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ABSTRACT 
Energy efficiency is rapidly becoming a first class optimization 
parameter for modern systems. Caches are critical to the overall 
performance and thus, modern processors (both high and low-end) 
tend to deploy a cache with large size and high degree of 
associativity. Due a large size cache power takes up a significant 
percentage of total system power. One important way to reduce 
cache power consumption is to reduce the dynamic activities in 
the cache by reducing the dynamic load-store counts. In this work, 
we focus on programs that are only available as binaries which 
need to be improved for energy efficiency. For adapting these 
programs for energy-constrained devices, we propose a feed-back 
directed post-pass solution that tries to do register re-allocation to 
reduce dynamic load/store counts and to improve energy-
efficiency. Our approach is based on zero knowledge of original 
code generator or compiler and performs a post-pass register 
allocation to get a more power-efficient binary. We attempt to find 
out the dead as well as unused registers in the binary and then re-
allocate them on hot paths to reduce dynamic load/store counts. It 
is shown that the static code size increase due to our framework is 
very minimal. Our experiments on SPEC2000 and MediaBench 
show that our technique is effective. We have seen dynamic spill 
loads/stores reduction in the data-cache ranging from 0% to 
26.4%. Overall, our approach improves the energy-delay product 
of the program. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors - Compilers, 
optimization 

General Terms 
Performance, Measurement, Design, Experimentation 

Keywords 
Register re-allocation, dead registers, unused registers, 
cache power consumption 

1. INTRODUCTION 
Energy efficiency has become a first class optimization parameter 
for both high performance processors as well as embedded 
processors; however, a very large percentage of legacy binaries 
exist that are optimized for performance without any 
consideration to power. In this work, we focus on improving such 
binaries for popular processors such as the Pentium (x86) for 
saving power without degradation (in fact slight improvement) in 
performance.  

Because cache size and organization are so critical to the overall 
performance of a processor, modern processors tend to deploy 
caches with large sizes and high degree of associativity. A large 
cache consumes a significant part of the total processor power. As 
an example, the high-associativity low-power caches used in 
ARM processor family take almost half of the power budget of the 
processor [16]. There has been research on innovative cache 
design to reduce the power consumption of a cache [9, 10, 11]. In 
our work, we try to reduce cache power consumption from 
another point of view. Our approach reduces dynamic activities of 
a cache by reducing the number of dynamic loads/stores 
instructions that tend to hit L1 D-cache. We attempt such an 
optimization using feedback directed approach that performs 
register re-allocation.  

Register allocation is the process of deciding how the variables 
inside a program are assigned to the physical registers of the 
machine. Generally, there are two main approaches for performing 
register allocation [3]. The first one assumes that variables reside 
in memory and they are placed in registers when they are 
allocated. Under this model, the register allocator does not spill a 
value. The second model assumes that all the variables are 
represented as symbolic registers. Any symbolic register that 
cannot be mapped to a physical register has to be spilled. The task 
of a register allocator is to map the infinite symbolic registers to 
finite physical registers such that the lifetime of symbolic registers 
bound to the same physical register will not overlap. We base our 
approach on the second register allocation model since this 
paradigm is popular. Based on the method they employ, register 
allocators can be roughly divided into two categories: based on 
graph-coloring algorithm [1, 2] or based on live range splitting [3]. 
Hybrid register allocators also exist [4]. In a graph-coloring 
register allocator, first an interference graph is constructed in 
which the nodes represent symbolic registers. If two symbolic 
registers are simultaneously live then an edge is added between 
them. Graph-coloring based register allocators attempt to color the 
interference graph with a limited number of colors, less than or 
equal to the number of physical registers in the machine. Graph-
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coloring is a NP-hard problem, thus, the allocators have to apply 
heuristics to achieve a (sub-optimal) solution. In case there are 
variables that cannot be colored, they have to be spilled. Spilling a 
variable means storing the value of the variable into the memory 
rather than register. In splitting based allocators, when a live 
range cannot be colored, it attempts to split it so that parts of it 
can be colored and other parts are spilled. Spill load/stores lead to 
memory accesses that sometimes are a significant portion of total 
dynamic load/stores. Thus, if we reduce the dynamic spill 
load/stores significantly, we can reduce the dynamic activities and 
the power consumption of the data cache where these load/stores 
mostly hit. Cycle counts also improve (albeit to much lesser extent 
especially for out of order processors) and overall, energy-delay 
product improves. 

Opportunities for post-pass optimizations. Due to relative 
maturity of register allocators, the natural question to ask is: do 
opportunities exist for post-pass optimizations? The answer is yes 
mainly due to the following reasons. In spite of a lot of research in 
the register allocation area, both graph-coloring and splitting 
based allocators leave a number of dead and/or unused registers 
in places where spills exist in the generated code. . Secondly, 
almost no allocator tends to factor in power issues during 
allocation; such issues involve moderating code growth but still 
achieving spill reduction on hot paths. In this paper, we propose 
register re-allocation approach based on the above observations to 
tackle the limitations of traditional allocators. There are two 
potential approaches to solve the problem: first one involves 
undertaking the whole program register re-allocation that analyzes 
the tradeoff between hot and cold paths and removes as many 
spills as possible on hot paths at the expense of cold paths; the 
second one is an incremental approach which does not disturb the 
original allocation but performs necessary fixes to the allocation 
on hot paths leaving original allocation mostly undisturbed on 
cold paths. We rule in favor of second approach here mainly due 
to the following observations: 

• Almost 70% of the typical code is cold and 30% is hot; 
thus, an approach which tends to favor spills on cold parts to 
remove the ones on hot parts would result in a large code growth. 
Code growth is not usually desirable for most embedded devices 
and moreover excessive code growth could adversely impact I-
cache performance and degrade the power consumption. Our 
preliminary implementation validated this hypothesis.  

• Performing the whole program re-allocation is 
expensive and is also difficult as a post-pass approach. 

• Incremental solution such as ours is fast and does not 
need a lot of analysis and could be ideally adopted as a post-pass 
due to such attributes.  

Scope of our work.  Motivated by above observations and the 
fact that there are many programs only available as binaries that 
need to be improved for energy efficiency we propose an 
incremental post-pass solution which is based on zero knowledge 
of the compiler or code generator originally used to generate the 
binary. Our scheme discovers program behavior and then adapts 
the binary by incrementally changing register allocation where 
opportunities exist. This problem is quite important for popular 
processors such as Pentium that have only a few registers. Also 
due to the relative ease of binary portability, x86 compatible 
embedded processors are gaining popularity now such as the 

AMD Elan SC410, Cyrix MediaGX, and National Semiconductor 
Geode etc., making this problem important. 

The remainder of the paper is organized as follows: section 2 
elaborates on the limitations of the traditional register allocators 
motivating a need for post-pass solution; section 3 gives an 
overview of our framework; sections 4 presents the details of our 
approach; section 5 shows the results of our exoeriments; section 
6 discusses the related work; finally section 7 concludes our paper. 

2. BACKGROUND AND MOTIVATION 
The preceding section discussed pros and cons of different 
possible approaches. We now get into details of possible 
opportunities available to the post-pass incremental approach 
when the original register allocation is based on coloring and/or 
live range splitting. 

The early coloring allocaters do not undertake splitting scheme, so 
they spill live ranges completely. Such approaches leave a large 
number of dead and/or unused registers. This phenomenon occurs 
because a register may be free between two disjoint live ranges 
which are assigned to it. However, even a splitting-based register 
allocator could leave dead/unused registers sometimes. We will 
show two examples to explain why our technique will do 
optimization in the presence of either one. 

 

 

 

 

 

 

 

 

 

 

Figure 1 illustrates the dead register problem in a register 
allocator without a splitting mechanism. In the example live 
ranges V1, V2, V3 interfere with each other as shown through the 
interference graph. Suppose we have only two registers. One of 
the live ranges must be spilled. Assume that V1 has the least spill 
cost and gets spilled; register r1 is allocated to variable V2 and 
register r2 is allocated to V3.  Figure 1 shows that r2 and r1 are 
dead for certain parts of live range V1. Specifically r2 is dead 
before it gets the value V3 and r1 is dead after the last use of V2. If 
there are spills for V1 in these sub-ranges, we can simply re-
allocate r1 or r2 to avoid the spills. Note a splitting-based register 
allocator will do the similar work and eliminate the problem 
shown in Figure 1. 

In the second example shown in Figure 2, there are five live 
ranges V1, V2, V3, V4 and V5. Assume that we are using a splitting 
type register allocator based on Cooper&Simpson’s paper [5] and 
suppose we have only two registers r1 and r2. According to this 
splitting scheme, nodes in the containment graph represent live 
ranges and an edge from Vj to Vi in the graph indicates that Vi is 

r2 r1 

V1 

V2 V3 

spilled 

V1 V2 V3 

r2 dead 

r1 dead 

Interference Graph 

Figure 1. Register allocation without splitting  
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live at a definition or use of Vj. In this example, the nodes are V1, 
V2, V3, V4 and V5, and the containment graph is shown in Figure 
3. V1 and V2 are in a loop and have higher spill costs than V3. So 
they will be allocated to registers r1 and r2. There is no edge <V3, 
V1> in the containment graph and the splitting cost is less than the 
spilling cost for V3. So V3 will be split around live range V1 as 
shown in Figure 2 and r1 will be allocated to V3’. Note that r1 is 
carrying a dead value in B2, so it can be used for re-allocation. 
There are three live ranges in B2 and V3 is in r1, so one of V4 and 
V5 has to be spilled. In that case, we can allocate r1 to the spilled 
live range and remove the corresponding load in hot basic block 
(B2) while inserting a load in cold basic block (B1). Now consider 
another important splitting based allocator proposed in 
Chow&Hennessy’s paper [3]. Due to its forbidden list becoming 
full, the priority based coloring scheme will split live range V3 as 
shown into V3’ (please refer to Figure 2). Although V3’ has no use 
in B2, it will get a register in B2 and in turn could spill values in 
B2 that appear later in priority list. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sparse or long live ranges could also lead to inefficiencies in 
register allocators. A variable may be used so many times along 
the live range that it gets a physical register. However, the 
variable is not necessarily used evenly throughout the live range, 

possibly leaving some large regions where the variable occupies a 
register but is not used. We call such registers as unused registers 
in these regions. The unused register problem is common under 
almost all register allocators. In this work, we perform analysis to 
discover the availability and profitability of dead/unused registers 
in program binaries to improve the energy efficiency. 

3. FRAMEWORK OVERVIEW 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our framework for post-pass register re-allocation is shown in 
Figure 4. Starting from the program binary with zero knowledge 
of the compiler generating it, we first dis-assemble the binary to 
get assembly source code. Then we re-construct the program 
control flow graph (CFG) from the assembly code. We instrument 
the binary based on the CFG to get the basic block execution 
frequency counts. The instrumented binary is executed with many 
different inputs (called training runs) to collect the program 
profile data. The profile data is fed back to the register re-
allocation pass to assist the cost and benefit analysis of 
dead/unused register re-allocation. 

 

 

 

 

 

 

 

 

The details for register re-allocation pass are further illustrated in 
Figure 5. First hot regions in a program are identified which our 
optimization focuses on. Then the re-allocation of registers inside 
hot regions is modeled as a weighted bipartite graph matching 
problem. The benefit of re-allocating a register and the cost of 

Figure 2. Register allocation with splitting mechanism 
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Figure 4. Our  approach 

Hot region identification 

Weighted bipartite graph 

Benefit & cost analysis 

Compensation code insertion 

Figure 5. Register re-allocation overview 
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corresponding compensation code (loads/stores inserted into cold 
blocks) are analyzed and the re-allocation with maximum overall 
benefit is chosen. Finally, the compensation code is inserted to 
guarantee the correctness of the program. 

4. REGISTER RE-ALLOCATION 
In this section, we will elaborate our register re-allocation 
framework introduced in last section. Our re-allocation framework 
includes both dead register (a register which does not contain a 
live value) re-allocation and unused register (a register which may 
contain a live value but is neither defined nor used at current basic 
block) re-allocation. 

4.1 Dead and Unused Registers 
First, we will introduce some definitions about dead and unused 
registers and show how to identify dead registers through data 
flow analysis. 

Definition1: Unused register in a basic block is a register which is 
neither defined nor used within that basic block. 

Define Universal_set be the set of all available registers for 
allocation; used[B] be the set of registers which are defined or 
used in B; unused[B] be the set of unused registers in B. It is 
obvious that, unused[B] = Universal_set – used[B]. Please note 
that an unused register in block B may or may not be carrying a 
live value in it.  

Definition2: A register is dead at a program point p if it does not 
carry a live value at p. 

For a basic block B, denote dead_in[B] to be the set of dead 
registers at the entry of B; dead_out[B] to be the set of dead 
registers at the exit of B. The algorithm to collect dead register 
information is shown in Figure 6. 

 

It is similar to live variable analysis [17] except that in computing 
dead_out[B], the unification operator is " I " instead of " U " 
since a register is dead out of a block B only if it is dead along 
every path from the exit of B. Also note that even if a register is 
dead at the beginning of a basic block, it may not be used for 
register re-allocation directly. Since it may be defined and used 
again inside the basic block. So we consider the set (dead_in[B] – 
used[B]) for dead register re-allocation instead. Note that even if a 
register is dead at the beginning of a basic block, it may not be 
used for register re-allocation directly since it may be defined and 
used again the basic block. So we consider the set (dead_in[B] – 
used[B]) for dead register re-allocation in blokck B  instead. 
Please note that a dead register need not be stored before it is 

loaded but an unused register (if carrying a live value) must be 
stored before a new value is loaded in it. Finally, this value must 
be restored in it at the right program point (before its use). These 
issues form the basis for compensation code and determine 
profitability for the use of dead/unused registers. 

4.2 Hot region identification 
Next, in this phase, we identify hot regions in a program. The goal 
of the algorithm is to reduce the dynamic spills inside a hot region 
maybe at the cost of increased dynamic spills in cold basic blocks. 
Since hot regions tend to be executed more frequently than cold 
blocks, we will achieve overall performance and energy efficiency 
improvement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To identify hot regions, first we need to identify hot basic blocks. 
Currently, hot basic blocks are identified in a simple way in our 
framework. We consider those basic blocks whose average 
dynamic execution frequency exceeds a certain threshold as hot 
basic blocks.  The threshold is the average execution frequency of 
the basic blocks. Next, adjacent hot basic blocks are merged to 
form hot regions. An important property of our algorithm is that it 
forms the regions in such a way that any two hot regions must be 
separated by cold basic blocks. In other words, for disjoint hot 
regions register re-allocation can be carried out independently. As 
an example, consider the sub-CFG shown in Figure 7. In the 
example, basic blocks B4, B5 and B6 belong to a loop body and 
they are hot basic blocks. The threshold is 8000. According to the 
hot region identification algorithm, B4, B5 and B6 form a hot 
region. The other basic blocks shown are cold. The detailed 
algorithm for  hot region identification is shown in Appendix. 

4.3 Spill identification 
Next we identify the spills to be removed from hot blocks. Please 
note that not all the loads/stores constitute spills. It is not safe to 
keep pointer variables in registers in the absence of aggressive 
alias analysis and thus, such values are loaded and stored from 
memory. In our framework, we perform a simple alias analysis 
based on the one proposed in [17] to determine the singly aliased 
variables (this is a conservative analysis which assumes all pointer 
variables are multiply aliased unless proved otherwise through 
reaching definition analysis). Only the loads/stores corresponding 

Initialization: 

dead_in[B] = dead_out[B] = Universal_set; 
dead_gen[B] = {r | r is defined before used in B}; 
dead_kill[B] = {r | r is used before defined in B}; 

Data flow equations:  

dead_out[B] = I S is successor of B dead_in[S];  

dead_in[B] = dead_gen[B] U  (dead_out[B] -   dead_kill[B]); 

Figure 6. Dead register analysis 
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to singly aliased, non-array variables are considered as spills and 
are used by subsequent passes. This assumption is safe and also 
quite accurate since very rarely compilers perform register 
allocation for array variables. 

4.4 Weighted bipartite graph matching 
In this section, we explain how to model the register re-allocation 
inside a hot region as a weighted bipartite graph matching 
problem. 

For a hot region, a bipartite graph is formed in the following way. 
The spilled variables in a hot region are gathered to form one 
bipartition of the bipartite graph. The same variable in different 
basic blocks is represented as different vertices. This separation is 
deliberately done to give a finer control over allocating two 
instances of the same spill value independently. The other 
bipartition is formed by the set of all dead registers in the hot 
region. Again, the same register in different blocks is represented 
through different vertices. If a variable and a register are in the 
same basic block and they are of the same type (in terms of bit 
width), then we add an edge in the bipartite graph to connect them. 
That means that the variable could be possibly allocated to the 
register. Each edge has a weight associated with it. The weight of 
the edge is defined by the dynamic spill loads/stores caused by the 
corresponding variable in the corresponding basic block. An 
edge’s weight thus indicates the dynamic spill loads/stores that 
will be eliminated if we re-allocate the variable into a register. 
Again, consider the sub-CFG in Figure 7. As mentioned before, 
B4, B5 and B6 form a hot region. Assume v1 and v2 are spilled in 
B5; v1 and v3 are spilled in B6. There is a dead register r1 in B5 and 
dead registers r1 and r2 in B6. The resulting bipartite graph is 
shown in Figure 8.  

 

 

 

 

 

 

 

 

 

 

 

Next we discuss how to perform register re-allocation inside a hot 
region; the costs and benefits are weighed in to perform matching. 
Note that we would like to avoid assigning one register to 
multiple variables in a hot region because doing that will 
introduce compensation code inside the hot region. Due to the 
same reason, we also like to avoid assigning one value to multiple 
registers in a hot region. Combining these two conditions, any 
viable solution to register re-allocation inside a hot region 
corresponds to a matching in the bipartite graph. However, the 
benefit brought by register re-allocation is not free. We often need 
compensation code to maintain the correctness of the program (we 

will discuss the computation of compensation cost in detail later) 
Thus, the overall benefit can be expressed as the benefit of 
reassignment minus the compensation code cost. To save energy, 
we need to choose that matching which has maximum overall 
benefit. Although weighted bipartite graph maximum matching 
itself is easy, it is not so if we have to consider compensation cost 
for finding the best solution. We have to compute the 
compensation cost for each matching to decide the overall best 
solution. To guarantee optimality, in our current implementation, 
we take a brute-force approach. We try all the matchings, compute 
the corresponding compensation cost then find the optimal one. 
However, due to the small size of hot region and the two 
conditions mentioned above, this phase does not take too much 
time as shown in our experimental results later. 

4.5 Compensation code cost analysis 
To analyze the compensation code cost of register re-allocation, 
first, we find out the edges in the bipartite graph which are 
incident on the same variable and the same register. We then 
check the corresponding basic blocks of those edges. If any of the 
corresponding basic blocks are adjacent in CFG, we combine the 
edges to be analyzed together and call the resulting edge set as an 
analysis unit. The motivation for combining the edges is that, in 
such a case, it is not necessary to introduce any compensation 
code between the corresponding basic blocks. As an example, in 
bipartite graph shown in Figure 8, we can combine E1 and E3 as 
an analysis unit. If we reassign r1 to v1, we do not need any 
compensation code between B5 and B6.  

Next, for each analysis unit, three regions are created to assist 
analysis. The basic blocks corresponding to the edges in an 
analysis unit form a region named cur_region. Cur_region is a 
subset of the hot region. It is possible that the cur_region could 
lead to the insertion of compensation code in hot regions. To 
avoid this problem, we extend cur_region to include as many hot 
blocks as possible within the hot region. Thus we have more 
opportunity to insert loads/stores in cold blocks. A block B in the 
hot region will be added to cur_region if its predecessors and 
successors are all in cur_region and the dead register r considered 
for re-allocation belongs to dead_in[B]. The first condition 
together with the condition of keeping a spilled variable in one 
register in a hot region mentioned earlier will assure that 
expanding cur_region will not impact other analysis units. The 
second condition is to guarantee that r is always dead in 
cur_region. Otherwise, r may contain a live variable in cur_region 
which will lead to extra compensation code costs. We define 
pred_region/cur_region as a set of blocks which are not in 
cur_region, and have successors/predecessors in cur_region. As 
an example again, consider the analysis unit {E1, E3} in bipartite 
graph in Figure 8. At first cur_region includes basic blocks B5 and 
B6. Then B4 will be added to cur_region through the expansion. 
So cur_region is made of B4, B5 and B6. Pred_region includes 
basic block B1, B2 and B7. Succ_region includes basic block B9. 
For dead register re-allocation, compensating load instructions 
can be inserted in pred_region or cur_region. Compensating store 
instructions can be inserted in succ_region or cur_region. In the 
description, we will use four variables w_cur_load, w_cur_store, 
w_pred_load, w_succ_store to represent the cost of inserting 
compensating load in cur_region, compensating store in 
cur_region, compensating load in pred_region and compensating 
store in succ_region respectively. Next we will analyze how to 

v1B5 r1B5 

v2B5 

E1 10000 

E2 10000 

Figure 8.  Bipartite Graph 
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compute the values of these variables case by case. First, consider 
the compensating load instruction. To re-allocate a dead register 
to a spilled variable, we may need to load the spilled variable into 
the register first. The load instruction could be inserted into the 
entries of cur_region, or it could be hoisted out of the basic blocks 
in cur_region.  

 

Consider the analysis unit {E1, E3} in bipartite graph in Figure 8. 
It is easy to see that to allocate dead register r1 to v1, we could 
insert a load r1, v1 at the entry of B4. Also, we could hoist such an 
instruction out of the loop body. We have to be careful here. First, 
we may not be able to simply insert the load at the end of the 
predecessor basic blocks in pred_region. Consider the same 
example. We cannot insert a load r1, v1 at the end of B1 because r1 
is used in B3 which is one of the successors of B1. In that case, we 
have to create a new basic block and insert it between B1 and B4. 
Besides the load instruction cost, we have to count the jump 
instruction cost too. Currently, we regard jump instruction has the 
same cost as load/store instruction. Another interesting point is 
that it is not necessary to insert a load into a predecessor basic 
block if the spilled variable is dead at the end of the basic block. 
For example, consider B7 in pred_region. Since v1 is actually dead 
at the end of B7 so there is no need to do anything. The analysis 
for inserting compensation load in B2 is the same. For the cases in 
which we could either choose from creating a new basic block or 
inserting a load instruction directly, the lower cost solution would 
be chosen. The algorithms to compute w_cur_load, i.e., the cost 
of inserting loads in cur_region and w_pred_load, i.e., the cost of 
inserting loads out of cur_region are shown in Figure 9 and Figure 
10. 

The analysis of compensation store instructions is quite similar to 
load instructions though more complicated. Again consider the 
example in Figure 7. Suppose we re-allocate dead register r1 to v1 
in the hot region. We have to store r1 back to v1 finally. However, 
we cannot insert the store instruction in B9 since v1 is actually 
live at the entry of B9 and the value of v1 may be defined in basic 
block B8 at runtime. If we insert the store instruction in B9, it may 
wrongly overwrite the correct value of v1. In that case, we will 
have to insert a new basic block between B4 and B9. In computing 
compensation cost, an important issue is that in most programs the 
spilled variables will cause much more loads than stores. This 
property enables us to gain more benefit. If there is no store 
instruction in an analysis unit, we do not need compensation store 
even if the variable is live out of cur_region since the spill 
variable’s value is not changed. We will check the basic blocks 
corresponding to the edges in an analysis unit to see if there is any 
store instruction for the spilled variable we want to do re-
allocation. If such store instruction exists, the algorithms to 
compute w_cur_store, i.e., the cost of inserting stores in 
cur_region and w_succ_store, i.e., the cost of inserting stores out 

of cur_region shown in Figure 11 and Figure 12 will be used for 
store compensation cost analysis. 

Now we have known the benefit and the compensation cost of a 
matching, so we can calculate the overall benefit of a particular 
matching. As mentioned before, we will just take a brute force 
approach and choose the matching having maximum overall 
benefit. 

4.6 Unused Register Allocation 
The algorithm for dead register re-allocation is not suitable for 
unused register re-allocation since the value in the unused register 
is usually live. Thus, the original value in the unused register has 
to be stored back to the memory before re-allocation and loaded 
from memory to the register after re-allocation. This is done to 
make sure that there is a correct residency of values in the register 
before respective points of their uses. This increases 
compensation cost greatly. However, we have another algorithm 
to save energy.  

Figure 9. W_cur_load computation 

w_cur_store = 0; 
for each exit E of cur_region 
 // if the variable is dead thereafter, do nothing  
 if spilled variable is live at the exit of E 
w_cur_store += average execution times of E; 
 EndIf 
EndFor 

Figure 10. W_pred_load computation 

Figure 11. W_cur_store computation 

w_cur_load = 0; 
for each entry E of cur_region 

// if the variable is dead before entering E, do nothing 
if spilled variable is live at the entry of E 

w_cur_load += average execution times of E; 
EndIf 

EndFor 

w_pred_load = 0; 
For each basic block P in pred_region 

// if the variable is dead thereafter, do nothing  
If spilled variable considered is live at the exit of P  

new_bb_cost = 0; 
For each successor S of P in cur_region 

// if the variable is dead before entering S, 
// no need to insert load 
If spilled variable considered is live at the entry of S 

// assume the same cost of load and jump 
new_bb_cost += 2 × avg. execution times of edge PàS; 
// have to insert new basic blocks or 
// inserting new basic blocks is actually cheaper 
If (the register to be re-allocated is not in dead_out [P]  

|| new_bb_cost < average execution time of P) 
w_pred_load = w_pred_load + new_bb_cost; 

EndIf 
EndIf 

EndFor 
// insert a load at the end of P  
Else 

w_pred_load = w_pred_load + avg. exec. times of P; 
EndIf 

EndFor 
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Figure 12. W-succ_store computation 

4.6.1 Unused register region identification 
The region for unused re-allocation will be formed based on both 
the profiling and unused register information. For a register r 
which is available for allocation, adjacent basic blocks which all 
have r as unused register will be merged to form a region, denoted 
by unused register region. That means in such a region, r is always 
unused. Among the regions, those which include hot blocks will 
be considered for re-allocation.  

4.6.2 Compensation cost analysis 
The benefit of re-allocation in an unused register region is defined 
similarly as dead register re-allocation. However, the 
compensation cost analysis is more complicated.  

In dead register compensation cost computation, we only need to 
consider the load instruction which loads variable into the re-
allocated register (spill_var_load) and the store instruction which 
stores the variable back to memory (spill_var_store). Under 
unused register compensation cost computation besides the 
previous two cases, we have to consider the store instruction 
which stores the original value in the unused register back to 
memory (orig_var_store) and the load instruction which loads the 
saved value from memory back to the unused register 
(orig_var_load). In dead register re-allocation, spill_var_load can 
be inserted in pred_region or cur_region; spill_var_store can be 
inserted in cur_region or succ_region. In other words, there are 
only four situations which need to be considered. In unused 

register allocation, spill_var_load and orig_var_store could be 
inserted in pred_region or cur_region; spill_var_store and 
orig_var_load could be inserted in cur_region or succ_region. The 
constraints are that orig_var_store has to precede  spill_var_load 
and spill_var_store has to precede orig_var_load. the method for 
analyzing compensation cost is  the same as in dead register re-
allocation, to save space, we have not explicitly listed it here. 

4.6.3 Unused register region ordering 
Unlike the hot regions for dead register re-allocation, the unused 
register regions need not be disjoint. Thus, we use some ordering 
on processing the regions. The region with maximum benefit is 
selected first. Then the unused register regions, which have 
common basic blocks with it, are deleted from the region set. 
After this step, again the next region with maximum benefit is 
selected until all the regions are processed. 

5. EXPERIMENTS AND RESULTS 
Our experiments are based on x86 (Pentium) architecture. It has 
only six general purpose registers (eax, ecx, edx, ebx, esi, edi). 
The other two registers esp and ebp are stack pointer register and 
frame pointer register respectively and are not used for re-
allocation. In our experiments, CFGs for the benchmark binaries 
are re-constructed first. Then we use 5 different input data sets 
(training run) to gather basic block profile data which is fed back 
to re-allocation pass. After re-allocation pass is performed, the 
optimized binaries are evaluated by another input data set (test run) 
different from the previous 5 input data sets (training runs).  

The work was implemented in the Machine Suif compiler [18], a 
research infrastructure for profile-driven and machine-specific 
optimizations. Machine Suif can be used to instrument programs 
for profiling and carries out various code optimizations. It uses 
the algorithm described by George&Appel [19] to do register 
allocation. The algorithm interleaves Chaintin-style [1] 
simplification steps with Briggs-style [2] conservative coalescing 
and eliminates move instructions while guaranteeing not to 
introduce spills. Thus, Machine Suif has a very good register 
allocator which is highly optimized. That is why we used it to 
generate the base level binaries although it does not support live 
range splitting.  

The benchmarks are chosen from SPEC2000 integer benchmarks 
and MediaBench [13] embedded benchmarks. The original 
binaries of the benchmarks are produced by Machine Suif. Then 
our register re-allocation algorithm is performed. The ref input set 
is used for generating results for SPEC2000 benchmarks. Here not 
all the benchmarks are selected because Machine Suif could not 
compile some of the benchmarks. Crafty, gap etc. can be compiled, 
but the binaries do not execute; gcc, perlbmk, vortex, mpeg2 (de) 
etc. fail in the do_gen pass in current implementation of Mach 
Suif.  

Table 1 shows the number of hot/cold basic blocks in each 
benchmark binary, the number of spill loads/stores originally 
present inside hot basic blocks and those which are removed by 
our dead /unused register re-allocation approach. We can see that 
the number of hot basic blocks is either relatively small or the 
number of overall basic blocks is not big (such as adpcm encoder 
and decoder). Thus, the sizes of hot regions are normally small 
too. This is consistent with the general observation that the 

w_succ_store = 0; 
For each basic block S in succ_region 

// if the variable is dead before entering S, do nothing 
    If spilled variable considered is live at the entry of S 

live_on_cold_pred = false; 
For each predecessor P of S not in cur_region 

If (spilled variable considered is live out of P) 
live_on_cold_pred = true; 

EndIf 
EndFor 
new_bb_cost = 0; 
For each predecessor P of S in cur_region 

// if the variable is dead thereafter, no need to insert store 
If spilled variable considered is live at the exit of P 

// assume the same cost of load and jump 
new_bb_cost += 2 × avg. execution times of edge PàS;

 // have to insert basic blocks or  
// inserting new basic blocks is actually cheaper 
If (live_on_cold_pred 

||  new_bb_cost < avg. exec. times of S) 
w_succ_store = w_succ_store + new_bb_cost; 

 EndIf 
EndIf 

EndFor 
// insert a store at the entry of S  
Else 

w_succ_store = w_succ_store + avg. exec. times of S; 
EndIf   

EndFor 
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majority of the execution time of a program is spent in a small 
region of the code. Due to small sizes of hot regions, the brute 
force approach in our re-allocation algorithm normally does not 
cause too much run time overhead. The time taken by our post-
pass reallocator is shown in Table 2. One can see that except for 
Twolf and Vpr the time taken for re-allocation is negligible. Twolf 
and Vpr are both very large benchmarks consisting thousands of 
basic blocks and so the time required to reallocate is high.  

Table 1 also shows the breakdown of spills removed due to dead 
as well as unused registers. One can see that there is a good 
amount of spill to be removed inside hot basic blocks. The 
number of removed spill loads/stores is small and spills are 
mainly removed by dead registers than unused ones. One can see 
that only a small percentage of spills in hot blocks are removed. 
This is mainly due to the fact that profitable live ranges of dead 
registers tend to be quite short. Although the number of spills 
removed is small, since they are inside hot basic blocks they may 
lead to a significant number of dynamic spill loads/stores which 
could translate to much reduced cache accesses (we show these 
results later). The main reason for dead register reallocation doing 
better than unused register reallocation is that too much 
compensation code cost associated with the latter renders it 
unprofitable. 
 

Basic Block Spills in hot basic blocks 
 

Benchmark Hot Cold Orig. 
Removed 
By Dead 

Reg. 

Removed By 
Unused Reg. 

Mcf 147 360 38 6 1 

Twolf 820 5260 701 36 0 

Vpr 223 4620 106 28 8 

Parser 751 4898 510 7 0 

Bzip2 115 808 121 9 1 

Gzip 544 1220 81 1 0 

Pegwit 81 1200 25 6 1 

Epic 91 1001 54 8 2 

G721(en) 94 257 67 9 1 

G721(de) 90 260 62 5 1 

Adpcm(en) 17 25 13 4 1 

Adpcm(de) 12 23 8 0 0 

Mpeg2(en) 729 1729 261 8 7 
 

 

Table 3 shows the total number of dead/unused registers inside 
hot basic blocks and the ones our re-allocation algorithm is able to 
utilize. From the results, we can see that on average there are 1 to 
2 dead registers and 2 to 3 unused registers in hot basic blocks. 
Again although a high number of unused registers exist, one is 
rarely able to use them due to high compensation code cost. The 
dead registers although lesser available one is able to use them 
better due to low compensation code cost. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

Dead Registers Unused 
Registers  

Benchmark 
Total Used Total Used 

Mcf 213 5 398 1 

Twolf 1287 31 2509 0 

Vpr 186 21 305 7 

Parser 963 6 1601 0 

Bzip2 401 7 1924 1 

Gzip 1389 1 1752 0 

Pegwit 127 2 222 1 

Epic 114 6 175 2 

G721(en) 176 7 236 1 

G721(de) 150 5 219 1 

Adpcm(en) 36 3 51 1 

Adpcm(de) 28 0 42 0 

Mpeg2(en) 2507 6 4095 6 

Table 4 shows the number of static spill loads/stores in each 
benchmark program before and after register re-allocation and the 
number of dynamic spill loads/stores in each benchmark program 
before and after register re-allocation. Note that the number of 
static spill loads/stores is almost the same before and after 
optimization since the number of spill loads is much larger than 
the number of spill stores. So in many cases, zero store 
instructions have to be inserted into cold basic blocks while 
removing the spill loads in hot regions. On an average, the 
number of static spill loads/stores is reduced by 0.4% actually.  

 Table 1. Hot/cold basic blocks and spills in hot basic block 
Table 3. Dead/unused registers 

Benchmark Re-allocation Runtime (s) 

Mcf 0.225121 

Twolf 33.769402 

Vpr 12.379912 

Parser 6.742614 

Bzip2 1.046684 

Gzip 1.045277 

Pegwit 0.408376 

Epic 0.578952 

G721(en) 0.229046 

G721(de) 0.276383 

Adpcm(en) 0.064986 

Adpcm(de) 0.034935 

Mpeg2(en) 3.604020 
 

Table 2. Re-allocation Runtime 
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On the other hand, the number of dynamic spill loads/stores is 
reduced significantly. The reduction ranges from 0% to 26.4%. 
Mcf and Twolf have great dynamic spills reduction since there are 
both dead registers and spilled variables in hot regions; moreover 
the allocator could profitably allocate dead registers here 
removing a large number of spills.  But for Mpeg2(en) and 
Adpcm(de), the reduction is only 2.5% and even 0% due to the 
almost zero dead registers re-allocated in the in hot regions due to 
non-profitability. There is a big variation in the results since the 
benefit brought by register re-allocation is really dependent on the 
benchmark and dead registers left by the original register 
allocation scheme and most importantly their profitability.  

The results about total dynamic loads/stores before and after 
register re-allocation are shown in Table 5. The reduction in total 
dynamic loads/stores depends on the proportion of dynamic spill 
loads/stores in total dynamic loads/stores for the benchmark. For 
example, in Mcf, the dynamic spilled loads/stores are reduced by 
26.4%. However the removed spill loads/stores are only 7.4% of 
total dynamic loads/stores since the spill loads/stores are only 
28% of the total dynamic loads/stores in the whole program. The 
main reason for overall low percentage of load.stores is 
attributable to the excellent base line register allocator.  

From the above results, we show that we can reduce the number 
of dynamic loads/stores in a program which should lead to a better 
performance due to less data cache misses and also less power 
consumption due to less activities to data cache. We measured the 
impact in terms of both performance and power consumption 
based on a Pentium III 800MHZ processor. The processor is 
based on 0.18-Micron technology. It has a 16KB, 4-way, 32 bytes 
per line L1 data cache. Pentium III is a high performance 
processor; its deep pipeline helps a lot in hiding cache misses (we 
believe if we apply our method to an in-order improvement in 

terms of both performance and power). We use Pentium 
performance monitoring counters [14] to measure the actual 
cycles spent on each benchmark binary before and after register 
re-allocation. To make the results as accurate as possible, the  OS 
(Linux)  is booted into single user mode. Also, each benchmark 
binary is executed 10 times and then the average result is reported. 
 

Benchmark Original After Realloc. 
Dynamic 

loads/stores 
reduction 

Mcf 17276562150 16006139250 7.4% 

Twolf 45802380479 38813745054 15.3% 

Vpr 47941788368 45932437263 4.2% 

Parser 140486168992 138442184403 0.7% 

Bzip2 45545794471   44326280029 2.7% 

Gzip 28943908385 27239713434 5.9% 

Pegwit 6019701 5557563 7.7% 

Epic 25395598 24140870 4.9% 

G721(en) 66963592 66010641 1.4% 

G721(de) 60527440 60084913 0.7% 

Adpcm(en) 1328804 1246537 6.2% 

Adpcm(de) 620882 620882 0.0% 

Mpeg2(en) 510742100 504874096 0.4% 
 

Table 4. Dynamic spills before and after re-allocation 

# of Static Spill 
loads/stores # of Dynamic Spill loads/stores  

Benchmark 
Original After realloc. Original After realloc. Reduction 

By Dead 
Reduction 
By Unused 

Dynamic 
spills 

reduction 

Mcf 217 218 4812685743 3542262843 1166444308 103978592 26.4% 

Twolf 5877 5850 30894581907 23905946482 6988635425 0 22.6% 

Vpr 3701 3682 19499342512 17489991407 1903457820 105893285 10.3% 

Parser 2141 2138 14626637444 13582652855 2043984589 0 7.1% 

Bzip2 764 738 10000323963 11330809521 1159018593 60495849 12.2% 

Gzip 692 698 18934853875 17230658924 1704194951 0 9.0% 

Pegwit 896 892 4285820 3823682 427601 34537 10.8% 

Epic 1228 1228 9798175 8543447 1100102 154626 12.8% 

G721(en) 138 136 12676763 11723812 946368 6583 7.5% 

G721(de) 129 128 12086701 11644174 391578 50949 3.7% 

Adpcm(en) 31 28 2253395 1919388 297225 36782 14.8% 

Adpcm(de) 15 15 239979 239979 0 0 0.0% 

Mpeg2(en) 1603 1607 90038842 87770838 1505421 762583 2.5% 
 

   Table 5. Dynamic loads/stores before and after re-allocation 
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The impact to the performance in terms of overall execution time 
is shown on Table 6. The deviation for reduction in cycles is 0.1. 
The experiments prove that our register re-allocation approach 
can boost the performance of some benchmarks. For example, the 
performance of Epic benchmark is improved by about 34%. 
According to Pentium performance monitoring counter, the 
average data memory references (L2 misses) without register re-
allocation are 51493198, while after optimization, the references 
are reduced to 32183485. The reason for Epic’s good result is that 
we have removed some spills responsible for a huge number of L2 
misses, which were "critical loads/stores". Their removal boosts 
performance. On the other hand, for many benchmarks, the 

improvement on the performance is minor. The reason is that the 
underlying implementation of a Pentium hides a lot of load/store 
latencies and makes performance improvement difficult for most 
optimizations. In other words many of the removed load/stores 
were in fact due to cache hits which had low latency and which 
could be hidden due to out of order processing. For these 
benchmarks, there is still a significant benefit in term of data 
cache power efficiency due to reduced dynamic activities of data 
cache. Because it is impossible for us to measure data cache 
power separately in a Pentium processor, we estimate data cache 
power consumption based on CACTI cache model version 3.2 [8]. 
CACTI model accepts cache configuration parameters and gives 
average cache access power. We multiply the number of cache 
accesses with this power consumption per access number given by 
CACTI to estimate the dynamic power of D-cache. CACTI does 
not count leakage power. So we use 10% of the average per access 
power given by CACTI as an estimate of D-cache leakage power, 
which is same as Wattch power model [15]. In every cycle, there 
is D-cache leakage power consumption. But only when D-cache is 
accessed, there is D-cache dynamic power consumption. Table 7 
shows improvement in energy. Due to reduced cache activity one 
can see that in case of Twolf and Epic there is a significant energy 
reduction. 

 

 

 

 

 

 

 

 

 

 

 

Table 7 shows the improvement on energy and Table 8 shows the 
improvement in energy-delay product for data cache. The 
reduction in energy-delay product ranges from 0% to 43.6%. The 
best improvement occurs for TWolf and Epic. Both TWolf and 
Epic improve both in performance as well as in terms of D-cache 
accesses and thus, their overall energy-delay benefit is high. Bzip, 
Gzip and  Pegwit show moderate improvement in overall energy 
delay product. Finally the rest show small improvement due to 
small performance as well as smaller D-cache accesses. These 
results show that our post-pass register re-allocation approach can 
improve the energy efficiency of binaries produced by even a 

Benchmark Original Cycles Cycles after 
reallocation 

Reduction 
in cycles 

Mcf 893774734092 883454762685 1.15% 

Twolf 1607987490372 1416068950276 11.93% 

Vpr 433874349698 428680928523 1.20% 

Parser 1141834310440 1134944257476 0.60% 

Bzip2 333622715307 316351684226 5.2% 

Gzip 526584953131 510056316432 3.14% 

Pegwit 57110945 55227790 3.30% 

Epic 114274358 75441562 33.98% 

G721(en) 674386104 664377838 1.48% 

G721(de) 629962091 619473971 1.66% 

Adpcm(en) 29629061 29166789 1.56% 

Adpcm(de) 23769464 23769464 0.00% 

Mpeg2(en) 3555239972 3548858134 0.20% 
 Table 6. Cycle counts 

Benchmark Original energy 
consumption (J) 

after 
re-allocation (J) Reduction 

Mcf 98.1923  96.1565  2.07% 

Twolf 189.0554  165.2092  12.61% 

Vpr 80.9813  78.8029  2.69% 

Parser 225.1782  222.8119  1.05%  
Bzip2 69.5816  66.9382  3.8%  
Gzip 73.6566  70.6745  4.05% 

Pegwit 0.0104  0.0098  5.43% 

Epic 0.0321  0.0274  14.62% 

G721(en) 0.1195  0.1178  1.46% 

G721(de) 0.1099  0.1086  1.23% 

Adpcm(en) 0.0039  0.0038  2.89% 

Adpcm(de) 0.0027  0.0027  0.00% 

Mpeg2(en) 0.7629  0.7573  0.73% 
  

Table 7. Energy consumption 

Benchmark Orig. energy-delay 
product (J.S) 

after reallocation 
(J.S) Reduction 

Mcf 109702.2564  106187.4471  3.20% 

Twolf 379998.3830  292434.4382  23.04% 

Vpr 43919.6425  42226.6506  3.85% 

Parser 321395.1992  316098.8014  1.65% 
Bzip2 29017.4838  26470.0044  8.78% 
Gzip 48483.0790  45059.9609  7.06% 

Pegwit 0.0007  0.0007  8.55% 

Epic 0.0046  0.0026  43.63% 

G721(en) 0.1007  0.0978  2.92% 

G721(de) 0.0866  0.0841  2.88% 

Adpcm(en) 0.0001  0.0001  4.41% 

Adpcm(de) 0.0001  0.0001  0.00% 

Mpeg2(en) 3.3902  3.3596  0.90% 
 

Table 8. Energy-delay product 
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sophisticated register allocator to a good degree without any code 
growth. 

6.  RELATED WORK  
Our work is focused on profile-guided post-pass register re-
allocation to utilize the dead/unused registers available in the 
binary thus reducing the dynamic spill load/store instructions. The 
transformed binary is more efficient in terms of both performance 
and energy consumption. Registers are always a precious resource 
inside a processor. It is critical to utilize registers efficiently. 
Chaitin et al. [1] devised an algorithm to represent register 
allocation as a graph-coloring problem. His allocator becomes the 
standard and basic graph coloring based register allocator. Briggs 
et al. [2] developed two improvements, i.e., optimistic coloring 
and rematerialization, to Chaitin-style graph coloring register 
allocation. However, Chaitin’s allocator and Briggs’s allocator do 
not support live range splitting and have to spill the live range as a 
whole, which may lead to dead registers in the binary generated. 
A live range splitting based allocator can alleviate the dead 
register problem. The standard splitting based allocator is 
invented by Chow and Hennessy [3]. Later, Bergner et al. [4] 
proposed interference region spilling which integrates live range 
splitting into a graph coloring based allocator. However, we have 
shown in the paper even an allocator supporting live range 
splitting cannot eliminate dead register problem completely.  

Besides our work, there has been other research work tackling 
dead/unused register problem. For example, Cooper and Simpson 
[5] developed an algorithm to do splitting directly targeted at the 
problem of unused registers after allocation. In their work, each 
time the register allocator needs to spill a value, it checks to see if 
it would be cheaper to spill the entire live range or split that live 
range into smaller pieces, some of which will be able to be 
colored and so will not have to be spilled. Their work is done 
inside a compiler. In Harvey's master's thesis [6], he devised an 
algorithm to do local register promotion to address the similar 
problem we do. His algorithm is less aggressive than Cooper and 
Simpson’s and works as a post-pass like ours. However, his 
algorithm can only work on single basic blocks. Lu and Cooper [7] 
also looked at the problem of using unallocated registers to 
promote values into registers, but they focused on utilizing the 
results of pointer analysis to determine which scalar variables can 
be safely kept in registers. Hank [23] devised a region-based 
compilation technique which repartitions the whole program into 
regions instead of considering hot regions in a function. Our 
method is quite different from the above approaches due to 
several considerations such as compensation code placement and 
cost issues not addressed by him.. We carefully form hot regions 
and then model the problem as matching between dead/unused 
registers considering compensation code costs the key goal being 
to avoid compensation code on hot paths.  Some papers [21, 22] 
brought out some algorithms for interprocedural register allocater. 
Their scheme focused on interprocedural levels and splitting 
registers across calls. David W. Wall [20] delayed the register 
allocation phase to link time to improve program performance.  

Our register allocation not only improves program performance, 
but also data cache energy efficiency. Most of the work on 
reducing cache power consumption is focused on architectural 
perspective. Su and Despain [9] evaluated the effectiveness of a 
number of low power cache structures. Block (i.e. line) buffering 

involves latching the last cache line, while sub-banking involves 
only powering portions of the L1 cache. Ko and Balsara [10] 
investigated a similar technique that they call Multiple-Divided 
Modules (MDM). In [11], a small and energy efficient L0 data 
cache is introduced in order to reduce power consumption of the 
memory hierarchy. Our method aims to reduce data cache power 
by reducing the number of dynamic loads/stores. Cilio and 
Corporaal [12] had a similar idea but they focused on global 
variable promotion and they assumed that there were dedicated 
registers for global variables. 

7. CONCLUSION 
In this work, we proposed a feedback-directed post-pass register 
re-allocation framework based on profile information to improve 
the energy efficiency of program binaries. The basic idea is to 
remove spill loads/stores in hot regions by utilizing dead and 
unused registers thus reducing dynamic load/store instructions 
and data cache power consumption. We show that the static code 
size increase due to our framework is very minimal – in fact a 
small decrease takes place. Our experiments on SPEC2000 and 
MediaBench show that our approach always reduces dynamic 
spills significantly and also improves performance to some extent. 
Overall, the energy-delay product of the binaries is improved 
ranging from 0 to 43 % with an average of 7.5%  
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Appendix  

Algorithm For Hot Region Formation 

hot_region_list = Null; 

For each Basic Block B ∈  CFG 
If (B is hot) && if (B ∉  any hot region)  

If (any B's precessor ∉  any hot region)  
&& (any B's successor ∉  any hot region) 
create a new hot region HR; 
HR = {B}; 
hot_region_list = hot_region_list U HR; 

Else If (B's precessor ∈  hot region HR) 
HR = HR U {B} ; 

Else If (B's successor ∈  hot region HR) 
HR = HR U {B}; 

EndIf 
EndIf 

EndFor 

// merge connected hot regions 
change = true; 
While (change) 

 change = false; 
For each hot region HRi ∈  hot_region_list 

For each hot region HRj ∈  hot_region_list 
If ( ∃ B1 ∈  HRi) && ( ∃ B2 ∈  HRj) 

&& (B1 and B2 are connected in CFG) 
 Hri = Hri U Hrj; 
 hot_region_list = hot_region_list - Hrj; 
 change = true; 

EndIf 
EndFor 

EndFor   
EndWhile 
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