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ABSTRACT 
This paper describes a design approach to include and 

optimize Java based cryptographic applications into resource 
limited embedded devices.  

For easy prototyping and to be platform independent, the 
security applications are first developed in Java.  Two Java 
cryptographic libraries, the Bouncy Castle API and the IAIK API 
are ported to a real embedded device for cost and performance 
evaluation.  It requires 0.88Mbytes to 1.2Mbytes in the KVM 
footprint size and a few milliseconds to run secret key algorithms 
and message digests on a typical embedded device. 

In a second step, the performance critical components of the 
security applications are moved to hardware acceleration units.  
The GEZEL design environment is used for the hardware 
modeling and the co-simulation between software on KVM and 
the hardware co-processor.  Moving the AES algorithm from the 
SH3-DSP microprocessor to a hardware co-processor shows a 
performance gain of 10.4x including the overhead in Java, C, and 
hardware interfaces. 

Then in a third step, the security critical components are 
realized by means of a special dynamic differential logic (DDL) 
style, which makes the secure modules resistant against side 
channel attacks.  All key related actions and cryptographic 
algorithms are restricted to the secure co-processor.  The overall 
performance gain is 25x compared to a pure Java implementation.   

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-Purpose and 
Application-Based Systems - Real-time and embedded systems; 
D.3.2 [Programming Languages]: Language Classifications - 
Object-oriented languages, Java 

General Terms 
Performance, Design, Security, Languages 

Keywords 
Java, Cryptography, Security, Embedded Systems, Design 

1. INTRODUCTION AND MOTIVATION 
The worldwide market of mobile communication is growing 

at a rapid pace and has overtaken wired phone communications.  
The applications for mobile devices become more complex and 
include new features and services over the network, such as online 
banking, e-commerce, user and server authentication, and so on.  
At the same time, the consumer expects longer lasting battery 
times, operating and standby times.  It is clear that these mobile 
devices require low power embedded security.  To provide secure 
communication channels, the mobile devices need to be capable 
of running cryptographic algorithms.  The cryptographic 
algorithms use different types of keys to encrypt/decrypt the data, 
such as secret keys, public keys, session keys, and so on.  The 
keys also have to be secure against eavesdropping and leaking.  In 
contrast to a desktop computing environment such as an 
authentication server deployed in the backend of a network 
infrastructure, off-the-shelf types of devices are more vulnerable 
to the threats of eavesdropping [1][2].  Most systems do include 
some measures against tampering.  But even with tamper-proof 
devices, there is the risk of leaking information through side-
channels.   

One solution toward these types of security threats is to 
deploy secure hardware next to the CPU in the system.  Figure 1 
depicts the concept in which the cryptographic algorithm is 
implemented in a separate secure hardware unit with the key 
storage.  It has the advantage that the access, the calculation and 
the protection is limited to a well confined area.  Adding security 
measures has a cost in terms of area and power and by limiting it 
to a smaller section of the SOC, there is an overall performance 
gain without a security loss.   

In addition to the confidentiality of the keys and the 
cryptographic operations, performance of the cryptographic 
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Figure 1. Architecture of Secure Embedded Device. 
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operations is also a crucial aspect for mobile devices in spite of its 
constrained computing resources.  Various cryptographic 
applications need to be executed with feasible cost and 
performance.  Ideally, these applications should be platform 
independent – i.e. the application does not need to be modified for 
each platform and/or for the performance and security 
optimization. 

To satisfy these security, cost/performance, and consistency 
requirements, we propose a design framework for secure 
embedded systems for future mobile devices.  The proposed 
method starts from a specification written in Java and proposes a 
gradual and systematic refinement to an implementation that 
consists of Java with one or more crypto co-processor acceleration 
units, implemented in a secure digital standard cell design 
technology.   

We chose the KVM (K Virtual Machine) as the design 
platform.  KVM is the implementation-level foundation for the 
J2ME (Java 2 Micro Edition) [3] and it has been implemented on 
many cellular phones and mobile communication devices all over 
the world [5].  However, since the security protocols are not 
implemented on KVM [4], most of the cellular phones only have 
a minimum set of security protocols such as SSL/TLS [6].  In 
spite of the absence of standardized methods, future mobile 
devices need to be capable of running various cryptographic 
algorithms with feasible cost and performance in a platform-
independent manner.  We used lightweight Java cryptographic 
libraries (API) on the J2ME platform to provide a fast prototyping 
and platform independent environment.  The cost and 
performance of the API is evaluated in a real embedded device. 

For the performance optimization, we use the GEZEL design 
environment which allows us to move computational intensives 
modules to dedicated co-processors.  To avoid bugs and potential 
security weaknesses, the GEZEL design environment allows co-
simulation of the code running on the KVM and the cryptographic 
co-processors in a cycle-true manner.  In the third step, the secure 
hardware module is made side-channel resistant by implementing 
it in a secure digital design style. 

The remainder of this paper is organized as follows.  In 
section 2, we first evaluate the cost and performance of Java 
cryptographic libraries on a real embedded device.  In section 3, 
we present a design flow for the performance optimization and 
introduce the design method of hardware acceleration.  The 
performance gain is evaluated by the hardware/software co-
simulation techniques.  Section 4 provides a security optimization 
on key management of the proposed design framework against the 
physical attacks.  Conclusions are provided in section 5. 

 

2. COST AND PERFORMANCE OF JAVA 
CRYPTOGRAPHIC LIBRARIES 
2.1 Cryptographic Extensions on J2ME 

To evaluate the cost and performance of Java cryptographic 
libraries, we have chosen two sets of cryptographic libraries: the 
Bouncy Castle lightweight API [7] and the IAIK JCE/iSaSiLk 
Micro Edition API [8] as the implementation targets because of 
their suitability for the KVM platform and the source code 
availability.  These libraries are built into the KVM executable at 
compile time and used by the user application as the Java API.  

The cryptographic extension of KVM is performed based on the 
J2ME CLDC 1.1 RI (Reference Implementation) [4]. 

 

Table 1 shows the comparison of the cryptographic 
extensions performed on Cygwin.  Note that the total size of the 
class files is the size of the zipped jar file.  The Bouncy Castle 
Lightweight API consists of 406 class files, and the KVM 
footprint is 829Kbytes.  On the other hand, the IAIK API consists 
of 67 class files, and the KVM footprint is 518Kbytes.  
Comparing to the original KVM footprint, the overhead to 
accommodate the Bouncy Castle API and the IAIK API is 
552Kbytes and 241Kbytes, respectively.  Consequently, the IAIK 
API requires a smaller KVM footprint, whereas the Bouncy Castle 
APIs supports a larger number of cryptographic algorithms. 

 

2.2 Performance Evaluation on Embedded 
Device 
2.2.1 Experimental Setup 

The Intel StrongARM SA-1110 Development Board is used 
for the experiments and performance evaluation of the 
cryptographic extensions.  The SA-1110 processor is a 32-bit 
RISC processor that can run up to 206 MHz, optimized for 
portable and embedded applications [9].  The SA-1110 processor 
has a 16Kbyte instruction cache and an 8Kbyte data cache, a 
memory-management unit (MMU), and read/write buffers.  The 
board has a 64MB SDRAM with 100MHz interface bus, and a 
16MB flash memory for the programming. 

To provide an integrated tool chain and a debug environment 
for porting the KVM, the eCos OS is used.  eCos is an open 
source, configurable, portable, and royalty-free embedded real-
time operating system supported by the GNU open source 
development tools [10].  In the configuration tool integrated in the 
eCos package, we used a design template for the SA-1110 
Development Board to obtain the libraries for the StrongARM 
processor.   

By using the arm-elf-gcc cross-compiler and the library from 
eCos, the two KVMs with the Bouncy Castle API and the IAIK 
API have been built on Cygwin.  The size of the KVM footprint 
was 1.2Mbytes for the Bouncy Castle APIs, and 0.88Mbytes for 
the IAIK APIs, respectively. 

2.2.2 Experimental Results 
To test the functionality and to evaluate the performance, 

popular cryptographic algorithms are implemented in Java.  We 
have evaluated the AES, DES, RC2, RC4, RC5, and RC6 
algorithms for symmetric encryption and decryption, and the MD2, 
MD4, MD5, SHA-1, SHA-1(256bit), and SHA-1(512bit) 

Table 1. Cost of Cryptographic Extensions. 
CLDC 1.1 RI

Original
KVM with

Bouncy Castle API
KVM with
IAIK API

286KB

508
(original + 406)

KVM size

102

91KB 589KB

169
(original + 67)

277KB

Total # of
class files

Total size of
class files

829KB 518KB
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algorithms for message digest.  We have also tested the SHA-1 
HMAC (Hashing for Message Authentication Code) and RSA 
(asymmetric encryption and decryption) cryptographic algorithms.  
These Java applications are developed based on the example 
implementation provided in the Bouncy Castle API package.  
These examples also include test vectors from cryptographic 
standards such as NIST’s FIPS documents or RFC documents.  
Table 2 shows the performance of the cryptographic algorithms 
running on the SA-1110 board.  Note that the performance of 
each algorithm is the average execution time of running the 
algorithm once with different sets of data and key length provided 
in the example codes.  In RSA, the decryption takes much longer 
than the encryption.  This is because the public encryption key is 
much smaller than the decryption key, which is kept secret.  Still 
both are two to three orders of magnitude slower than the 
symmetric key algorithms or the message digest algorithms.   

 

From the results shown thus far, one can conclude that the 
performance of cryptographic algorithms on the KVM is feasible 
for real embedded systems.  Although the performance is only 
around 100Kbits/s with a large memory footprint, the memory 
footprint can be reduced significantly by selecting only necessary 
API for a particular application.  One way to improve the 
performance is by further tuning of the libraries and by using 
faster processors and memories.  Another way to improve the 
performance is by selecting the computationally intensive routines 
and by implementing them on cryptographically secure co-
processors.   

 

3. PERFORMANCE OPTIMIZATION OF 
JAVA CRYPTOGRAPHIC APPLICATIONS 

In this section, we provide the design framework for the 
performance optimization of cryptographic algorithms.  We use 
the GEZEL design environment for modeling and simulating the 
hardware accelerator of cryptographic algorithms [12].  GEZEL 
consists of a specialized language that expresses the Finite State 
Machine and Datapath (FSMD) and its simulation environment.  
GEZEL also provides instruction-set co-simulation and VHDL 
code generation.   

3.1 Design Hierarchy and Interface 

Figure 2 shows the concept of design hierarchy and 
interfaces between different languages for the performance 
optimization.  The user application is running on top of the KVM, 
by using Java APIs provided by standard J2ME/CLDC class 
libraries and/or extended cryptographic libraries such as the 
Bouncy Castle APIs.  This application, by default, runs directly on 
the processor as the native code.  For the Performance 
optimization, we propose three methods of acceleration: 

a) acceleration in C 

b) acceleration in Assembly 

c) acceleration in GEZEL 

If the performance of the Java implementation of a cryptographic 
algorithm is not enough, the algorithm can be transferred from 
Java into C and executed via the K Native Interface (KNI) 
provided in J2ME/CLDC platform (Figure 2(a)).  If further 
improvement is necessary, the algorithm can be implemented in 
the assembly language for the particular processor by writing 
inline-assembly in C source code (Figure 2(b)).  The final solution 
for the acceleration is deploying a co-processor besides the main 
processor (Figure 2(c)).  The co-processor can be a hardware unit 
which performs the algorithm in lower latency and higher 
throughput. 

In all three cases, the proposed methods use the KNI.  The 
KNI consists of a piece of code in Java and in C, providing a 
capability of passing and returning arguments.  Based on this 
design hierarchy, the most significant merit is that the user 
application itself is written in Java and does not need to be 
modified for the performance optimization.  The detail is provided 
later in the design example section.   

3.2 Design Flow on the SH3-DSP Embedded 
Processor Core 
3.2.1 The SH3-DSP Embedded Processor Core 

The SH3-DSP embedded processor core has been chosen as 
a target platform of the design.  SH3-DSP is a 32bit RISC 
microprocessor core with a DSP unit, and is also known as the 
core of the SH-Mobile processor [22].  The SH-Mobile processor 

Algorithm Encryption (msec) Decryption (msec)
AES 1.75 3.25
DES 8.57 8.71
RC2 1.75 2.00
RC4 2.67 3.00
RC5 1.41 1.11
RC6 3.17 3.33
MD2Digest
MD4Digest
MD5Digest
SHA1Digest
SHA256Digest
SHA512Digest
SHA1HMAC
RSA 400.00 7000.00

5.25
8.25

12.50

S
ym

m
et

ric
 C

ip
he

r
M

es
sa

ge
 D

ig
es

t
O

th
er

12.71
0.75
0.75
2.20

Table 2. Performance of Cryptographic Algorithms 
on SA-1110 Board. 
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is an application processor specialized for next-generation cellular 
phone communications, and has been embedded in many cellular 
phones all over the world, especially in Japan.  We used an 
Instruction-Set Simulator (ISS) model of the SH3-DSP core, 
which uses a 16kbyte unified cache and two 8kbyte X/Y-RAM 
memories for DSP operations. 

3.2.2 Design Flow 

Figure 3 shows the design flow of the optimization.  The user 
application and libraries such as the Bouncy Castle API, and a 
part of KNI are written in Java, then compiled via the Java 
compiler (javac) and corresponding class files are generated.  The 
JavaCodeCompact, the EmbeddedJava development tools 
provided by Sun, takes these class files as the input, and generates 
C codes (source and header file).  We used the GNUSH_v0304 
version of KPIT [13] cross-compiler to compile the C codes.  In 
addition to ported KVM, KNI is also prepared in C to provide the 
interface between KVM and the acceleration methods described 
in the previous section.  The GNUSH compiler takes these C 
codes and other configuration files (linker scripts and startup 
codes) and generates the executables.  This binary is the input of 
either the SH3-DSP ISS or the GEZEL-SH simulation kernel.  
The SH3-DSP ISS is used for the simulation of the acceleration 
methods using C and assembly (as specified in Figure 2(a) and 
2(b)), whereas the GEZEL-SH is used for the simulation of 
hardware co-processors (Figure 2(c)).  The GEZEL-SH also takes 
a GEZEL description of the co-processor as the input, and 
performs the co-simulation of the software and hardware (co-
processor) in a cycle true fashion. 

3.3 AES Optimization Example 
As a design example, the Advanced Encryption Standard 

(AES) algorithm has been tested in our design framework.  The 
AES is a symmetric block cipher that can process data blocks of 
128bits, using cipher keys with length of 128, 192, and 256bits as 
specified in Federal Information Processing Standard (FIPS) [14].  

The AES is one of the most popular symmetric cipher algorithm 
used in cryptographic applications and tools. 

As an example, we have developed an AES co-processor 
with a 128bit key length in GEZEL.  The AES co-processor 
communicates with the KVM which is running on the SH3-DSP 
ISS via the memory-mapped interface as part of the GEZEL-SH 
co-simulator.  Figure 4 shows the structure which corresponds to 
hardware acceleration in GEZEL (Figure 2(c)). 

To evaluate the optimization methods, three cases were 
tested as shown in Figure 5 based on the design architecture 
described thus far.  One AES encryption consists of two parts.  
One is the key-scheduling to prepare the round key, and the other 
is the actual block encryption with the subsequent round keys.  In 
Figure 5(a), the user application calls the Java API function 
(Key_J and Enc_J), and the encryption is done in Java.  No 
acceleration is performed.  In Figure 5(b), the function call inside 
the Java API is substituted by the KNI function calls (Key_K and 
Enc_K) so that the acceleration can be performed in C.  In Figure 
5(c), the function call inside the KNI is substituted by the driver 
function calls (Key_G and Enc_G) so that the acceleration can be 
done in the GEZEL model.  For both accelerations, the KNI 
and/or memory-mapped interface is used to pass and return the 
variables such as encryption key, plain text, and encrypted text. 

For the evaluation, the number of cycles consumed per 
encryption is counted and the result is shown in Figure 6.  All the 
numbers in the figure represent one iteration of the AES 
encryption (key-scheduling and encryption), starting from the 
Java function call in the user application.  Startup overhead, such 
as setting up the C or Java runtime environment, is not included. 

The AES encryption takes 198,741 cycles with the Bouncy 
Castle API (Figure 6(a)).  In Figure 6(b), the AES encryption in C 
takes 29,008 cycles in which the overhead of Java and KNI 
interface is 18,763 and the actual encryption takes 10,245 cycles.  
Finally, the AES encryption in GEZEL takes 19,198 cycles in 
which the overhead of Java and KNI interface is 18,938 cycles 
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and the actual encryption takes only 260 cycles including the 
memory-mapped interface.  The performance gain in going from 
Java to GEZEL is now 10.4x including Java and KNI overhead. 

As one can see from this result, the Java and KNI overhead 
dominates the number of cycles consumed in an encryption and 
limits the overall performance gain.  However, the major benefit 
of this design scheme is that the user application does not have to 
be modified for the performance optimization – i.e. the user uses 
the Key_J and the Enc_J function calls as specified in the Java 
API in all the three cases as shown in Figure 5.  On the other hand, 
only minor modifications in the Java API and the addition of 
small pieces of code for the KNI are necessary for the 
performance optimization.   

Based on this design scheme, a cryptographic application can 
be easily prototyped by using the cryptographic API, and the user 
can choose whether the performance optimization is necessary or 
not depending on the performance in Java.  If the performance 
optimization is necessary, the user still has a choice of whether the 
optimization is done in C or in GEZEL.  Thus, the user can have 
design flexibility in performance optimization. 

 

4. SECURITY OPTIMIZATION FOR KEY 
MANAGEMENT 

4.1 Security Issues for Key Management in 
Java Cryptographic Extensions 

Java has some built-in security features.  Figure 7 shows the 
three different levels of security policies in Java, as described in 
the CLDC specification [4] and in the Java 2 Platform Security 
Architecture (JSA) [15].  The Java Cryptography Extension (JCE), 
the Java Secure Socket Extension (JSSE), and the other 
Cryptographic extensions such as the Bouncy Castle Crypto API 
and IAIK API are provided to ensure the End-to-End security in 
Java.  End-to-end security refers to a model that guarantees that 
any transaction initiated on a device is protected along the entire 
path from the device to/from the entity providing the services for 
that transaction (e.g, a server located on the Internet).  The End-
to-End level security is not described in the CLDC specification 
and is assumed to be implementation-dependent.  This fact – there 
is no standardized method for End-to-End security – motivates the 
need for a trustworthy implementation.  This section focuses on 
the End-to-End level security issues of the JCE and the Bouncy 
Castle Crypto APIs from the key management point of view.  
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More specifically, we first address the lack of security in secret 
(symmetric) key management in JCE and the Bouncy Castle 
Crypto APIs for the Symmetric Key Infrastructure (SKI). 

In the SKI environment, the secret key has to be protected 
against exposure.  The management of secret keys can be 
categorized in the following two cases: 

Case 1. Static Key:  The key is unique for each device, and it will 
never be changed. 

Case 2. Dynamic Key:  The key value is changed or generated by 
the software or hardware as necessary – e.g. session keys. 

For Case 1 (static key management), the Java Cryptography 
Architecture (JCA) [16] provides the key interfaces in the 
KeyStore class.  The KeyStore class is an in-memory collection of 
keys and certificates for systems with I/O streams - e.g. file system.  
The secret key is stored in the KeyStore object via password-
based encryption.  Using this interface, the key is stored safely 
against exposure.  However, in order to perform the encryption 
algorithm on a common architecture with the CPU and the main 
memory, the key has to be decrypted and loaded into the memory.  
This also means that the key can be easily exposed by 
monitoring/probing the system bus or main memory.  Furthermore, 
the KeyStore class and the JCA’s Security Tools assume the 
existence of a file system in the target system.  This is not suitable 
for small embedded systems such as cellular phones in terms of 
the cost as mentioned in section 1.  Consequently, the Bouncy 
Castle API has the same type of threats for Case1.  Even though 
the key is stored in a safe place, the key has to be loaded into an 
object (instance) of a Java class in the main memory via the 
standard I/O stream of the system.   

Figure 8 shows examples of Case 2 (dynamic key 
management) in JCE and the Bouncy Castle API for the key 
management and the AES encryption.  In both cases (Figure 8(a) 
and (b)), the secret key is generated and stored in an object in the 
heap region of the virtual machine.  The heap region is allocated 
in the main memory of the system, and the key is read from or 
stored into the main memory via the system bus.  Therefore, as in 
the static key management case, the key can be easily exposed by 
monitoring/probing the system bus or main memory.   

Figure 9 depicts the threats of secret-key exposure discussed so 
far.  The system consists of the CPU, main memory, file system, 
and the I/O interface to the external storage or the communication 
channel.  The threats of exposure exist in all the interfaces 
between the CPU and the storage.   

In addition to these types of threats, the standard CPU-based 
system has a fatal weakness against the so-called Side-Channel 
Attacks (SCAs) [17].  SCAs are a real threat for any device of 
which the security IC is easily observable such as smart cards and 
embedded devices [23][24]. One of the most powerful SCA is 
Differential Power Analysis (DPA) [18].  The DPA attack is non 
intrusive and exploits the fact that logic operations have power 
characteristics that depend on the input data (secret keys).  The 
DPA employs statistical analysis to extract the information from 
variations in power consumption that are correlated to the secret 
key.  As a countermeasure for DPA, a design of secure Elliptic 
Curve Cryptography (ECC) on VLIEW DSP processor has been 
proposed by the instruction-level modification such that the 
number of instructions and arithmetic operations are independent 
of the input data [25]. This type of algorithm modification needs 
to be done for every new crypto algorithm.  Our proposed solution, 
by using Wave Dynamic Differential Logic (WDDL), is at a 
different abstraction level – i.e. logic level. Indeed if the 
underlying logic gates can be made such that its power signature 
is independent of the input data, it becomes algorithm 
independent.  For the rest of this paper, we propose a design flow 
that enables the cryptographic algorithms to be computed on DPA 
resistant co-processors. 

4.2 Proposed Approach 
The key should not be generated in Java or C, nor stored in 

an unsafe location such as the main memory to avoid the exposure 
shown in Figure 9.  Figure 10 shows the two implementations of 
the key management with the DPA resistant co-processor in terms 
of the Case 1 and Case 2 in the previous section.   

Case 1. The static key is stored in DPA resistant hardware, and 
the cryptographic algorithm is executed on DPA resistant 
hardware.  The key is not loaded into the main memory 
or the CPU. 

Case 2. The static key management is the same as Case 1.  The 
dynamic key is either generated by the DPA resistant 
crypto unit and stored in DPA resistant hardware, or is 
read from the I/O stream of the system in the encrypted 

�KeyGenerator kgen = KeyGenerator.getInstance("AES"); 
SecretKey skey = kgen.generateKey(); 
byte[] raw = skey.getEncoded(); 
SecretKeySpec skeySpec =  

new SecretKeySpec(raw, "AES"); 
 
Cipher cipher = Cipher.getInstance("AES"); 
cipher.init(Cipher.ENCRYPT_MODE, skeySpec); 
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cipher.doFinal("This is just an example".getBytes());

(a) JCE 
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sr.nextBytes(AESkey); 
CipherParameters params = new KeyParameter(AESkey); 
 
BufferedBlockCipher cipher =  

new BufferedBlockCipher(new AESFastEngine()); 
cipher.init(true, params); 
int len = cipher.processBytes(in, 0, in.length, out, 0); 

(b) Bouncy Castle API 

Figure 8. Key Management Examples. 
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form.  The static key can be used for the encryption of the 
dynamic key. 

In both cases, the cryptographic algorithm is executed inside of 
the DPA resistant co-processor, concealing the secret key against 
the DPA attacks. 

Figure 11 shows the design flow of the proposed approach.  
As described in section 3, the cryptographic algorithm is 
performed on the co-processor written in GEZEL.  First, the co-
processor is converted to the synthesizable VHDL description by 
the VHDL converter (fdlvhd) for GEZEL [19].  Once the VHDL 
code is generated, we follow the design flow proposed in [20].  
Using WDDL the co-processor is made DPA resistant.  This DDL 
style is a set of logic components that consume the same amount 
of charge/discharge power in all the clock cycles, and this is 
independent of the inputs signals.  The DDL is an effective way to 
conceal the characteristics of power consumption related to the 
input data (secret key) against DPA [21].  The DDL library 
consists of inverter, AND-type, OR-type, and register types of 
logic components.  The VHDL code is synthesized by a logic-
synthesis tool with only a subset of the standard cell library so 
that they can be replaced by the DDL components later.  
Subsequently, the script replaces all the standard cells in the gate-
level netlist with the corresponding DDL cells.  The resulting 
DDL netlist can be put on a modified place and route tool to 
perform the physical layout. 

4.3 Key Management Example in AES and its 
Performance 
 

 
As an example of our proposed method, the AES design in 

section 3 has been modified such that the key is not stored in the 
Java or C program, and is not passed as a parameter over the 
interfaces.  Figure 12 shows the modification in which the 
function call for the key scheduling has been removed from the 
user application.  Instead, one instruction is added for the co-
processor to load the secret key from secure storage.  This key-
load instruction is inserted right before the data-load instruction in 
the hardware driver function (Enc_G).  The key storage is 
modeled as a register in GEZEL, and it takes 4 clock cycles to 
load a 128bit key.   

For the architecture shown in Figure 12, the number of clock 
cycles consumed for one AES encryption was counted as shown 
in Figure 13.  The number of cycles for the overhead of Java and 
KNI interface is reduced from 18,938 (Figure 6) to 7,642.  The 
overall performance gain is 25x compared to the original Java 
implementation and the encryption speed is 2.16Mbits/sec 
assuming that the SH3-DSP and the AES co-processor is running 
at 133MHz, including the overhead of Java and KNI interface. 

To evaluate the cost of the proposed security optimization, 
the AES co-processor (aes_decoder module in GEZEL) is 
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Figure 10. Key Management with DPA Resistant Co-Processor. 
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implemented in WDDL using the design flow as specified in 
Figure 11.  The evaluation is performed with two versions of the 
AES co-processor, one for a fast design, and the other for a small 
design.  This is done in the logic synthesis process.  Table 3 
shows the speed and area cost of the original (non-DDL) and the 
DDL gate-level netlist using a 0.18 mm CMOS standard cell 
technology. 

Since WDDL consumes the same amount of 
charge/discharge power at all clock cycles independent of the 
input value, it costs more logic gates and delays for the same 
logical functionality.  One observation from this result is that the 
cost of the security optimization is approximately 0.8nsec in the 
critical-path delay, and 1.92x to 2.33x in the area. On the other 
hand, the power consumption variations will be reduced by the 
factor of 37 to 52 by the DDL [20]. 
The DDL is based on a precharge and evaluation cycle.  During 
the precharge cycle, a reset travels through the circuit.  During the 
evaluation cycle, the actual calculations take place.  Therefore 
new inputs can only be applied every 8.46nsec and 21.36nsec for 
the fast design and the small design, respectively.  This overhead 
is still very small compared to the overall number of clock cycles 
since it only adds to the encryption operation and not to the 
communication interface which is the limiting factor in system 
performance.   

 
Critical Path 

Delay 
(nsec) 

Area Cost 
(Kgates) 

Reduction Factor 
of 

Power Variation 
Non- 
DDL 3.44 53.2 Fast 

Design 
DDL 4.23 (+0.79 

of non-DDL) 
102.2(1.92x 
of non-DDL) 

Non- 
DDL 9.84 26.3 

Small 
Design 

DDL 
10.68 
(+0.84 

of non-DDL) 

61.3 (2.33x 
of non-DDL) 

37 to 52 [20] 

 

5. CONCLUSION 
This paper describes a design framework of Java 

cryptographic application for secure embedded systems that 
enables a DPA resistant implementation of co-processors and a 
performance improvement of the cryptographic application.   

The two Java cryptographic libraries, the Bouncy Castle 
APIs and the IAIK APIs were first ported to a real embedded 
device.  The cost and performance were evaluated.  The cost 
ranged in 0.88Mbytes to 1.2Mbytes in the KVM footprint size 
and the performance resulted in a few milliseconds for secret key 
algorithms and message digests on the SA-1110 processor, 
running at 206MHz.   

The design framework for performance optimization was 
then presented using the GEZEL environment for hardware 
modeling and for co-design between the hardware co-processor 
and the software on KVM.  The simulation results of the AES 
example on the SH3-DSP microprocessor show a performance 
gain of 10.4x including the overhead in Java, C, and hardware 
interfaces.   

For further performance and security optimization, a design 
method was introduced for secret key management in a co-

processor protected against eavesdropping.  The design method is 
based on a DDL that is resistant to DPA attacks.  In the optimized 
architecture for key management, the overall performance gain 
was 25x.  The AES co-processor was mapped onto the DDL in 
0.18mm CMOS standard cell technology to evaluate the 
performance and the area overhead. 

The proposed design framework has the following main 
benfits: 
1) Fast prototyping using platform independent Java 

cryptographic APIs. 

2) Easy customizability by providing a way to partition software 
and hardware to optimize for performance without modifying 
the application code. 

3) Security enhancement by allowing design of coprocessors 
resistant to DPA attacks. 

This paper shows that there exist systematic ways to improve 
the performance of embedded security.  Traditionally, the HW 
accelerators and the embedded software routines are developed 
separately in an ad-hoc way.  Often up-front, a decision is made of 
what parts will go in HW and what parts will go in SW.  Our 
approach allows a designer to gradually move from only SW to a 
hardware accelerated design combined with a new WDDL style. 
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