is considered strong enough for
conventional reasoning about the correctness of shared memory programs.

Lipton and Sandberg defined PRAM (Pipelined RAM) consistency [Lipton and
Sandberg 1988], and Goodman defined cache consistency [Goodman 1989]:

Definition 2.2. A multiprocessor is PRAM Consistent if writes performed by a
single process are seen by all other processes in the order in which they were issued,
but writes from different processes may be seen in different orders by different
processes.

Definition 2.3. A multiprocessor is Cache Consistent if all writes to the same
memory location are performed in some sequential order.

In the same paper Goodman defined processor consistency.

Definition 2.4. A multiprocessor is Processor Consistent if it is PRAM consis-
tent and writes to the same memory location are seen in the same sequential order
by all processes.

One consistency model is said to be stronger than another if every condition re-
quired by the weaker model is also required by the stronger one. Thus, a stronger
consistency model has a more highly constrained behavior than a weaker one. By
considering the definitions, note that sequential consistency is strictly stronger than
processor consistency which is strictly stronger than both PRAM and cache con-
sistency. However, PRAM and cache consistency are incomparable. PRAM and
cache consistency are very similar to Lamport’s conditions R1 and R2, enforcing R1
and R2 enforces sequential consistency, processor consistency enforces PRAM con-
sistency and cache consistency, but processor consistency is weaker than sequential
consistency. How can this be?

Consider Figure 2. In this figure time proceeds from left to right, and variables
are assumed to have an initial value of ⊥. Process p1 writes to x, and then reads
from y. Likewise, process p2 writes to y, and then reads from x. Both processes
read the initial value of the variable instead of each other’s write. Both processes
perceive that their write went first so the execution is not sequential. However, it
is processor consistent. There is only one write by p1 and one by p2 so it is trivially
PRAM consistent. There is only one write to x and one write to y so it is trivially
cache consistent. This example demonstrates how processor consistency is weaker

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · R. Steinke and G. Nutt

than sequential consistency. Writes by different processes to different variables may
be seen to occur in different orders.

The question remains, does the execution in Figure 2 satisfy R1 and R2? The
answer is no because R2 requires that read operations be placed in the queue along
with write operations. Neither process can place its read operation in the queue
until its write operation has been placed in the queue so at least one of the processes
must read the other’s write. On the other hand, processor consistency only requires
that write operations become visible in the correct order. The write operations can
be pending while each process does its read, and then the write operations are
applied in the correct order.

Causal memory [Ahamad et al. 1991] is a consistency model drawn from Lam-
port’s concept of potential causality [Lamport 1978]. Causal memory is weaker
than sequential consistency, stronger than PRAM, and incomparable to processor
and cache consistency. It was defined by Ahamad, et. al. as:

Definition 2.5. A multiprocessor is Causally Consistent if for each process the
operations of that process plus all writes known to that process appear to that
process to occur in a total order that respects potential causality. Potential causality
is as defined by Lamport [Lamport 1978] with writes interpreted as sends and reads
interpreted as receives.

Slow consistency [Hutto and Ahamad 1990] is weaker than both PRAM and cache
consistency.

Definition 2.6. A multiprocessor is slow consistent if reads must return some
value that has been previously written to the location being read. Once a value has
been read, no earlier writes to that location (by the processor that wrote the value
read) can be returned. Writes by a process must be immediately visible to itself.

Local consistency [Bataller and Bernabeu 1997] refers to the weakest consistency
model for shared memory.

Definition 2.7. A multiprocessor is Locally Consistent if each process’ own oper-
ations appear to occur in the order specified by its program. There is no restriction
on the order in which writes by other processes appear to occur, and different
processes may see different orders.

It is important to note that every consistency model is stronger than local con-
sistency and weaker than sequential consistency which is weaker than linearizabil-
ity [Herlihy and Wing 1990]. This fact implies that consistency models could be
placed in a lattice.

2.3 Synchronized Consistency Models

Some consistency models include explicit synchronization actions which are treated
differently than ordinary memory operations. Synchronization operations are pro-
cessed at a high level of consistency, usually sequential consistency. Ordinary op-
erations are processed at a low level of consistency, usually slow consistency, but
the presence of synchronization operations places additional ordering restrictions
on ordinary operations. Dubois, et. al. defined weak consistency [Dubois et al.
1986].

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 9

Definition 2.8. A multiprocessor is Weak Consistent if:

(1) Accesses to global synchronizing variables are strongly ordered [sequentially
consistent].

(2) No access to a synchronizing variable is issued in a processor before all previous
global data accesses have been performed.

(3) No access to global data is issued by a processor before a previous access to a
synchronizing variable has been performed.

An ordinary operation is issued either before or after a synchronization operation.
All processes must see the ordinary operation occur in this order with respect to the
synchronization operation. This provides a sufficient programming environment for
constructs such as critical sections and barriers. For example, a barrier is defined
to be a synchronization operation, and all operations issued before the barrier must
appear to occur before the barrier. However, this condition is sometimes stronger
than necessary. Synchronizing operations can be used just to import information,
as with the acquiring of a lock, or just to export information, as with the release
of a lock. Taking advantage of this as an opportunity for optimization leads to a
different consistency model called release consistency [Gharachorloo et al. 1990].

Definition 2.9. A multiprocessor is Release Consistent if:

(1) Before an ordinary LOAD or STORE access is allowed to perform with respect
to any other processor, all previous acquire accesses must be performed.

(2) Before a release access is allowed to perform with respect to any other processor,
all previous ordinary LOAD and STORE accesses must be performed.

(3) Special accesses [including acquire and release] are sequentially consistent with
respect to one another.

A process performs an acquire to get up to date information. Only that pro-
cess is guaranteed to be up to date, and then only up to the point of the latest
release on every other process. A different implementation called lazy release consis-
tency [Keleher et al. 1992] enforces the same consistency model, but sends updates
as late as possible. The distinction between release and weak consistency is that
release forces the program to give more detailed instructions on what must be up to
date at a synchronization. This trend is continued with entry consistency [Bershad
and Zekauskas 1991] and scope consistency [Iftode et al. 1996]. In entry consis-
tency [Bershad and Zekauskas 1991] each synchronization variable is associated
with one or more ordinary variables. Acquires and releases only bring up to date
those ordinary variables associated with a particular synchronization variable. In
scope consistency [Iftode et al. 1996] this set of variables is not static, but rather
any ordinary variables accessed between an acquire and release of a synchronization
variable must be brought up to date to the point of the release on all subsequent
acquires of the same synchronization variable.

A final synchronized model called location consistency [Gao and Sarkar 2000] is
significantly different. location consistency is similar to entry consistency in that
each ordinary variable is associated with a synchronization variable, and a release
or acquire is ordered with an ordinary operation if their variables are associated.

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · R. Steinke and G. Nutt

p1 (w, p1, x, 1)

p2 (w, p2, x, 2) (r, p2, x, 1) (r, p2, x, 2)

Fig. 3. An execution that is location, but not entry consistent.

However, location consistency is different in that it allows the state of a variable to
be a partial order, and not a total order.

For example, in Figure 3 two processes both write to the variable x. In entry
consistency, the order of these two writes is undefined. They could be seen to
occur in either order, and two different processes do not have to agree on the order.
However, there is an implicit assumption that for a single process the two operations
occur in some order, and the second one overwrites the first. So, when p2 reads 1
from x one can deduce that the order seen by p2 is:

(w, p2, x, 2) < (w, p1, x, 1) < (r, p2, x, 1)

Therefore, p2 will never again read from (w, p2, x, 2) because it has been overwrit-
ten. The operation (r, p2, x, 2) violates entry consistency, but not location consis-
tency. Location consistency assumes that each process sees a partial order of writes,
and any read can return the value of any write that is not dominated by another
write. Writes are only ordered when they are by the same process, or when they
are separated by a release-acquire pair. Therefore, under location consistency p2

can continue forever alternately reading the values 1 and 2 from x barring further
write, acquire, or release operations. The purpose of location consistency is that
if a program separates every pair of competing writes with a release-acquire pair
(called a data-race-free program) then it is equivalent to entry consistency, but still
might be able to take advantage of the location model for efficiency optimizations.

3. A FORMALISM FOR SHARED MEMORY CONSISTENCY MODELS

This section presents formal, declarative definitions of the well known consistency
models introduced in Section 2. When a shared memory system satisfies a particular
consistency model it must produce only executions acceptable to that model. In
this way, a consistency model can be thought of as a criteria to accept or reject
program executions. Therefore, a model can be defined by specifying its set of
accepted executions. This is the technique we will use in the rest of the paper.

In “view” based definitions of consistency models, memory operations must ap-
pear to be processed in a certain order. For example, under sequential consistency,
there must appear to be a single total order on all operations. Under Cache con-
sistency, there must appear to be a total order on the operations to each variable.
Each process sees, through its read operations, a particular order of events in the
memory system. However, each process has limited information because it may
not read every write. Therefore, there could be many orders of events that would
be consistent with the values returned by a process’ reads. If any of these orders
satisfies a consistency model then the process cannot prove that the memory sys-
tem violated that model. If some acceptable order exists for every process then the
execution must be accepted. The formalism used in this section is defined in the

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 11

(w, p1, x, 1) <PO (r, p1, x, 2) (w, p1, x, 1) <PO (w, p1, y, 2)
(w, p2, x, 2) <PO (r, p2, x, 1) (r, p2, y, 2) <PO (r, p2, x,⊥)
(w, p1, x, 1) 7→ (r, p2, x, 1) (w, p1, y, 2) 7→ (r, p2, y, 2)
(w, p2, x, 2) 7→ (r, p1, x, 2) (w, ǫ, x,⊥) 7→ (r, p2, x,⊥)

(a) (b)

Fig. 4. Examples for PRAM and Cache Consistency

appendix and is taken from [Ahamad et al. 1992; Bataller and Bernabeu 1997].

Theorem 3.1. An execution is Sequentially Consistent iff

∃ SerialView(<PO)

For proof see [Bataller and Bernabeu 1997].

This restatement of sequential consistency corresponds very closely to the original
definition of sequential consistency. There exists a serial view (total order) on all
operations that respects <PO (the process order of every process.) The actual
execution may not have occurred in this order, but the values returned by the reads
are exactly the same as the values that would have been returned had this been the
execution order. Therefore, no process external to the memory system can prove
that the execution did not actually happen in this order. In Figure 21(a) the given
total order qualifies as the serial view proving that the execution is sequentially
consistent. In Figure 21(b) it is easy to see that no such view could be constructed.

Theorem 3.2. An execution is PRAM Consistent iff

∀i∈P∃ SerialView(<PO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

For proof see [Bataller and Bernabeu 1997].

PRAM consistency requires that each process see a view that is consistent with
the process order for all processes, but not all processes must see the same view.
The operations visible to each process are its own reads and all writes. For this
reason the view of process i is restricted to (∗, i, ∗, ∗), all of its own operations,
and (w, ∗, ∗, ∗), all writes. If a serial view conforming to process order can be
constructed for this subset of operations then this process cannot argue that the
memory system has violated PRAM. If such a view can be constructed for every
process then no external observer can argue that the memory system has violated
PRAM.

Theorem 3.3. An execution is Cache Consistent iff

∀x∈V ∃ SerialView(<PO |(∗, ∗, x, ∗))

For proof see [Bataller and Bernabeu 1997].

Cache consistency requires that for the operations on each variable, x, there is
a serial view that respects process order. The views that must be constructed to
satisfy the above definition are exactly the total orders required for the original
definition.

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · R. Steinke and G. Nutt

Consider Figure 4. The sets P , V , and O and the initial writes can usually be
deduced from the descriptions of process order and writes-to order. For this reason
they will be omitted in this and further examples unless required for clarity. In
Figure 4(a), both processes write and then read x, and both read the other’s write.
This execution can be shown to be PRAM consistent by the following views.

p1 : (w, p1, x, 1) <p1
(w, p2, x, 2) <p1

(r, p1, x, 2)
p2 : (w, p2, x, 2) <p2

(w, p1, x, 1) <p2
(r, p2, x, 1)

This execution is not sequential. One would have to add (r, p2, x, 1) to <p1
, or

(r, p1, x, 2) to <p2
. In <p1

, (r, p2, x, 1) cannot come before (w, p2, x, 2) because that
would violate process order. It also cannot come after (w, p2, x, 2) because then it
would be after, but not reading from, (w, p2, x, 2) which would violate the serial
property. A similar argument can be made for <p2

. No single view can satisfy both
processes so the execution is not sequentially consistent.

In Figure 4(b) process 1 writes to both x and y while process 2 reads both x and
y. Process 2 reads process 1’s second write to y and the initial value of x. This
execution can be shown to be Cache consistent by the following views. Note, the
initial writes must be accounted for in all views, but are omitted in examples where
their placement is trivial. (w, ǫ, x,⊥) is shown in <x because it’s value is later read.

x : (w, ǫ, x,⊥) <x (r, p2, x,⊥) <x (w, p1, x, 1)
y : (w, p1, y, 2) <y (r, p2, y, 2)

Figure 4(b) is not sequentially consistent. In a view with every operation,
(w, p1, x, 1) would have to come before (w, p1, y, 2) by process order. (w, p1, y, 2)
would have to come before (r, p2, y, 2) for the view to be serial. (r, p2, y, 2) would
have to come before (r, p2, x,⊥) by process order. This implies (r, p2, x,⊥) would
come after (w, p1, x, 1) but read from the initial write so the view could not be
serial.

Also, 4(a) is not Cache consistent, and 4(b) is not PRAM consistent. In 4(a)
all operations are on the same variable so there would need to be a serial view
on all operations. In disproving sequential consistency we have already shown this
is impossible. For 4(b) to be PRAM consistent the view <p2

would need to be
constructed containing all of p1’s writes, and all of p2’s operations. This would
include all of the operations which have likewise been shown to be impossible.

Theorem 3.4. An execution α is Processor Consistent iff

∀x∈V ∃ <x=SerialView(<PO |(∗, ∗, x, ∗)), and
∀i∈P∃ SerialView((∪x∈V <x)

⋃
<PO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

For proof see [Bataller and Bernabeu 1997].

This restatement says that Processor consistency requires PRAM and cache con-
sistency. It also requires that the PRAM and cache views be mutually consistent.
The views that satisfy PRAM must conform not only to the process order, but to
the view order of every variable enforced by cache consistency. This is equivalent
to Goodman’s definition of processor consistency.

Definition 3.5. The Causal Relation, <CR,

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 13

∀oi,oj∈O oi <CR oj iff
oi <PO oj , or
oi 7→ oj , or
∃ ok ∈ O such that oi <CR ok <CR oj

Theorem 3.6. An execution α is Causally Consistent iff

∀i∈P∃ SerialView(<CR |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

For proof see [Bataller and Bernabeu 1997].

Theorem 3.7. An execution α is Slow Consistent iff

∀i∈P,x∈V ∃ SerialView(<PO |(∗, i, x, ∗) ∪ (w, ∗, x, ∗))

For proof see [Bataller and Bernabeu 1997].

Theorem 3.8. An execution α is Locally Consistent iff

∀i∈P∃ SerialView(<iLocal |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

For proof see [Bataller and Bernabeu 1997].

3.1 Synchronized Consistency Models

Synchronized consistency models require additional definitions. First of all, op-
erations are divided into two types, ordinary and synchronization operations. In
some models such as weak consistency, reads and writes are merely designated as
synchronization operations. In other models such as release consistency, synchro-
nization operations are new types of operations, acquire and release. In either case,
the operation type s is used to designate synchronization operations. For example,
(s, ∗, ∗, ∗) designates the set of all synchronization operations whether those are
read, write, acquire, or release. Also, we need to explicitly state that the writes-to
relation is defined on synchronization operations. For this purpose, acquires are
treated as reads, and releases are treated as writes. Essentially, synchronization
operations must be aware of which acquire corresponds to which release. Defining
the writes-to relation in this way allows the existing definition of serial view to be
used for this purpose. Finally, for each synchronized consistency model, certain
ordinary operations must come before or after certain synchronization operations.

Definition 3.9. D−(s) denotes the set of ordinary operations that must come
before synchronization operation s. D+(s) denotes the set of ordinary operations
that must come after synchronization operation s. <D denotes the relation:

∀o∈D−(s)o <D s ∪ ∀o∈D+(s)s <D o

Synchronized consistency models support different consistency for ordinary oper-
ations than synchronization operations. For some models, ordinary operations are
processed under slow consistency, and for some models under cache consistency.
The authors of [Bataller and Bernabeu 1997] argue that this distinction is not a
significant design feature, but rather was primarily an artifact of the implementa-
tion for which each model was originally defined. They present formal definitions of
all models assuming that ordinary operations are processed under slow consistency.
Synchronization operations are generally processed under sequential consistency,

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · R. Steinke and G. Nutt

although a variation of release consistency was presented where synchronization
operations were processed under processor consistency. Below, we assume synchro-
nization operations obey seqential consistency and ordinary operations obey slow
consistency. Variations will be dealt with in the section on consistency transitions
(see Section 5.)

Every synchronized consistency model obeys the following condition. The only
difference between models is in the definition of D−(s) and D+(s).

Definition 3.10. For a given definition of <D, an execution is synchronized model
consistent iff

∃ <seq=SerialView(<PO |(s, ∗, ∗, ∗)), and
<S=the transitive closure of <D ∪ <seq, and
∀i∈P,x∈V ∃ SerialView(<S ∪ <PO |(∗, i, x, ∗) ∪ (w, ∗, x, ∗))

Definition 3.10 says that a sequential order exists on all synchronization opera-
tions. The per-process, per-variable views required by slow consistency exist. And
the slow consistent views respect the transitive closure of the ordering <D and the
sequential order of synchronization operations. We will now discuss the differences
between various consistency models.

In weak consistency [Dubois et al. 1986] there is only one synchronizing variable,
and there is no distinction between acquire and release types of synchronizing oper-
ations. D+(s) orders after s any operation ordered after it by process order. D−(s)
orders before s any operation ordered before it by process order.

For release consistency [Gharachorloo et al. 1990] there is only one synchronizing
variable, but the distinction is made between acquire and release types of synchro-
nizing operations. D+(acquire) orders after acquire any operation ordered after it
by process order. D−(release) orders before release any operation ordered before
it by process order.

Lazy release consistency [Keleher et al. 1992] does not force operations before
a release to be ordered before that release, but they must be ordered before any
subsequent acquire. There is only one synchronizing variable. D+(acquire) orders
after acquire any operation ordered after it by process order. D−(acquire) orders
before acquire any ordinary operation where there exists release <S acquire such
that the ordinary operation is ordered before release by process order. No ordinary
operations are directly ordered with any release.

In entry consistency [Bershad and Zekauskas 1991] there can be more than one
synchronization variable. Each ordinary variable is associated with a synchroniza-
tion variable. An ordinary operation is ordered with a synchronization operation
in the same way it would by release consistency if and only if their variables are
associated.

In scope consistency [Iftode et al. 1996] there can be more than one synchroniza-
tion variable. An ordinary operation is ordered with a synchronization operation
in the same way it would be by release consistency if and only if there is no other
synchronization operation to the same variable ordered between them by process
order. Essentially, ordinary operations are only ordered with respect to the most
recent acquire and the next release to each synchronization variable.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 15

Location consistency [Gao and Sarkar 2000] is different, but we will present it in
a formalism as close as possible to that used for the other models. One important
difference is that in location consistency synchronization operations are defined to
provide a mutual exclusion function. If one process performs an acquire, then no
other process may successfully perform an acquire until the first process performs a
release. All subsequent acquires are ordered after that release. This provides control
dependencies in addition to the data dependencies enforced by the consistency
model. This exposes a fundamental difference of opinion about what the job of
a consistency model should be. For example, under release consistency there is
nothing to prevent two processes from both performing acquires and concurrently
writing to the same variable. Release consistency specifies formally what data
dependencies must be preserved by the memory system in that situation, i.e. the
writes are unordered and can be seen in different orders by different processes. If
the program truly needs mutual exclusion it can be included in the program code as
a locking algorithm that works correctly under release consistency [Gharachorloo
et al. 1990].

Most synchronized consistency models were written in two parts, the consistency
model itself, and a programming paradigm such as properly labeled [Gharachorloo
et al. 1990] or data-race-free [Adve and Hill 1993] programs. The guarantee pro-
vided is that a program that obeys the programming paradigm executed on the
consistency model will simulate sequential consistency. The authors of release con-
sistency expected that it would be used in conjunction with control flow constructs
in the program to simulate sequential consistency, but they did not directly embed
the control flow into the consistency model. Instead they allowed the programmer
to choose the appropriate control flow constructs. They also acknowledged that
some programmers may not want to simulate sequential consistency, but rather
deal directly with the semantics of release consistency.

Control dependencies should be dealt with in the programming paradigm, and
not the consistency model itself. It is unnecessary for a consistency model to force
the programmer to use a particular control flow paradigm like mutual exclusion.
The consistency model should only describe data dependencies. For any sequence
of submitted operations the model gives the set of possible outcomes. It is not the
job of the consistency model to restrict the sequences of operations that are allowed
to be submitted. Any control dependencies can be independently enforced in the
program. If the programmer really wants mutual exclusion the consistency model
does not prevent this. This does not necessarily even make the programmer’s job
any harder as control flow constructs can be implemented in libraries of locking and
barrier primitives.

Synchronization operations in location consistency are similar to entry consis-
tency in that they are tagged with a variable, and only enforce dependencies with
ordinary operations to that variable. The mutual exclusion assumption stated
above requires that there is a total order on all synchronization operations to each
variable so location consistency enforces at least cache consistency on synchroniza-
tion operations. However, the description of location consistency [Gao and Sarkar
2000] does not specifically say that synchronization operations must obey sequen-
tial consistency. There is no example in the paper with synchronization operations

Journal of the ACM, Vol. V, No. N, Month 20YY.

16 · R. Steinke and G. Nutt

to more than one variable so it is difficult to say whether the authors intended syn-
chronization operations to be sequentially consistent, or merely cache consistent.
For similarity with previous models sequential consistency is assumed.

We will now give the definition of the data dependencies implied by location
consistency assuming synchronization operations are sequentially consistent. The
definition will not include control dependencies implied by the mutual exclusion
paradigm. The definition will be equivalent to location consistency for programs
that conform to the mutual exclusion paradigm, and it will extend location consis-
tency for programs that do not conform to the mutual exclusion paradigm. In the
original definition of location consistency, due to the mutual exclusion requirement
there is an alternating order on the synchronization operations to each variable:
acquire, release, acquire, release, etc. Each acquire is immediately after a release
which is called its most recent release, and immediately before a release by the
same process. The state of a variable, x, is defined to be a partial order, ≺ which
is the union of <PO |(s, ∗, x, ∗) ∪ (w, ∗, x, ∗) and the condition that all acquires to
x are ordered after their most recent release.

Because ≺ is a partial order there may be many writes that could be considered
“most recent” in that there is no other write ordered after them. A read is allowed
to return a value written by any one of these most recent writes. More formally,
≺ is augmented with any process order edges between the read and any operation
in (s, ∗, x, ∗) ∪ (w, ∗, x, ∗) to produce ≺′. Then, the read, r, may return the value
of any write, w, to the variable x such that 6 ∃w′ where w ≺′ w′ ≺′ x. To put this
in a similar notation as the other synchronized models, the first requirement is the
same that synchronization operations must be sequentially consistent.

∃ <seq=SerialView(<PO |(s, ∗, ∗, ∗)), and
<S=the transitive closure of <D ∪ <seq where <D is defined the same
as entry consistency

For programs that obey mutual exclusion there is already a total order, <seq,
on the synchronization operations to each variable. So <S is merely the transi-
tive closure of process order and most recent release order. Therefore, <S is an
equivalent definition of ≺. For programs that do not obey mutual exclusion This
is a sensible extension of the definition of ≺ that maintains similarity with other
synchronized models. Now, location consistency defines the set of values that may
be returned by any read. To capture this, we will add to my formalism the notion
of a partial-ordered view.

Definition 3.11. There exists a serial partial view on a set of operations, subset,
respecting a partial order, <, denoted SerialPartialView(< |subset) iff

∀w 7→r∈O 6 ∃w′ such that w < w′ < r

A serial partial view is a minimal order, that is it doesn’t add any edges to <,
it just checks if each read reads from a non dominated write. This is unlike a
serial view that must add edges to create a total order out of any partial order it
respects. The order, <, must still be a partial order. For example, there cannot
exist a serial partial view respecting a cyclic relation. Now, location consistency was
defined where each read had its own serial partial view. However, if a serial partial

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 17

Sequential

Local

Fig. 5. An initial consistency model lattice

view exists separately for two reads over the same set of writes and synchronization
operations, then those two reads can be added to the same partial order, and it
will still be a serial partial view. There is no interaction between the two reads.
Therefore, the condition that all reads read a permissible value can be stated thusly.

∀i∈P,x∈V ∃ SerialPartialView(<S ∪ <PO |(∗, i, x, ∗) ∪ (w, ∗, x, ∗))

Therefore, the definition of location consistency is identical to to the definition
of entry consistency with SerialView replaced by SerialPartialView.

4. CONSISTENCY PROPERTIES

Some existing consistency models have been viewed as a combination of other mod-
els. For example, processor consistency [Goodman 1989] is the combination of
PRAM and Cache consistency. Causal ordering [Ahamad et al. 1991] is the tran-
sitive closure of process order and writes-to order. Lamport’s original definition
of sequential consistency [Lamport 1979] included a pair of properties which, if
independently enforced, would enforce sequential consistency. This suggests that
perhaps many existing consistency models could be viewed as different combina-
tions of a few primitive consistency properties. In this section we define four such
properties. Global Process Order (GPO) is the condition that there is global agree-
ment on the order of operations from each process. Global Data Order (GDO) is
the condition that there is global agreement on the order of operations to each vari-
able. Global Write-read-write Order (GWO) is the condition that there is global
agreement on the order of potentially causally related writes. Global Anti Order
(GAO) is the condition that there is global agreement on the order of any two writes
when a process can prove it has read one before the other. Any combination of
these properties results in a consistency model. Enumerating these models results
in the lattice shown in Figure 13.

For pedagogical purposes, we will start with the lattice shown in Figure 5 and
expand the lattice as properties are developed. The top of the lattice is defined
to be sequential consistency, and the bottom is defined to be local consistency as
these are the strongest and weakest properties in the literature (see Section 2.)

4.1 Processor Consistency as a Combination of Properties

Processor Consistency is defined to be a combination of PRAM and cache con-
sistency (see Definition 3.4.) The given definition of processor consistency re-
quires constructing per-variable views to satisfy cache consistency in addition to
per-process views to satisfy PRAM consistency. To remove this inconvenience, we
will define two properties, one equivalent to PRAM consistency, and one equiva-
lent to cache consistency such that both properties can be combined in the same

Journal of the ACM, Vol. V, No. N, Month 20YY.

18 · R. Steinke and G. Nutt

per-process views.

Definition 4.1. An execution is Global Process Order (GPO) iff

∀i∈P∃ SerialView(<iLocal ∪ <PO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Theorem 4.2. GPO is equivalent to PRAM consistency.

Proof: The definitions of GPO and PRAM are identical. The views for
GPO are required to respect local order for similarity with the properties
to follow. However, this requirement is redundant because process order
is a superset of local order for any process.

Definition 4.3. Two operations are ordered by data order, o1 <DO o2, iff they
are to the same variable, and either

(1) o1 <PO o2, or

(2) o1 7→ o2, or

(3) There exists a read, r, to the same variable such that o1 <PO r, o1 has a
different value than r, and o2 7→ r, or

(4) There exists an operation, o, such that o1 <DO o <DO o2.

Data order captures the restrictions involved in constructing the required views
for cache consistency. The operations o1 and o2 can be either reads or writes, but
must be to the same variable. Data order contains writes-to order and process
order restricted to pairs of operations to the same variable because the views for
cache consistency must be serial and respect process order. For the third condition,
a particular process reads or writes a value, o1, and then at a later time reads a
different value from the same variable, r. That process can deduce that a write, o2,
must have occurred between those two operations and so the restriction is included
in data order. The fourth condition requires that data order is a transitive closure.

Definition 4.4. An execution is Global Data Order (GDO) iff

∀i∈P∃ SerialView(<iLocal ∪ <DO |(∗, i, ∗, ∗)∪ (w, ∗, ∗, ∗))

The proof that GDO is equivalent to cache consistency uses several lemmas:

Lemma 4.5. If an execution is Cache Consistent then Data Order is acyclic.

Proof: Data order only contains edges between pairs of operations to
the same variable. Therefore, if data order were cyclic, the cycle would
have to involve only operations to a single variable. Cache consistency
requires for every variable a serial view respecting process order on all
the operations to that variable. We will show that these views must also
respect data order, and so data order is acyclic.
The cache consistent view for a variable respects process order by defi-

nition and writes-to order because it is serial so it respects the first two
conditions of data order. The third condition of data order must also be
respected. If o1 is process ordered before r it must come before r in the
view. If, in addition, o1 has a different value than r, and o2 writes to r,
then o1 must come before o2 in the view. If not and o1 is a write then

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 19

r does not read from the most recent write so the view is not serial. If
not and o1 is a read then either o2 is the most recent write before o1, in
which case o1 does not read from the most recent write, or there is an-
other write between o2 and o1. This write is also between o2 and r, and
it has the same value as o1 which is different than r, so r does not read
from the most recent write and the view is not serial. Since the view
is a total order and it respects the first three conditions of data order
it must respect their transitive closure which is the fourth condition of
data order.

The views required for cache consistency must respect data order. If
data order contained a cycle then the view for some variable could not be
constructed and the execution would not be cache consistent. Therefore,
if the execution is cache consistent data order is acyclic.

Lemma 4.6. If two reads are ordered by data order then either they are by the
same process, or they are ordered by a transitive chain containing a write.

Proof: Two reads cannot be ordered by writes-to, or by having one
write to a read that the other is process ordered before. So the only
way two reads can be data ordered is by process order, or a transitive
chain. If two reads are not by the same process, and are data ordered
take the last operation in the transitive chain. If this operation is a
write it satisfies the lemma. Otherwise, it must be a read by the same
process as the final read. By the same logic the next to last operation
in the chain must also be a write, or a read by the same process as the
final read. By induction, if there is no write in the chain then the first
operation in the chain must be a read by the same process as the final
read. Therefore, if the two reads are not by the same process there must
be a write in the transitive chain.

Lemma 4.7. If an execution is GDO then data order is acyclic.

Proof: GDO requires a view for every process that is serial and respects
data order over the subset of all operations by that process plus all
writes. If these views are constructible then data order must be acyclic
at least on the subsets of operations in each view. Therefore, if data
order is cyclic then the cycle must contain at least two read operations
by different processes, r1 and r2, such that r1 <DO r2 and r2 <DO r1.
By Lemma 4.6 these two reads must be ordered by two transitive chains,
and each chain must contain a write. Because data order is a transitive
closure there must be a cycle between the writes in the two chains. This
makes it impossible to construct the views required for GDO because
every view must include all writes. If data order is cyclic then the views
required for GDO cannot be constructed. Therefore, if an execution is
GDO then data order is acyclic.

Lemma 4.8. If data order is acyclic then

∀x∈V ∃ <x=SerialView(<DO |(∗, ∗, x, ∗))

Journal of the ACM, Vol. V, No. N, Month 20YY.

20 · R. Steinke and G. Nutt

Proof: First, collect all the operations on a single variable and place
them into groups where each group contains a write and all reads that
the write writes-to. Order the operations in each group in an order
that respects data order. This is possible because data order is acyclic.
The reads in a group all read from the write in that group so the write
will be ordered first in each group. The serial view for that variable is
constructed by ordering the groups with no interleaving of operations
between different groups. For every read, the most recent write to the
same variable must be the write from its group which is the write which
wrote-to it so the view must be serial. Any order of the groups with no
interleaving will produce a serial view.
If G1 and G2 are two groups then define group order, <GO as: G1 <GO

G2 iff ∃o1 ∈ G1, o2 ∈ G2 such that o1 <DO o2. If group order is
acyclic then any topological sort on group order will produce a view
that respects data order and is serial. Assume there is a cycle in group
order, but not in data order. Take any two ordered groups from the cycle,
G1 <GO G2. We will show that the writes from the groups, w1 and w2,
must be ordered by data order. Therefore, any cycle in group order must
be accompanied by a cycle in data order. So if data order is acyclic then
group order must be acyclic and the views can be constructed.

There must be operations from the two groups such that o1 <DO o2.
Either o1 is w1, or o1 is a read that w1 writes-to. So w1 <DO o2. Also,
either o2 is w2 in which case w1 <DO w2, or o2 is a read that w2 writes-
to. If o2 is a read consider how it came about that w1 is data ordered
before o2. W1 did not write to o2 so either w1 <PO o2, or they are
ordered by a transitive chain. If w1 <PO o2 then w1 <DO w2 because
w2 7→ o2. If not, let o be the last operation in the transitive chain so
w1 <DO o <DO o2. Either o 7→ o2 in which case o is w2 and w1 <DO w2

or o <PO o2 in which case o <DO w2 because w2 7→ o2 so w1 <DO w2.

Therefore, if G1 <GO G2 then w1 <DO w2. Any cycle in group order
will be reflected in data order by the writes. If data order is acyclic then
there can be no cycle in group order, and a topological sort of the groups
respecting group order will produce the required serial view respecting
data order for that variable.

Lemma 4.9. If the serial views, <x, defined in Lemma 4.8 exist then

∀i∈P∪x∈V <x

⋃
<iLocal is acyclic.

Proof: Assume that a cycle exists for some process, i. The views, <x,
are acyclic, and their union cannot contain a cycle because no operation
is in more than one view. Therefore, the cycle must have an edge in
the local order, and thus include operations by process i. Pick any
operation by process i in the cycle. Call it o. Follow the edges that
make up the cycle. If you follow an edge in local order then you must
reach an operation by process i that occurs after o in local order. If you
follow an edge not in local order then you must reach an operation to
the same variable as o by a process other than i. Operations by other

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 21

processes are not ordered by local order, and thus the cycle must proceed
through operations to the same variable following edges of <x for that
variable until reaching an operation by process i. This operation must
be to the same variable as o, and must be ordered after o by local order.
Otherwise, the view for that variable would not respect data order.
In any case, the first operation by process i encountered after o in the

cycle must be after o in local order. Call this operation o′. By the
same logic the next operation by process i after o′ in the cycle must be
ordered after o′ and o by local order. By induction, every operation by
process i in the cycle must be after o in local order. Eventually the cycle
will reach o itself showing that there is a cycle in local order which is a
contradiction.

Lemma 4.10. If the views, <x, defined in Lemma 4.8 exist then the execution is
GDO.

Proof: Construct the view for process i required for GDO as any topo-
logical sort of (∗, i, ∗, ∗)∪ (w, ∗, ∗, ∗) respecting ∪x∈V <x

⋃
<iLocal This

is possible because by Lemma 4.9 the relation is acyclic. The views will
be serial because the views, <x, are serial, and the relative position of
all pairs of operations to the same variable is preserved. Data order only
contains edges between two operations to the same variable and so is a
subset of ∪x∈V <x. Therefore, the constructed views respect local order
and data order, and they are serial so the execution is GDO.

Lemma 4.11. If the views, <x, defined in Lemma 4.8 exist then the execution is
cache consistent.

Proof: Process order restricted to the set of operations on a single
variable is a subset of data order. Therefore, any view on (∗, ∗, x, ∗)
that respects data order will also respect process order. Therefore, the
views defined in Lemma 4.8 respect process order, and so prove that the
execution is cache consistent.

Theorem 4.12. An execution is Cache Consistent iff it is GDO iff data order
is acyclic.

Proof: Follows directly from lemmas 4.5, 4.7, 4.8, 4.10, and 4.11.

This is an important result because it provides two new ways to define cache
consistency. One can determine whether an execution is cache consistent by the
original method of constructing per-variable serial views, or now by constructing
per-process serial views, or even by testing the cyclicity of the data order relation.
Now that cache consistency is defined over per-process views we can combine GPO
and GDO more easily.

Definition 4.13. An execution is GPO+GDO iff

∀i∈P∃ SerialView(<iLocal ∪ <PO ∪ <DO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

However, GPO+GDO is not quite equivalent to Goodman’s definition of proces-
sor consistency. Processor consistency requires that all processes agree on a total

Journal of the ACM, Vol. V, No. N, Month 20YY.

22 · R. Steinke and G. Nutt

(w, p1, x, 1) <PO (w, p1, z, 2) <PO (r, p1, y,⊥)
(w, p2, y, 3) <PO (w, p2, z, 4) <PO (r, p2, x,⊥)
(w, ǫ, x,⊥) 7→ (r, p2, x,⊥)
(w, ǫ, y,⊥) 7→ (r, p1, y,⊥)

Fig. 6. A GPO+GDO, but not processor consistent execution.

order of operations to each variable. In Figure 6, the processes cannot agree on the
order of the writes to z. If (w, p1, z, 2) was first, then p2 should have read 1 from x.
Likewise, if (w, p2, z, 4) was first, then p1 should have read 3 from y. However, the
two writes to z are not ordered by data order. Even under processor consistency
they are allowed to occur in either order, but GPO+GDO does not enforce that
they be seen in the same order by all processes. This can be solved by creating
augmented data order, <DO′ . Augmented data order is any superset of data order
that enforces a total order on all operations to each variable. By Theorem 4.12,
any GDO execution respects at least one augmented data order. The problem is
that there may be more than one, and a single augmented data order may not
be consistent with process order at all sites. GPO+GDO’ is defined similarly to
GPO+GDO.

Theorem 4.14. Goodman’s definition of processor consistency (as given in Sub-
section 2.2) is equivalent to GPO+GDO’.

Proof: Augmented data order is equivalent to the per-variable cache
consistency views required for processor consistency. The per-process
views for GPO+GDO’ respect process order and augmented data order.
The per-process views for processor consistency respect process order,
and the per-variable cache consistent views. Therefore, the two required
sets of views are equivalent.

Augmented data order solves the problem of equivalence to Goodman’s definition
of processor consistency. However, we feel that even without augmented data order
GPO+GDO is in line with the intended purpose of process order. In Figure 6 the
writes to z are unordered. Inserting reads to z to detect the order of the writes would
create data order dependencies and eliminate the need for augmented data order. Is
it likely that the correctness of a program would depend on the fact that those two
operations are seen in the same order by all processes when their order is unknown?
Also, the execution in Figure 6 was taken from [Ahamad et al. 1992] as an example of
an execution accepted by the DASH definition of processor consistency, and rejected
by Goodman’s definition. The space of consistency models surrounding processor
consistency has not been completely searched. We believe that GPO+GDO will
prove to be a useful consistency model, and a systematic examination of this search
space will lead to greater understanding of the foundations of consistency models.

Alternatively, GPO+GDO is equivalent to the following modified definition of
processor consistency where the ∀i∈P is moved outside of the ∀x∈V , and each process
respects a set of cache consistent views, but all processes do not have to respect
the same set of views.

∀i∈P∀x∈V ∃ <x=SerialView(<PO |(∗, ∗, x, ∗)), and
∃ SerialView((∪x∈V <x)

⋃
<PO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 23

Sequential
��������

GPO+GDO

Processor
XXXXXXXX

GPO

PRAM

GDO

Cache
XXXXXXXX

∅

Local

Fig. 7. A consistency model lattice including processor consistency

(w, p1, x, 1) <PO (w, p1, y, 2)
(r, p2, y, 2) <PO (w, p2, x, 3)
(r, p3, x, 3) <PO (r, p3, x, 1)
(w, p1, x, 1) 7→ (r, p3, x, 1)
(w, p1, y, 2) 7→ (r, p2, y, 2)
(w, p2, x, 3) 7→ (r, p3, x, 3)

Fig. 8. A PRAM and cache, but not GPO+GDO consistent execution.

This issue is discussed in more detail in Section 5. The same issue comes up
when defining synchronized consistency models as consistency transitions. The
synchronization operations must be sequentially consistent, but there may be more
than one total order that would satisfy sequentially consistency. The ordinary
operations are not required to be sequentially consistent, and may demonstrate that
different processes saw different sequential orders even though the synchronization
operations in isolation are sequentially consistent.

GPO+GDO begins a framework for defining consistency properties (see Fig-
ure 7.) Any property that can be defined as a relation which must be respected
by per-process views can be combined with process order and data order to create
new consistency models.

There can also be executions that are GPO and GDO, but not GPO+GDO.
Ahamad, et. al. [Ahamad et al. 1992] provide the execution in Figure 8 which is
PRAM and cache consistent, but not processor consistent. The execution is GPO
because of the following views.

p1 : (w, p2, x, 3) <p1
(w, p1, x, 1) <p1

(w, p1, y, 2)
p2 : (w, p1, x, 1) <p2

(w, p1, y, 2) <p2
(r, p2, y, 2) <p2

(w, p2, x, 3)
p3 : (w, p2, x, 3) <p3

(r, p3, x, 3) <p3
(w, p1, x, 1) <p3

(r, p3, x, 1) <p3

(w, p1, y, 2)

Journal of the ACM, Vol. V, No. N, Month 20YY.

24 · R. Steinke and G. Nutt

(w, p1, x, 1) <PO (r, p1, y, 3) <PO (r, p1, x, 1)
(r, p2, x, 1) <PO (w, p2, x, 2) <PO (w, p2, y, 3)
(w, p1, x, 1) 7→ (r, p1, x, 1)
(w, p1, x, 1) 7→ (r, p2, x, 1)
(w, p2, y, 3) 7→ (r, p1, y, 3)

Fig. 9. An Execution That Violates Causal Consistency

Data order is as follows.

(w, p2, x, 3) <DO (r, p3, x, 3) <DO (w, p1, x, 1) <DO (r, p3, x, 1)
(w, p1, y, 2) <DO (r, p2, y, 2)

The execution is GDO because of the following views.

p1 : (w, p2, x, 3) <p1
(w, p1, x, 1) <p1

(w, p1, y, 2)
p2 : (w, p1, y, 2) <p2

(r, p2, y, 2) <p2
(w, p2, x, 3) <p2

(w, p1, x, 1)
p3 : (w, p2, x, 3) <p3

(r, p3, x, 3) <p3
(w, p1, x, 1) <p3

(r, p3, x, 1) <p3

(w, p1, y, 2)

However, in <p2
the position of (w, p1, x, 1) is different between the GPO and

GDO views. There is no view <p2
that conform to both <PO and <DO.

(w, p1, x, 1) <PO (w, p1, y, 2) <DO (r, p2, y, 2) <PO (w, p2, x, 3) <DO

(w, p1, x, 1)

so <DO ∪ <PO has a cycle. <p2
must contain all of these operations and thus

cannot be constructed. This leads to the definition of another consistency model.

Definition 4.15. An execution is GPO∩GDO iff

∀i∈P∃ SerialView(<iLocal ∪ <PO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))
∧

∀i∈P∃ SerialView(<iLocal ∪ <DO |(∗, i, ∗, ∗)∪ (w, ∗, ∗, ∗))

Any pair of properties can be combined in this way creating a new consistency
model. The meaning of these models has not been explored previously in the
literature, and we have not explored them in our work. They are mentioned here
for completeness.

4.2 Causal Consistency as a Combination of Properties

Causal consistency is stronger than GPO, but incomparable to GPO+GDO. There-
fore, there should be a property that enforces that part of causal not already covered
by GPO. Causal consistency depends on the causal relation which is the transitive
closure of process order and writes-to order. The causal relation is made up of three
types of edges: edges in process order, edges in writes-to order, and edges not in
either order, but in the transitive closure. Process order has already been identified
as a primitive property, and any serial view respects writes-to order. Therefore,
we now define another property which contains the edges in the transitive closure.
This new property can be used with process order to define causal consistency.

For example, Figure 9 contains an execution that is not causally consistent even
though the following serial views respect both process order and writes-to order.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 25

1. o1 7→ r1 <PO r2 7→ o2

2. o1 7→ r1 7→ o2

3. o1 <PO r1 <PO r2 7→ o2

4. o1 <PO r1 7→ o2

5. o1 <PO r1 <PO r2 <PO o2

6. o1 <PO r1 <PO o2

7. o1 7→ r1 <PO r2 <PO o2

8. o1 7→ r1 <PO o2

Fig. 10. Enumerated Possibilities for a Causal Transitive Chain

p1 : (w, p2, x, 2) <p1
(w, p2, y, 3) <p1

(w, p1, x, 1) <p1
(r, p1, y, 3) <p1

(r, p1, x, 1)
p2 : (w, p1, x, 1) <p2

(r, p2, x, 1) <p2
(w, p2, x, 2) <p2

(w, p2, y, 3)

There is a causal dependency from (w, p1, x, 1) to (w, p2, x, 2) because

(w, p1, x, 1) 7→ (r, p2, x, 1) <PO (w, p2, x, 2).

However, <p1
places them in the opposite order because <p1

does not contain
the operation (r, p2, x, 1) which is a read operation by p2. Therefore, it violates
neither process order nor writes-to order among the operations in its view. To be
causally consistent the view for each process must respect:

(the transitive closure of <PO ∪ 7→)|(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)

The definition for GPO already respects:

the transitive closure of (<PO ∪ 7→ |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Note the different parentheses. The new property can be found in the set dif-
ference of these two relations. For an edge to be in the first relation and not the
second, two operations in (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗) must be transitively ordered by a
chain of operation not in (∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗). The only operations not in that
set are reads by a process other than i. Reads cannot be ordered with each other
by writes-to order, and if a chain of reads is ordered by process order they must all
be by the same process, and the first and last reads in the chain will be ordered.
So, any transitive chains of the sort we are interested in must have an operation, o1

ordered by process order or writes-to order before a read, r1, possibly ordered by
process order before another read, r2, ordered by process order or writes-to order
before an operation, o2. All possibilities are summarized in Figure 10:

Cases 1, 2, 3, and 4 are impossible because a read cannot be on the left hand side
of a writes-to relation. In cases 5 and 6, the two operations, o1 and o2, are already
ordered by process order. In case 7, r1 and o2 are ordered by process order so it
reduces to case 8. Therefore, the only case that must be considered is case 8.

In case 8, o1 must be a write because it writes to r1. o2 is in the set (∗, i, ∗, ∗)∪
(w, ∗, ∗, ∗). r1 is not in this set and so is not by process i. o2 is by the same
process as r1 so it must be a write by another process. Therefore, only causal
chains between two writes must be considered.

Definition 4.16. Two writes are ordered by write-read-write order, w1 <WO w2,
iff there exists a read, r such that w1 7→ r <PO w2.

Journal of the ACM, Vol. V, No. N, Month 20YY.

26 · R. Steinke and G. Nutt

Sequential

GPO+GDO+GWO

Defined in [Ahamad et al. 1992]
��������

XXXXXXXX
GPO+GDO

Processor

GPO+GWO

Causal

GDO+GWO

XXXXXXXX

��������

XXXXXXXX

��������
GPO

PRAM

GDO

Cache

GWO

XXXXXXXX

��������
∅

Local

Fig. 11. A consistency model lattice including causal consistency

Definition 4.17. An execution is Global Write-read-write Order (GWO) iff

∀i∈P∃ SerialView(<iLocal ∪ <WO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Theorem 4.18. GPO+GWO is equivalent to causal consistency.

Proof: By the logic above, the transitive closure of <PO ∪ <WO ∪ 7→
|(∗, i, ∗, ∗)∪ (w, ∗, ∗, ∗) is equivalent to <CR |(∗, i, ∗, ∗)∪ (w, ∗, ∗, ∗). Any
serial view respects 7→, and a view is a total order so if it respects a
relation it respects the transitive closure of that relation. Also, any view
that respects <PO respects <iLocal. So a serial view respects <iLocal

∪ <PO ∪ <WO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗) iff it respects <CR |(∗, i, ∗, ∗) ∪
(w, ∗, ∗, ∗). The first is the requirement for GPO+GWO. The second is
the requirement for causal consistency.

Adding GWO to the evolving lattice of consistency models results in Figure 11.
The model GPO+GDO+GWO has been previously discovered. In [Ahamad et al.
1992] the authors noticed that the definition of processor consistency allows exe-
cutions that violate causality, and they developed an extension to processor con-
sistency to prevent this. At this point the lattice contains two new consistency
models: GWO, and GDO+GWO.

4.3 Sequential Consistency as a Combination of Properties

GPO+GDO+GWO is weaker than sequential consistency. Consider the execution
in Figure 12. The two writes are not by the same processor, nor to the same
variable, and they are not causally related. These two writes could be seen to occur

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 27

(w, p1, x, 1) <PO (r, p1, y,⊥) <PO (r, p1, y, 2)
(w, p2, y, 2) <PO (r, p2, x,⊥) <PO (r, p2, x, 1)
(w, ǫ, y,⊥) 7→ (r, p1, y,⊥)
(w, p2, y, 2) 7→ (r, p1, y, 2)
(w, ǫ, x,⊥) 7→ (r, p2, x,⊥)
(w, p1, x, 1) 7→ (r, p2, x, 1)

Fig. 12. An Execution that Violates Sequential Consistency.

in either order, but to be sequentially consistent every process must see them in
the same order. In this execution the following cycle exists:

(w, p1, x, 1) <PO (r, p1, y,⊥) <DO (w, p2, y, 2) <PO (r, p2, x,⊥) <DO

(w, p1, x, 1)

But GPO+GDO+GWO requires separate views for processes p1 and p2, and each
view includes only its own read operations. So the following views are acceptable:

p1 : (w, p1, x, 1) <p1
(r, p1, y,⊥) <p1

(w, p2, y, 2) <p1
(r, p1, y, 2)

p2 : (w, p2, y, 2) <p2
(r, p2, x,⊥) <p2

(w, p1, x, 1) <p2
(r, p2, x, 1)

For this execution to be prohibited there must be another order that takes a cycle
which includes read operations and creates a cycle among only write operations.
In Figure 10 there were eight cases of a causal transitive chain. Four of them were
deemed impossible because a read could not be on the left hand side of a writes-to
order. These cases are made possible by using data order as a generalization of
writes-to order. A read may not be able to write to another operation, but it may
be able to prove that it happened first. These four cases are the basis of a new
consistency property called anti order. The name anti order comes from parallel
compiler optimization. When a program contains a read and later a write to the
same variable their orders cannot be reversed. This is called an anti dependency,
and is similar to this situation where a read can prove, through data order, that a
write happened after it. It is at least similar enough to borrow the name.

The purpose of Global Anti Order (GAO) is to complete the set of consistency
properties so that, together, they simulate sequential consistency. To do this, anti
order must take cycles involving read operations, and short circuit them to pro-
duce cycles involving only write operations. Therefore, anti order is limited to
the case where o1 and o2 (in Figure 10) are writes. This weakens anti order,
and our desire is to produce the weakest relation that supports the assertion that
GPO+GDO+GWO+GAO is equivalent to sequential consistency. From Figure 10,
case 1 seems necessary because the writes may only be ordered through the reads.
Case 2 seems unnecessary because the writes are already ordered by data order,
but it will be needed as explained later. Case 3 reduces to case 4, and case 4 solves
the problem of Figure 12 since

(w, p1, x, 1) <PO (r, p1, y,⊥) <DO (w, p2, y, 2), and
(w, p2, y, 2) <PO (r, p2, x,⊥) <DO (w, p1, x, 1), so
(w, p1, x, 1) <AO (w, p2, y, 2) <AO (w, p1, x, 1)

So, an initial idea is to base anti order on only cases 1 and 4. However, this
solution is not complete. The execution in Figure 12 can be modified by removing

Journal of the ACM, Vol. V, No. N, Month 20YY.

28 · R. Steinke and G. Nutt

the final read of each process. This means that condition 3 of data order no longer
applies and the writes are not data ordered after (r, p1, y,⊥) and (r, p2, x,⊥). There
is no anti order cycle, and the execution is no longer rejected by anti order even
though it still violates sequential consistency. The problem is with a limitation of
data order. If a read does not read from a write to the same variable this is not
enough to deduce that the write happened after the read. It could have happened
very early and been overwritten. However, it could not have happened between the
read and the write that wrote-to the read. This ordering restriction is not present
in data order. Capturing this restriction requires a non-deterministic order called
serial order. One can think of serial order as “pseudo data order” that can replace
writes-to order in the cases given in Figure 10. We now need to include case 2
because w1 7→ r1 <SO w2 does not guarantee that the writes are data ordered.

Definition 4.19. A Serial Order, <SO, is a minimal set of edges that enforces
the following condition:

∀w,r∈O such that w and r are to the same variable and do not have the
same value either w <SO w′ 7→ r or r <SO w

So the final definition of anti order is as follows.

Definition 4.20. Anti-Order, <AO(<SO),

Given a serial order, <SO,
∀w1,w2∈O w1 <AO w2 iff

∃r1, r2 such that
w1 7→ r1 <PO r2 <DO w2, or
w1 7→ r1 <PO r2 <SO w2, or
w1 7→ r1 <SO w2, or
w1 <PO r1 <DO w2, or
w1 <PO r1 <SO w2

To define global anti order there must be serial views that respect anti order for
some definition of serial order. However, this is still not enough. In the example of
Figure 12 with the final reads removed serial order could be defined as:

(w, p1, x, 1) <SO (w, ǫ, x,⊥)
(w, p2, y, 2) <SO (w, ǫ, y,⊥)

There would be no anti order links. The views could then be written:

p1 : (w, p1, x, 1) <p1
(r, p1, y,⊥) <p1

(w, p2, y, 2)
p2 : (w, p2, y, 2) <p2

(r, p2, x,⊥) <p2
(w, p1, x, 1)

These views respect process order, data order, write-read-write order, and even
anti order for some definition of serial order. They also respect some definition of
serial order, but not the same definition that was used to construct anti order. This
is the crucial last piece of the puzzle. The views must respect the same definition
of serial order that was used to construct anti order.

Definition 4.21. An execution is Global Anti Order (GAO) iff ∃ <SO such that

∀i∈P∃ SerialView(<iLocal ∪ <SO ∪ <AO(<SO) |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 29

Serial order is a non-deterministic order in the sense that it may have many
possible definitions, and if any one of the definitions accepts the execution then the
execution is accepted. The number of possible serial orders for any execution is
not infinite. In fact, for each pair of a read and a write with the same variable and
a different value there is exactly one edge in serial order, and this edge is chosen
from two choices. Therefore, the number of serial orders for an execution is exactly
2x where x is the number of such read-write pairs. When accepting executions, an
implementation of anti-order could be conservative, and only consider a subset of
possible serial orders. It could even deterministically chose a single serial order on
which to accept executions. This way, the implementation could be more efficient
without accepting any unacceptable executions. However, it might reject some
acceptable executions. From now on, for purposes of brevity we will use serial
order as if it were a single order. Any definition using serial order can be read
“There exists a serial order such that. . . ”

It would be desirable if all four properties were orthogonal, but this is not the
case. GAO is strictly stronger than GDO which is proven below. One goal of
this work was to develop GAO to be as weak as possible while still supporting the
assertion that GPO+GDO+GWO+GAO is equivalent to sequential consistency.
Every candidate definition of GAO that was not stronger that GDO did not support
equivalence to sequential consistency. This may reveal some fundamental aspect
of consistency models, or it may merely require further research to develop such a
definition. As a result, GDO+GAO is equivalent to just GAO.

Lemma 4.22. If data order has a cycle, then the execution is not GAO.

Proof:
Case 1: The cycle has a read. Take the operation immediately before

the read in the cycle. If it is linked by a transitive chain add that
transitive chain to the cycle. Repeat until the operation immediately
before the read is linked directly without a transitive chain. This is either
a write, or by lemma 4.6 it is a read ordered by process order. If it is a
read, repeat until a write is reached. A write must be reached because
otherwise the cycle will return to the original read which must be ordered
before itself by process order which is a contradiction. The write that
is reached is directly ordered by data order before the next operation in
the cycle which is a read. They cannot be ordered by condition 3 of data
order because this would imply that there exists a third operation such
that the write is process ordered before that operation, and the read
writes to that operation. This is impossible since a read cannot write
to another operation. So the write must be ordered before the read by
process order or writes-to order. Also, the operations are in a cycle in
data order so the read is data ordered before the write. In either case,
the write is anti ordered before itself. The serial views for GAO must
all contain this write, so they cannot respect this cycle in anti order.
Therefore, the execution is not GAO.
Case 2: The cycle has no reads. Once again, expand the cycle so that

no link is a transitive chain. If the transitive chain includes a read refer
to case 1. None of the links can result from writes-to order because a

Journal of the ACM, Vol. V, No. N, Month 20YY.

30 · R. Steinke and G. Nutt

write cannot write to another write. The cycle must contain writes from
at least two processes. If not, a write must be ordered by data order
before another write earlier in process order. This must have come about
by condition 3 of data order. Therefore, the following condition exists,
w1 <PO w2 < POr, and w1 7→ r. all of these operations are to the same
variable. It is impossible for this process’ view to be serial and respect
local order, so the execution is not GAO. So there must be some links
that result from condition 3 of data order between writes by different
processes. Pick one write, w1 and follow the cycle along process order
links until a link resulting form condition 3 is reached. In this case,
a write, w2 is process ordered before a read, r, which is written-to by
another write, w3, creating the link w2 <DO w3. w1 must also be process
ordered before r because either it is process ordered before w2, or it is
w2. So w1 <DO w3. Now, w1 does not write to r, so it must be ordered
by serial order either w1 <SO w3 7→ r, or r <SO w1. The second
case is impossible. The view for the process that submitted w1 and r

must contain both operations and respect local order. The assignment
of r <SO w1 would prevent this, and so this assignment could never
be used to show that the execution is GAO. Therefore, the assignment
must be w1 <SO w3. By the same logic, follow the chain from w3 to the
next link that results from condition 3. There must be another write
serial ordered after w3. Every time the cycle switches to an operation
by a different process, the first operation by the new process must be
serial ordered after w3. Continue around the cycle. At some point the
cycle will change processes for the last time before reaching w1. The first
operation by this new process is either w1, or a write process ordered
before w1. This write must also be serial ordered before w3. Either it
is w1, or it is process ordered before r, and the same reasoning applies.
This assignment of serial order has a cycle involving only writes, and so
no process’ view could respect it. We have previously shown that any
alternate assignment would also prevent the execution from satisfying
GAO. Therefore, the execution is not GAO.

Theorem 4.23. GAO is strictly stronger than GDO.

Proof: GAO is shown to be stronger by Theorem 4.12 and Lemma 4.22.
GAO is shown to be strictly stronger by the fact that the execution in
Figure 12 satisfies GDO and not GAO.

All that remains is to show that the four properties together make up sequential
consistency. Since GAO is stronger than GDO we will leave it out and prove that
GPO+GWO+GAO is equivalent to sequential consistency.

Lemma 4.24. Every sequentially consistent execution is GPO+GWO+GAO.

Proof: A sequentially consistent execution has a single, serial view on
all operations that respects <PO. Call this view <seq. By definition,
<seq respects <PO. If w1 <WO w2 then ∃r such that w1 7→ r <PO w2.
<seq respects <PO and is serial so it respects 7→ and therefore it respects
<WO.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 31

Now we will show that a sequentially consistent execution respects
<DO. This is not strictly required by the theorem, but will make it
easier to prove that the execution satisfies <AO. <seq respects <PO

and is serial, and so respects the <PO and 7→ conditions of <DO. If
o1 <PO r, and o2 7→ r, and o1 has a different value than r then o1 must
come before o2 in <seq, or the view will not be serial. If this were not
so then o1 must come between o2 and r because o1 <PO r and <seq

respects <PO. There are two cases, o1 is either a write or a read. If o1

is a write then r does not read from the most recent write and <seq is
not serial. If o1 is a read then either o1 does not read from the most
recent write, or there is a write to the same variable with the same value
as o1 between o2 and o1 in which case r does not read from the most
recent write and <seq is not serial. Therefore, <seq respects condition 3
of <DO. <seq is a total order. Since it respects the first three conditions
of <DO it will respect the transitive closure condition.
To prove that a sequentially consistent execution is GAO, define a

serial order, <SO, with edges in the same order as <seq. This is possible
because if ∃w, w′, r such that w′ 7→ r and w 6= w′ then it cannot be that
w′ <seq w <seq r because then <seq would not be serial. w must be
ordered either before w′ or after r. If ∃w1, w2 such that w1 <AO w2

then ∃r1, r2 such that w1 7→ r1 <PO r2 <DO w2, or w1 7→ r1 <PO

r2 <SO w2, or w1 7→ r1 <SO w2, or w1 <PO r1 <DO w2, or w1 <PO

r1 <SO w2. <seq respects 7→, <PO, <DO, and <SO so therefore respects
<AO(<SO).
So <seq respects <PO, <WO, <SO, <AO(<SO), is serial, and contains

all operations so it can be used to construct the required per-process
views for all processes:

∀i∈P∃SerialView(<iLocal ∪ <PO ∪ <WO ∪ <SO ∪ <AO(<SO)

|(∗, i, ∗, ∗)∪ (w, ∗, ∗, ∗))
so the execution is GPO+GWO+GAO.

Lemma 4.25. For any GPO+GWO+GAO execution the per-process views can
be constructed where all write operations occur in the same order in all views.

Proof: Because <iLocal is a subset of <PO we will ignore it and just
show that the constructed views respect <PO, <WO, <SO, <AO(<SO),
and are serial. There must be an initial definition of serial order for which
the execution satisfies GPO+GWO+GAO. This definition of serial order
is not changed throughout this proof. That is, the final constructed views
satisfy GPO+GWO+GAO for the same definition of serial order as the
initial views. All initial writes must be ordered first in all views because
all initial writes are ordered before any other operation by <PO. These
initial writes can come in any order because they are not ordered with
respect to each other, and there are no reads between them, so place
them in the same order in all views. For any two views <i and <j , the
first write that is not an initial write in <i can be placed first in <j.
Then the next write in <i can be placed second in <j , and so on. We
will use an inductive proof to show that this reordering can be done and

Journal of the ACM, Vol. V, No. N, Month 20YY.

32 · R. Steinke and G. Nutt

the resulting views will still respect <PO, <WO, <SO, <AO(<SO), and be
serial. The inductive proof uses the following definitions and invariants:

(1) The order < is defined as <PO ∪ <WO ∪ <SO ∪ <AO(<SO).

(2) The views <i and <j respect < and are serial.

(3) The write operation being moved is called w1.

(4) Point A is the place in <j where w1 will be moved to.

(5) Point B is the place in <j where w1 is being moved from.

(6) Point B is after point A in <j.

(7) All write operations ordered before w1 in <i are before point A in
<j .

(8) Corollary: All write operations ordered before w1 by < are before
point A in <j because <i respects <.

The execution is GPO+GWO+GAO so there must exist initial views
<i and <j that respect < and are serial. In the initial case, point A
is just after the initial writes of <j. w1 is the first non-initial write in
<i so only the initial writes are ordered before it in <i and they are all
before point A in <j . W1 is after the initial writes in <j so point B is
after point A in <j .

Consider all the operations between A and B. These must all be either
read operations by process j, or write operations not ordered before w1

by <. Construct the set of prior reads as follows. The variable that
w1 operates on will be referred to as x. Any read between A and B to
variable x is a prior read. Also, any read between A and B ordered by
process order before w1 or a prior read is a prior read. Then construct
the set of remaining operations as all reads between A and B that are
not prior reads plus all writes between A and B. Now, we will show that
w1 or any prior read can not be ordered after any remaining operation.

Case 1: w1 was submitted by process j. Every read between A and B
is a prior read. The remaining operations are all writes and cannot be
ordered by < before w1 by the invariant. The remaining operations
also cannot be ordered before any prior read by <. They cannot be
ordered by <PO because the write would be by process j and so would
be ordered before w1 which is a contradiction. A read and a write cannot
be ordered by <WO or <AO(<SO) because those two orders only occur
between pairs of write operations. Also, a read cannot be ordered after
a write by <SO.

Case 2: w1 was not submitted by process j. If a remaining operation is
a read it is by process j so it cannot be ordered before w1 by <PO. The
remaining read also cannot be ordered before w1 by <WO or <AO(<SO)

because those orders only occur between pairs of write operations. The
remaining read cannot be ordered before w1 by <SO because the read
would be to the same variable as w1, and so would be a prior read.
The remaining read cannot be ordered before any prior read because all
reads are by process j so it would be ordered before a prior read by <PO

making it a prior read.
If the remaining operation is a write it cannot be ordered by < before

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 33

w1 by the invariant. It cannot be ordered before a prior read by <WO or
<AO(<SO) because those only order pairs of writes. It cannot be ordered
before a prior read by <SO because a read cannot be ordered after a
write by <SO. All that remains is to show that a remaining operation
which is a write cannot be ordered before a prior read by <PO. Any
prior read, r, comes before w1 in <j. The write, w2, which wrote to r

must also come before w1 because <j is serial. If r is to the same variable
as w1 then either, w1 <SO w2, or r <SO w1. Since <j respects <SO it
must be the case that r <SO w1. If a remaining operation w3 is ordered
before a prior read, r1, by <PO then either r1 is to the same variable as
w1 in which case r1 <SO w1, or r1 is ordered by <PO before r2 which
is to the same variable as w1 in which case r2 <SO w1. Therefore,
w3 <PO (r1 <PO)r2 <SO w1 so w3 <AO w1 which is a contradiction of
the invariant.
In either case, w1 and all prior reads are not ordered after any remaining

operations by <. Now <j is changed as follows: All prior reads are placed
immediately before point A preserving their order followed by w1. All
other operations preserve their order. For all pairs of operations that
change their relative position one must be w1 or a prior read. The other
must be a remaining operation. These pairs cannot be ordered by < so
the view still respects <.
Before the move, <j was serial so each prior read must have read from

the most recent write to that variable. That write must have been before
point A because it is anti ordered before w1. The write must still be the
most recent write to the same variable because the moved read is after
all writes before point A, and every write between the two was there
before the move when <j was serial. Remaining reads maintained their
relative position with all writes except w1. Remaining reads cannot be
to variable x, and so they too must still read from the most recent write.
No other pairs of reads and writes changed relative position so <j must
still be serial.
Now, move point A to immediately after w1. The next write in <i

becomes the new w1. This write has not been moved to before point A
in <j so point B is still after point A. The set of writes before w1 in
<i have all been moved to before point A in <j, so the invariants are
satisfied. Therefore, by induction one can create views for all processes
that respect < and have the write operations in the same order in all
views.

Lemma 4.26. For any GPO+GWO+GAO execution it is possible to construct
a single view containing all operations that respects process order and is serial.

Proof: From lemma 4.25 create views which all have the write opera-
tions in the same order. These orders respect <PO and are serial. Then
take one of these views and add the read operations of all other processes
in the same relative position to the writes as they occur in their own
view. The read operations must all be ordered by <PO correctly with
respect to all writes because the writes occur in the same order in every

Journal of the ACM, Vol. V, No. N, Month 20YY.

34 · R. Steinke and G. Nutt

view. Reads ordered with respect to each other by <PO come from the
same view, and so they are placed in that order in the new view. The
serial property is not affected by the relative position of pairs of reads,
and every read operation is in the same position relative to all writes,
so the view must be serial.

Theorem 4.27. GPO+GWO+GAO is equivalent to sequential consistency.

Proof: Follows directly from lemmas 4.24 and 4.26.

Adding GAO almost completes the lattice as shown in Figure 13. Since GAO
is stronger than GDO any box labeled with GAO will also enforce GDO, but that
is not shown for brevity. The lattice now has three additional new consistency
models: GAO, GPO+GAO, and GWO+GAO. The lattice is almost complete, but
it does not yet contain slow consistency. Slow consistency would be located below
both PRAM and cache, and above local.

4.4 Slow Consistency as a Combination of Properties

In slow consistency [Hutto and Ahamad 1990], two operations must maintain their
order only if they are by the same process and to the same variable. This leads to
the following definitions.

Definition 4.28. Two operations are ordered by process-data order, o1 <PDO o2,
iff o1 <PO o2, and o1 <DO o2.

Definition 4.29. An execution is Global Process-Data Order (GPDO) iff

∀i∈P∃ SerialView(<iLocal ∪ <PDO |(∗, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

Theorem 4.30. GPDO is equivalent to slow consistency.

Proof: For any GPDO execution, take the view for a single processor.
Divide this view into separate views, one for each variable by restricting
the set of operations to operations on a single variable, but maintaining
their relative order. Process-data order contains all edges in process
order between operations to the same variable. These views respect
process-data order, and contain only operations to a single variable so
they respect process order. These views are exactly what is required to
satisfy slow consistency.
For any slow consistent execution, gather together the views over all

variables for a particular processor. By similar logic to Lemma 4.9,
the union of these views and <iLocal must be acyclic. The union of
the views must contain every edge in process-data order. Therefore,
any topological sort of the union of the views and <iLocal must respect
<iLocal ∪ <PDO. Also, each view is serial. In the topological sort,
every pair of operations to the same variable must preserve their relative
position so the topological sort must be serial. The topological sort is
exactly what is required to satisfy GPDO.

GPDO is more than just a new statement of slow consistency. It represents a new
way of combining consistency properties. We have already seen GPO+GDO as a

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 35

GPO+GWO+GAO

Sequential

��������

HHHHHHHH

GPO+GAO

GPO+GDO+GWO

Defined in [Ahamad et al. 1992]

GWO+GAO

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

�
�

�
�

GPO+GDO

Processor

GPO+GWO

Causal
GDO+GWO

@
@

@
@

@@

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@
@

�
�

�
�

��

GAO

GPO

PRAM

GDO

Cache

GWO

HHHH

����
�

�
�

�
�

�
�

�

GPDO

Slow
XXXX

∅

Local

Fig. 13. The Complete Lattice of Consistency Models

way to combine two models to produce a stronger model. Now, GPDO combines two
models to produce a weaker model. This could be done for any pair of properties.
For example, process-anti order orders only operations that are ordered by both
process order and anti order. GPAO would be weaker than both GPO and GAO.
However, it is questionable how useful models this weak would be. Slow consistency
is essentially only valuable in defining synchronized models. Perhaps these models
would be usable with a transition theory, and higher consistency operations between
them for synchronization.

Journal of the ACM, Vol. V, No. N, Month 20YY.

36 · R. Steinke and G. Nutt

p5 (w, p5, a, 1) (r, p5, a, 2)

p6 (w, p6, a, 2) (r, p6, a, 1)

Fig. 14. An Execution That Violates GDO

p7 (r, p7, b, 2) (w, p7, c, 1)

p8 (r, p8, c, 1) (w, p8, b, 2)

Fig. 15. An Execution That Violates GWO

4.5 A Lattice of Consistency Models

The result of these composable consistency properties is the lattice of consistency
models shown in Figure 13. Every possible combination of properties produces
a model represented by a box in the lattice. The top of the lattice is sequential
consistency, and the bottom is local consistency. Every pair of models has a unique
least upper bound and greatest lower bound. There are other combinations of
properties demonstrated in this work such as GPO∩GDO, and GPAO. These are
not shown in the lattice for brevity, and because their utility is unknown. GPDO
is shown in the lattice because slow consistency is a well known and widely used
model.

One can think of every box in the lattice as representing a set of executions that
satisfies that model, and no stronger model in the lattice. To show that every
box of the lattice is non-empty we provide example executions that violate each of
the four consistency properties. To derive an example execution for a particular
box, combine the executions violating all the properties not contained in that box.
Figure 12 given when defining anti-order in Subsection 4.3 provides an execution
that violates GAO without violating any of the other three properties.

Figure 14 provides an execution that violates GDO (and thus GAO), but does
not violate GPO or GWO. From condition 3 of data order:

(w, p5, a, 1) <DO (w, p6, a, 2) <DO (w, p5, a, 1)

Therefore, there is a cycle in <DO so the execution is not GDO. However, write-
read-write order is empty. The following views satisfy <PO and <WO, and are
serial.

p5 : (w, p5, a, 1) <5 (w, p6, a, 2) <5 (r, p5, a, 2)
p6 : (w, p6, a, 2) <6 (w, p5, a, 1) <6 (r, p6, a, 1)

Figure 15 provides an execution that violates GWO, but does not violate GPO,
GDO, or GAO. The following cycle exists.

(w, p7, c, 1) <WO (w, p8, b, 2) <WO (w, p7, c, 1)

These two writes must be present in all views, so no view can respect <WO. Each
write is data ordered before the read it writes-to. Serial order and anti order are
empty. The following views satisfy <PO, <DO, <AO(<SO), <SO, and are serial.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 37

p9 (w, p9, d, 1) (w, p9, e, 2)

p10 (r, p10, e, 2) (w, p10, d, 3) (r, p10, d, 1)

Fig. 16. An Execution That Violates GPO

p7 : (w, p8, b, 2) <7 (r, p7, b, 2) <7 (w, p7, c, 1)
p8 : (w, p7, c, 1) <8 (r, p8, c, 1) <8 (w, p8, b, 2)

To produce an execution that satisfies only GPO and no stronger model in the
lattice, define an execution containing p5 and p6 from Figure 14 and p7 and p8 from
Figure 15. Likewise, to create an execution satisfying only GPO+GDO combine
Figure 12 with Figure 15, and so forth.

Figure 16 provides an execution that violates GPO, but does not violate GDO,
GWO, or GAO. In order for the view for p10 to be serial, (w, p9, e, 2) must come
before (r, p10, e, 2), and (w, p9, d, 1) must come after (w, p10, d, 3). In order to respect
local order, (r, p10, e, 2) must come before (w, p10, d, 3). Therefore, (w, p9, e, 2) must
come before (w, p9, d, 1) which does not respect <PO.

The following are the definitions of <DO and <WO for this execution.

(w, p10, d, 3) <DO (w, p9, d, 1) <DO (r, p10, d, 1)
(w, p9, e, 2) <DO (r, p10, e, 2)
(w, p9, e, 2) <WO (w, p10, d, 3)

With the following definition of serial order, anti order is empty.

(w, p10, d, 3) <SO (w, p9, d, 1)

The following view for p10 satisfies <DO, <WO, <AO(<SO), <SO, <p10Local, and
is serial.

p10 : (w, p9, e, 2) <10 (r, p10, e, 2) <10 (w, p10, d, 3) <10 (w, p9, d, 1) <10

(r, p10, d, 1)

However, the view for p9 is not as simple. The following cycle exists.

(w, p10, d, 3) <SO (w, p9, d, 1) <p9Local (w, p9, e, 2) <WO (w, p10, d, 3)

No view can be written for p9 that satisfies GWO+GAO. However, separate
views can be written, one that satisfies GWO, and one that satisfies GAO.

p9(GWO) : (w, p9, d, 1) <9 (w, p9, e, 2) <9 (w, p10, d, 3)
p9(GAO) : (w, p10, d, 3) <9 (w, p9, d, 1) <9 (w, p9, e, 2)

Therefore, this execution satisfies GAO, and no stronger model in the lattice.
It also satisfies GWO, and no stronger model in the lattice. By combining this
execution with Figure 12 we achieve an execution that satisfies only GDO. All that
remains is to find executions that satisfy GWO+GAO and GDO+GWO.

Figure 17 satisfies GWO+GAO, but not GPO+GWO+GAO. Below is the defi-
nition of <DO.

(w, p12, f, 2) <DO (w, p11, f, 1) <DO (r, p12, f, 1)
(w, p11, g, 4) <DO (w, p12, g, 3) <DO (r, p11, g, 3)

Journal of the ACM, Vol. V, No. N, Month 20YY.

38 · R. Steinke and G. Nutt

p11 (w, p11, f, 1) (w, p11, g, 4) (r, p11, g, 3)

p12 (w, p12, g, 3) (w, p12, f, 2) (r, p12, f, 1)

Fig. 17. An Execution That Satisfies GWO+GAO

The following definition of serial order must be chosen.

(w, p11, g, 4) <SO (w, p12, g, 3)

If not then (w, p11, g, 4) must be ordered after (r, p11, g, 3) which violates the
order <p11Local. Likewise for (w, p12, f, 2) and (r, p12, f, 1). <WO and <AO(<SO)

are empty. The following cycle exists.

(w, p11, g, 4) <SO (w, p12, g, 3) <PO (w, p12, f, 2) <SO (w, p11, f, 1) <PO

(w, p11, g, 4)

Therefore, it is impossible for any view to respect both <PO and <SO. So the
execution is not GPO+GAO, and hence it is not GPO+GWO+GAO. However,
this execution is GWO+GAO as the following views demonstrate.

p11 : (w, p12, f, 2) <11 (w, p11, f, 1) <11 (w, p11, g, 4) <11

(w, p12, g, 3) <11 (r, p11, g, 3)
p12 : (w, p11, g, 4) <12 (w, p12, g, 3) <12 (w, p12, f, 2) <12

(w, p11, f, 1) <12 (r, p12, f, 1)

To create an execution that satisfies GDO+GWO and no stronger model com-
bine this execution with Figure 12. The complete lattice as shown in Figure 13
is a powerful new way to describe and organize consistency models. Every non-
synchronized model described in Section 2 is encompassed by the lattice model.
In addition, five new consistency models are uncovered by the symmetry of the
lattice. Every model in the lattice has a non-empty set of executions which satisfy
that model and no stronger model in the lattice. Finally, new consistency proper-
ties would be easy to integrate into the lattice if they are discovered. Synchronized
models are not covered directly by the lattice. Instead, synchronized models can
be viewed as processes submitting some operations under one consistency model,
and some operations under another consistency model, i.e. a consistency transi-
tion. Synchronized models will covered in Section 5 on consistency transitions. The
lattice model facilitates the definition of consistency transitions because any two
models are easily compared by the properties they enforce.

5. CONSISTENCY TRANSITIONS

Our final generalization of consistency models is the idea of consistency transitions.
In synchronized consistency models, a program executes ordinary operations with
a relaxed consistency model, usually slow consistency. Occasionally, the program
executes synchronization operations with a stronger consistency model, usually se-
quential consistency. These synchronization operations enforce additional ordering
restrictions between ordinary operations. This can be viewed as a consistency tran-
sition where the process executing a synchronization operation temporarily requests

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 39

p1 (r, p1, y, 2) (sw, p1, z, 3) (w, p1, x, 1)

p2 (r, p2, x, 1) (sw, p2, z, 4) (w, p2, y, 2)

Fig. 18. An Execution that violates weak consistency

a stronger level of consistency. Our goal is to develop a general theory of consis-
tency transitions between any two consistency models, not just slow and sequential.
Synchronized models require the following.

(1) All synchronization operations must be sequentially consistent.

(2) All ordinary operations must be slow consistent.

(3) The order <D must be respected between synchronization and ordinary oper-
ations

Sequential consistency is equivalent to GPO+GWO+GAO. So the first condition
can be satisfied with serial views on synchronization operations.

∀i∈P∃ SerialView(<iLocal ∪ <PO ∪ <WO ∪ <SO ∪ <AO(<SO) |
(sr, i, ∗, ∗) ∪ (sw, ∗, ∗, ∗))

Weak consistency does not include acquire and release operations. Instead, syn-
chronization operations are special read and write operations. To distinguish them
we use the operation types sr for synchronized read and sw for synchronized write.
Remember that for other synchronized models the writes-to relation is defined with
acquire operations treated as reads, and release operations treated as writes. If an
acquire is defined as an sr and a release as an sw this definition is equally valid for
every synchronized model.

Slow consistency is equivalent to GPDO. So the second condition can be satisfied
by serial views on ordinary operations.

∀i∈P∃ SerialView(<iLocal ∪ <PDO |(or, i, ∗, ∗) ∪ (ow, ∗, ∗, ∗))

The operation type or is used for ordinary read, and ow for ordinary write. The
views for synchronization and ordinary operations are very similar. They each have
one view per processor, and each view contains the reads of that processor plus all
writes. It would be nice to combine these views into a single view for each processor
containing both synchronization and ordinary operations. The view would have to
respect the ordering among synchronization operations, <synch,

<synch≡<PO ∪ <WO ∪ <SO ∪ <AO(<SO) |(sr, i, ∗, ∗) ∪ (sw, ∗, ∗, ∗)

and the ordering among ordinary operations, <ord,

<ord≡<PDO |(r, i, ∗, ∗) ∪ (w, ∗, ∗, ∗)

and it would have to respect <iLocal and <D. However, this straightforward
approach has some problems.

Figure 18 satisfies all of these properties and still does not satisfy weak consis-
tency as the following views demonstrate.

Journal of the ACM, Vol. V, No. N, Month 20YY.

40 · R. Steinke and G. Nutt

p1 : (sw, p2, z, 4) <1 (w, p2, y, 2) <1 (r, p1, y, 2) <1 (sw, p1, z, 3) <1

(w, p1, x, 1)
p2 : (sw, p1, z, 3) <2 (w, p1, x, 1) <2 (r, p2, x, 1) <2 (sw, p2, z, 4) <2

(w, p2, y, 2)

Notice that the synchronized writes are unordered by <synch. They may occur
in either order, but in this execution they are seen to occur in different orders by
different processes. Does this violate the assertion that synchronization operations
must be sequentially consistent? After all, the synchronization operations by them-
selves, ignoring ordinary operations, are sequentially consistent. The reason for this
conundrum comes from a slight discrepancy between the intuitive definition and the
formal definition of sequential consistency. The intuitive definition can be stated
like this.

There is a single total order of events, and all processes agree that the
events happened in that order.

However, the formal definition requires that there exist at least one order of
events that every process can agree on. There may be more than one order of
events that would satisfy every process, and there is no way to distinguish a single
correct order from the sequentially consistent operations alone. This problem is
not an artifact of our definition of GPO+GWO+GAO. It can still occur with the
original definition of sequential consistency. Below is a restatement of the definition
given previously for synchronized consistency models except that the positions of
∀i∈P,x∈V and ∃ <seq= . . . have been reversed.

∀i∈P,x∈V ∃ <seq=SerialView(<PO |(s, ∗, ∗, ∗)), and
<S=the transitive closure of <D ∪ <seq, and
∃ SerialView(<S ∪ <PO |(∗, i, x, ∗) ∪ (w, ∗, x, ∗))

The syncronized operations are sequentially consistent, but each process gets to
choose it’s own definition of <seq. This causes the same problem. The original
definition resolved this problem by requiring that the definition of <S for every
process be based on a single definition of <seq. This same strategy can be used
with GPO+GWO+GAO to generate the definition given below. Note that all
synchronized reads must be included in every view. This will be addressed later.

Theorem 5.1. The following definition is equivalent to synchronized model con-
sistency

∀i∈P∃ SerialView(<iLocal ∪ <synch ∪ <ord ∪ <D |(or, i, ∗, ∗)∪
(ow, ∗, ∗, ∗)∪(sr, ∗, ∗, ∗)∪(sw, ∗, ∗, ∗)) and all synchronization operations
appear in the same order in every view.

Proof: For an execution that satisfies the above views, construct the
original definition synchronized consistent views as follows. The view
<seq is the total order on synchronization operations that occurs in every
view. Any two ordinary operations ordered by <S must be ordered by
a transitive chain containing only synchronization operations. The per-
process views contain all synchronization operations and respect <D

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 41

p1 (r, p1, y, 2) (sw, p1, z, 3) (w, p1, x, 1)

p2 (r, p2, x, 1) (sw, p2, z, 4) (w, p2, y, 2)

Fig. 19. Linearizability for Synchronization Operations

and <seq so they must also respect <S. Construct the per-process per-
variable slow consistent views required by weak consistency from the
per-process GPDO consistent views as shown in Theorem 4.30. The
new views will respect the old views so they will respect <S.

For an execution that satisfies the original definition of synchronized
consistency, construct the above views as follows. Begin with all the
synchronization operations in the order specified by <seq. This is the
order in which they will appear in every per-process view. The synchro-
nization operations must respect <synch because by Lemma 4.24 every
sequentially consistent view respects process order, write-read-write or-
der, serial order, and anti order. Any single per-process, per-variable
slow consistent view can always be combined with with the synchroniza-
tion operations in a way that respects <D because the view respects <S

which is the transitive closure of <seq and <D. Combine all slow consis-
tent views with the synchronization operations in this way ignoring, for
now, the order between operations from different slow consistent views.
The resulting view will respect <synch, <ord, and <D. All that remains
is to show that it respects <iLocal.

Between two synchronization operations, the ordinary operations can
always be rearranged as a topological sort of <ord ∪ <iLocal which is
acyclic by Lemma 4.9. Two ordinary operations separated by synchro-
nization operations cannot be out of order with respect to <iLocal be-
cause

o1 <D s1 <seq s2 <D o2 <iLocal o1

This implies that s2 is process ordered before s1, but appears after it
in <seq which is a contradiction.

Should all processes be required to see the same total order of synchronization
operations, or is it sufficient that the synchronization operations are sequentially
consistent? We argue that sequentially consistency of synchronization operations
should be sufficient even if this allows different processes see different total orders.
First, we feel that the intuitive definition is in fact enforcing a consistency model
stronger than sequential. For example, linearizability [Herlihy and Wing 1990]
assumes the existence of a global Newtonian clock. The processes may not have
access to this clock, but it does exist. Each operation spans a certain period of
time. A linearizable execution must be sequential, and in addition if two operations
have non-overlapping time spans they must appear in the sequential view in that
order. Perhaps this problem would be solved if synchronization operations were
linearizable, and ordinary operations had defined time spans and were forced to
respect certain linearizable restrictions with synchronization operations.

Journal of the ACM, Vol. V, No. N, Month 20YY.

42 · R. Steinke and G. Nutt

For example, Figure 19 shows how linearizability could solve this problem for
Figure 18. Even if the time spans for (sw, p1, z, 3) and (sw, p2, z, 4) overlap, i.e.
they can be seen in either order, there is no way that (r, p1, y, 2) and (w, p2, y, 2)
can overlap while (r, p2, x, 1) and (w, p1, x, 1) also overlap. The definitions given for
synchronized consistency models explicitly state that synchronization operations
must be sequentially consistent. However, the implementations given with those
definitions implicitly enforce linearizability over synchronization operations. The
authors of the various models did not appreciate the effect of this slight distinction.

Another reason not to require every process to see the same total order is once
again the argument over the distinction between memory model and programming
model. The reader may have noticed that Figure 18 does not implement any kind
of mutual exclusion or barrier behavior. The program does not know in which order
the synchronized writes occurred, but is relying on the fact that they occurred in
the same order at all processes. If the program knows that two synchronization
operations occurred in a particular order the problem disappears. If the operations
are ordered by <synch then they must appear in that order in all views. In our
opinion, if the programmer needs two operations to occur in the same order in all
views then the control and data flow of the program must be able to detect in what
order they occurred. This is part of the programming model, not the consistency
model. In particular, this problem does not occur for data-race-free programs be-
cause every pair of conflicting ordinary operations is separated by synchronization
operations with control or data dependencies. I.e. the synchronization operations
must be ordered by <synch. We propose to re-define <S for synchronized consis-
tency models. Rather than being the transitive closure of <D ∪ <seq it should be
the transitive closure of <D ∪ <synch. Essentially, the synchronization operations
must be sequentially consistent, and if the program can tell that two synchroniza-
tion operations happened in a particular order then they must be placed in that
order in all process’ views. This leads to a revised definition of synchronized model
consistency.

Definition 5.2. For a given definition of <D, an execution is synchronized model
consistent with the new definition <S iff

∃ <seq=SerialView(<PO |(s, ∗, ∗, ∗)), and
<S=the transitive closure of <D ∪ <synch, and
∀i∈P,x∈V ∃ SerialView(<S ∪ <PO |(∗, i, x, ∗) ∪ (w, ∗, x, ∗))

Theorem 5.3. The following definition is equivalent to synchronized model con-
sistency with the new definition <S

∀i∈P∃ SerialView(<iLocal ∪ <synch ∪ <ord ∪ <D |(or, i, ∗, ∗)∪
(ow, ∗, ∗, ∗) ∪ (sr, ∗, ∗, ∗) ∪ (sw, ∗, ∗, ∗))

Proof: For an execution that satisfies the above views, construct the
synchronized consistent views as follows. The order <seq is taken from
any of the views as they all contain all synchronization operations. Any
two ordinary operations ordered by <S must be ordered by a transi-
tive chain containing only synchronization operations. The per-process
views contain all synchronization operations and respect <D and <synch

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 43

so they must also respect <S. Construct the per-process per-variable
slow consistent views required by weak consistency from the per-process
GPDO consistent views as shown in Theorem 4.30. The new views will
respect the old views so they will respect <S .
For an execution that satisfies the new definition of synchronized con-

sistency, construct the above views as follows. There must be at least
one order of synchronization operations that respects <synch because
<seq exists. Furthermore, each per-process, per-variable slow consistent
view respects <S so it can always be combined with an ordering of syn-
chronization operations that respects <synch and <D. By similar logic
as above, combine all operations for a single process into a single view,
and the view will respect <iLocal.

Now we will deal with the fact that every synchronized read must be placed in
every view. The proof above relies on the fact that if o1 <S o2 then o1 and o2 must
be placed in that order in every view in which they both occur. This is enforced by
the fact that every view contains all synchronization operations and respects <D

and <synch. If some view were not to contain some synchronized reads this might
not hold. There are two cases in which ordinary operations can be ordered by <S .
Case 1, o1 and o2 are linked by a transitive chain containing at least one sw. In
this case, the sw will be in every view so we can just link the ordinary operations
to the synchronized write instead of any possible synchronized reads in the chain.
Case 2, o1 and o2 are linked by a transitive chain containing only synchronized
reads. In this case, we can link the ordinary operations to each other. This will
be called transitive order, <T . In Definition 5.4, <+

synch refers to traversing one or
more edges of <synch.

Definition 5.4. Transitive order, <T , is defined as

if o <D sr <+
synch sw then o <T sw

if sw <+
synch sr <D o then sw <T o

if o1 <D sr <D o2 then o1 <T o2

if o1 <D sr1 <+
synch sr2 <D o2 then o1 <T o2

Now we have another equivalent definition of synchronized model consistency
where each per-process view contains only it’s own reads whether ordinary or syn-
chronized.

Theorem 5.5. The following definition is equivalent to synchronized model con-
sistency with the new definition <S

∀i∈P∃ SerialView(<iLocal ∪ <synch ∪ <ord ∪ <D ∪ <T |(or, i, ∗, ∗) ∪
(ow, ∗, ∗, ∗) ∪ (sr, i, ∗, ∗) ∪ (sw, ∗, ∗, ∗))

Proof: By Lemma 4.26 it must still be possible to construct the view
<seq. Also, the views must still respect <S because any transitive chain
in <D and <synch must be reflected in the operations present in each
view through <D, <synch, and <T .

Now this definition can be generalized. The definition says that sequential con-
sistency operations must be sequentially consistent with each other, slow consistent

Journal of the ACM, Vol. V, No. N, Month 20YY.

44 · R. Steinke and G. Nutt

Process p1 Process p2

The initial value of x is 0;

y = f(input);
x = 1; synch

while(x==0) wait; synch

read(y);

Fig. 20. A Data-Race-Free Program

operations must be slow consistent with each other, and operations of different
consistency levels must respect <D and <T between them. There is no reason this
definition has to be limited to sequential and slow consistency, or limited to just
two consistency levels. Each operation can be submitted under a different consis-
tency model; any model within the lattice. This leads to a generalized definition
of memory consistency. Each operation is considered to be labeled with a subset
of the consistency properties, and two operations must respect an order such as
process order if they are both labeled with the global process order property.

Definition 5.6. Two operations are ordered by synchronization order o1 <synch

o2 iff

both are labeled GPO and o1 <PO o2, or
both are labeled GDO and o1 <DO o2, or
both are labeled GWO and o1 <WO o2, or
both are labeled GAO and o1 <SO o2 or o1 <AO(<SO) o2, or
both are labeled GPDO and o1 <PDO o2. . .

Definition 5.7. For a given definition of <D, an execution satisfies generalized
memory consistency iff

∀i∈P∃ SerialView(<iLocal ∪ <synch ∪ <D ∪ <T |(r, i, ∗, ∗) ∪ (w, ∗, ∗, ∗))

So a consistency model is defined by specifying <D and labeling operations with
consistency properties. To simulate the non-synchronized models, <D is empty and
all operations are labeled with the consistency properties of that model. <synch

reduces to the union of the orders representing the labeled properties. For exam-
ple, if all operations are labeled GPO+GWO, this definition reduces to the original
definition of causal consistency. To simulate the synchronized consistency mod-
els, use <D given for that model. Synchronization operations are labeled with
GPO+GWO+GAO, and ordinary operations are labeled with GPDO. This defini-
tion can also accommodate the variant of release consistency where synchronization
operations respect processor consistency. To simulate location consistency all that
is needed is to replace SerialView with SerialPartialView as given in Definition 3.11.

These new definitions also allow new ideas about what it means for a program
to be data-race-free [Adve and Hill 1993]. A data-race-free program is one that
will only produce sequential executions even when the memory system supports
a particular consistency model weaker than sequential consistency. For example,
Figure 20 contains a program that will only produce sequential executions when it is
run under weak consistency. This program is said to be weak-sequential data-race-
free. A program may be data-race-free for some non-sequential consistency models,

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 45

and not data-race-free for others [Gharachorloo et al. 1990]. The operations on x
are synchronization operations. In order to exit the loop, p2 must read 1 from x.
Therefore, the following ordering restrictions exist.

(w, p1, y, f(input)) <D (w, p1, x, 1) 7→ (r, p2, x, 1) <D (r, p2, y, ?)

The view for p2 must contain all of these operations. If weak consistency is
enforced, then <D must be respected, and 7→ must be respected because the view
is serial. There are no other writes to y, so (r, p2, y, ?) must return the value
written by (w, p1, y, f(input)). If this value is returned then the execution is also
sequentially consistent. One goal of synchronized consistency models is to simulate
sequential consistency in this manner. This work provides a new, formal definition
of what it means to be a data-race-free program. A program is data-race-free if
and only if, for any execution produced by the program,

Given the definition of <D and labeling of operations required for weak
consistency:
∃ <SO ∀i∃SerialView(<iLocal ∪ <synch ∪ <D ∪ <T |(∗, i, ∗, ∗)∪
(w, ∗, ∗, ∗))
implies
∃ <SO ∀i∃SerialView(<PO ∪ <WO ∪ <AO(<SO) ∪ <SO |(∗, i, ∗, ∗) ∪
(w, ∗, ∗, ∗))

This literally says that if the program produces a weak consistent execution,
then that same execution is also sequentially consistent. If the program is run in
an environment that only produces weak consistent executions, then the program
will only produce sequentially consistent executions. This definition of data-race-
free is very general, but may not be too helpful to programmers. It does not give
insight on how to write a program that satisfies the condition, and it may be hard
to prove that a particular program satisfies the condition. For example, it does not
even require that the same definition of serial order be used to produce the weak
consistent views as the sequentially consistent views. One could provide simpler,
conservative definitions that are easier to implement and prove, but still enforce
the above condition. For example, if every pair of operations ordered by <PO

∪ <WO ∪ <AO(<SO) ∪ <SO were also ordered by <iLocal ∪ <synch ∪ <D ∪ <T

then the condition would hold. A further restriction along these lines is to say that
every pair of ordinary operations to the same variable must be separated by control
and data dependencies among synchronization operations which is the traditional
definition of data-race-free. This new uniform notation may allow more precise,
less conservative formulations of the class of data-race-free programs.

6. CONCLUSIONS AND FUTURE WORK

The thesis of this work is that every useful shared memory consistency model (well
known and often used models in the literature) can be described by a single uni-
fying framework. This work presents such a framework in the form of a lattice
of primitive consistency properties, and a theory of transitions within the lattice.
Shared memory can be viewed as an abstract API of interprocess communication
parameterized by its consistency model. This API can be implemented in environ-
ments with physically shared memory banks in hardware. Or in environments with

Journal of the ACM, Vol. V, No. N, Month 20YY.

46 · R. Steinke and G. Nutt

no physically shared memory, as in distributed shared memory systems. This style
of interprocess communication is appropriate for many types of applications which
can leverage research done on memory implementations and memory consistency
models.

The first contribution of this work is the discovery of four fundamental consis-
tency properties. Global Process Order enforces the condition that all operations
by a single process are seen everywhere in the system to occur in the order in which
they were submitted. Global Data Order enforces the condition that for each vari-
able, there exists at least one total order of operations which every process can
agree could have been the actual order of those operations. Combining these two
orders produces another consistency model, GPO+GDO, very similar to processor
consistency. The difference arises in the fact that there may be more than one possi-
ble total order on each variable which satisfies data order. However, data order can
be augmented to be a total order on operations to each variable. Processor consis-
tency is equivalent to process order plus this augmented data order. This method of
combining consistency properties is a general method which can be used to create
a lattice of consistency models. Any two properties can be combined in this way
to produce a consistency model stronger than either property alone. This work has
also identified another combination operator which produces a new model weaker
than either property alone. In this case, GPDO produces slow consistency. Thus,
all possible combinations of consistency properties produce a lattice of models.

The third property, Global Write-read-write Order enforces aspects of causality.
It is defined such that GPO+GWO is equivalent to causal consistency. It is the
weakest property (the smallest set of edges) for which this is true. The fourth
property is Global Anti Order. Anti order is defined such that all four properties
combined produce a model equivalent to sequential consistency. To accomplish this,
Global Anti Order requires two ordering relations among operations, anti order and
serial order. Serial order captures the restriction that every read must read from
the most recent write. Anti order is based on both serial order and data order. This
complexity is required as any weaker definition of anti order was not sufficient to
enforce equivalence to sequential consistency. Another side effect of this complexity
is that Global Anti Order is not orthogonal to all three other properties. It is strictly
stronger than data order.

The second contribution of this work is the concept of a consistency lattice. As
stated before, enumerating every combination of the four consistency properties
with both combination operators produces a lattice of consistency models. The
strongest model in the lattice is sequential consistency, and the weakest is local
consistency. Every non-synchronized consistency model described in Subsection 2.2
is equivalent to a node in this lattice. The lattice model validates the derived con-
sistency properties as necessary and sufficient to describe all such models. Further-
more, for every consistency model in the lattice there exists a non-empty set of
executions accepted by that model and no stronger model in the lattice.

The third contribution of this work is that the lattice includes five previously
unnamed, non-empty consistency models: GWO, GAO, GDO+GWO, GPO+GAO,
GWO+GAO. We believe the most promising of these is GDO+GWO. It is a data-
centric version of causality where operations are placed in causal order when they

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 47

are applied to their variable, not when they are issued by their process.
The fourth contribution of this work is a transition theory over the consistency

lattice. The uniform lattice framework assists in the development of the transition
theory because any two models can be compared by their properties, and transi-
tions can be viewed as adding or removing properties. The transition theory was
evaluated against synchronized consistency models, and every synchronized model
described in Sec 2.3 can be modeled by this transition theory. This led to the devel-
opment of a single statement of consistency called generalized consistency. Under
generalized consistency, every operation is labeled with a set of consistency prop-
erties. Consistency requirements among operations depend on their labelings. If
every operation is labeled with the same set of properties, generalized consistency
simulates the non-synchronized consistency model represented by the combination
of those properties. Various other labelings simulate the transitions equivalent to
the synchronized models.

In the future, this work can be extended in several directions. In the lattice, the
five new consistency models need to be examined to determine intuitive definitions
of the effects enforced by those models, and whether existing applications may be
able to take better advantage of the new models. The space of consistency models
around processor consistency needs to be explored in more detail as well as other
methods of combining properties such as GPO∩GDO and GPAO. Finally, efficient
implementations could be examined with regards to what consistency properties
they enforce. A lattice of implementations related to the lattice of consistency
models would be helpful in automating selection of memory implementations.

Received Month Year; revised Month Year; accepted Month Year

REFERENCES

1990. Proceedings of the Seventeenth Annual International Symposium on Computer Architecture.
IEEE Computer Society Press, Los Alamitos, CA.

Adve, S. V. and Gharachorloo, K. 1996. Shared memory consistency models: A tutorial. IEEE

Computer Magazine 29, 12 (Dec.), 66–76.

Adve, S. V. and Hill, M. D. 1993. A unified formalization of four shared-memory models. IEEE

Transactions on Parallel and Distributed Systems 4, 6 (June), 613–624.

Ahamad, M., Bazzi, R., John, R., Kohli, P., and Neiger, G. 1992. The power of proces-
sor consistency. Technical Report GIT-CC-92/34, College of Computing, Georgia Institute of
Technology. Dec.

Ahamad, M., Burns, James, E., Hutto, Phillip, W., and Neigher, G. 1991. Causal memory. In
Proceedings of the Fifth International Workshop on Distributed Algorithms, S. Toueg, G. Spi-
rakis, P., and L. Kirousis, Eds. Lecture Notes in Computer Science, vol. 579. Springer-Verlag,
9–30.

Amza, C., Cox, A. L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W., and

Zwanepoel, W. 1996. Treadmarks: Shared memory computing on networks of workstations.
IEEE Computer Magazine 29, 2 (Feb.), 18–28.

Bataller, J. and Bernabeu, J. 1997. Synchronized dsm models. In Proceedings of the Third

International Euro-Par Conference, C. Lengauer, M. Griebl, and S. Gorlatch, Eds. Springer,
Berlin, 468–475.

Bataller, J. and Bernabeu-Auban, J. M. 1998. Adaptable distributed shared memory: A formal
definition. In Proceedings of the Fourth International Euro-Par Conference, D. Pritchard and
J. Reeve, Eds. Springer, Berlin, 887–891.

Journal of the ACM, Vol. V, No. N, Month 20YY.

48 · R. Steinke and G. Nutt

Bennett, J. K., Carter, J. K., and Zwaenepoel, W. 1990. Munin: Distributed shared mem-

ory based on type-specific memory coherence. In Proceedings of the Second ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming. 168–176.

Bennett, J. K., Carter, J. K., and Zwaenepoel, W. 1995. Techniques for reducing consistency-
related communication in distributed shared memory systems. ACM Transactions on Computer

Systems 13, 3 (Aug.), 205–243.

Bershad, B. N. and Zekauskas, M. 1991. Midway: Shared memory parallel programming with
entry consistency for distributed memory multiprocessors. Technical Report CMU-CS-91-170,
Carnegie-Mellon University. Sept.

Bershad, B. N., Zekauskas, M. J., and Sawdon, W. A. 1993. The midway distributed shared
memory system. In Proceedings of the IEEE COMPCON Conference. 528–537.

Dubois, M. and Scheurich, C. 1990. Memory access dependencies in shared memory multipro-
cessors. IEEE Transactions on Software Engineering 16, 6 (June), 660–673.

Dubois, M., Scheurich, C., and Briggs, F. 1986. Memory buffering in multiprocessors. In
Proceedings of the Thirteenth Annual Symposium on Computer Architecture. IEEE Computer
Society Press, Los Alamitos, CA, 434–442.

Gao, G. R. and Sarkar, V. 2000. Location consistency–a new memory model and cache con-
sistency protocol. IEEE Trans. Comput. 49, 8 (Aug.), 798–813.

Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., and Hennessy, J. 1990.
Memory consistency and event ordering in scalable shared-memory multiprocessors. See com
[1990], 15–26.

Gniady, C., Falsafi, B., and Vijaykumar, T. N. 1999. Is sc + ilp = rc? In Proceedings of the

Twenty Sixth Annual International Symposium on Computer Architecture. IEEE Computer
Society Press, Los Alamitos, CA, 162–171.

Goodman, J. R. 1989. Cache consistency and sequential consistency. Technical Report 61, IEEE
Scalable Coherent Interface Working Group. Mar.

Herlihy, M. P. and Wing, J. M. 1990. Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12, 3 (July), 463–492.

Hutto, P. W. and Ahamad, M. 1990. Slow memory: Weakening consistency to enhance concur-
rency in distributed shared memories. In Proceedings of the Tenth International Conference

on Distributed Computing Systems. 302–309.

Iftode, L., Singh, J. P., and Li, K. 1996. Scope consistency: A bridge between release consistency
and entry consistency. Technical report, Princeton University.

Keleher, P., Cox, A. L., and Zwaenepoel, W. 1992. Lazy release consistency for software
distributed shared memory. In Proceedings of the Nineteenth Annual International Symposium

on Computer Architecture. IEEE Computer Society Press, Los Alamitos, CA, 13–21.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM 21, 7 (July), 558–565.

Lamport, L. 1979. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput. C-28, 9 (Sept.), 690–691.

Lamport, L. 1986. On interprocess communication; part ii:algorithms. Distributed Comput-

ing 1, 2 (Apr.), 86–101.

Lenoski, D., Laudon, J., Gharachorloo, K., Gupta, A., and Hennessy, J. 1990. The
directory-based cache coherence protocol for the dash multiprocessor. See com [1990], 148–
159.

Li, K. 1986. Shared virtual memory on loosely coupled multiprocessors. Ph.D. thesis, Yale
University.

Li, K. and Hudak, P. 1989. Memory coherence in shared virtual memory systems. ACM Trans.

Comput. Syst. 7, 4 (Nov.), 321–359.

Lipton, R. J. and Sandberg, J. S. 1988. Pram: A scalable shared memory. Technical Report
CS-TR-180-88, Princeton University. Sept.

Mosberger, D. 1993. Memory consistency models. ACM SIGOPS Operating Systems Re-

view 27, 1 (Jan.), 18–27.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 49

Ranganathan, P., Pai, V. S., Abdel-Shafi, H., and Adve, S. V. 1997. The interaction of

software prefetching with ilp processors in shared-memory systems. In Proceedings of the

Twenty Fourth Annual International Symposium on Computer Architecture. IEEE Computer
Society Press, Los Alamitos, CA, 144–156.

Ranganathan, P., Pai, V. S., and Adve, S. V. 1997. Using speculative retirement and larger
instruction windows to narrow the performance gap between memory consistency models. In
Proceedings of the Ninth ACM Symposium on Parallel Algorithms and Architectures. 199–210.

Tanenbaum, A. S. 1995. Distributed Operating Systems. Prentice-Hall, Englewood Cliffs, NJ.

APPENDIX

Definition A.1. An execution is a set of processes, P , a set of shared variables,
V , a set of operations, O, and two partial orders on O, process order, <PO, and
writes-to order, 7→.

Definition A.2. An operation is a tuple (op, i, x, v) where op is r for a read, w for
a write, or o if the type of operation is unknown. i ∈ P is the process submitting
the operation. x ∈ V is the variable to which the operation is applied, and v is a
valid value for the variable x.

Definition A.3. An operation pattern is written like an operation with ∗ in place
of one or more of the attributes. It represents the set of all operations in O that
match the pattern in all attributes that are not ∗.

For example, (r, p1, x, 5) denotes that process p1 read the variable x, and received
the value 5. (w, ∗, ∗, ∗) denotes the set of all write operations.

Definition A.4. The set of operations, O,

O ≡ (∪i∈P the operations submitted by i)
⋃

(∪x∈V (w, ǫ, x,⊥))

where ǫ is a special symbol not used to denote any process, and ⊥ is a special
value that cannot be written by any process. The operation (w, ǫ, x,⊥) is called
the initial write of x.

Definition A.5. Local order for process i, <iLocal,

<iLocal≡(a total order on (∗, i, ∗, ∗))
⋃

(∀x∈V,oi∈(∗,i,∗,∗) (w, ǫ, x,⊥) <iLocal oi)

Definition A.6. Process order, <PO,

<PO≡ ∪i∈P <iLocal

Definition A.7. Writes-to order, 7→,

∀(r,i,x,v)∈O∃ unique (w, j, x, v) ∈ O such that (w, j, x, v) 7→ (r, i, x, v)

These definitions say that the set O includes the operations submitted by all
processes plus an initial write for each variable. Operations by a single process
are totally ordered and are ordered after all initial writes by local order. Process
order is the union of all local orders. Without loss of generality, assume that every
variable has an initial write, and writes are uniquely valued. As a consequence of
this, for every read there exists exactly one write that writes-to that read. Writes-to
order is redundant with the values returned by read operations. Knowing either
one determines the other, but both are defined for convenience.

Journal of the ACM, Vol. V, No. N, Month 20YY.

50 · R. Steinke and G. Nutt

P = {p1, p2} P = {p1}
V = {x, y} V = {x}
O = {(w, ǫ, x,⊥), (w, ǫ, y,⊥) O = {(w, ǫ, x,⊥), (w, p1, x, 1),

(w, p1, x, 1), (r, p1, y, 2), (w, p1, x, 2), (r, p1, x, 1)}
(r, p2, x, 1), (w, p2, y, 2)}

(w, ǫ, x,⊥) <PO (w, p1, x, 1) <PO (r, p1, y, 2) (w, ǫ, x,⊥) <PO (w, p1, x, 1) <PO

(w, ǫ, y,⊥) <PO (w, p1, x, 1) <PO (r, p1, y, 2) (w, p1, x, 2) <PO (r, p1, x, 1)
(w, ǫ, x,⊥) <PO (r, p2, x, 1) <PO (w, p2, y, 2)
(w, ǫ, y,⊥) <PO (r, p2, x, 1) <PO (w, p2, y, 2)
(w, p1, x, 1) 7→ (r, p2, x, 1) (w, p1, x, 1) 7→ (r, p1, x, 1)
(w, p2, y, 2) 7→ (r, p1, y, 2)

(a) (b)

Fig. 21. Two Executions

An execution defines the operations that were submitted to a memory system
and specifies the externally visible behavior of the memory system by the writes-to
relation. Now we need to relate the behavior of the memory system to correctness
with respect to a consistency model. Consider Figure 21. Execution (a) corresponds
to a sequentially consistent execution. From the set of operations, O, and the
process order we see that p1 wrote x and then read y, and p2 read x and then wrote
y. From the writes-to order we see that p2 read p1’s write, and p1 read p2’s write.
This corresponds to a sequential order of:

(w, ǫ, x,⊥) < (w, ǫ, y,⊥) < (w, p1, x, 1) < (r, p2, x, 1) < (w, p2, y, 2) <

(r, p1, y, 2)

where < denotes an unnamed total order. Execution (b), however, is a little
disconcerting. There is one process. p1 wrote 1 to x, then wrote 2 to x, and then
read x. Unfortunately, the read returned the value 1 from the first write, and not 2
from the second. When we try to create a total order we run into a contradiction.
If the order is:

(w, ǫ, x,⊥) < (w, p1, x, 1) < (w, p1, x, 2) < (r, p1, x, 1)

then the read does not read from the most recent write, but if the order is:

(w, ǫ, x,⊥) < (w, p1, x, 1) < (r, p1, x, 1) < (w, p1, x, 2)

then this violates process order. The important thing to note is that this does
qualify as an execution. Imagine a computer with out of order instruction dis-
patching. If this dispatching mechanism were buggy it might accidentally switch
the order of a read and write to the same variable. Execution (b) exactly mod-
els this sort of phenomenon. However, it is not likely that this execution will be
deemed correct by any consistency model. The problems we just saw with creating
a total order also give us a hint about how to define a consistency model in terms
of allowable executions.

Definition A.8. A view is a total order on a set of operations representing one
process’ view of the sequence of events within the memory system.

Definition A.9. A view is serial iff every read returns the value from the most
recent (defined by the order of the view) write to the same variable.

Journal of the ACM, Vol. V, No. N, Month 20YY.

A Unified Theory of Shared Memory Consistency · 51

Definition A.10. A view is said to respect a relation if every edge in the relation
appears in the view.

Definition A.11. A relation, <, can be restricted to a subset of operations, de-
noted < |subset, which results in a relation containing the set of edges that are
both in < and between two operations in subset.

The notation, SerialView(< |subset), denotes a serial view over the operations in
subset respecting the relation < |subset. Usually, subset will be defined in terms
of operation patterns, or if subset is the entire set O the shorthand SerialView(<)
will be used.

Journal of the ACM, Vol. V, No. N, Month 20YY.

