
ones who would put various interpretations on data and
thus support various solutions with the same data, on a
second dimension. Witkin has defined individuals as field
independents who have the ability to deliniate and struc-
ture a given whole, or as field dependents who show a
global point of view and for whom the organization of a
field as a whole dictates the way its parts are experienced.
Witkin has experimentally shown that field independents
have more analytical capability than the field dependents.

The findings of the experimental studies on the impact of
cognitive styles coupled with the differences hypothesized
in the theoretical models would tend to support Mason and
Mitroff's hypothesis that the cognitive style of the decision
maker should be considered in DSS design. Broad gener-
alizations on the impact of cognitive styles are hard to
derive due to the limited number of experimental results
and the various test instruments used to measure cognitive
styles.

Nevertheless, some suggestions on DSS can be summa-
rized, always keeping in mind that further research is still
necessary. Analytic decision makers prefer to work with
decision aids and are more likely to accept reports which
are supported by mathematical or quantitative arguments.
Heuristics like to rely more on the historical reporting
system; they want to analyze more information than analy-
tics, thus preferring disaggregated information. Heuristics
should be allowed to search and simulate for a variety of
alternate solutions. The kind of decision aid which would
be suitable for heuristics is one where the user should be
able to create an arbitrary order of processing to develop
an approach as feedback from the environment as ob-
tained, should be able to explore scenarios to generate
cues or test trial solutions, should be able to shift between
levels of detail and generality and should be able to control
the format of the output and have means for flexible inputs.
[Botkin (1973)].

With respect to data collection and usage, preceptive
individuals should be given aids to summarize and filter
data, such as exception reports and routines for determin-
ing patterns of given attributes over time. Receptive and
maximal data user types should have a data-retrieval
system with flexible and timely search capabilities to large
data bases.

How do the systems designers go about implementing
these suggestions? Should they (a) create a flexible sys-
tem and let decision makers choose the type of model and
format of reports which they think will best fit their needs,
(b) ask the manager what models and report formats he
wants and only provide him with those or (c) give each
decision maker only the models and reports which best fit
the decision maker's needs based on a psychological
(cognitive style) test? There is no simple answer.

Option (c) which I prefer is supported by Ackoff's (1967)
contention that the manager does not know the informa-
tion he needs. To implement this option, the designer
would keep a cognitive style profile on each decision
maker based on an initial test and design all future systems
to support the decision maker according to this profile. To
effectively implement option (c), we need more studies to
clarify the impact of cognitive styles and provide the
designer a pool of knowledge to work with.

Option (a) lets the decision maker decide, but this may
involve extra time and unnecessary searches on the part of
the decision maker. Option (b) assumes the manager will

be able to choose and know what he wants. The questions
on implementation, together with the many unresearched
topics in cognitive styles will, we hope, interest DSS

\ , ,

researchers in more studies to clarify this promising area
which could potentially improve DSS design.

References

1. Ackoff, R.L., "Management Misinformation Sys-
tems," Management Science, Vol. 14 (1967), pp.
147-156.

2. BotkJn, J.W., "An Intuitive Computer System: A
Cognitive Approach to the Management Learning
Process," unpublished doctoral dissertation, Har-
vard Business School (1973).

3. Driver, Michael and Theodore Mock, "Human Infor-
mation Processing, Decision Style Theory and
Accounting Information Systems," The Accounting
Review, Vol. L, No. 3 (1975).

4. Huysmans, J.H.B.M., The Implementation of Opera-
tions Research, New York: Wiley- lnterscience
(1970).

5. Keen, P.W.G., "The Implications of Cognitive Style
for Individual Decision Making," D.B.A. Thesis, Har-
vard University (1973).

6. Mason, R.O. and I.I. Mitroff, "A Program for Research
on Management Information Systems," Manage-
ment Science, Vol. 19, No. 5 (1973), pp. 475-487.

7. Schroeder, H.M., N.J. Driver and S. Streufert, Human
Information Processing, New York: Holt, Rinehart
and Winston, Inc. (1967).

8. Witkin, H.A.,The Role of Cognitive Style in Academic
Performance and in Teacher-Student Relations,
(1972).

A STATISTICAL EVALUATION
OF TACTICS USAGE

By Edward Gainer
Department of Management

Michigan State University
&

Edward Kimball
and Alfred Maley

COMSHARE, Inc.
&

Alan Kortesoja
Manufacturing Data Systems, Inc.

TACTICS is a commercial decision support system that
includes extensive data manipulation facilities servicing a
wide variety of multivariate model-building techniques.
Business and government users have employed the sys-
tem's statistical modeling tools in such diverse areas as
federal government revenue sharing, antitrust litigation
support, salary administration and equal opportunity re-
porting.

TACTICS, like all software systems, is imperfect. Unlike

38

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1017583.1017591&domain=pdf&date_stamp=1977-01-01

many systems however, TACTICS contains several facili-
ties which allow us to measure its ease of use, efficiency
and reliability. The most effective of these is a logging file
maintained by the controlling program. An analysis of the
logging records for over 100,000 commands has yielded
significant information about good syntax, programming
errors and user behavior.

TACTICS consists of a controller which starts execution
of a program module after recognizing a command. Each
module executes one command and returns. The control-
ler logs the outcome as successful completion, attention
interrupt (break) or error termination.

A successful completion means that no error was de-
tected; the overall success rate for all TACTICS commands
was 85.5 percent. The error terminations were classified as
syntax, semantic or programming errors. Since the con-
troller logs the actual command in the case of an error
termination, it was possible to examine the failures to take
corrective action.

The success rate suggests that the TACTICS syntax is
easy to use. The syntax is partly positional, partly keyword-
oriented. Each command consists of an imperative fol-
lowed by a list of variables, if appropriate. Elements of a list
are separated by commas. Keywords may then follow, in
any order. The use of a syntax analyzer and an automatic
parsing program left us free to design reasonably intuitive
constructs. Typical commands might be:

READ SALES, PROFITS OBSERVATIONS 1-20
FORMAT (2F10.0) ENCODE LATITUDE INTO
REGION RANGES LT30, 30 TO 60, GE 60
CROSSTAB RACE, SEX WEIGHT SALARY OMIT
FREQUENCY TRANSFORM Y = 2':'SIN(X) + 14.3

Commands which originally had syntax error rates as
high as 50 percent were scrapped or revised; troublesome
keywords were made optional or dropped. As an example,
the complex CUTS function in TRANSFORM was broken
out.as the ENCODE command using keywords to preface
each argument. Noise punctuation as in:

OBSERVATIONS: 1--20
SIGNIFICANCE = .95

was found to cause a surprising number of problems; its
use was dropped wherever a blank would suffice.

Generally, simpler commands with no punctuation were
more successful (87 to 92 percent) than complex com-
mands. Input/output commands were the least successful
(68 to 75 percent). The most heavily used command,
TRANSFORM, was 95 percent successful, in spite of a
syntax which allows nearly any FORTRAN expression.
Simple expressions are apparently the rule.

The operating system and the FORTRAN library routines
detect some errors such as an illegal memory address,
division by zero and so on. These automatically return
control to the controller for appropriate action. To prevent
overwriting an array bound, TACTICS uses a variable
storage allocator which places a check sum by each area it
dispenses to a module. The storage allocator also exam-
ines the last area allocated to see that its check sum is
intact. When a module terminates, all check sums are
examined. This "idiot check" has discovered the lion's
share of the programming errors present in TACTICS.
Lastly, when any module finds itself at a section of code

TACTICS C o m m a n d Statistics

Module

TRANSFORM
PRINT
REG/MULTIPLE
READ
NWAY/CROSS
ASSIGN
GRAPH
FETCH
REG/REG
ANALYZE
SELECT
REG/STEPWISE
MAKE
CODE
UPDATE
IDENTIFY
C7READ
REG/DISPLAY
REG/PREDICT
CORRELATE
REG/STORE
RESET
PARTITION
TITLE
HYPO/ANOVA
NWAY/NWAY
ENCODE
RELEASE
HYPO/HYPO
REG/MCR
HISTOGRAM
MISSING
FIT
EXHIBIT
C7WRITE
MPUNCH
HYPO/TEST
GET
NWAY/STORE
CLA/CLUSTER
ORDER
MFA/FACTOR
CLA/CLA
MFA/MFA
RANK
NWAY/DISPLAY
MFA/DISPLAY
HYPO/DISPLAY
MFA/ROTATE
MFA/STORE

Total Number
of Commands

15338
9261
8873
7799
7019
5894
5879
4414
4310
3547
3520
3292
2626
2252
2193
1931
1759
1720
1628
1620
1524
1492
1481
1416
1246
1171
795
734
727
714
706
614
587
391
312
292
288
273
268
199
186
164
144
110
110

29
17
15
15

4

Percentage
Successful

95
67
9O
75
93
91
83
87
76
91
88
76
93
91
79
86
68
88
88
87
89
97
79
98
89
81
83
91
90
8O
83
87
93
75
76
91
68
9O
98
56
82
62
75
68
78
59
41
33
53

100

Table 1

39

that it should never execute, it makes a call to a routine
DISABLE, which bails out in a graceful fashion. All these
errors cause the controller to print the message:

FATAL ERROR IN MODULE
MODULE DISABLED

and to refuse to allow the user further access to that
module, a severe measure designed to prevent incorrect
answers and to insure that the problem gets reported.

Surprisingly, only 18 percent of the disablings were ever
communicated to the system designers. The logging file
was the only record that most of these failures occurred.
Later contacts convinced us that the typical user feels the
error is somehow his fault. He doesn't wish to report the
problem lest it reflect upon him or his understanding of the
documentation, the syntax or the analysis technique itself.
He suffers from a basic belief that the computer is more
likely to be correct than he is.

The logging file was also useful for determining the
average cost of each command and the most frequently
used techniques. In one instance a command was found to
be very costly for certain data sets due to a paging
problem. This was corrected by rearranging the working
set. Frequency of use was a guide to making efficiency
improvements and installing new features. For example,
improvements in the efficiency of TRANSFORM yielded
benefits for all users. Regression, cross-tabulation and
analysis of variance occupied the bulk of the usage.

Conclusion

A logging file combined with error detection tools is an
important means of measuring the success of a DSS, as
well as maintaining and improving it. Users cannot be
relied upon to perform this function. Successful results
with TACTICS suggest the importance of using the sim-
plest feasible syntax.

AN APPROACH TO AN ADMINISTRATIVE DSS

By M. Loomis, J.F. Nunamaker
and B.R. Konsynski

Management Information Systems
University of Arizona

Implementing a decision support system which builds on
existing data files in an established environment can be
effectively accomplished by a hybrid "bottom-up with top-
down control" methodology. The existing data are the
basis for the bottom-up aspect of the approach, which
addresses implementation; the users' ultimate require-
ments are the basis for the top-down aspect of the ap-
proach, which addresses design and system structure.
This approach contrasts both with a pure top-down ap-
proach requiring the establishment of new data structures
and with a strictly bottom-up approach which creates
coordination problems.

The authors have successfully applied the methodology
in development and implementation of an integrated deci-
sion support system providing information for operational
and budget planning at the University of Arizona.

In the bottom-up with top-down control approach, the
decision support system development project commences
with iteratively refined specification of outputs, processing
and required inputs. Users and analysts meet to establish
system objectives and user requirements, including infor-
mation needs, data sources, integrity and validation speci-
fications. The major subsystems of the decision support
system are identified.

With top-down control factors established by a complete
and consistent statement of logical requirements, the
analysts can proceed with bottom-up elements of the
implementation, resulting in an interim system consistent
with the logical design resulting from the top-down control
effort and directly interfacing with existing data and oper-
ating systems. The decision support system can thus
become operational with minimal effort, yet in the longer
term the system can evolve according to the top-down
design structure.

Systems to support policy planning and decision making
by higher management in an organization are fundamen-
tally different from systems to support daily operations,
transaction processing and computer hardware. Success
of a planning system is generally much more dependent
upon human factors in the organization. One implication of
the bottom-up with-top-down control methodology is that
an organization should develop its own decision support
system, rather than purchasing a system developed for
other institutions.

Concerning aspects of the methodology, the approach
calls first for the active and informed participation in the
design process by the eventual users of the system. Thus
pitfalls of applying inappropriate assumptions and implica-
tions from another environment can be avoided. An infor-
mation system that successfully serves the needs of a
complex and socially interactive policy planning system
must be tuned to the decision-making patterns of the
participants. Participation of users in the design effort
results not only in an improved design, but can materially
reduce the education and selling effort required for accep-
tance of the system.

Second, all current files that could impact or relate to the
planning system are analyzed. Thus a comprehensive file
structure supporting the entire information and planning
system and oriented toward an integrated data base can
result. In general, implementation of an externally created
system would introduce a layer of files in addition to the
existing ones, potentially complicating problems of com-
patibility and extension.

Third, the major problem of data quality is directly
addressed in the advocated methodology; this problem is
more difficult to resolve during implementation of an im-
ported system. Any system will fail if the data supplied to it

40

