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ABSTRACT
High-level programming languages offer significant expressivity
but provide little or no guarantees about resource use. Resource-
bounded languages — such as hardware-description languages —
provide strong guarantees about the runtime behavior of computa-
tions but often lack mechanisms that allow programmers to write
more structured, modular, and reusable programs. To overcome
this basic tension in language design, recent work advocated the use
of Resource-aware Programming (RAP) languages, which take into
account the natural distinction between the development platform
and the deployment platform for resource-constrained software.

This paper investigates the use of RAP languages for the genera-
tion of combinatorial circuits. The key challenge that we encounter
is that the RAP approach does not safely admit a mechanism to ex-
press a posteriori (post-generation) optimizations. The paper pro-
poses and studies the use of abstract interpretation to overcome this
problem. The approach is illustrated using an in-depth analysis of
the Fast Fourier Transform (FFT). The generated computations are
comparable to those generated by FFTW.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Automatic synthesis; D.1.1
[Programming Techniques]: Functional Programming

General Terms
Design, Languages, Performance

Keywords
Multi-stage programming, abstract interpretation

1. INTRODUCTION
Hardware description languages are primarily concerned with re-

source use. But except for very high-end applications, verifying
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the correctness of hardware systems can be prohibitively expen-
sive. In contrast, software languages are primarily concerned with
issues of expressivity, safety, clarity, and maintainability. Soft-
ware languages provide abstraction mechanisms such as higher-
order functions, polymorphism, and general recursion. Such ab-
straction mechanisms can make designs more maintainable and
reusable. They can also keep programs close to the mathematical
definitions of the algorithms they implement, which helps with en-
suring correctness. Hardware description languages such as VHDL
[16] and Verilog [32] provide only limited support for such abstract
mechanisms. The growing interest in reconfigurable hardware in-
vites us to consider the integration of the hardware and software
worlds, and to consider how verification techniques from one world
can be usefully applied in the other. Currently, programming re-
configurable hardware is hard [3]: First, software developers are
typically not trained to design circuits. Second, specifying circuits
by hand can be tedious, error prone, and difficult to maintain. The
challenge in integrating both hardware and software worlds can be
summarized by a key question:

How can we get the raw performance of hardware with-
out giving up the expressivity and clarity of software?

1.1 Generators and Manifest Interfaces
Recent work on Resource-aware Programming (RAP) [30] in

the context of softwaregeneration suggests a promising approach
to hardware verification: Rather than verifying circuits on a case-
by-case basis, we propose that the circuit designer express generic
specifications that can automatically generatea whole familyof cir-
cuits. The technical novelty of this approach is that once the generic
specification is verified, we are guaranteed that all generated cir-
cuits will be correct. In this approach, naively-generated circuits
are correct by construction. More efficient circuits are correct be-
cause they are produced by systematic, verified improvements on a
correct but naive generator and not by verifying a naive generator
and verifying a posteriori (post-generation) optimizations that fix
up the result of the generator. From the verification point of view,
this means that we replace the problem of verifying transformations
to one of verifying modifications to one program: the generator.

A classic example of such generators is one used by Selesnick
and Burrus [11] to produce Fast Fourier Transform (FFT) circuits
for prime-numbered sizes. A more extensive survey can be found
in Frigo’s account of the FFTW system [8]. Writing and using pro-
gram generators, however, has its own challenges (cf. [27]). One
such challenge is that manifest interfaces for generators are hard to
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express in traditional type systems. For example, if strings, alge-
braic datatypes, parse trees, or even graphs are used to represent the
generated program, they would only allow us to express a manifest
interface with a type such as:

gen_fft : int -> circuit

where circuit is the type we choose to represent circuits with.
As soon as we start composinggenerators — for example, if we
want to build a circuit that computes the FFT, performs a multipli-
cation, and then computes the inverse FFT — we run into a prob-
lem: The type circuit does not provide any static guarantees
about the consistency or well-formedness of the composite circuit.
To illustrate, assume we are given two trivial generators which take
no inputs and produce an AND-gate and an inverter:

and : circuit
inv : circuit

A meaningless composition arises if we write:

let bad = inv --> and

where the connect operator --> is an infix operator that has the
type circuit × circuit -> circuit and which wires
the output of its first circuit to the input of the second circuit. The
problem is that the second circuit does not have just one input but
two, and the type system does not prevent this error: all circuits just
have type circuit.

It is generally desirable that the circuit type be as expres-
sive as possible, but at the same time only express values that are
circuit-realizable. For example, the programmer might want to use
abstractions such as lists (or any other dynamic data structure) in
describing the circuit, but will need to know as early as possible in
the development process that these uses can be realized using finite
memory [10, 30].

1.2 Resource-aware Programming
Resource-aware Programming (RAP) languages [30] are

designed to address the problems described above by

1. Providing a highly expressive untyped substratesupporting
features such as dynamic data-structures, modules, objects,
and higher-order functions.

2. Allowing the programmer to express the stage distinctionbe-
tween computation on the development platform and compu-
tation on the deployment platform. Convenient notation and
static type safety can be ensured by using multi-stage pro-
gramming (MSP) constructs [29, 28].

3. Using advanced static type systemsto ensure that computa-
tions intended for execution on resource-bounded platforms
are indeed resource-bounded [30, 31].

The combination of these three ingredients allows the programmer
to use sophisticated abstraction mechanisms in programs that are
statically guaranteed to generate only resource-bounded programs.

For example, rather than using one concrete type to represent
circuits, RAP languages provide an abstract datatype parameterized
by information about the generated code. The type of the two trivial
generators above would be:

and : (bool × bool -> bool) code
inv : (bool -> bool) code

The type of the connect operator --> would be refined from being

circuit × circuit -> circuit

to being

(α -> β)code × (β -> γ)code -> (α -> γ)code

where α, β, and γ are generic type variables that must always be
instantiated consistently. With this extra information, the type sys-
tem can reject the above bad declaration, because the type variable
β cannot be instantiated to both the output of inv (which is bool)
and the input of and (which is bool×bool). Note that the type
of this function is similar to the type of the standard mathematical
function composition operation:

(α -> β) × (β -> γ) -> (α -> γ)

In addition to ensuring that the generated programs will be well-
typed, RAP languages can also ensure that the generated programs
satisfy various notions of resource constraints (cf. [30]).

1.3 Problem
To ensure that generated programs are well-typed and resource-

bounded before they are generated, the code type in a RAP lan-
guage must remain abstract. Providing constructs for traversing
values of this type jeopardizes the soundness and decidability of
static typing [27], and complicates reasoning about the correctness
of programs written in these languages [28]. At the same time, not
being able to look inside code means that a posteriori optimizations
cannot be expressed within the language. While such optimizations
can still be implemented as stand-alone source-to-source transfor-
mations outsidethe language, doing so invalidates the safety and
resource-boundedness guarantees.

We distinguish two forms of a posteriori optimizations: generic
ones that are independent of the application, and ones that are spe-
cific to the application. Generic optimizations are generally well-
tested and are less likely to invalidate the guarantees provided by
the RAP setting. But domain-specific optimizations written by the
programmer for the particular application are less likely to have
been tested as extensively, and are therefore more problematic. At
the same time, systems such as FFTW make a strong case for the
practical importance of such domain-specific optimizations [8]. We
are therefore faced with a technical problem:

How can we implement domain-specific optimizations
without losing the benefits of the RAP framework?

1.4 Contributions
The paper proposes the use of abstract interpretation [5] on pro-

gram generators to avoid the need for a posteriori optimization.
This allows us to generate the desired circuits without losing the
guarantees provided by RAP languages. The benefits of the pro-
posed technique extend to the untyped setting, as it avoids the gen-
eration of large circuits in the first place, thus reducing the overall
runtime needed to generate acceptable code. From the verification
point of view, this approach replaces the problem of verifying a
source-to-source transformation to that of verifying the correctness
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of a finite set of optimizations on onespecific program: the gener-
ator.

In the proposed method, abstract interpretation is carried out af-
ter four initial, standard steps for building program generators [27]:

1. Implement the input-output behavior in an expressive, type-
safe language such as OCaml [15]. As a running example,
we will use FFT. For FFT, this step is just implementing the
Cooley-Tukey recurrence for computing the FFT.

2. Verify the correctness of the input-output behavior of this
program. Because we used an expressive language to im-
plement FFT, this step reduces to making sure, first, that the
textbook definition of the Cooley-Tukey recurrence is tran-
scribed correctly, and, second, that the program is correctly
transformed into a monadic style. The monadic transforma-
tion is well-defined and mechanizable [21], and this paper
will explain why monadic transformation (or style) is con-
venient when using the proposed approach. Often, it is not
necessary to convert the whole program into monadic style.
So, when the transformation is done by hand, it is only done
as needed.

3. Identify the relevant computational stages for the program
(cf. [27]). This involves determining the parts of the com-
putation that can be done on the development platform, and
those that must be left to the deployment platform.

4. Add staging annotations. In this step, staging constructs (hy-
gienic quasi-quotations) ensure that this is done in a seman-
tically transparent manner. A two-level type system under-
stands that we are using quasi-quotations to generate pro-
grams (cf. [31]) and can ensure that there are no inconsistent
uses of first- and second-stage inputs. A RAP type system
[30] goes further and can ensure that second-stage computa-
tions only use features and resources that are available on the
target platform.

The source code of the resulting generator is often a concise, minor
variation on the result of the first step. If the quality of the generated
code is not satisfactory, the paper proposes the following additional
step:

5. Use abstract interpretation techniques to shift more computa-
tions to the development platform rather than the deployment
platform. This step generally leads to smaller and more effi-
cient circuits.

In the short term, this technology can reduce the time and effort
needed for programming reconfigurable hardware. Reconfigurable
hardware [6, 17] has the potential for delivering significant perfor-
mance improvement in computationally intensive application do-
mains. For example, Najjar et al. [22] report speedups of 10-800
times over highly-tuned software implementations. Rather than
performing the numerically intensive kernels in the “native” soft-
ware platform where the rest of the application is implemented,
their system “offshores” these kernels to field-programmable gate
arrays (FPGAs). Field-programmable hardware is well-suited for
massively-parallel implementations of computations that can be ex-
pressed as combinatorial circuits. In the longer term, we hope that
the proposed approach can have a positive impact on VLSI logic
design and verification.

1.5 Related Work
Our work builds on a long tradition of using functional program-

ming languages to describe hardware circuits, such as Ruby [12],
Lava [2], Hawk [14], HML [18], Hydra [23], reFLect [9]. How-
ever, none of these languages provide the kind of manifest inter-
faces (static types) discussed above.

Hardware-description languages recognize the need for macros
to distinguish circuits descriptions from circuits. An example is
SA-C [3], a single-assignment, array-based language. While SA-
C’s facility is an improvement on the C macro system, it provides
neither the expressivity of higher-order languages nor the manifest
interfaces and the static guarantees delivered by RAP type systems.

McKay and Singh [19] use partial evaluation (an automated ap-
proach to staging) for dynamic specialization of FPGAs. But their
specialization and optimizations of circuits use intensional analy-
sis of programs. For any partial evaluation system, the user can
only chose between two levels of abstraction: Either to treat the
tool as a black box, in which case all control over the generation
process is delegated to the tool, or to treat the tool as a white box,
in which case all well-formed and correctness guarantees about the
generated code are void. Two-level static type systems allow the
programmer to safelygain full control over the generation process.

SAFL+ [26] allows the programmer to breakdown a computation
into components implemented by hardware or software. SAFL+ is
first-order, monomorphically typed language, and the wholecom-
putation must be resource bounded. Thus, from the RAP point of
view, the whole SAFL+ computation is performed on the deploy-
ment platform. HardwareC [13] is similar to SAFL+, but uses only
C-like imperative features.

1.6 Organization of this Paper
Section 2 gives a quick introduction to the basics of staging and

explains the basic approach in the context of a minimal example.
Though the static type system of MetaOCaml checks only for type
correctness and not circuit-realizability of code, it is sufficient
to present and validate the idea of abstract interpretation on code
generators. Section 3 describes how the Fast Fourier Transform
(FFT) can be expressed in a functional language and then staged.
In Section 4 we describe generation-time optimizations. These op-
timizations are enabled by abstract interpretation of the generated
code. We show the effectiveness of this technique by comparing
the number of floating point operations to those in the results of
both naively staged versions and the FFTW systems. Section 5
concludes.

2. ABSTRACT INTERPRETATION OF POWER

Staging constructs are a mechanism for distinguishing computa-
tional stages in a program. The following minimal example illus-
trates the use of these constructs in MetaOCaml [4, 20]:

let rec power n x =
if n=0 then .<1>.

else .< .˜x * .˜(power (n-1) x)>.
let power3 = .<fun x -> .˜(power 3 .<x>.)>.

Ignoring the staging constructs (brackets .<e>. and escapes .˜e)
the above code is a standard definition of a function that computes
xn, which is then used to define the specialized function x3. With-
out staging, the last step simply returns a function that would invoke
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the power function every time it gets invoked with a value for x.
In contrast, the staged version builds a function that computes the
third power directly (that is, using only multiplication). To see how
the staging constructs work, we can start from the last statement in
the code above. Whereas a term fun x -> e x is a value, an
annotated term .<fun x -> .˜(e .<x>.)>. is not, because
the outer brackets contain an escaped expression that still needs to
be evaluated. Brackets mean that we want to construct a future
stage computation, and escapes mean that we want to perform an
immediate computation while building the bracketed computation.
In a multi-stage language, these constructs are not hints, they are
imperatives. Thus, the application e .<x>. must be performed
even though x is still an uninstantiated symbol. In the power ex-
ample, power 3 .<x>. is performed immediately, once and for
all, and not repeated every time we have a new value for x. In the
body of the definition of the function power, the recursive appli-
cation of power is escaped to ensure its immediate execution in
the first stage. Evaluating the definition of power3 first results in

.<fun x -> x * x * x * 1>.

Whereas implementing the unstaged definition of power3 in hard-
ware is non-trivial, the staged one evaluates to a program that is
clearly circuit-realizable.

2.1 Why Abstract Interpretation?
To give a minimal example of why abstract interpretation on gen-

erators is useful, consider the presence of the multiplication by 1
in the body of power3. Resorting to a posteriori techniques for
eliminating such unnecessary computations after the code has been
generated requires making the code data type less abstract. This
has the disadvantage of voiding equational reasoning principles on
computation inside brackets [28], as this essentially reduces them
to syntactic quotations (cf. [1, Footnote 32]). Equally importantly,
ensuring static type safety would then necessitate the use of higher-
order types (cf. [25]). Abstract interpretation allows us to avoid
these problems and still achieve essentially the same result.

The first step in applying abstract interpretation is to identify the
concrete domain, which is generally the code type used in our pro-
gram, and which we would like to look inside.

type concrete_code = (int code)

This type is generally implicit in the original program. The second
step is to design an abstract domainthat provides us with more
information about the code value. For example, we can use:

type abstract_code =
One

| Any of (int code)

This type splits the single case in concrete_code into two: The
first indicates that we have more information about the code value,
namely, that it is the literal 1. The second says that we have no
additional information about the code value. Note that while the
terms concrete and abstract may seem backwards, they are not: the
abstract type approximates the second stage valueof the concrete
type.

To see how this abstract type contains more information than the
original type, all we need to do is to present the concretizationfunc-
tion that converts any abstract_code into concrete_code:

let conc (c:abstract_code):concrete_code =
match c with

One -> .<1>.
| Any c -> c

The next step is to lift all the operators from the concrete type to
the abstract type, so that some useful work can be done in the first
stage, and less work is left for the second stage. The only opera-
tor that the power function uses is the multiplication operator *.
To achieve the desired effect, we define the corresponding abstract
operator ** as follows:

let ( ** ) x y =
match (x,y) with

(One, One) -> One
| (One, y) -> y
| (x, One) -> x
| (x, y) ->
Any .< .˜(conc x) * .˜(conc y)>.

As can be seen from this definition, the abstract_code type
makes it possible to directly express optimizations that would have
required inspecting the concrete_code type.

Whereas the concretization function can be expressed within the
language, the abstraction functionthat would go the other way can-
not. In particular, the latter requires inspecting values of the ab-
stract type code.

The staged function can now be expressed as:

let rec power n x =
if n=0 then One

else x ** (power (n-1) x)

and evaluating the declaration:

let power3 =
.<fun x -> .˜(conc (power 3 (Any .<x>.)))>.

would yield precisely the desired result:

.<fun x -> x * x * x>.

and the last multiplication is eliminated. For this simple example,
abstract interpretation on the generated code provides a systematic
and safe approach to achieving essentially the same results as a pos-
teriori optimization. The next two sections show how this scales to
the more substantial example of FFT, yielding results comparable
to those produced by the FFTW system.

3. STAGING FFT
FFT finds applications in many time-critical embedded applica-

tions, and it is therefore important to be able to generate efficient
circuits for it. Using FFT as a running example for this paper,
this section begins by showing how FFT can be implemented in
a purely functional manner in OCaml. Then, MetaOCaml’s staging
constructs are used to express a variant of this function that can be
specialized with respect to the size of the input vector.

3.1 An Unstaged FFT Implementation
The basic Cooley-Tukey recurrence can be implemented as:
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let rec fft dir l =
if (List.length l = 1) then

l
else

let (e,o) = split l in
let y0 = fft dir e in
let y1 = fft dir o in
merge dir y0 y1

with the two parameters being: the direction flag dir, and the input
vector l represented as a list. If the input vector has length one, we
simply return it. Otherwise, we split the vector into even and odd
components (e,o), recursively apply fft to these subvectors,
and then merge the results.

3.2 Complex Numbers and Auxiliary
Functions

Complex numbers are represented as pairs of OCaml floats, and
operations such as complex addition are implemented as follows:

let add ((r1,i1), (r2, i2)) =
((r1 +. r2), (i1 +. i2))

The functions split, and merge that are used in defining fft
are implemented as follows:

let rec split l =
match l with

[] -> ([], [])
| x::y::xs ->

let (a,b) = split xs in (x::a, y::b)

let rec merge dir l1 l2 =
let n = 2 * List.length l1 in
let rec mg l1 l2 j =

match (l1, l2) with
(x::xs, y::ys) ->

let z1 = mult (w dir n j, y) in
let zx = add (x, z1) in
let zy = sub (x, z1) in
let (a,b) = (mg xs ys (j+1)) in
(zx::a, zy::b)

| _ -> ([], []) in
let (a,b) = mg l1 l2 0 in (a @ b)

The function w computes powers of the nth complex root of unity.

3.3 Monadic Sharing
To avoid explosion in the size of the generated code, we use a

monadic library for sharing [7]. This requires that we rewrite parts
of the FFT program into a monadic style with explicit open recur-
sion:

let fft dir f l =
if (List.length l = 1) then

ret l
else

let (e,o) = split l in
bind (f e) (fun y0 ->
bind (f o) (fun y1 ->
ret (merge dir y0 y1)))

The new parameter f is now used in place of all recursive calls
to fft dir in the body of the original function. Return (ret)
and bind are the two standard monadic operators [21, 33]. To get
exactly the same functionality as in the original program, we would
use a monadic library where ret is the identity function (no-op),
and bind passes the result of the first argument to the the second
one. Details of the monadic library for monadic sharing are beyond
the scope of this paper, and are described elsewhere [7]. For the
purposes of this paper, the reader should view it as a library that
avoids code duplication during generation.

For this example, only the fft and merge functions need to be
converted into monadic style.

3.4 Staging FFT
To stage the FFT with respect to the sizeof the input vector,

we add staging annotations to get a staged FFT function fft ms.
The staged function takes a vector of code valuesthat denote the
delayed elements. Since the operation of split is parametric in
the elements, it requires no explicit staging. The merge function
is now written in a monadic style, and the only other change is the
use of staged versions of the complex arithmetic functions, namely,
w s, add s, sub s, and mult s (The retS operator is exactly
the same as the ret operator used before). These staged functions
are achieved by adding staging annotations to the original ones. For
example, the add s function is now defined as:

let add_s ((r1,i1), (r2, i2)) =
((.<.˜r1 +. .˜r2>.), (.<.˜i1 +. .˜i2>.))

let merge_ms dir l1 l2 =
let n = 2 * List.length l1 in
let rec mg l1 l2 j =
match (l1, l2) with
(x::xs, y::ys) ->

bind (retS (mult_s (w_s dir n j, y)))
(fun z1 ->

bind (retS (add_s (x, z1)))(fun zx ->
bind (retS (sub_s (x, z1)))(fun zy ->
bind (mg xs ys (j+1)) (fun (a,b) ->
retS (zx::a, zy::b)))))

| _ -> retS ([], []) in
bind (mg l1 l2 0) (fun (a,b) ->
retS (a @ b))

The FFT function now uses the staged, monadic version of merge:

let fft_ms dir f l =
if (List.length l = 1) then retS l
else
let (e,o) = split l in
bind (f e) (fun y0 ->
bind (f o) (fun y1 ->
merge_ms dir y0 y1))

To use fft ms, it is passed to a monadic fixed point operator
y sm, and the resulting monadic value is passed to an appropriate
monadic run combinator runM:

.<fun x ->
.˜(run (y_sm (fft_ms 1.0)) (2 * n) .<x>.)>.
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In what follows we will focus on the quality of the code generated
from this computation, and how it can be improved through the use
of abstract interpretation.

3.5 Generated Code
Auxiliary functions and a non-standard run construct (see [7])

allow MetaOCaml to output C function code corresponding to the
staged definition specialized for the size of the input vector. The
preliminary syntax for the non-standard run construct is currently
.!{Trx.run gcc}, where gcc can be replaced by names of dif-
ferent back-end compilers such as icc or f90.

For an input vector of size 4 we get the following output, the
result of translating to C is:

int __fun_def(double * x_234 ) {
double x1_235 ; double y1_236 ; double x1_237 ;
double y1_238 ; double x1_239 ; double y1_240 ;
double x1_241 ; double y1_242 ; double y1_243 ;
double y2_244 ; double y1_245 ; double y2_246 ;
double y1_247 ; double y2_248 ; double y1_249 ;
double y2_250 ; double y1_251 ; double y2_252 ;
double y1_253 ; double y2_254 ; double y1_255 ;
double y2_256 ; double y1_257 ; double y2_258 ;

x1_235 = x_234[0]; y1_236 = x_234[1];
x1_237 = x_234[2]; y1_238 = x_234[3];
x1_239 = x_234[4]; y1_240 = x_234[5];
x1_241 = x_234[6]; y1_242 = x_234[7];
y1_243 = x1_235; y2_244 = y1_236;
y1_245 = x1_239; y2_246 = y1_240;
y1_247 = y1_243 + (1. * y1_245 - 0. * y2_246);
y2_248 = y2_244 + (1. * y2_246 + y1_245 * 0.);
y1_249 = y1_243 - (1. * y1_245 - 0. * y2_246);
y2_250 = y2_244 - (1. * y2_246 + y1_245 * 0.);
y1_251 = x1_237; y2_252 = y1_238;
y1_253 = x1_241; y2_254 = y1_242;
y1_255 = y1_251 + (1. * y1_253 - 0. * y2_254);
y2_256 = y2_252 + (1. * y2_254 + y1_253 * 0.);
y1_257 = y1_251 - (1. * y1_253 - 0. * y2_254);
y2_258 = y2_252 - (1. * y2_254 + y1_253 * 0.);
x_234[0] = y1_247 + (1. * y1_255 - 0. * y2_256);
x_234[1] = y2_248 + (1. * y2_256 + y1_255 * 0.);
x_234[2] = y1_249

+ (6.12303176911e-17 * y1_257 - -1. * y2_258);
x_234[3] = y2_250

+ (6.12303176911e-17 * y2_258 + y1_257 * -1.);
x_234[4] = y1_247 - (1. * y1_255 - 0. * y2_256);
x_234[5] = y2_248 - (1. * y2_256 + y1_255 * 0.);
x_234[6] = y1_249

- (6.12303176911e-17 * y1_257 - -1. * y2_258);
x_234[7] = y2_250

- (6.12303176911e-17 * y2_258 + y1_257 * -1.);
x_234; return 0;

}

The function __fun_def takes an array of four complex num-
bers, realized as an array of four pairs of doubles; two floating-
point numbers in a pair represent the real and the imaginary parts of
the complex number, respectively. The function computes the FFT
in-place: on exit from the function, the input array will contain
the computed transform. This code represents the fully unfolded
complex FFT computation for the sample size of 4. It is a single-
assignment and straight-line code, that can easily be translated to
combinatorial circuits.

3.6 What’s Wrong with the Generated Code?
The generated code points to a need for domain-specific opti-

mizations. It suffers from obvious problems that include having

• Repeated computations such as
(1. * y1_245 - 0. * y2_246); that appear as
subexpressions in larger expressions.

• Statements such as x1_235=x_234[0]; assign array el-
ements to temporaries, and these temporaries are used only
once. We also have statements such as y1_243=x1_235;.
Both kinds of statements perform unnecessary moves.

• Trivial but expensive floating point multiplication by factors
such as 1.0 and 0.0.

• Round-off errors that result in unnecessary computation,
such as multiplication by 6.12303176911e-17. The exact 4-
point FFT does not contain such factors, as they should be
exactly zero. Furthermore, replacing such factors by exact
zeros would lead to the cascade of further simplifications.

While aggressive compiler optimizations might eliminate some of
these problems, for many of them, ensuringthat they are elimi-
nated requires knowledge about the FFT algorithm. Note that this
does not mean that a posteriori optimizations are needed. In what
follows we illustrate this point and show that there are benefits to
focusing on writing better generators rather than on fixing the re-
sults of simple generators.

4. ABSTRACT INTERPRETATION OF FFT

Through the use of abstract interpretation and a series of refine-
ments to the generator, we will show how the problems identified
at the end of the last section can be addressed. A key feature of
all these modifications is that they extract information about the
second-stage (or generated) computations and make it available in
the first stage.

4.1 Abstraction Domain
We want to avoid code duplication, and we want to avoid trivial

multiplications and additions. Therefore, we need two abstraction
domains, which we stack one on top of the other. Both domains
successively refine the float type that was used for the elements
of the vector produced by FFT.

The first domain

type maybeValue = Val of float code
| Exp of float code

keeps track of whether a code value is cheap to duplicate. A com-
plicated expression is tagged Exp, while a simple expression (a
float literal, for example) is tagged Val.

The second domain

type abstract_code =
Lit of float

| Any of float * maybeValue

allows us to construct complex arithmetic operators that discrimi-
nate between literals that are known at generation time and compu-
tations that are not. Computations that have values unknown at the
generation stage are tagged with Any. If this value represents mul-
tiplication by a known factor, we keep that factor as a floating-point
number.
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Both datatypes are analogous to the one discussed in Section 2.1,
but they carry more information about the code value. We must
stress that this information — if the fragment is literal, is a simple
variable reference, etc. — is not obtained by looking inside the
code fragment. Rather, we make note of this information when we
generatethe code fragment, from data available to us at generation
time. We never look inside code after it is generated. Elements of
these types can be viewed as (sometimes exact) approximations of
the future-stage value. Note also that abstract interpretation is with
respect to the generated code fragment.

4.2 The Abstract Interpretation
Just as we did in Section 2.1, we define concretization functions

for the two abstract domains defined above.

let mVconc = function
(Val x) -> x

| (Exp x) -> x
let conc = function (Lit x) -> Val .<x>.

| Any(1.0,x)-> x
| Any(-1.0,x)-> Exp .<-. .˜(mVconc x)>.
| Any(factor,x)-> Exp .<factor *. .˜(mVconc x)>.

These functions successively forget information. The result of
mVconc is the opaque code value; all information we had about
the value at the generation stage is forgotten, while the function
conc internalizes the multiplication factor of the computation, and
yields a maybeValue.

4.3 Avoiding Code Duplication and Trivial
Bindings

The butterfly operation offers an opportunity for avoiding re-
peated computation. In this operation, represented by the following
code snippet which appears in merge ms above:

...
bind (retS (mult_s (w_s dir n j, y)))

(fun z1 ->
bind (retS (add_s (x, z1))) (fun zx ->
bind (retS (sub_s (x, z1))) (fun zy ->
...

the multiplication mult_s (w_s dir n j, y) is used in the
subsequent add_s and sub_s operations. One might expect that
binding the result of this value to z1 avoids repeating this com-
putation. This is indeed the case in the unstaged program. But
in the staged program, the multiplication in the first line is really
symbolic, and because z1 is used in two places, this computation
is duplicated. We already mentioned one technique for avoiding
some forms of code explosion (monadic sharing [7]). The butter-
fly problem points to a need for a concise and controlled way for
naming intermediate results of generation, so as to avoid the dupli-
cation of expressions that contain computations. We achieve this
by defining a variant of the monadic return operator that names its
argument so that only the name gets duplicated. We call this variant
retN and define it in Appendix A. While retN operates on sin-
gle values, we must deal with tuples in the maybeValue domain
that represent the complex number. Therefore, we “raise” retN to
work with values of this type using the function liftcM retN v
defined in Appendix A, which allows us to generate name bindings
only for the Exp variant and avoid generation of trivial bindings
(for the Val variant). The resultant code for the merge operation
shown below

let merge_mv dir l1 l2 =
let n = 2 * List.length l1 in
let rec mg l1 l2 j =

match (l1, l2) with
(x::xs, y::ys) ->

bind ((liftcM retN_v) x) (fun x ->

bind ((liftcM retN_v) y) (fun y ->

bind ((liftcM retN_v)

(mult_sv (w_sv dir n j, y)))
(fun z1 ->

bind (retS (add_sv (x, z1))) (fun zx ->

bind (retS (sub_sv (x, z1))) (fun zy ->
bind (mg xs ys (j+1)) (fun (a,b) ->
retS (zx::a, zy::b)))))))

| _ -> retS ([], []) in
bind (mg l1 l2 0) (fun (a,b) ->
retS (a @ b))

is different from the merge ms function in two ways: first, it uses
liftcM retN v instead of retS wherever we have an oppor-
tunity for a controlled naming of expressions, and second, it uses
complex arithmetic operators, viz., add sv, sub sv, mult sv,
and w sv that work on the maybeValue domain rather than on
the float domain. The add sv operator is a simple change from
the staged add operator add s:

let mV_add x y =
let xc = mVconc x in
let yc = mVconc y in
Exp .<.˜xc +. .˜yc>.

let add_sv ((r1,i1), (r2, i2)) =
(mV_add r1 r2, mV_add i1 i2)

The generated code that results form replacing merge ms with
merge mv in the fft ms function avoids the duplication of ex-
pressions, and also avoids the generation of names for trivial ex-
pressions.

4.4 Avoiding Trivial Operations
As in the case of the multiplication function in Section 2.1, once

we replace the code type by the abstract domain type, we must lift
the staged complex arithmetic functions into the abstract domain.
In essence, this means that we have to study how each of these
operations should be defined for each of the different cases that can
arise as a result of using abstract interpretation. Just as the abstract
multiplication operator (**) in Section 2.1 made use of the identity
x ∗ 1 = x to avoid redundant computations in the generated code,
we can similarly use identities to avoid unnecessary additions and
multiplications in the FFT code.

For example, in the addition function add a defined over the ab-
stract domain abstract code, we can use the identity x+0.0 =
x to avoid the generation of an unnecessary addition operator. In
this function, the Lit variant allows us to discriminate zero values
from others, and thus, we can perform a case analysis as given by
the code fragment below:

let rec add_a (n1, n2) =
...
match (n1, n2) with

(Lit 0.0,x) -> x
| (x, Lit 0.0) -> x
...

Similarly, if we know that the value pairs have the same factors, we
use this information to avoid the generation of unnecessary multi-
plications using the identity f ∗ x + f ∗ y = f ∗ (x + y), as given
by the code fragment

| (Any (fx,x), Any (fy,y)) ->
if fx = fy then Any (fx,mV_add x y) else ...

In this case, we generate the code for addition, mV_add x y but
we do not generate the code for multiplication by the common fac-
tor. Rather, we carry the factor along. Multiplication by the fac-
tor will be generated only when needed. The above excerpt illus-
trates how information known from the annotations of the input
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fragments is used to set the appropriate annotations on the output
fragments. Again, we never examine the generated code itself.

The addition operation add a on individual values is used to
define the addition operator for complex values:

let add_ta ((r1, i1), (r2, i2)) =
(add_a (r1, r2), add_a (i1, i2))

Subtraction (sub ta) and multiplication (mul ta) operators
that use abstract interpretation to avoid the generation of trivial op-
erations in the code are similarly defined.

4.5 Avoiding Round-off Errors
The factors in the FFT algorithm are the roots of unity of the

order N , where N is the sample size. Because N is known at
generation time, we can compute the factors then. The following
function w a does the computation and returns the result as a pair
of Lit floating-point numbers representing one complex number.

let w_a dir n j =
(* exp( dir* -2PI I j/n), where dir is +/-1 *)
if j = 0 then (Lit 1.0, Lit 0.0) else
if 2*j = n then (Lit (-1.0), Lit 0.0) else
(* exp(dir* -PI I) *)
if 4*j = n then (Lit 0.0, Lit (-. dir)) else
(* exp( dir* -PI/2 I) *)
if 4*j = 3*n then (Lit 0.0, Lit dir) else
(* exp( dir* -3*PI/2 I) *)
if 8*j mod n = 0 then (* 8j/n must be odd *)

let quadrant = ((8*j / n) - 1)/2 and
cos_signs= [| 1.0; -1.0; -1.0; 1.0 |] and
sin_signs= [| 1.0; 1.0; -1.0;-1.0 |] and
csh = cos (pi /. 4.0) in

let quadrant = if dir = -1.0 then quadrant
else 3 - quadrant in

(Lit (csh *. cos_signs .(quadrant)),
Lit (csh *. sin_signs .(quadrant)))

else
let theta = dir *.

((float_of_int (-2 * j)) *. pi) /.
(float_of_int n) in

(Lit (cos theta), Lit (sin theta))

We generate exact values where possible (e.g., cosπ
2

is exactly

zero). When computing e
πi
4 we ensure the real and the imaginary

parts are identical. Due to the specifics of the library trigonomet-
ric functions, the computed value of cosπ

4
is not identical to the

computed value of sinπ
4

.
As a result of these successive refinements to the code, the func-

tion for merge is now defined as:
let merge_a dir (l1, l2) =

let n = 2 * List.length l1 in
let rec mg l1 l2 j =

match (l1, l2) with
(x::xs, y::ys) ->

bind ((liftcM retN_va) x) (fun x ->

bind ((liftcM retN_va) y) (fun y ->

bind ((liftcM retN_va)

(mul_ta (w_a dir n j, y)))
(fun z1 ->

bind (retS (add_ta (x, z1))) (fun zx ->

bind (retS (sub_ta (x, z1))) (fun zy ->
bind ((mg xs ys (j+1))) (fun (a,b) ->
retS (zx::a, zy::b)))))))

| _ -> retS ([], []) in
bind (mg l1 l2 0) (fun (a,b) -> retS (a @ b))

The stepwise refinement from the earlier merge mv function only
involves changing some of the operators to new operators viz.,

retN va that abstracts away the sign of the factor while perform-
ing a name binding similar to that done by retN v earlier,
mul ta, add ta, and sub ta, which perform optimized com-
plex arithmetic operations, and w a which generates exact float
values where possible. The only change in the FFT function is to
use merge a instead of merge mv to effect abstract interpretation
during code generation.

4.6 Generated Code
Using the staged FFT function described above to generate code

for the 4-point FFT yields the following code:

int __fun_def(double * x_382 ) {
double y1_383 ; double y2_384 ; double y1_385 ;
double y2_386 ; double y1_387 ; double y2_388 ;
double y1_389 ; double y2_390 ; double y1_391 ;
double y2_392 ; double y1_393 ; double y2_394 ;
double y1_395 ; double y2_396 ; double y1_397 ;
double y2_398 ;
y1_383 = x_382[0]; y2_384 = x_382[1];
y1_385 = x_382[4]; y2_386 = x_382[5];
y1_387 = y1_383 + y1_385;
y2_388 = y2_384 + y2_386;
y1_389 = y1_383 - y1_385;
y2_390 = y2_384 - y2_386;
y1_391 = x_382[2]; y2_392 = x_382[3];
y1_393 = x_382[6]; y2_394 = x_382[7];
y1_395 = y1_391 + y1_393;
y2_396 = y2_392 + y2_394;
y1_397 = y1_391 - y1_393;
y2_398 = y2_392 - y2_394;
x_382[0] = y1_387 + y1_395;
x_382[1] = y2_388 + y2_396;
x_382[2] = y1_389 + y2_398;
x_382[3] = y2_390 - y1_397;
x_382[4] = y1_387 - y1_395;
x_382[5] = y2_388 - y2_396;
x_382[6] = y1_389 - y2_398;
x_382[7] = y2_390 + y1_397;
x_382; return 0;

}

The code contains fewer operations than were present before ab-
stract interpretation, and all the problems that we pointed out are
addressed. In fact, the code contains no floating-point multipli-
cations at all. Inspecting the generated code for 8-point complex
FFT shows that it uses only 4 floating-point multiplications and 52
floating-point additions and subtractions, which is exactly the same
number of operations in the code generated by FFTW.

The table in Figure 1 summarizes our measurements of the ef-
fect of abstract interpretation for FFT. The first column gives the
size of the FFT input vector. The second column gives the num-
ber of floating-point multiplications/additions (or subtractions) in
the code resulting from direct staging. The third column shows
the number of multiplications/additions in the code resulting from
using our abstract interpretation techniques with staging. The last
column
shows the number of multiplications/additions in code generated
by FFTW for the various problem sizes.

The table indicates that the generated FFT circuits are improved
by abstract interpretation, and that abstract interpretation produces
circuits with almost as few floating point operations as does FFTW.1

1The numbers for FFTW are obtained from its codelets. FFTW
does not have codelets for sample sizes 128 and 256. These val-
ues are estimates based on the values for smaller sizes and on the
general FFT algorithm.
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Size Direct staging Abst. Interp. FFTW 4 [8]

4 32/32 0/16 0/16
8 96/96 4/52 4/52

16 256/256 28/150 24/144
32 640/640 108/398 84/372
64 1536/1536 332/998 248/912

128 3584/3584 908/2406 752/2208
256 8192/8192 2316/5638 2016/5184

Figure 1: The number of floating-point multiplications/additions for FFT transforms for different sample sizes.

5. CONCLUSIONS
We have proposed a methodology for writing generators that can

produce a family of efficient combinatorial circuits. By building
on top of RAP languages, the programmer is guaranteed that any
generated program would be well-typed and circuit-realizable. Be-
cause the generator is written in an expressive language, it is easier
to ascertain the correctness of the generator and, in turn, the cor-
rectness of the full family of generated circuits. We have illustrated
how using staged memoization and abstract interpretation makes it
possible to refine the generators by a series of small modifications
until they generate efficient circuits. A key feature of our method-
ology is that it avoids adding constructs for intensional analysis
of the generated code. This ensures that the static well-typedness
and resource boundedness guarantees of the RAP language are pre-
served. While the inability to traverse the generated code severely
limits a posteriori optimizations, the running example of the FFT
circuits shows that abstract interpretation provides promising al-
ternative approach that allows us to keep the next-stage datatype
abstract.

An immediate goal for future work is to see if all optimizations
performed by FFTW can be achieved using abstract interpretation.
In particular, the implementation presented here performs only ob-
vious optimizations. More broadly, we are interested in developing
monadic libraries to support the use of abstract interpretation in
resource-aware programming.
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APPENDIX

A. THE STATE-CONTINUATION MONAD
AND THE RETN OPERATOR

We write the fft function in a monadic style so as to allow us
to generate let-bindings for code fragments corresponding to sub-
computations. By referencing let-bound variables in the code cor-
responding to later computations, we avoid duplicating code frag-
ments. This technique, called monadic sharing [7] requires using
a monad that takes a state (or, a memoization table) s, and a con-
tinuation k, that represents the remaining computation. Having the
monad use the state s allows us to keep track of which subcompu-
tations have already been let-bound, while the continuation k in the
monad allows the code that is not yet generated to refer to the let-
bound variable rather than copy code for the entire subcomputation.
The monadic ret and bind operations are:

type (α, σ, κ) m = σ -> (σ -> α -> κ) -> κ

let (ret,bind) =
let ret a = fun s k -> k s a in
let bind a f = fun s k

-> a s (fun s’ b -> f b s’ k)
in (ret,bind)

The return of this monad takes a store s and a continuation
k, and passes both the state and a to the continuation. The bind
of this monad passes to the monadic value a a store s and a new
continuation. The new continuation first evaluates the function f
using the new store s’ and continues with k.

Avoiding the duplication of code for common subexpressions is
a similar problem, and we solve it in the monadic setting by using a
nonstandard monadic operator retN that generates let-bindings for
the common subexpressions, and suitably modifies the remaining
computation to use these let-bindings. This operator is written as
follows:

let retN a = fun s k ->
.<let z = .˜a in .˜(k s .<z>.)>.

and binds its argument a to a new name z. This new name is then
passed to the continuation k, so that z appears in place of a in all
the remaining code.

For the application-specific domain maybeValue used in this
paper, we use retN to define another operator that generates bind-
ings only for nontrivial expressions:

let retN_v = function
Val _ as v -> retS v

| Exp _ as x -> bind (retN (mVconc x))
(fun x -> retS (Val x))

To allow this operator to work on complex values (tuples with real
and imaginary parts), we define liftcM to lift retN v to work
on tuples:

let liftcM op (x,y) =
bind (op x) (fun nx ->
bind (op y) (fun ny ->
retS (nx,ny)))
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