
A Simple Output-Sensitive Algorithm for
Hidden Surface Removal

MICHA SHARIR

Tel Aviv University and New York University

MARK H. OVERMARS

Utrecht University

We derive a simple output-sensitive algorithm for hidden surface removal in a collection of n
triangles in space for which a (partial) depth order is known, If k is the combinatorial
complexity of the output risibility map, the method runs in time 0(n V& log n), The method is
extended to work for other classes of objects as well, sometimes with even improved time bounds.
For example, we obtain an algorithm that performs hidden surface removal for n (nonintersect-
ing) balls in time 0(n3J210g n + k).

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems-geometrical problems and computations; 1.3.5 [Com-

puter Grapbicsl: Computational Geometry and Object Modeling-geometric algorithms, lan -
guages and systems; 1,3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism –hidden line, surface removal

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Hidden line elimination, hidden surface removal, object-
space algorithm

1. INTRODUCTION

An important problem in computer graphics is hidden surf-zce removal. In a
typical setting of the problem we are given a collection of nonintersecting
polyhedral objects in 3-space, and a viewing point u, and our goal is to
construct the view of the given scene, as seen from u.

Work by M. Sharir has been supported by OffIce of Naval Research grant NOO014-87-K-0129,by
National Science Foundation grant CCR-89-01484, and by grants from the U.S.-Israeli
Binational Science Foundation, the Israeli National Council for Research and Development, and
the Fund for Basic Research administered by the Israeli Academy of Sciences. Work by
M. H. Overmars was partially supported by the ESPRIT II Basic Research Actions Program of
the EC, under contract No. 3075 (project ALCOM).

Authors’ addresses: M, Sharir, School of Mathematical Sciences, Tel Aviv Univ., Tel Aviv,
Israel, and Courant Institute of Mathematical Sciences, New York University; M. H. Overmars:
Department of Computer Science, Utrecht Univ., P.O. Box 80.089, 3508 TB Utrecht, the
Netherlands.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission,
@ 1992 ACM 0730-0301 /92/0100-0001 $01.50

ACM Transactionson Graphics,Vol. 11, No. 1, January 1992,Pages 1-11.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F102377.112141&domain=pdf&date_stamp=1992-01-02

2. M. Sharir and M. H. Overmars

Many solutions have been developed to date. Some of them use an “image-
space” approach, in which one tries to calculate, for each pixel in the viewed
image, which object is visible at that pixel. These techniques generally have
hardware implementations, but they can still be slow when the screen size
and the number of objects in the scene are both large [221. Other techniques,
like the one presented here, have an “object-space” flavor, That is, they try to
obtain a discrete combinatorial representation of the view of the scene, whose
complexity does not depend on the screen size, but only on the combinatorial
complexity of the scene. Such object space methods are also important, e.g.,
for hidden line elimination or determining the parts of objects that are
lighted by light sources.

Let n denote the number of edges of the given polyhedra. If we project all
these edges onto the plane of view we obtain an arrangement of n (usually
intersecting) segments. The visible portion of the scene, when projected onto
the view plane, yields a polygonal decomposition of the plane into regions, at
each of which a connected portion of a single object face is visible, or no object
is visible. These regions are bounded by portions of the projected object edges,
and the vertices of these regions are either projected object vertices or
intersections of projected edges.

These well-known observations lie at the basis of practically all object-space
hidden surface removal algorithms. Many of these algorithms simply calcu-
late the entire arrangement of the projected edges, and then determine which
features of the arrangement are visible. Crude implementations of this
approach run in time 0(n2) [4, 121. More careful implementations run in
time 0((n + l)log n), where 1 denotes the number of intersections between
the projected edges [5]. See also Guting and Ottman [81, Nurmi [14], and
Schmitt [211.

The main problem with these solutions is that they are not output-
.serwitiue. When the combinatorial complexity of the viewed scene is small,
these solutions can be very inefllcient. A typical example that is often used to
illustrate this issue consists of a large horizontal rectangle, lying below and
completely hiding a gridlike pattern of long thin slabs (see Figure 1). In this
case 1 = EI(rz2), so any of these algorithms requires at least quadratic time,
even though the complexity of the viewed scene is constant!

Several solutions that address the output-sensitivity issue have been pro-
posed. Some of these techniques deal with the restricted case in which the
objects are all horizontal axis-parallel rectangles, and lead to fairly efficient
output sensitive algorithms [1, 6, 201. Another output-sensitive algorithm has
recently been proposed by Reif and Sen [18], for the special case of a
polyhedral terrain (i.e., a piecewise linear surface meeting each vertical line
in exactly one point).

However, very little has been done in the general case of arbitrary polyhe-
dral objects, There are two main difficulties that arise in this case. One is the
possible lack of order among the object faces, in terms of “nearness” to the
viewing point. (It is easy, for example, to construct three nonintersecting
triangles, so that each of them hides a portion of the next one in cyclic order.)
This is a rather problematic issue even for image-space techniques (see, e.g.,

ACM ‘lkanaactionson Graphics,Vol. 11, No. 1, January 1992.

A Simple Output-Sensitive Algorithm for Hidden Surface Removal . 3

z

Fig, 1. A scene with a small output size

Sutherland et al. [22]). To overcome this problem, one usually partitions
some of the objects into smaller pieces, by cutting them along appropriate
planes, so that the resulting pieces can be ordered by their nearness to the
viewing point. However, such partitions can result in an unacceptably high
number of “subobjects” (see Paterson and Yao [17] for a recent treatment of
this problem). Note that in both cases of axis-parallel rectangles and polyhe -
dral terrains, an ordering of the desired kind is easy to obtain, In this paper
we also bypass the ordering problem by assuming that among the given
objects no cyclic overlap occurs. In such a case a partial order by nearness to
the viewing point exists. We assume the partial order is known. (Computing
such an order can in general be time consuming but in many cases is easily
obtained.) Such a partial order can then be extended to a total order.

Even when a proper ordering of the objects exists, we still face the
difficulty of handling object edges with arbitrary orientations. These difficul -
ties have stalled progress in developing more general output-sensitive SOIU-
tions. There are only two related works we are aware of. One is by Mulmuley
[131 where a randomized “quasi-output-sensitive” solution is obtained; the
expected time complexity of this solution is expressed as a sum of weights
associated with the intersection points of the projected object edges, where
the weight of an intersection is inversely proportional to the number of
objects c’hiding” that intersection from the viewing point. A second recent
work by Schipper and Overmars [19] creates the view of the scene by adding
the objects one by one in increasing distance from the viewing point. It uses
dynamic partition trees to maintain the boundary of the union of the pro-
jected objects so as to facilitate eflicient calculation of the intersections of the
project ions of newly added objects with that boundary. However, the depen-
dence of the complexity of this algorithm on the output size is rather weak; in
particular it may run in considerably more than quadratic time if the output
size is close to quadratic.

In this paper we present an improved output-sensitive algorithm for the
hidden surface removal problem that is conceptually very simple and works

ACM Transactions on Graphics, Vol. 11, No 1, January 1992

4* M. Sharir and M. H. Overmam

for various classes of objects. The only assumption we have to make is that a
(partial) depth order for the objects is known. Let k be the number of vertices
in the projected visible scene. The method runs in time 0(n /% log n). Thus,
apart from the log n factor, the algorithm is always at most quadratic, and is
faster when k is subquadratic. The simplicity of the algorithm also makes it
attractive for pragmatic implementation. If we specialize this algorithm to
the case of n horizontal discs, we obtain an algorithm whose time complexity
is 0(n3/2log n + h). Thus the algorithm becomes optimal if k is sutliciently
large. (Note that, also in the case of discs, k can be as large as !.2(n2).)
Similar performance is obtained for collections of nonintersecting spheres, for
collections of nonintersecting isothetic copies of any convex body, and for
several other special cases.

The paper is organized as follows. In Section 2 we describe some prelimi-
nary results on merging visibility maps. In Section 3 we present our algo-
rithm, restricted to the case of a set of triangles. In Section 4 we extend this
to arbitrary polygons and we treat some special cases. The paper is concluded
in Section 5, with a discussion of our results and a list of open problems.

2. PRELIMINARIES

Let us first introduce some terminology to define more formally the concepts
of visibility and related notions.

Let T={ TI,.. ., TJ be a set of triangles in 3-D space without cyclic
overlap. We assume that the triangles are ordered in such a way that for
z <J’ either Ta and Tj are disjoint in the projection or T, lies (partially) in
front of Tj. Let P be the projection plane. Project each triangle Ti perspec-
tively from v on P, obtaining a projected triangle T:. Transform P such that
it lies on the xy-plane. Finally translate each transformed triangle T; to a
height i. In this way we obtain a set A = {Al,. . . . A J of n horizontal
triangles in 3-D space, so that A, lies in the plane z = i. It is easy to verify
that the view from u in T is the same as the view from a viewing point at
z = – m of A. Transforming T into A can easily be done in time 0(n) (or
0(nlog n) if the depth ordering is not yet known).

The hidden surface removal problem for A (and for a viewing point at
z = – m) can be formulated as the problem of partitioning the xy-plane into
maximal regions so that for each region R there exists a unique triangle A i

(or no triangle at all) such that for all points (x, y) e R, the lowest triangle
lying above (x, y) is Aa (or no triangle lies above (x, y)). We denote by M the
planar map resulting from this partitioning, and call it the visibility map of
A. The combinatorial complexity or size of M, denoted by k, is the number of
edges and vertices in M. Note that k can be as large as Q(n2) and as small
as 6 (when one triangle hides all the others). See Figure 2 for an example of
the visibility map we might obtain.

Our algorithm, to be described in the next section, is based on merging
visibility maps. For this we need the following result:

LEMMA 2.1. Let M be a visibility map of size k and let C be an arbitrary
polygonal region of size c. The parts of M lying outside C can be determined in

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.

A Simple Output-Sensitive Algorithm for Hidden Surface Removal o 5

Fig. 2. A visibility map M

Fig. 3. Intersection between M and C

time 0((k + c)log(k + c) + k’) where k’ is the number of intersections between
edges of C and edges of M.

PROOF. See Figure 3 for an example. To determine the part of M outside
C we have to compute all intersections between edges of M and edges of the
boundary of C. Note that the edges in M do not intersect one another and the
same applies to the edges of the boundary of C. Hence, we can use the
red-blue intersection algorithm of Mairson and Stolfi [101 to find all intersec-
tions within the time bound stated. (We could alternatively use the method of

ACM Transactions on Graphics, Vol 11, No. 1, ,January 1992

6. M. Sharir and M. H. Overmars

Chazelle and Edelsbrunner [3] but this technique is much more complicated;
besides, Mairson and Stolfi’s technique can be extended to the case of curved
edges, whereas Chazelle and Edelsbrunner’s technique cannot.) After we
have determined all intersections, the parts of M outside C can easily be
computed. •l

Remark. Intuitively, think of C as the xy-projection of a polygonal object
lying below all triangles from which M is computed and hiding some portions
of M. The lemma enables us to compute those portions of M that can be seen,
i.e., are not hidden by C.

3. THE ALGORITHM

The main idea of our solution is quite simple. We construct the map M by
adding the triangles of A from bottom up in an incremental fashion. Rather
than adding them one by one, as was done by Schipper and Overmars [19], we
add them in groups, where the size of a group depends on the output size of
the partial visibility map constructed so far.

In more detail, the algorithm proceeds as follows. Choose an initial con-
stant positive integer parameter co (6 will do). The algorithm then iterates
through an incremental round, at which a group of triangles is added to the
scene. After the jth iteration, we have processed a collection Gj of the lowest
nj triangles. We denote by MJ the visibility map of this collection. (Note that
each edge and vertex of Mj is part of the final visibility map M.) Let kj
denote the combinatorial complexity of Mj, and let Cj s kj denote the num-
ber of edges of Mj that bound faces in which no triangle of Gj is visible. In
other words, Cj is the size of the contour (i. e., boundary) of the union of G]
(projected on the xy-plane). Let Cj denote this contour. Initially, j = O, CO
and MO are empty, but co is the initial chosen parameter.

At the Jth iteration, we take the set G; of the next ~@1 lowest
triangles, and construct the visibility map M; of G;, ignoring the rest of the
triangles. This can be done in O(cj _ J time, using, e.g., the method McKenna
[12] and the combinatorial complexity of M; is also O(CJ_ ~). (Alternatively,
one can call the algorithm recursively. In this case the time bound for this
step goes up to 0(Cj_ ~log Cj_ ~) but this does not influence the total time
bound.) Next we clip M; against CJ_ * using the result of Lemma 2.1. The
part of M: found this way will be part of the final visibility map M so we add
it to MJ_ ~ to obtain Mj. Finally we merge Cj _ ~ with M; to obtain C, and we
set Cj to be the size of Cj.

This procedure is continued until all triangles are processed. In Figure 4 a
more concise description of the algorithm is given.

It is easy to verify that the algorithm always terminates, and that the final
map it produces is the desired visibility map M. Indeed, each Cj is at least 6
(this happens when the contour becomes just a single triangle), so each round
“consumes” at least 3 triangles. Correctness follows partially from the fact
that, since triangles are processed in the order of their nearness to the
viewing point, each feature of any partial map Mj must also be a feature of

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

A Simple Output-Sensitive Algorithm for Hidden Surface Removal . 7

Set j := O; Q:= 6;

Set CO = 0; J140:= 0;

While A is not empty do

j:=j+l;

Let G\:= next [xl triangles in A; remove them from A;

Compute the visibility map M; of G;;

Clip M; against Cl-,;

Merge the result with MJ-l to obtain Mj;

Compute C, from M; and CJ_,;

Set cj:= size of CJ;

Fig. 4. The main algorithm

the final map M, and each feature of M must arise either as a feature of
some M; or as an interaction between the contour of some ~, ~ and the
visibility map M;.

The time complexity of the algorithm can be estimated as follows. Suppose
the algorithm consists of r rounds. The Jth round of the algorithm “con-
sumes” [& 1 more triangles, so we have

r–1

~[/’q=rz.
j=cl

(To be precise, XJ=: ~ Al< 2 n because in the last round not all ~=1
triangles might exist.) Step 6 of the algorithm in Figure 4 takes time @ CJ. I)

using, e.g., [12]. By Lemma 2.1, step 7 takes time O(CJ ~log CJ ~ + k;),
where k ~ is the number of intersections between edges of M: and of Ci ~. As
argued above, each such intersection must be a
moreover, no feature of M can arise in this
iteration of the while loop. Hence,

Steps 8 and 9 can be
for the jth round is
rounds is

carried out in time 0(c1_,
O(c, -hog c,-, + k;). The

r–1

E
j=o

r–1

feature of the final map M;
manner in more than one

+ kj). Hence, the total time
total time complexity of all

~ O(cJlogcJ + kj+l) =
j=l)

O(c,log n) + ~ O(k;) =
J=l

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.

8. M. Sharir and M. H. Overmars

r-1

~O(fi&logn)+ O(k)=
j=()

r–1

~ 0([~1 fihn) + O(k) =
j=o

O(nfilogn+ k),

where c is the maximal contour size during the construction. Clearly c s h
and, since k = 0(n2), we also have k = 0(n v%). Thus we conclude

THEOREM 3.1. The incremental algorithm outlined above performs hidden
surfme removal in time 0(n v% log n), where k is the output size. More
precisely, the running time of the algorithm is 0(n & log n + k), where c is
the maximum contour size during the execution of the algorithm.

Remark. Apart for the log n factor, the algorithm is at most quadratic for
any value of k, and becomes close to 0(n log n) when k is small. It would be
nice to improve the algorithm so that it never becomes more than quadratic,
perhaps by employing the technique of Guibas and Seidel [7] for merging
planar convex maps. (Our maps are not convex, but the only nonconvex
vertices are projections of visible triangle vertices. Can this property be used
to improve the performance of the algorithm?)

4. EXTENSIONS AND SPECIAL CASES

We will first show how to extend the method presented in the previous
section to polygons other than triangles. A first idea that might come to mind
is to subdivide all polygons into triangles. Unfortunately, this might increase
the output size considerably (it might go up from 0(n) to 0(n2)). Hence, we
have to be more careful.

Soweare given aset P={ Pi,..., P,) of polygons, ordered in terms of
their nearness to the viewing point, as above. Using the same technique as
given in Section 2 we can assume that all polygons are parallel to the
xy-plane with Pi lying at height z = i. Let Pi have ni vertices, and let
n = X ~=~n i denote the total number of vertices. We adapt the algorithm in
Figure 4 such that, in line 5, we do not take the next [&1 polygons but a

number of next polygons with a total of about ~&1 vertices. If this is
always possible, it is easy to see that the method runs in the same time
bound.

Unfortunately, some polygons might have many vertices, forcing us to take
more than the required f &1 vertices. To avoid this we have to split the
last polygon to be taken in a round such that the number of vertices is
correct. The leftover piece is then treated in the next round. Splitting the
polygon can easily be done in time O(1) when the polygon is convex.
Otherwise, we can find the correct splitting diagonal in time O(log n) after
an overall 0(n log n) preprocessing (for all polygons), using the polygon
cutting theorem of Chazelle [21.
ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.

A Simple Output-Sensitive Algorithm for Hidden Surface Removal . 9

In this way the method clearly works. We only have to show that adding
the extra cutting edges does not influence the time bound. A cutting edge e is
not part of the actual visibility map but is treated by the algorithm as a
polygon boundary. Hence, it will appear in the visibility map. As a result we
do spend time computing the visible parts of e. However, if edge e is treated
in round j it is easy to see that e is broken up into at most O(CJ 1) visible
pieces. Hence, we spend 0(Cj. ~) extra time for this. This does not influence
the order of magnitude of the time bound for round j. This leads to the
following general theorem:

THEOREM 4.1. Let V be a set of polygons with a total of n vertices. Let u be
a viewpoint and assume the polygons can be ordered by nearness to v. Then
the visible parts of the polygons in V can be computed in time 0(n & log n + k)
where c is the maximal contour size during the construction and k is the size of
the final visibility map.

Let us now look at some special cases. If instead of triangles we have a
collection of n horizontal discs, or, more generally, of objects (“pseudo-discs”)
whose xy-projections have the property that each pair of their boundaries
intersect in at most two points, then we have the following theorem.

THEOREM 4.2. The above algorithm, when appropriately modified and
applied to a collection of n horizontal discs (or pseudodiscs, in the above

s,12log n), where k issense), performs hidden surface removal in time 0(k + n
the output size.

PROOF. As has been shown by Kedem et al. [91, the contour size in the
case of discs (or pseudodiscs) is always 0(n). When we apply the preceding
algorithm to a collection of discs, we can still use Mairson and Stolti’s
algorithm [101 to clip the map M; against CJ * since this algorithm can
handle curved arcs. The asserted bound is now immediate. •l

Many sets of objects behave like pseudodisks. For example, when all
objects are nonintersecting isothetic copies of the same convex object (scaling
allowed but no rotations) their xy-projections will be pseudodisks. This in
particular yields the following corollary:

COROLLARY 4.3. One can perform hidden surface removal for a collection of
n nonintersecting balls, or for a collection of n isothetic nonintersecting copies
of an arbitrary convex obj”ect, in time O(k + n3~210g n), where k is the output
size.

Remark. In Theorem 4.2 and Corollary 4.3, of course, we have to assume
an appropriate model of computation in which various basic operations, such
as finding the intersections of the boundaries of a pair of projected objects,
can be performed in constant time.

Another special case are sets of “fat” triangles. A set of triangles is called
fat if each triangle has internal angles of at least 6 degrees for some constant
8 (independent of the size of the set). MatouWk et al. [11] show that the
contour of such a set of fat triangles has size 0(n log n). (The constant in the

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.

10 . M. Sharir and M. H, Overmars

bound depends on 6.) This immediately leads to the following result:

l%~om~ 4.4. The above algorithm, when applied to a collection of n fat
triangles, performs hid&n surface removal in time O(k + (n log n)3/2), where
k is the output size.

5. CONCLUSION

In this paper we have presented a new, simple, output-sensitize algorithm for
hidden surface removal in a set of polygons for which a (yartial) depth order
is known. The method runs in time 0(n v% log n) where n is the number of
vertices in the set of polygons and k is the complexity of the output visibility
map. The technique can also be extended to handle curved objects. The only
restriction made by the algorithm presented is that no cyclic overlap should
occur in the relationship of nearness of the given objects to the viewing point.

In many situations the method is more efficient. In fact, the time complex-
ity depends on the maximal contour size of “prefix subcollections” of the
objects during the construction. This is often smaller than k. In particular,
for a set of n (nonintersecting) balls, the method runs in time 0(n3/2 log n +
k).

The results obtained in this paper also raise several related open problems.
A first question is of course whether the results can be improved. Using the
same idea, it might be possible to remove the log n factor but for further
improvement other techniques seem to be necessary. We give a very compli-
cated technique [16] that obtains a time bound of 0(n4/3 logy n + k 3/5n4/5+‘)
for any 6>0, where ~ is a constant less than 3. Also see Overmars and
Sharir [15]. Although this method is theoretically faster for large k, it is
too complicated to be practically interesting. Hence, other techniques are
required.

Secondly, there is the problem of cyclic overlap. Up to now no output-
sensitive methods are known that can deal with cyclic overlap with running
time less than 0(n2).

Finally, there is the problem of dynamically maintaining a visibility map
when inserting or deleting objects or while moving the point of view. Only in
the case of rectangles Bern [1] has given some dynamic results. No efllcient
results are known for more general objects.

ACKNOWLEDGMENT

We would like to thank Bart Luijten for suggesting the generalization to
polygons given in Section 4.

REFERENCES

1. BERN,M. Hidden surface removal for rectangles. J. Comput. Syst. Sci. 40, 1 (Feb. 1990),
49-69.

2. CHAZELLE,B. A theorem on polygon cutting with applications. In Proceedings of the 23rd
IEEE Symposium on Foundatwns of Computer Science (Chicago, Ill., Oct. 1982), pp. 339-349.

3. CHAZELLE,B,, ANDEDELSBRUNNER,H. An optimal algorithm for intersecting line segments
in the plane. In Proceedings of the 29th IEEE Symposium on Foundatwns of Computer
Science (White Plains, N.Y., Oct. 1988), pp. 590-600.

ACM Transactions on Graphics, Vol. 11, No. 1, January 1992.

A simple Output-Sensitive Algorithm for Hidden Surface Removal . 11

4, DIivA[, F. Quadratic bounds for hidden line elimination, In Proceedings of the 2nd ACM
Symposium on Computational Geometry (White Plains, N.Y., June 1986), pp. 269-275.

5. Ck)ODRICH, M. T. A polygonal approach to hidden line elimination. In Proceedings of the
25th Allerton Conference on Communication, Control and Computing (Monticello, Ill,, Sept.
1987), pp. 849-858,

6. II)OI)RICH, M. T., ATALLAH, M. J., AND OVE~MARS, M. H, An input-size,loutput.size trade-off
in the time-complexity of rectilinear hidden surface removal. In Proceedings of the ICALP’90
(Warwick Univ., England, July 1990), Springer-Verlag, Lecture Notes in Computer Science
443, 1990, pp. 689-702.

7. GLIIBAS, L., AND SPJOEL, R. Computing convolutions by reciprocal search. In Proceedings of
the 2nd ACM Symposium on Computational Geometry (White Plains, N.Y., June 1986), pp.
90-99.

8. GiiTINq R. H., AND OTTMAN,T. New algorithms for special cases of the hidden line
elimination problem. Comput. Vision, Graph. Image Processing 40, 2 (Nov. 1987), 188-204.

9. KEDEM, K,, LIVXE, R., PACH, J., AND SHARIR, M. On the union of Jordan regions and
collision-free translational motion amidst polygonal obstacles. Discrete Cornput. Geom. 2, 1
(1986), 59-71.

10. MAIRWN, H., AND STOLI.-I, J. Reporting and counting intersections between two sets of line
segments. In Theoretical Foundations of Computer Graphics and CAD, R. A. Earnshaw, Ed.,
NATO ASI Series, Vol F-40, Springer Verlag, 1988, pp. 307-326.

11. MATOUSEK, J,, PACH, J., SNARIII, M., SIFRONY, S., AND WELZL, E. Fat triangles determine
linearly many holes. In Proceedings of the 32nd IEEE Symposium on Foundations of
Computw Science, (San Juan, Oct. 1991).

12. MCKENXA, M. Worst-case optimal hidden surface removal. ACM Trans. Graph. 6, 1
(1987), 19-28.

13. MULMLTL~Y, K. An efficient algorithm for hidden surface removal, 1. Comput. Graph. 23, 3
(July 1989), 379-388.

14. NURMI, O. A fast line-sweep algorithm for hidden line elimination. BIT 25, 3 (1985),
466-472,

15. OVERMAIW, M. H., AND SHAR[R, M. Output-sensitive hidden surface removal. In Proceed-
ings of the 30tfr IEEE Symposium on Foundations of Computer Science (Research Triangle
Park, N.C., Oct. 1989), pp. 598-603.

16. OVER~AIW, M. H., AND S~ARIR, M. An improved technique for output-sensitive hidden
surface removal. Tech. Rept. RUU-CS-89-32, Dept, of Computer Science, Utrecht Univ.,
1989.

17. PATKrtsorJ,M., AND YA(), F. Binary partitions with applications to hidden surface removal
and solid modelling. Discrete Comput. Geom. 5, 5 (1990), 485-503.

18. RI.XF,M,, AND SIN, S. An efficient output-sensitive hidden surface removal algorithm and
its paral Ielization, [n Proceedings of the 4th ACM Symposium on Computational Geometry
(Urbana, Ill., June 1988), pp. 193-200.

19. SCHIPFWR, H., ,mr) OVERMARS, M. H. Dynamic partition trees. BIT, 1991. To appear.
20. PRWARATA, F. P., Vrrmm,J. S., AND Yvr~Ec, M. Computation of the axial view of a set of

isothetic parallelepipeds. ACM Trans. Graph. 9, 3 (1990), 278-300.
21. %m.rrm, A. Time and space bounds for hidden line and hidden surface algorithms. In

Eurographics ’81, pp. 43-56,
22. SLTHIW.AND, 1, E., SPRIWLL, R. F., AND SCHUMACHER, R. A characterization of ten hidden-

surface algorithms, Comput. Surv. 6, 1 (Mar. 1974), 1-25.

Received November 1989; revised March 1990; accepted September 1990

Editor: David Dobkin

ACM Transactions on Graphics, Vol 11, No 1, January 1992.

