
Binary Translation to Improve Energy Efficiency through
Post-pass Register Re-allocation

Kun Zhang Tao Zhang Santosh Pande
College of Computing

Georgia Institute of Technology
Atlanta, GA, 30332

{kunzhang, zhangtao, santosh}@cc.gatech.edu

ABSTRACT
Energy efficiency is rapidly becoming a first class optimization
parameter for modern systems. Caches are critical to the overall
performance and thus, modern processors (both high and low-end)
tend to deploy a cache with large size and high degree of
associativity. Due a large size cache power takes up a significant
percentage of total system power. One important way to reduce
cache power consumption is to reduce the dynamic activities in
the cache by reducing the dynamic load-store counts. In this work,
we focus on programs that are only available as binaries which
need to be improved for energy efficiency. For adapting these
programs for energy-constrained devices, we propose a feed-back
directed post-pass solution that tries to do register re-allocation to
reduce dynamic load/store counts and to improve energy-
efficiency. Our approach is based on zero knowledge of original
code generator or compiler and performs a post-pass register
allocation to get a more power-efficient binary. We attempt to find
out the dead as well as unused registers in the binary and then re-
allocate them on hot paths to reduce dynamic load/store counts. It
is shown that the static code size increase due to our framework is
very minimal. Our experiments on SPEC2000 and MediaBench
show that our technique is effective. We have seen dynamic spill
loads/stores reduction in the data-cache ranging from 0% to
26.4%. Overall, our approach improves the energy-delay product
of the program.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors - Compilers,
optimization

General Terms
Performance, Measurement, Design, Experimentation

Keywords
Register re-allocation, dead registers, unused registers,
cache power consumption

1. INTRODUCTION
Energy efficiency has become a first class optimization parameter
for both high performance processors as well as embedded
processors; however, a very large percentage of legacy binaries
exist that are optimized for performance without any
consideration to power. In this work, we focus on improving such
binaries for popular processors such as the Pentium (x86) for
saving power without degradation (in fact slight improvement) in
performance.

Because cache size and organization are so critical to the overall
performance of a processor, modern processors tend to deploy
caches with large sizes and high degree of associativity. A large
cache consumes a significant part of the total processor power. As
an example, the high-associativity low-power caches used in
ARM processor family take almost half of the power budget of the
processor [16]. There has been research on innovative cache
design to reduce the power consumption of a cache [9, 10, 11]. In
our work, we try to reduce cache power consumption from
another point of view. Our approach reduces dynamic activities of
a cache by reducing the number of dynamic loads/stores
instructions that tend to hit L1 D-cache. We attempt such an
optimization using feedback directed approach that performs
register re-allocation.

Register allocation is the process of deciding how the variables
inside a program are assigned to the physical registers of the
machine. Generally, there are two main approaches for performing
register allocation [3]. The first one assumes that variables reside
in memory and they are placed in registers when they are
allocated. Under this model, the register allocator does not spill a
value. The second model assumes that all the variables are
represented as symbolic registers. Any symbolic register that
cannot be mapped to a physical register has to be spilled. The task
of a register allocator is to map the infinite symbolic registers to
finite physical registers such that the lifetime of symbolic registers
bound to the same physical register will not overlap. We base our
approach on the second register allocation model since this
paradigm is popular. Based on the method they employ, register
allocators can be roughly divided into two categories: based on
graph-coloring algorithm [1, 2] or based on live range splitting [3].
Hybrid register allocators also exist [4]. In a graph-coloring
register allocator, first an interference graph is constructed in
which the nodes represent symbolic registers. If two symbolic
registers are simultaneously live then an edge is added between
them. Graph-coloring based register allocators attempt to color the
interference graph with a limited number of colors, less than or
equal to the number of physical registers in the machine. Graph-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’04, September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009… $5.00.

74

coloring is a NP-hard problem, thus, the allocators have to apply
heuristics to achieve a (sub-optimal) solution. In case there are
variables that cannot be colored, they have to be spilled. Spilling a
variable means storing the value of the variable into the memory
rather than register. In splitting based allocators, when a live
range cannot be colored, it attempts to split it so that parts of it
can be colored and other parts are spilled. Spill load/stores lead to
memory accesses that sometimes are a significant portion of total
dynamic load/stores. Thus, if we reduce the dynamic spill
load/stores significantly, we can reduce the dynamic activities and
the power consumption of the data cache where these load/stores
mostly hit. Cycle counts also improve (albeit to much lesser extent
especially for out of order processors) and overall, energy-delay
product improves.

Opportunities for post-pass optimizations. Due to relative
maturity of register allocators, the natural question to ask is: do
opportunities exist for post-pass optimizations? The answer is yes
mainly due to the following reasons. In spite of a lot of research in
the register allocation area, both graph-coloring and splitting
based allocators leave a number of dead and/or unused registers
in places where spills exist in the generated code. . Secondly,
almost no allocator tends to factor in power issues during
allocation; such issues involve moderating code growth but still
achieving spill reduction on hot paths. In this paper, we propose
register re-allocation approach based on the above observations to
tackle the limitations of traditional allocators. There are two
potential approaches to solve the problem: first one involves
undertaking the whole program register re-allocation that analyzes
the tradeoff between hot and cold paths and removes as many
spills as possible on hot paths at the expense of cold paths; the
second one is an incremental approach which does not disturb the
original allocation but performs necessary fixes to the allocation
on hot paths leaving original allocation mostly undisturbed on
cold paths. We rule in favor of second approach here mainly due
to the following observations:

• Almost 70% of the typical code is cold and 30% is hot;
thus, an approach which tends to favor spills on cold parts to
remove the ones on hot parts would result in a large code growth.
Code growth is not usually desirable for most embedded devices
and moreover excessive code growth could adversely impact I-
cache performance and degrade the power consumption. Our
preliminary implementation validated this hypothesis.

• Performing the whole program re-allocation is
expensive and is also difficult as a post-pass approach.

• Incremental solution such as ours is fast and does not
need a lot of analysis and could be ideally adopted as a post-pass
due to such attributes.

Scope of our work. Motivated by above observations and the
fact that there are many programs only available as binaries that
need to be improved for energy efficiency we propose an
incremental post-pass solution which is based on zero knowledge
of the compiler or code generator originally used to generate the
binary. Our scheme discovers program behavior and then adapts
the binary by incrementally changing register allocation where
opportunities exist. This problem is quite important for popular
processors such as Pentium that have only a few registers. Also
due to the relative ease of binary portability, x86 compatible
embedded processors are gaining popularity now such as the

AMD Elan SC410, Cyrix MediaGX, and National Semiconductor
Geode etc., making this problem important.

The remainder of the paper is organized as follows: section 2
elaborates on the limitations of the traditional register allocators
motivating a need for post-pass solution; section 3 gives an
overview of our framework; sections 4 presents the details of our
approach; section 5 shows the results of our exoeriments; section
6 discusses the related work; finally section 7 concludes our paper.

2. BACKGROUND AND MOTIVATION
The preceding section discussed pros and cons of different
possible approaches. We now get into details of possible
opportunities available to the post-pass incremental approach
when the original register allocation is based on coloring and/or
live range splitting.

The early coloring allocaters do not undertake splitting scheme, so
they spill live ranges completely. Such approaches leave a large
number of dead and/or unused registers. This phenomenon occurs
because a register may be free between two disjoint live ranges
which are assigned to it. However, even a splitting-based register
allocator could leave dead/unused registers sometimes. We will
show two examples to explain why our technique will do
optimization in the presence of either one.

Figure 1 illustrates the dead register problem in a register
allocator without a splitting mechanism. In the example live
ranges V1, V2, V3 interfere with each other as shown through the
interference graph. Suppose we have only two registers. One of
the live ranges must be spilled. Assume that V1 has the least spill
cost and gets spilled; register r1 is allocated to variable V2 and
register r2 is allocated to V3. Figure 1 shows that r2 and r1 are
dead for certain parts of live range V1. Specifically r2 is dead
before it gets the value V3 and r1 is dead after the last use of V2. If
there are spills for V1 in these sub-ranges, we can simply re-
allocate r1 or r2 to avoid the spills. Note a splitting-based register
allocator will do the similar work and eliminate the problem
shown in Figure 1.

In the second example shown in Figure 2, there are five live
ranges V1, V2, V3, V4 and V5. Assume that we are using a splitting
type register allocator based on Cooper&Simpson’s paper [5] and
suppose we have only two registers r1 and r2. According to this
splitting scheme, nodes in the containment graph represent live
ranges and an edge from Vj to Vi in the graph indicates that Vi is

r2 r1

V1

V2 V3

spilled

V1 V2 V3

r2 dead

r1 dead

Interference Graph

Figure 1. Register allocation without splitting

75

live at a definition or use of Vj. In this example, the nodes are V1,
V2, V3, V4 and V5, and the containment graph is shown in Figure
3. V1 and V2 are in a loop and have higher spill costs than V3. So
they will be allocated to registers r1 and r2. There is no edge <V3,
V1> in the containment graph and the splitting cost is less than the
spilling cost for V3. So V3 will be split around live range V1 as
shown in Figure 2 and r1 will be allocated to V3’. Note that r1 is
carrying a dead value in B2, so it can be used for re-allocation.
There are three live ranges in B2 and V3 is in r1, so one of V4 and
V5 has to be spilled. In that case, we can allocate r1 to the spilled
live range and remove the corresponding load in hot basic block
(B2) while inserting a load in cold basic block (B1). Now consider
another important splitting based allocator proposed in
Chow&Hennessy’s paper [3]. Due to its forbidden list becoming
full, the priority based coloring scheme will split live range V3 as
shown into V3’ (please refer to Figure 2). Although V3’ has no use
in B2, it will get a register in B2 and in turn could spill values in
B2 that appear later in priority list.

Sparse or long live ranges could also lead to inefficiencies in
register allocators. A variable may be used so many times along
the live range that it gets a physical register. However, the
variable is not necessarily used evenly throughout the live range,

possibly leaving some large regions where the variable occupies a
register but is not used. We call such registers as unused registers
in these regions. The unused register problem is common under
almost all register allocators. In this work, we perform analysis to
discover the availability and profitability of dead/unused registers
in program binaries to improve the energy efficiency.

3. FRAMEWORK OVERVIEW

Our framework for post-pass register re-allocation is shown in
Figure 4. Starting from the program binary with zero knowledge
of the compiler generating it, we first dis-assemble the binary to
get assembly source code. Then we re-construct the program
control flow graph (CFG) from the assembly code. We instrument
the binary based on the CFG to get the basic block execution
frequency counts. The instrumented binary is executed with many
different inputs (called training runs) to collect the program
profile data. The profile data is fed back to the register re-
allocation pass to assist the cost and benefit analysis of
dead/unused register re-allocation.

The details for register re-allocation pass are further illustrated in
Figure 5. First hot regions in a program are identified which our
optimization focuses on. Then the re-allocation of registers inside
hot regions is modeled as a weighted bipartite graph matching
problem. The benefit of re-allocating a register and the cost of

Figure 2. Register allocation with splitting mechanism

Program Binary

Dead & unused
register analysis

Register
re-allocation

Instrumentation

Instrumented
binary

Assembly Source Code

CFG re-construction

Spilled variable
recovery

Profile Data

Improved Binary

Figure 4. Our approach

Hot region identification

Weighted bipartite graph

Benefit & cost analysis

Compensation code insertion

Figure 5. Register re-allocation overview

Split here

V3

v4 = …
v5 = …

v3 = …
…

…
… = v4
… = v5

v1 = …
v2 = …
…
… = v1
… = v3
… = v2

V1(r1)
V2(r2)

B1

B2

B3

V3’ (r1)

Spill

V4
V5

V3

V4 V5

V2 V1

Figure 3. Containment graph for the example in Figure 2

76

corresponding compensation code (loads/stores inserted into cold
blocks) are analyzed and the re-allocation with maximum overall
benefit is chosen. Finally, the compensation code is inserted to
guarantee the correctness of the program.

4. REGISTER RE-ALLOCATION
In this section, we will elaborate our register re-allocation
framework introduced in last section. Our re-allocation framework
includes both dead register (a register which does not contain a
live value) re-allocation and unused register (a register which may
contain a live value but is neither defined nor used at current basic
block) re-allocation.

4.1 Dead and Unused Registers
First, we will introduce some definitions about dead and unused
registers and show how to identify dead registers through data
flow analysis.

Definition1: Unused register in a basic block is a register which is
neither defined nor used within that basic block.

Define Universal_set be the set of all available registers for
allocation; used[B] be the set of registers which are defined or
used in B; unused[B] be the set of unused registers in B. It is
obvious that, unused[B] = Universal_set – used[B]. Please note
that an unused register in block B may or may not be carrying a
live value in it.

Definition2: A register is dead at a program point p if it does not
carry a live value at p.

For a basic block B, denote dead_in[B] to be the set of dead
registers at the entry of B; dead_out[B] to be the set of dead
registers at the exit of B. The algorithm to collect dead register
information is shown in Figure 6.

It is similar to live variable analysis [17] except that in computing
dead_out[B], the unification operator is " I " instead of " U "
since a register is dead out of a block B only if it is dead along
every path from the exit of B. Also note that even if a register is
dead at the beginning of a basic block, it may not be used for
register re-allocation directly. Since it may be defined and used
again inside the basic block. So we consider the set (dead_in[B] –
used[B]) for dead register re-allocation instead. Note that even if a
register is dead at the beginning of a basic block, it may not be
used for register re-allocation directly since it may be defined and
used again the basic block. So we consider the set (dead_in[B] –
used[B]) for dead register re-allocation in blokck B instead.
Please note that a dead register need not be stored before it is

loaded but an unused register (if carrying a live value) must be
stored before a new value is loaded in it. Finally, this value must
be restored in it at the right program point (before its use). These
issues form the basis for compensation code and determine
profitability for the use of dead/unused registers.

4.2 Hot region identification
Next, in this phase, we identify hot regions in a program. The goal
of the algorithm is to reduce the dynamic spills inside a hot region
maybe at the cost of increased dynamic spills in cold basic blocks.
Since hot regions tend to be executed more frequently than cold
blocks, we will achieve overall performance and energy efficiency
improvement.

To identify hot regions, first we need to identify hot basic blocks.
Currently, hot basic blocks are identified in a simple way in our
framework. We consider those basic blocks whose average
dynamic execution frequency exceeds a certain threshold as hot
basic blocks. The threshold is the average execution frequency of
the basic blocks. Next, adjacent hot basic blocks are merged to
form hot regions. An important property of our algorithm is that it
forms the regions in such a way that any two hot regions must be
separated by cold basic blocks. In other words, for disjoint hot
regions register re-allocation can be carried out independently. As
an example, consider the sub-CFG shown in Figure 7. In the
example, basic blocks B4, B5 and B6 belong to a loop body and
they are hot basic blocks. The threshold is 8000. According to the
hot region identification algorithm, B4, B5 and B6 form a hot
region. The other basic blocks shown are cold. The detailed
algorithm for hot region identification is shown in Appendix.

4.3 Spill identification
Next we identify the spills to be removed from hot blocks. Please
note that not all the loads/stores constitute spills. It is not safe to
keep pointer variables in registers in the absence of aggressive
alias analysis and thus, such values are loaded and stored from
memory. In our framework, we perform a simple alias analysis
based on the one proposed in [17] to determine the singly aliased
variables (this is a conservative analysis which assumes all pointer
variables are multiply aliased unless proved otherwise through
reaching definition analysis). Only the loads/stores corresponding

Initialization:

dead_in[B] = dead_out[B] = Universal_set;
dead_gen[B] = {r | r is defined before used in B};
dead_kill[B] = {r | r is used before defined in B};

Data flow equations:

dead_out[B] = I S is successor of B dead_in[S];

dead_in[B] = dead_gen[B] U (dead_out[B] - dead_kill[B]);

Figure 6. Dead register analysis

… = v1
… = v2

… = v1

v1 = …
… = v1
v3 = …

B1 B2

 B5

 B6

B9

 200 300

10200

10000

700

v1 is dead

200

add r1, r2, r3 B3 loop entry B4

10000

B8

100

Figure 7. An example

v1 = …

B7

77

to singly aliased, non-array variables are considered as spills and
are used by subsequent passes. This assumption is safe and also
quite accurate since very rarely compilers perform register
allocation for array variables.

4.4 Weighted bipartite graph matching
In this section, we explain how to model the register re-allocation
inside a hot region as a weighted bipartite graph matching
problem.

For a hot region, a bipartite graph is formed in the following way.
The spilled variables in a hot region are gathered to form one
bipartition of the bipartite graph. The same variable in different
basic blocks is represented as different vertices. This separation is
deliberately done to give a finer control over allocating two
instances of the same spill value independently. The other
bipartition is formed by the set of all dead registers in the hot
region. Again, the same register in different blocks is represented
through different vertices. If a variable and a register are in the
same basic block and they are of the same type (in terms of bit
width), then we add an edge in the bipartite graph to connect them.
That means that the variable could be possibly allocated to the
register. Each edge has a weight associated with it. The weight of
the edge is defined by the dynamic spill loads/stores caused by the
corresponding variable in the corresponding basic block. An
edge’s weight thus indicates the dynamic spill loads/stores that
will be eliminated if we re-allocate the variable into a register.
Again, consider the sub-CFG in Figure 7. As mentioned before,
B4, B5 and B6 form a hot region. Assume v1 and v2 are spilled in
B5; v1 and v3 are spilled in B6. There is a dead register r1 in B5 and
dead registers r1 and r2 in B6. The resulting bipartite graph is
shown in Figure 8.

Next we discuss how to perform register re-allocation inside a hot
region; the costs and benefits are weighed in to perform matching.
Note that we would like to avoid assigning one register to
multiple variables in a hot region because doing that will
introduce compensation code inside the hot region. Due to the
same reason, we also like to avoid assigning one value to multiple
registers in a hot region. Combining these two conditions, any
viable solution to register re-allocation inside a hot region
corresponds to a matching in the bipartite graph. However, the
benefit brought by register re-allocation is not free. We often need
compensation code to maintain the correctness of the program (we

will discuss the computation of compensation cost in detail later)
Thus, the overall benefit can be expressed as the benefit of
reassignment minus the compensation code cost. To save energy,
we need to choose that matching which has maximum overall
benefit. Although weighted bipartite graph maximum matching
itself is easy, it is not so if we have to consider compensation cost
for finding the best solution. We have to compute the
compensation cost for each matching to decide the overall best
solution. To guarantee optimality, in our current implementation,
we take a brute-force approach. We try all the matchings, compute
the corresponding compensation cost then find the optimal one.
However, due to the small size of hot region and the two
conditions mentioned above, this phase does not take too much
time as shown in our experimental results later.

4.5 Compensation code cost analysis
To analyze the compensation code cost of register re-allocation,
first, we find out the edges in the bipartite graph which are
incident on the same variable and the same register. We then
check the corresponding basic blocks of those edges. If any of the
corresponding basic blocks are adjacent in CFG, we combine the
edges to be analyzed together and call the resulting edge set as an
analysis unit. The motivation for combining the edges is that, in
such a case, it is not necessary to introduce any compensation
code between the corresponding basic blocks. As an example, in
bipartite graph shown in Figure 8, we can combine E1 and E3 as
an analysis unit. If we reassign r1 to v1, we do not need any
compensation code between B5 and B6.

Next, for each analysis unit, three regions are created to assist
analysis. The basic blocks corresponding to the edges in an
analysis unit form a region named cur_region. Cur_region is a
subset of the hot region. It is possible that the cur_region could
lead to the insertion of compensation code in hot regions. To
avoid this problem, we extend cur_region to include as many hot
blocks as possible within the hot region. Thus we have more
opportunity to insert loads/stores in cold blocks. A block B in the
hot region will be added to cur_region if its predecessors and
successors are all in cur_region and the dead register r considered
for re-allocation belongs to dead_in[B]. The first condition
together with the condition of keeping a spilled variable in one
register in a hot region mentioned earlier will assure that
expanding cur_region will not impact other analysis units. The
second condition is to guarantee that r is always dead in
cur_region. Otherwise, r may contain a live variable in cur_region
which will lead to extra compensation code costs. We define
pred_region/cur_region as a set of blocks which are not in
cur_region, and have successors/predecessors in cur_region. As
an example again, consider the analysis unit {E1, E3} in bipartite
graph in Figure 8. At first cur_region includes basic blocks B5 and
B6. Then B4 will be added to cur_region through the expansion.
So cur_region is made of B4, B5 and B6. Pred_region includes
basic block B1, B2 and B7. Succ_region includes basic block B9.
For dead register re-allocation, compensating load instructions
can be inserted in pred_region or cur_region. Compensating store
instructions can be inserted in succ_region or cur_region. In the
description, we will use four variables w_cur_load, w_cur_store,
w_pred_load, w_succ_store to represent the cost of inserting
compensating load in cur_region, compensating store in
cur_region, compensating load in pred_region and compensating
store in succ_region respectively. Next we will analyze how to

v1B5 r1B5

v2B5

E1 10000

E2 10000

Figure 8. Bipartite Graph

r1B6 v1B6

v3B6 r2B6

E3 20400

E6 10200

E5 10200 E4 20400

78

compute the values of these variables case by case. First, consider
the compensating load instruction. To re-allocate a dead register
to a spilled variable, we may need to load the spilled variable into
the register first. The load instruction could be inserted into the
entries of cur_region, or it could be hoisted out of the basic blocks
in cur_region.

Consider the analysis unit {E1, E3} in bipartite graph in Figure 8.
It is easy to see that to allocate dead register r1 to v1, we could
insert a load r1, v1 at the entry of B4. Also, we could hoist such an
instruction out of the loop body. We have to be careful here. First,
we may not be able to simply insert the load at the end of the
predecessor basic blocks in pred_region. Consider the same
example. We cannot insert a load r1, v1 at the end of B1 because r1
is used in B3 which is one of the successors of B1. In that case, we
have to create a new basic block and insert it between B1 and B4.
Besides the load instruction cost, we have to count the jump
instruction cost too. Currently, we regard jump instruction has the
same cost as load/store instruction. Another interesting point is
that it is not necessary to insert a load into a predecessor basic
block if the spilled variable is dead at the end of the basic block.
For example, consider B7 in pred_region. Since v1 is actually dead
at the end of B7 so there is no need to do anything. The analysis
for inserting compensation load in B2 is the same. For the cases in
which we could either choose from creating a new basic block or
inserting a load instruction directly, the lower cost solution would
be chosen. The algorithms to compute w_cur_load, i.e., the cost
of inserting loads in cur_region and w_pred_load, i.e., the cost of
inserting loads out of cur_region are shown in Figure 9 and Figure
10.

The analysis of compensation store instructions is quite similar to
load instructions though more complicated. Again consider the
example in Figure 7. Suppose we re-allocate dead register r1 to v1
in the hot region. We have to store r1 back to v1 finally. However,
we cannot insert the store instruction in B9 since v1 is actually
live at the entry of B9 and the value of v1 may be defined in basic
block B8 at runtime. If we insert the store instruction in B9, it may
wrongly overwrite the correct value of v1. In that case, we will
have to insert a new basic block between B4 and B9. In computing
compensation cost, an important issue is that in most programs the
spilled variables will cause much more loads than stores. This
property enables us to gain more benefit. If there is no store
instruction in an analysis unit, we do not need compensation store
even if the variable is live out of cur_region since the spill
variable’s value is not changed. We will check the basic blocks
corresponding to the edges in an analysis unit to see if there is any
store instruction for the spilled variable we want to do re-
allocation. If such store instruction exists, the algorithms to
compute w_cur_store, i.e., the cost of inserting stores in
cur_region and w_succ_store, i.e., the cost of inserting stores out

of cur_region shown in Figure 11 and Figure 12 will be used for
store compensation cost analysis.

Now we have known the benefit and the compensation cost of a
matching, so we can calculate the overall benefit of a particular
matching. As mentioned before, we will just take a brute force
approach and choose the matching having maximum overall
benefit.

4.6 Unused Register Allocation
The algorithm for dead register re-allocation is not suitable for
unused register re-allocation since the value in the unused register
is usually live. Thus, the original value in the unused register has
to be stored back to the memory before re-allocation and loaded
from memory to the register after re-allocation. This is done to
make sure that there is a correct residency of values in the register
before respective points of their uses. This increases
compensation cost greatly. However, we have another algorithm
to save energy.

Figure 9. W_cur_load computation

w_cur_store = 0;
for each exit E of cur_region
 // if the variable is dead thereafter, do nothing
 if spilled variable is live at the exit of E
w_cur_store += average execution times of E;
 EndIf
EndFor

Figure 10. W_pred_load computation

Figure 11. W_cur_store computation

w_cur_load = 0;
for each entry E of cur_region

// if the variable is dead before entering E, do nothing
if spilled variable is live at the entry of E

w_cur_load += average execution times of E;
EndIf

EndFor

w_pred_load = 0;
For each basic block P in pred_region

// if the variable is dead thereafter, do nothing
If spilled variable considered is live at the exit of P

new_bb_cost = 0;
For each successor S of P in cur_region

// if the variable is dead before entering S,
// no need to insert load
If spilled variable considered is live at the entry of S

// assume the same cost of load and jump
new_bb_cost += 2 × avg. execution times of edge PàS;
// have to insert new basic blocks or
// inserting new basic blocks is actually cheaper
If (the register to be re-allocated is not in dead_out [P]

|| new_bb_cost < average execution time of P)
w_pred_load = w_pred_load + new_bb_cost;

EndIf
EndIf

EndFor
// insert a load at the end of P
Else

w_pred_load = w_pred_load + avg. exec. times of P;
EndIf

EndFor

79

Figure 12. W-succ_store computation

4.6.1 Unused register region identification
The region for unused re-allocation will be formed based on both
the profiling and unused register information. For a register r
which is available for allocation, adjacent basic blocks which all
have r as unused register will be merged to form a region, denoted
by unused register region. That means in such a region, r is always
unused. Among the regions, those which include hot blocks will
be considered for re-allocation.

4.6.2 Compensation cost analysis
The benefit of re-allocation in an unused register region is defined
similarly as dead register re-allocation. However, the
compensation cost analysis is more complicated.

In dead register compensation cost computation, we only need to
consider the load instruction which loads variable into the re-
allocated register (spill_var_load) and the store instruction which
stores the variable back to memory (spill_var_store). Under
unused register compensation cost computation besides the
previous two cases, we have to consider the store instruction
which stores the original value in the unused register back to
memory (orig_var_store) and the load instruction which loads the
saved value from memory back to the unused register
(orig_var_load). In dead register re-allocation, spill_var_load can
be inserted in pred_region or cur_region; spill_var_store can be
inserted in cur_region or succ_region. In other words, there are
only four situations which need to be considered. In unused

register allocation, spill_var_load and orig_var_store could be
inserted in pred_region or cur_region; spill_var_store and
orig_var_load could be inserted in cur_region or succ_region. The
constraints are that orig_var_store has to precede spill_var_load
and spill_var_store has to precede orig_var_load. the method for
analyzing compensation cost is the same as in dead register re-
allocation, to save space, we have not explicitly listed it here.

4.6.3 Unused register region ordering
Unlike the hot regions for dead register re-allocation, the unused
register regions need not be disjoint. Thus, we use some ordering
on processing the regions. The region with maximum benefit is
selected first. Then the unused register regions, which have
common basic blocks with it, are deleted from the region set.
After this step, again the next region with maximum benefit is
selected until all the regions are processed.

5. EXPERIMENTS AND RESULTS
Our experiments are based on x86 (Pentium) architecture. It has
only six general purpose registers (eax, ecx, edx, ebx, esi, edi).
The other two registers esp and ebp are stack pointer register and
frame pointer register respectively and are not used for re-
allocation. In our experiments, CFGs for the benchmark binaries
are re-constructed first. Then we use 5 different input data sets
(training run) to gather basic block profile data which is fed back
to re-allocation pass. After re-allocation pass is performed, the
optimized binaries are evaluated by another input data set (test run)
different from the previous 5 input data sets (training runs).

The work was implemented in the Machine Suif compiler [18], a
research infrastructure for profile-driven and machine-specific
optimizations. Machine Suif can be used to instrument programs
for profiling and carries out various code optimizations. It uses
the algorithm described by George&Appel [19] to do register
allocation. The algorithm interleaves Chaintin-style [1]
simplification steps with Briggs-style [2] conservative coalescing
and eliminates move instructions while guaranteeing not to
introduce spills. Thus, Machine Suif has a very good register
allocator which is highly optimized. That is why we used it to
generate the base level binaries although it does not support live
range splitting.

The benchmarks are chosen from SPEC2000 integer benchmarks
and MediaBench [13] embedded benchmarks. The original
binaries of the benchmarks are produced by Machine Suif. Then
our register re-allocation algorithm is performed. The ref input set
is used for generating results for SPEC2000 benchmarks. Here not
all the benchmarks are selected because Machine Suif could not
compile some of the benchmarks. Crafty, gap etc. can be compiled,
but the binaries do not execute; gcc, perlbmk, vortex, mpeg2 (de)
etc. fail in the do_gen pass in current implementation of Mach
Suif.

Table 1 shows the number of hot/cold basic blocks in each
benchmark binary, the number of spill loads/stores originally
present inside hot basic blocks and those which are removed by
our dead /unused register re-allocation approach. We can see that
the number of hot basic blocks is either relatively small or the
number of overall basic blocks is not big (such as adpcm encoder
and decoder). Thus, the sizes of hot regions are normally small
too. This is consistent with the general observation that the

w_succ_store = 0;
For each basic block S in succ_region

// if the variable is dead before entering S, do nothing
 If spilled variable considered is live at the entry of S

live_on_cold_pred = false;
For each predecessor P of S not in cur_region

If (spilled variable considered is live out of P)
live_on_cold_pred = true;

EndIf
EndFor
new_bb_cost = 0;
For each predecessor P of S in cur_region

// if the variable is dead thereafter, no need to insert store
If spilled variable considered is live at the exit of P

// assume the same cost of load and jump
new_bb_cost += 2 × avg. execution times of edge PàS;

 // have to insert basic blocks or
// inserting new basic blocks is actually cheaper
If (live_on_cold_pred

|| new_bb_cost < avg. exec. times of S)
w_succ_store = w_succ_store + new_bb_cost;

 EndIf
EndIf

EndFor
// insert a store at the entry of S
Else

w_succ_store = w_succ_store + avg. exec. times of S;
EndIf

EndFor

80

majority of the execution time of a program is spent in a small
region of the code. Due to small sizes of hot regions, the brute
force approach in our re-allocation algorithm normally does not
cause too much run time overhead. The time taken by our post-
pass reallocator is shown in Table 2. One can see that except for
Twolf and Vpr the time taken for re-allocation is negligible. Twolf
and Vpr are both very large benchmarks consisting thousands of
basic blocks and so the time required to reallocate is high.

Table 1 also shows the breakdown of spills removed due to dead
as well as unused registers. One can see that there is a good
amount of spill to be removed inside hot basic blocks. The
number of removed spill loads/stores is small and spills are
mainly removed by dead registers than unused ones. One can see
that only a small percentage of spills in hot blocks are removed.
This is mainly due to the fact that profitable live ranges of dead
registers tend to be quite short. Although the number of spills
removed is small, since they are inside hot basic blocks they may
lead to a significant number of dynamic spill loads/stores which
could translate to much reduced cache accesses (we show these
results later). The main reason for dead register reallocation doing
better than unused register reallocation is that too much
compensation code cost associated with the latter renders it
unprofitable.

Basic Block Spills in hot basic blocks

Benchmark Hot Cold Orig.
Removed
By Dead

Reg.

Removed By
Unused Reg.

Mcf 147 360 38 6 1

Twolf 820 5260 701 36 0

Vpr 223 4620 106 28 8

Parser 751 4898 510 7 0

Bzip2 115 808 121 9 1

Gzip 544 1220 81 1 0

Pegwit 81 1200 25 6 1

Epic 91 1001 54 8 2

G721(en) 94 257 67 9 1

G721(de) 90 260 62 5 1

Adpcm(en) 17 25 13 4 1

Adpcm(de) 12 23 8 0 0

Mpeg2(en) 729 1729 261 8 7

Table 3 shows the total number of dead/unused registers inside
hot basic blocks and the ones our re-allocation algorithm is able to
utilize. From the results, we can see that on average there are 1 to
2 dead registers and 2 to 3 unused registers in hot basic blocks.
Again although a high number of unused registers exist, one is
rarely able to use them due to high compensation code cost. The
dead registers although lesser available one is able to use them
better due to low compensation code cost.

Dead Registers Unused
Registers

Benchmark
Total Used Total Used

Mcf 213 5 398 1

Twolf 1287 31 2509 0

Vpr 186 21 305 7

Parser 963 6 1601 0

Bzip2 401 7 1924 1

Gzip 1389 1 1752 0

Pegwit 127 2 222 1

Epic 114 6 175 2

G721(en) 176 7 236 1

G721(de) 150 5 219 1

Adpcm(en) 36 3 51 1

Adpcm(de) 28 0 42 0

Mpeg2(en) 2507 6 4095 6

Table 4 shows the number of static spill loads/stores in each
benchmark program before and after register re-allocation and the
number of dynamic spill loads/stores in each benchmark program
before and after register re-allocation. Note that the number of
static spill loads/stores is almost the same before and after
optimization since the number of spill loads is much larger than
the number of spill stores. So in many cases, zero store
instructions have to be inserted into cold basic blocks while
removing the spill loads in hot regions. On an average, the
number of static spill loads/stores is reduced by 0.4% actually.

 Table 1. Hot/cold basic blocks and spills in hot basic block
Table 3. Dead/unused registers

Benchmark Re-allocation Runtime (s)

Mcf 0.225121

Twolf 33.769402

Vpr 12.379912

Parser 6.742614

Bzip2 1.046684

Gzip 1.045277

Pegwit 0.408376

Epic 0.578952

G721(en) 0.229046

G721(de) 0.276383

Adpcm(en) 0.064986

Adpcm(de) 0.034935

Mpeg2(en) 3.604020

Table 2. Re-allocation Runtime

81

On the other hand, the number of dynamic spill loads/stores is
reduced significantly. The reduction ranges from 0% to 26.4%.
Mcf and Twolf have great dynamic spills reduction since there are
both dead registers and spilled variables in hot regions; moreover
the allocator could profitably allocate dead registers here
removing a large number of spills. But for Mpeg2(en) and
Adpcm(de), the reduction is only 2.5% and even 0% due to the
almost zero dead registers re-allocated in the in hot regions due to
non-profitability. There is a big variation in the results since the
benefit brought by register re-allocation is really dependent on the
benchmark and dead registers left by the original register
allocation scheme and most importantly their profitability.

The results about total dynamic loads/stores before and after
register re-allocation are shown in Table 5. The reduction in total
dynamic loads/stores depends on the proportion of dynamic spill
loads/stores in total dynamic loads/stores for the benchmark. For
example, in Mcf, the dynamic spilled loads/stores are reduced by
26.4%. However the removed spill loads/stores are only 7.4% of
total dynamic loads/stores since the spill loads/stores are only
28% of the total dynamic loads/stores in the whole program. The
main reason for overall low percentage of load.stores is
attributable to the excellent base line register allocator.

From the above results, we show that we can reduce the number
of dynamic loads/stores in a program which should lead to a better
performance due to less data cache misses and also less power
consumption due to less activities to data cache. We measured the
impact in terms of both performance and power consumption
based on a Pentium III 800MHZ processor. The processor is
based on 0.18-Micron technology. It has a 16KB, 4-way, 32 bytes
per line L1 data cache. Pentium III is a high performance
processor; its deep pipeline helps a lot in hiding cache misses (we
believe if we apply our method to an in-order improvement in

terms of both performance and power). We use Pentium
performance monitoring counters [14] to measure the actual
cycles spent on each benchmark binary before and after register
re-allocation. To make the results as accurate as possible, the OS
(Linux) is booted into single user mode. Also, each benchmark
binary is executed 10 times and then the average result is reported.

Benchmark Original After Realloc.
Dynamic

loads/stores
reduction

Mcf 17276562150 16006139250 7.4%

Twolf 45802380479 38813745054 15.3%

Vpr 47941788368 45932437263 4.2%

Parser 140486168992 138442184403 0.7%

Bzip2 45545794471 44326280029 2.7%

Gzip 28943908385 27239713434 5.9%

Pegwit 6019701 5557563 7.7%

Epic 25395598 24140870 4.9%

G721(en) 66963592 66010641 1.4%

G721(de) 60527440 60084913 0.7%

Adpcm(en) 1328804 1246537 6.2%

Adpcm(de) 620882 620882 0.0%

Mpeg2(en) 510742100 504874096 0.4%

Table 4. Dynamic spills before and after re-allocation

of Static Spill
loads/stores # of Dynamic Spill loads/stores

Benchmark
Original After realloc. Original After realloc. Reduction

By Dead
Reduction
By Unused

Dynamic
spills

reduction

Mcf 217 218 4812685743 3542262843 1166444308 103978592 26.4%

Twolf 5877 5850 30894581907 23905946482 6988635425 0 22.6%

Vpr 3701 3682 19499342512 17489991407 1903457820 105893285 10.3%

Parser 2141 2138 14626637444 13582652855 2043984589 0 7.1%

Bzip2 764 738 10000323963 11330809521 1159018593 60495849 12.2%

Gzip 692 698 18934853875 17230658924 1704194951 0 9.0%

Pegwit 896 892 4285820 3823682 427601 34537 10.8%

Epic 1228 1228 9798175 8543447 1100102 154626 12.8%

G721(en) 138 136 12676763 11723812 946368 6583 7.5%

G721(de) 129 128 12086701 11644174 391578 50949 3.7%

Adpcm(en) 31 28 2253395 1919388 297225 36782 14.8%

Adpcm(de) 15 15 239979 239979 0 0 0.0%

Mpeg2(en) 1603 1607 90038842 87770838 1505421 762583 2.5%

 Table 5. Dynamic loads/stores before and after re-allocation

82

The impact to the performance in terms of overall execution time
is shown on Table 6. The deviation for reduction in cycles is 0.1.
The experiments prove that our register re-allocation approach
can boost the performance of some benchmarks. For example, the
performance of Epic benchmark is improved by about 34%.
According to Pentium performance monitoring counter, the
average data memory references (L2 misses) without register re-
allocation are 51493198, while after optimization, the references
are reduced to 32183485. The reason for Epic’s good result is that
we have removed some spills responsible for a huge number of L2
misses, which were "critical loads/stores". Their removal boosts
performance. On the other hand, for many benchmarks, the

improvement on the performance is minor. The reason is that the
underlying implementation of a Pentium hides a lot of load/store
latencies and makes performance improvement difficult for most
optimizations. In other words many of the removed load/stores
were in fact due to cache hits which had low latency and which
could be hidden due to out of order processing. For these
benchmarks, there is still a significant benefit in term of data
cache power efficiency due to reduced dynamic activities of data
cache. Because it is impossible for us to measure data cache
power separately in a Pentium processor, we estimate data cache
power consumption based on CACTI cache model version 3.2 [8].
CACTI model accepts cache configuration parameters and gives
average cache access power. We multiply the number of cache
accesses with this power consumption per access number given by
CACTI to estimate the dynamic power of D-cache. CACTI does
not count leakage power. So we use 10% of the average per access
power given by CACTI as an estimate of D-cache leakage power,
which is same as Wattch power model [15]. In every cycle, there
is D-cache leakage power consumption. But only when D-cache is
accessed, there is D-cache dynamic power consumption. Table 7
shows improvement in energy. Due to reduced cache activity one
can see that in case of Twolf and Epic there is a significant energy
reduction.

Table 7 shows the improvement on energy and Table 8 shows the
improvement in energy-delay product for data cache. The
reduction in energy-delay product ranges from 0% to 43.6%. The
best improvement occurs for TWolf and Epic. Both TWolf and
Epic improve both in performance as well as in terms of D-cache
accesses and thus, their overall energy-delay benefit is high. Bzip,
Gzip and Pegwit show moderate improvement in overall energy
delay product. Finally the rest show small improvement due to
small performance as well as smaller D-cache accesses. These
results show that our post-pass register re-allocation approach can
improve the energy efficiency of binaries produced by even a

Benchmark Original Cycles Cycles after
reallocation

Reduction
in cycles

Mcf 893774734092 883454762685 1.15%

Twolf 1607987490372 1416068950276 11.93%

Vpr 433874349698 428680928523 1.20%

Parser 1141834310440 1134944257476 0.60%

Bzip2 333622715307 316351684226 5.2%

Gzip 526584953131 510056316432 3.14%

Pegwit 57110945 55227790 3.30%

Epic 114274358 75441562 33.98%

G721(en) 674386104 664377838 1.48%

G721(de) 629962091 619473971 1.66%

Adpcm(en) 29629061 29166789 1.56%

Adpcm(de) 23769464 23769464 0.00%

Mpeg2(en) 3555239972 3548858134 0.20%
 Table 6. Cycle counts

Benchmark Original energy
consumption (J)

after
re-allocation (J) Reduction

Mcf 98.1923 96.1565 2.07%

Twolf 189.0554 165.2092 12.61%

Vpr 80.9813 78.8029 2.69%

Parser 225.1782 222.8119 1.05%
Bzip2 69.5816 66.9382 3.8%
Gzip 73.6566 70.6745 4.05%

Pegwit 0.0104 0.0098 5.43%

Epic 0.0321 0.0274 14.62%

G721(en) 0.1195 0.1178 1.46%

G721(de) 0.1099 0.1086 1.23%

Adpcm(en) 0.0039 0.0038 2.89%

Adpcm(de) 0.0027 0.0027 0.00%

Mpeg2(en) 0.7629 0.7573 0.73%

Table 7. Energy consumption

Benchmark Orig. energy-delay
product (J.S)

after reallocation
(J.S) Reduction

Mcf 109702.2564 106187.4471 3.20%

Twolf 379998.3830 292434.4382 23.04%

Vpr 43919.6425 42226.6506 3.85%

Parser 321395.1992 316098.8014 1.65%
Bzip2 29017.4838 26470.0044 8.78%
Gzip 48483.0790 45059.9609 7.06%

Pegwit 0.0007 0.0007 8.55%

Epic 0.0046 0.0026 43.63%

G721(en) 0.1007 0.0978 2.92%

G721(de) 0.0866 0.0841 2.88%

Adpcm(en) 0.0001 0.0001 4.41%

Adpcm(de) 0.0001 0.0001 0.00%

Mpeg2(en) 3.3902 3.3596 0.90%

Table 8. Energy-delay product

83

sophisticated register allocator to a good degree without any code
growth.

6. RELATED WORK
Our work is focused on profile-guided post-pass register re-
allocation to utilize the dead/unused registers available in the
binary thus reducing the dynamic spill load/store instructions. The
transformed binary is more efficient in terms of both performance
and energy consumption. Registers are always a precious resource
inside a processor. It is critical to utilize registers efficiently.
Chaitin et al. [1] devised an algorithm to represent register
allocation as a graph-coloring problem. His allocator becomes the
standard and basic graph coloring based register allocator. Briggs
et al. [2] developed two improvements, i.e., optimistic coloring
and rematerialization, to Chaitin-style graph coloring register
allocation. However, Chaitin’s allocator and Briggs’s allocator do
not support live range splitting and have to spill the live range as a
whole, which may lead to dead registers in the binary generated.
A live range splitting based allocator can alleviate the dead
register problem. The standard splitting based allocator is
invented by Chow and Hennessy [3]. Later, Bergner et al. [4]
proposed interference region spilling which integrates live range
splitting into a graph coloring based allocator. However, we have
shown in the paper even an allocator supporting live range
splitting cannot eliminate dead register problem completely.

Besides our work, there has been other research work tackling
dead/unused register problem. For example, Cooper and Simpson
[5] developed an algorithm to do splitting directly targeted at the
problem of unused registers after allocation. In their work, each
time the register allocator needs to spill a value, it checks to see if
it would be cheaper to spill the entire live range or split that live
range into smaller pieces, some of which will be able to be
colored and so will not have to be spilled. Their work is done
inside a compiler. In Harvey's master's thesis [6], he devised an
algorithm to do local register promotion to address the similar
problem we do. His algorithm is less aggressive than Cooper and
Simpson’s and works as a post-pass like ours. However, his
algorithm can only work on single basic blocks. Lu and Cooper [7]
also looked at the problem of using unallocated registers to
promote values into registers, but they focused on utilizing the
results of pointer analysis to determine which scalar variables can
be safely kept in registers. Hank [23] devised a region-based
compilation technique which repartitions the whole program into
regions instead of considering hot regions in a function. Our
method is quite different from the above approaches due to
several considerations such as compensation code placement and
cost issues not addressed by him.. We carefully form hot regions
and then model the problem as matching between dead/unused
registers considering compensation code costs the key goal being
to avoid compensation code on hot paths. Some papers [21, 22]
brought out some algorithms for interprocedural register allocater.
Their scheme focused on interprocedural levels and splitting
registers across calls. David W. Wall [20] delayed the register
allocation phase to link time to improve program performance.

Our register allocation not only improves program performance,
but also data cache energy efficiency. Most of the work on
reducing cache power consumption is focused on architectural
perspective. Su and Despain [9] evaluated the effectiveness of a
number of low power cache structures. Block (i.e. line) buffering

involves latching the last cache line, while sub-banking involves
only powering portions of the L1 cache. Ko and Balsara [10]
investigated a similar technique that they call Multiple-Divided
Modules (MDM). In [11], a small and energy efficient L0 data
cache is introduced in order to reduce power consumption of the
memory hierarchy. Our method aims to reduce data cache power
by reducing the number of dynamic loads/stores. Cilio and
Corporaal [12] had a similar idea but they focused on global
variable promotion and they assumed that there were dedicated
registers for global variables.

7. CONCLUSION
In this work, we proposed a feedback-directed post-pass register
re-allocation framework based on profile information to improve
the energy efficiency of program binaries. The basic idea is to
remove spill loads/stores in hot regions by utilizing dead and
unused registers thus reducing dynamic load/store instructions
and data cache power consumption. We show that the static code
size increase due to our framework is very minimal – in fact a
small decrease takes place. Our experiments on SPEC2000 and
MediaBench show that our approach always reduces dynamic
spills significantly and also improves performance to some extent.
Overall, the energy-delay product of the binaries is improved
ranging from 0 to 43 % with an average of 7.5%

8. REFERENCES
[1] G.J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M.

E. Hopkins, and P. W. Markstein. Register allocation and
spilling via graph coloring. Proceedings of the ACM
SIGPLAN ’82 Symposium on Compiler Construction, June
1982, pages 98-105.

[2] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to
graph coloring register allocation. ACM TOPLAS, Vol. 16,
No.3, pages 428--455, May 1994.

[3] Fred C. Chow and John L. Hennessy. The priority-based
coloring approach to register allocation. ACM Transactions
on Programming Languages and Systems, October 1990,
pages 501-536.

[4] P. Bergner, P. Dahl, D. Engebretsen, and M. O’Keefe, Spill
Code Minimization via Interference Region Spilling, Proc. of
the 1997 ACM SIGPLAN Conf. on PLDI, pp. 287–295. June
1997

[5] Keith D. Cooper, L. Taylor Simpson: Live Range Splitting in
a Graph Coloring Register Allocator. International
Conference on Compiler Construction. Page 174-187.

[6] T. J. Harvey, Reducing the Impact of Spill Code, Master's
Thesis, Rice University, May 1998.

[7] Keith D. Cooper, John Lu: Register Promotion in C
Programs. Proc. of the 1997 ACM SIGPLAN Conf. on
PLDI : 308-319

[8] Premkishore Shivakumar and Norman P. Jouppi. CACTI 3.0:
An Integrated Cache Timing, Power, and Area Model. WRL
research report 2001/2.

[9] C. Su and A. Despain. Cache Design Tradeoffs for Power
and Performance Optimization: A Case Study. Proc. of
International Symposium on Low Power Design, 1995.

84

[10] U. Ko, P. T. Balsara, and A. K. Nanda. Energy Optimization
of Multi-Level Processor Cache Architectures. Proc. of
International Symposium on Low Power Design, 1995.

[11] J. Kin, M. Gupta, and W. Mangione-Smith. The Filter Cache:
An Energy Efficient Memory Structure. IEEE Micro,
December 1997.

[12] Andrea G. M. Cilio, Henk Corporaal. Global Variable
Promotion: Using Registers to Reduce Cache Power
Dissipation. CC 2002: 247-260

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith.
Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems. International
Symposium on Microarchitecture, 330–351, 1997.

[14] Don Heller. Rabbit: A Performance Counters Library for
Intel/AMD Processors and Linux.
http://www.scl.ameslab.gov/Projects/Rabbit/

[15] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In 27th Annual International Symposium on
Computer Architecture, June 2000.

[16] Simon Segars. Low Power Design Techniques for
Microprocessors. Conference Presentation on IEEE
International Solid-State Circuits Conference (ISSCC), Feb.
2001.

[17] Alfred V. Aho, Ravi Sethi and Jefferey D. Ullman.
Compilers, principles, techniques, and tools. Addison
Wesley, 1986.

[18] Mach-Suif Backend Compiler, The Machine-Suif 2.1
compiler documentation set. Harvard University, Sep. 2000,
http://ececs.harvard.edu/hube/research/machsuif.html.

[19] L. George and A. Appel. Iterated Register Coalescing. ACM
Transactions on Programming Languages and Systems, 18(3),
May 1996, pp. 300-324

[20] David W. Wall. Global Register Allocation at Link Time.
Proceedings of the ACM SIGPLAN '86 Symposium on
Compiler Construction, 1986.

[21] Steven M. Kurlander Charles N. Fischer. Minimum Cost
Interprocedural Regisster Allocation. Proceedings of the
23rd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 1996.

[22] Vutsa Santhanam and Daryl Odnert. Register Allocation
Across Procedure and Module Boundaries. Proceedings of
the ACM SIGPLAN 1990 conference on Programming
language design and implementation, 1990.

[23] Richard E. Hank. Region-based compilation. Ph.D thesis,
University of Illinois Urbana-Champaign, 1996.

Appendix

Algorithm For Hot Region Formation

hot_region_list = Null;

For each Basic Block B ∈ CFG
If (B is hot) && if (B ∉ any hot region)

If (any B's precessor ∉ any hot region)
&& (any B's successor ∉ any hot region)
create a new hot region HR;
HR = {B};
hot_region_list = hot_region_list U HR;

Else If (B's precessor ∈ hot region HR)
HR = HR U {B} ;

Else If (B's successor ∈ hot region HR)
HR = HR U {B};

EndIf
EndIf

EndFor

// merge connected hot regions
change = true;
While (change)

 change = false;
For each hot region HRi ∈ hot_region_list

For each hot region HRj ∈ hot_region_list
If (∃ B1 ∈ HRi) && (∃ B2 ∈ HRj)

&& (B1 and B2 are connected in CFG)
 Hri = Hri U Hrj;
 hot_region_list = hot_region_list - Hrj;
 change = true;

EndIf
EndFor

EndFor
EndWhile

85

