
Java Cryptography on KVM and its Performance and
Security Optimization using HW/SW Co-design Techniques

Yusuke Matsuoka, Patrick Schaumont, Kris Tiri, and Ingrid Verbauwhede

Electrical Engineering Department

University of California, Los Angeles
Los Angeles, CA 90095

{yusuke, schaum, tiri, ingrid}@ee.ucla.edu

ABSTRACT
This paper describes a design approach to include and

optimize Java based cryptographic applications into resource
limited embedded devices.

For easy prototyping and to be platform independent, the
security applications are first developed in Java. Two Java
cryptographic libraries, the Bouncy Castle API and the IAIK API
are ported to a real embedded device for cost and performance
evaluation. It requires 0.88Mbytes to 1.2Mbytes in the KVM
footprint size and a few milliseconds to run secret key algorithms
and message digests on a typical embedded device.

In a second step, the performance critical components of the
security applications are moved to hardware acceleration units.
The GEZEL design environment is used for the hardware
modeling and the co-simulation between software on KVM and
the hardware co-processor. Moving the AES algorithm from the
SH3-DSP microprocessor to a hardware co-processor shows a
performance gain of 10.4x including the overhead in Java, C, and
hardware interfaces.

Then in a third step, the security critical components are
realized by means of a special dynamic differential logic (DDL)
style, which makes the secure modules resistant against side
channel attacks. All key related actions and cryptographic
algorithms are restricted to the secure co-processor. The overall
performance gain is 25x compared to a pure Java implementation.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems - Real-time and embedded systems;
D.3.2 [Programming Languages]: Language Classifications -
Object-oriented languages, Java

General Terms
Performance, Design, Security, Languages

Keywords
Java, Cryptography, Security, Embedded Systems, Design

1. INTRODUCTION AND MOTIVATION
The worldwide market of mobile communication is growing

at a rapid pace and has overtaken wired phone communications.
The applications for mobile devices become more complex and
include new features and services over the network, such as online
banking, e-commerce, user and server authentication, and so on.
At the same time, the consumer expects longer lasting battery
times, operating and standby times. It is clear that these mobile
devices require low power embedded security. To provide secure
communication channels, the mobile devices need to be capable
of running cryptographic algorithms. The cryptographic
algorithms use different types of keys to encrypt/decrypt the data,
such as secret keys, public keys, session keys, and so on. The
keys also have to be secure against eavesdropping and leaking. In
contrast to a desktop computing environment such as an
authentication server deployed in the backend of a network
infrastructure, off-the-shelf types of devices are more vulnerable
to the threats of eavesdropping [1][2]. Most systems do include
some measures against tampering. But even with tamper-proof
devices, there is the risk of leaking information through side-
channels.

One solution toward these types of security threats is to
deploy secure hardware next to the CPU in the system. Figure 1
depicts the concept in which the cryptographic algorithm is
implemented in a separate secure hardware unit with the key
storage. It has the advantage that the access, the calculation and
the protection is limited to a well confined area. Adding security
measures has a cost in terms of area and power and by limiting it
to a smaller section of the SOC, there is an overall performance
gain without a security loss.

In addition to the confidentiality of the keys and the
cryptographic operations, performance of the cryptographic

�
� Embedded CPU

(Java VM)
System Bus

Keys Crypto Unit

Secure Hardware

Data

Figure 1. Architecture of Secure Embedded Device.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CASES’04, September 22–25, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-890-3/04/0009...$5.00.

303

operations is also a crucial aspect for mobile devices in spite of its
constrained computing resources. Various cryptographic
applications need to be executed with feasible cost and
performance. Ideally, these applications should be platform
independent – i.e. the application does not need to be modified for
each platform and/or for the performance and security
optimization.

To satisfy these security, cost/performance, and consistency
requirements, we propose a design framework for secure
embedded systems for future mobile devices. The proposed
method starts from a specification written in Java and proposes a
gradual and systematic refinement to an implementation that
consists of Java with one or more crypto co-processor acceleration
units, implemented in a secure digital standard cell design
technology.

We chose the KVM (K Virtual Machine) as the design
platform. KVM is the implementation-level foundation for the
J2ME (Java 2 Micro Edition) [3] and it has been implemented on
many cellular phones and mobile communication devices all over
the world [5]. However, since the security protocols are not
implemented on KVM [4], most of the cellular phones only have
a minimum set of security protocols such as SSL/TLS [6]. In
spite of the absence of standardized methods, future mobile
devices need to be capable of running various cryptographic
algorithms with feasible cost and performance in a platform-
independent manner. We used lightweight Java cryptographic
libraries (API) on the J2ME platform to provide a fast prototyping
and platform independent environment. The cost and
performance of the API is evaluated in a real embedded device.

For the performance optimization, we use the GEZEL design
environment which allows us to move computational intensives
modules to dedicated co-processors. To avoid bugs and potential
security weaknesses, the GEZEL design environment allows co-
simulation of the code running on the KVM and the cryptographic
co-processors in a cycle-true manner. In the third step, the secure
hardware module is made side-channel resistant by implementing
it in a secure digital design style.

The remainder of this paper is organized as follows. In
section 2, we first evaluate the cost and performance of Java
cryptographic libraries on a real embedded device. In section 3,
we present a design flow for the performance optimization and
introduce the design method of hardware acceleration. The
performance gain is evaluated by the hardware/software co-
simulation techniques. Section 4 provides a security optimization
on key management of the proposed design framework against the
physical attacks. Conclusions are provided in section 5.

2. COST AND PERFORMANCE OF JAVA
CRYPTOGRAPHIC LIBRARIES
2.1 Cryptographic Extensions on J2ME

To evaluate the cost and performance of Java cryptographic
libraries, we have chosen two sets of cryptographic libraries: the
Bouncy Castle lightweight API [7] and the IAIK JCE/iSaSiLk
Micro Edition API [8] as the implementation targets because of
their suitability for the KVM platform and the source code
availability. These libraries are built into the KVM executable at
compile time and used by the user application as the Java API.

The cryptographic extension of KVM is performed based on the
J2ME CLDC 1.1 RI (Reference Implementation) [4].

Table 1 shows the comparison of the cryptographic
extensions performed on Cygwin. Note that the total size of the
class files is the size of the zipped jar file. The Bouncy Castle
Lightweight API consists of 406 class files, and the KVM
footprint is 829Kbytes. On the other hand, the IAIK API consists
of 67 class files, and the KVM footprint is 518Kbytes.
Comparing to the original KVM footprint, the overhead to
accommodate the Bouncy Castle API and the IAIK API is
552Kbytes and 241Kbytes, respectively. Consequently, the IAIK
API requires a smaller KVM footprint, whereas the Bouncy Castle
APIs supports a larger number of cryptographic algorithms.

2.2 Performance Evaluation on Embedded
Device
2.2.1 Experimental Setup

The Intel StrongARM SA-1110 Development Board is used
for the experiments and performance evaluation of the
cryptographic extensions. The SA-1110 processor is a 32-bit
RISC processor that can run up to 206 MHz, optimized for
portable and embedded applications [9]. The SA-1110 processor
has a 16Kbyte instruction cache and an 8Kbyte data cache, a
memory-management unit (MMU), and read/write buffers. The
board has a 64MB SDRAM with 100MHz interface bus, and a
16MB flash memory for the programming.

To provide an integrated tool chain and a debug environment
for porting the KVM, the eCos OS is used. eCos is an open
source, configurable, portable, and royalty-free embedded real-
time operating system supported by the GNU open source
development tools [10]. In the configuration tool integrated in the
eCos package, we used a design template for the SA-1110
Development Board to obtain the libraries for the StrongARM
processor.

By using the arm-elf-gcc cross-compiler and the library from
eCos, the two KVMs with the Bouncy Castle API and the IAIK
API have been built on Cygwin. The size of the KVM footprint
was 1.2Mbytes for the Bouncy Castle APIs, and 0.88Mbytes for
the IAIK APIs, respectively.

2.2.2 Experimental Results
To test the functionality and to evaluate the performance,

popular cryptographic algorithms are implemented in Java. We
have evaluated the AES, DES, RC2, RC4, RC5, and RC6
algorithms for symmetric encryption and decryption, and the MD2,
MD4, MD5, SHA-1, SHA-1(256bit), and SHA-1(512bit)

Table 1. Cost of Cryptographic Extensions.
CLDC 1.1 RI

Original
KVM with

Bouncy Castle API
KVM with
IAIK API

286KB

508
(original + 406)

KVM size

102

91KB 589KB

169
(original + 67)

277KB

Total # of
class files

Total size of
class files

829KB 518KB

304

algorithms for message digest. We have also tested the SHA-1
HMAC (Hashing for Message Authentication Code) and RSA
(asymmetric encryption and decryption) cryptographic algorithms.
These Java applications are developed based on the example
implementation provided in the Bouncy Castle API package.
These examples also include test vectors from cryptographic
standards such as NIST’s FIPS documents or RFC documents.
Table 2 shows the performance of the cryptographic algorithms
running on the SA-1110 board. Note that the performance of
each algorithm is the average execution time of running the
algorithm once with different sets of data and key length provided
in the example codes. In RSA, the decryption takes much longer
than the encryption. This is because the public encryption key is
much smaller than the decryption key, which is kept secret. Still
both are two to three orders of magnitude slower than the
symmetric key algorithms or the message digest algorithms.

From the results shown thus far, one can conclude that the
performance of cryptographic algorithms on the KVM is feasible
for real embedded systems. Although the performance is only
around 100Kbits/s with a large memory footprint, the memory
footprint can be reduced significantly by selecting only necessary
API for a particular application. One way to improve the
performance is by further tuning of the libraries and by using
faster processors and memories. Another way to improve the
performance is by selecting the computationally intensive routines
and by implementing them on cryptographically secure co-
processors.

3. PERFORMANCE OPTIMIZATION OF
JAVA CRYPTOGRAPHIC APPLICATIONS

In this section, we provide the design framework for the
performance optimization of cryptographic algorithms. We use
the GEZEL design environment for modeling and simulating the
hardware accelerator of cryptographic algorithms [12]. GEZEL
consists of a specialized language that expresses the Finite State
Machine and Datapath (FSMD) and its simulation environment.
GEZEL also provides instruction-set co-simulation and VHDL
code generation.

3.1 Design Hierarchy and Interface

Figure 2 shows the concept of design hierarchy and
interfaces between different languages for the performance
optimization. The user application is running on top of the KVM,
by using Java APIs provided by standard J2ME/CLDC class
libraries and/or extended cryptographic libraries such as the
Bouncy Castle APIs. This application, by default, runs directly on
the processor as the native code. For the Performance
optimization, we propose three methods of acceleration:

a) acceleration in C

b) acceleration in Assembly

c) acceleration in GEZEL

If the performance of the Java implementation of a cryptographic
algorithm is not enough, the algorithm can be transferred from
Java into C and executed via the K Native Interface (KNI)
provided in J2ME/CLDC platform (Figure 2(a)). If further
improvement is necessary, the algorithm can be implemented in
the assembly language for the particular processor by writing
inline-assembly in C source code (Figure 2(b)). The final solution
for the acceleration is deploying a co-processor besides the main
processor (Figure 2(c)). The co-processor can be a hardware unit
which performs the algorithm in lower latency and higher
throughput.

In all three cases, the proposed methods use the KNI. The
KNI consists of a piece of code in Java and in C, providing a
capability of passing and returning arguments. Based on this
design hierarchy, the most significant merit is that the user
application itself is written in Java and does not need to be
modified for the performance optimization. The detail is provided
later in the design example section.

3.2 Design Flow on the SH3-DSP Embedded
Processor Core
3.2.1 The SH3-DSP Embedded Processor Core

The SH3-DSP embedded processor core has been chosen as
a target platform of the design. SH3-DSP is a 32bit RISC
microprocessor core with a DSP unit, and is also known as the
core of the SH-Mobile processor [22]. The SH-Mobile processor

Algorithm Encryption (msec) Decryption (msec)
AES 1.75 3.25
DES 8.57 8.71
RC2 1.75 2.00
RC4 2.67 3.00
RC5 1.41 1.11
RC6 3.17 3.33
MD2Digest
MD4Digest
MD5Digest
SHA1Digest
SHA256Digest
SHA512Digest
SHA1HMAC
RSA 400.00 7000.00

5.25
8.25

12.50

S
ym

m
et

ric
 C

ip
he

r
M

es
sa

ge
 D

ig
es

t
O

th
er

12.71
0.75
0.75
2.20

Table 2. Performance of Cryptographic Algorithms
on SA-1110 Board.

�

User Java Application

Standard J2ME

APIs

Extended APIs

(Cryptography)

KVM

KNI (Java)

KNI (C)

Java API Interface

KNI Interface

Acceleration
 Methods

(a) (b) (c)

Embedded CPU

C Assembly

Co-Processor
(GEZEL)

Figure 2. Design Hierarchy and Interfaces.

305

is an application processor specialized for next-generation cellular
phone communications, and has been embedded in many cellular
phones all over the world, especially in Japan. We used an
Instruction-Set Simulator (ISS) model of the SH3-DSP core,
which uses a 16kbyte unified cache and two 8kbyte X/Y-RAM
memories for DSP operations.

3.2.2 Design Flow

Figure 3 shows the design flow of the optimization. The user
application and libraries such as the Bouncy Castle API, and a
part of KNI are written in Java, then compiled via the Java
compiler (javac) and corresponding class files are generated. The
JavaCodeCompact, the EmbeddedJava development tools
provided by Sun, takes these class files as the input, and generates
C codes (source and header file). We used the GNUSH_v0304
version of KPIT [13] cross-compiler to compile the C codes. In
addition to ported KVM, KNI is also prepared in C to provide the
interface between KVM and the acceleration methods described
in the previous section. The GNUSH compiler takes these C
codes and other configuration files (linker scripts and startup
codes) and generates the executables. This binary is the input of
either the SH3-DSP ISS or the GEZEL-SH simulation kernel.
The SH3-DSP ISS is used for the simulation of the acceleration
methods using C and assembly (as specified in Figure 2(a) and
2(b)), whereas the GEZEL-SH is used for the simulation of
hardware co-processors (Figure 2(c)). The GEZEL-SH also takes
a GEZEL description of the co-processor as the input, and
performs the co-simulation of the software and hardware (co-
processor) in a cycle true fashion.

3.3 AES Optimization Example
As a design example, the Advanced Encryption Standard

(AES) algorithm has been tested in our design framework. The
AES is a symmetric block cipher that can process data blocks of
128bits, using cipher keys with length of 128, 192, and 256bits as
specified in Federal Information Processing Standard (FIPS) [14].

The AES is one of the most popular symmetric cipher algorithm
used in cryptographic applications and tools.

As an example, we have developed an AES co-processor
with a 128bit key length in GEZEL. The AES co-processor
communicates with the KVM which is running on the SH3-DSP
ISS via the memory-mapped interface as part of the GEZEL-SH
co-simulator. Figure 4 shows the structure which corresponds to
hardware acceleration in GEZEL (Figure 2(c)).

To evaluate the optimization methods, three cases were
tested as shown in Figure 5 based on the design architecture
described thus far. One AES encryption consists of two parts.
One is the key-scheduling to prepare the round key, and the other
is the actual block encryption with the subsequent round keys. In
Figure 5(a), the user application calls the Java API function
(Key_J and Enc_J), and the encryption is done in Java. No
acceleration is performed. In Figure 5(b), the function call inside
the Java API is substituted by the KNI function calls (Key_K and
Enc_K) so that the acceleration can be performed in C. In Figure
5(c), the function call inside the KNI is substituted by the driver
function calls (Key_G and Enc_G) so that the acceleration can be
done in the GEZEL model. For both accelerations, the KNI
and/or memory-mapped interface is used to pass and return the
variables such as encryption key, plain text, and encrypted text.

For the evaluation, the number of cycles consumed per
encryption is counted and the result is shown in Figure 6. All the
numbers in the figure represent one iteration of the AES
encryption (key-scheduling and encryption), starting from the
Java function call in the user application. Startup overhead, such
as setting up the C or Java runtime environment, is not included.

The AES encryption takes 198,741 cycles with the Bouncy
Castle API (Figure 6(a)). In Figure 6(b), the AES encryption in C
takes 29,008 cycles in which the overhead of Java and KNI
interface is 18,763 and the actual encryption takes 10,245 cycles.
Finally, the AES encryption in GEZEL takes 19,198 cycles in
which the overhead of Java and KNI interface is 18,938 cycles

�

��

User Java Application Java Libraries

javac

class

�

JavaCodeCompact

C-code

�

GNU C-Lib

Newlib

�

Linker Script
Startup Code

GNU SH GCC

executable

�

SH3-DSP ISS GEZEL-SH

�

Co-Processor
In GEZEL

�

�

Design Files

Tools,Libs

Results

�

Ported KVM

�

KNI in Java�

�

KNI in C�

Figure 3. Design Flow.

�

aes_top
load

reset

key

text_in

128

128

done

text_out 128

Co-processor in GEZEL Simulation Kernel

aes_decoder

memory-mapped interface

8
ins

32
dout

32
din

KVM on SH3-DSP ISS

address 0x2f000 0x2f004 0x2f008

{ volatile char *ins = 0x2f000;

volatile int *dout = 0x2f004;

volatile int *din = 0x2f008; }

GEZEL-SH Co-Simulator

Figure 4. AES Optimization with GEZEL.

306

and the actual encryption takes only 260 cycles including the
memory-mapped interface. The performance gain in going from
Java to GEZEL is now 10.4x including Java and KNI overhead.

As one can see from this result, the Java and KNI overhead
dominates the number of cycles consumed in an encryption and
limits the overall performance gain. However, the major benefit
of this design scheme is that the user application does not have to
be modified for the performance optimization – i.e. the user uses
the Key_J and the Enc_J function calls as specified in the Java
API in all the three cases as shown in Figure 5. On the other hand,
only minor modifications in the Java API and the addition of
small pieces of code for the KNI are necessary for the
performance optimization.

Based on this design scheme, a cryptographic application can
be easily prototyped by using the cryptographic API, and the user
can choose whether the performance optimization is necessary or
not depending on the performance in Java. If the performance
optimization is necessary, the user still has a choice of whether the
optimization is done in C or in GEZEL. Thus, the user can have
design flexibility in performance optimization.

4. SECURITY OPTIMIZATION FOR KEY
MANAGEMENT

4.1 Security Issues for Key Management in
Java Cryptographic Extensions

Java has some built-in security features. Figure 7 shows the
three different levels of security policies in Java, as described in
the CLDC specification [4] and in the Java 2 Platform Security
Architecture (JSA) [15]. The Java Cryptography Extension (JCE),
the Java Secure Socket Extension (JSSE), and the other
Cryptographic extensions such as the Bouncy Castle Crypto API
and IAIK API are provided to ensure the End-to-End security in
Java. End-to-end security refers to a model that guarantees that
any transaction initiated on a device is protected along the entire
path from the device to/from the entity providing the services for
that transaction (e.g, a server located on the Internet). The End-
to-End level security is not described in the CLDC specification
and is assumed to be implementation-dependent. This fact – there
is no standardized method for End-to-End security – motivates the
need for a trustworthy implementation. This section focuses on
the End-to-End level security issues of the JCE and the Bouncy
Castle Crypto APIs from the key management point of view.

�

Key Scheduling Encryption

Key_J(key);

Key_J(key);
…

Key_K(key);

Key_C(key);

Enc_J(in,out);

Enc_J(in,out);
…

Enc_K(in,out);

Enc_C(in,out);

Key Scheduling Encryption

Key_J(key);

Key_G(key);

Enc_J(in,out);

Enc_G(in,out);

aes_decorder

Key Scheduling Encryption

Key_J(key);

Key_J(key);

Enc_J(in,out);

Enc_J(in,out);

 (a)Java (b)Java + C (c)Java + C + GEZEL

Java API I/F

KNI I/F

Acceleration I/F

Mem-Mapped I/F

 User Application
In Java

 Java Libs/
KNI in Java

 KNI in C

Acceleration in C/
HW Driver

Acceleration in
GEZEL

Key_K(key);
…

Key_C(key);

Key_J(key);
…

Key_K(key);

Key_K(key);

…
Key_G(key);

Enc_K(in,out);
…

Enc_C(in,out);

Enc_J(in,out);
…

Enc_K(in,out);

Enc_K(in,out);
…

Enc_G(in,out);

Figure 5. AES Optimization Architecture.

Figure 7. Java Security Policy Levels.

�

Low Level

Application Level

End-to-End Level

Class File Verification
(Byte-Code Verification)

Sandbox Model
Class Loader, Security Manager
System Class Protection

Java Cryptography Extension (JCE)
Java Secure Socket Extension (JSSE)
The Bouncy Castle Crypto APIs
IAIK JCE/iSaSiLk APIs, etc.

�

� (a) Java (b) Java+C (c) Java+C+GEZEL

Java API I/F

KNI I/F

Acceleration I/F

Mem-Mapped I/F

198741

10245

18763

260

18938

198741 29008 19198

(6.8x) (10.4x)

Total Cycles

Figure 6. AES Optimization Results.

307

More specifically, we first address the lack of security in secret
(symmetric) key management in JCE and the Bouncy Castle
Crypto APIs for the Symmetric Key Infrastructure (SKI).

In the SKI environment, the secret key has to be protected
against exposure. The management of secret keys can be
categorized in the following two cases:

Case 1. Static Key: The key is unique for each device, and it will
never be changed.

Case 2. Dynamic Key: The key value is changed or generated by
the software or hardware as necessary – e.g. session keys.

For Case 1 (static key management), the Java Cryptography
Architecture (JCA) [16] provides the key interfaces in the
KeyStore class. The KeyStore class is an in-memory collection of
keys and certificates for systems with I/O streams - e.g. file system.
The secret key is stored in the KeyStore object via password-
based encryption. Using this interface, the key is stored safely
against exposure. However, in order to perform the encryption
algorithm on a common architecture with the CPU and the main
memory, the key has to be decrypted and loaded into the memory.
This also means that the key can be easily exposed by
monitoring/probing the system bus or main memory. Furthermore,
the KeyStore class and the JCA’s Security Tools assume the
existence of a file system in the target system. This is not suitable
for small embedded systems such as cellular phones in terms of
the cost as mentioned in section 1. Consequently, the Bouncy
Castle API has the same type of threats for Case1. Even though
the key is stored in a safe place, the key has to be loaded into an
object (instance) of a Java class in the main memory via the
standard I/O stream of the system.

Figure 8 shows examples of Case 2 (dynamic key
management) in JCE and the Bouncy Castle API for the key
management and the AES encryption. In both cases (Figure 8(a)
and (b)), the secret key is generated and stored in an object in the
heap region of the virtual machine. The heap region is allocated
in the main memory of the system, and the key is read from or
stored into the main memory via the system bus. Therefore, as in
the static key management case, the key can be easily exposed by
monitoring/probing the system bus or main memory.

Figure 9 depicts the threats of secret-key exposure discussed so
far. The system consists of the CPU, main memory, file system,
and the I/O interface to the external storage or the communication
channel. The threats of exposure exist in all the interfaces
between the CPU and the storage.

In addition to these types of threats, the standard CPU-based
system has a fatal weakness against the so-called Side-Channel
Attacks (SCAs) [17]. SCAs are a real threat for any device of
which the security IC is easily observable such as smart cards and
embedded devices [23][24]. One of the most powerful SCA is
Differential Power Analysis (DPA) [18]. The DPA attack is non
intrusive and exploits the fact that logic operations have power
characteristics that depend on the input data (secret keys). The
DPA employs statistical analysis to extract the information from
variations in power consumption that are correlated to the secret
key. As a countermeasure for DPA, a design of secure Elliptic
Curve Cryptography (ECC) on VLIEW DSP processor has been
proposed by the instruction-level modification such that the
number of instructions and arithmetic operations are independent
of the input data [25]. This type of algorithm modification needs
to be done for every new crypto algorithm. Our proposed solution,
by using Wave Dynamic Differential Logic (WDDL), is at a
different abstraction level – i.e. logic level. Indeed if the
underlying logic gates can be made such that its power signature
is independent of the input data, it becomes algorithm
independent. For the rest of this paper, we propose a design flow
that enables the cryptographic algorithms to be computed on DPA
resistant co-processors.

4.2 Proposed Approach
The key should not be generated in Java or C, nor stored in

an unsafe location such as the main memory to avoid the exposure
shown in Figure 9. Figure 10 shows the two implementations of
the key management with the DPA resistant co-processor in terms
of the Case 1 and Case 2 in the previous section.

Case 1. The static key is stored in DPA resistant hardware, and
the cryptographic algorithm is executed on DPA resistant
hardware. The key is not loaded into the main memory
or the CPU.

Case 2. The static key management is the same as Case 1. The
dynamic key is either generated by the DPA resistant
crypto unit and stored in DPA resistant hardware, or is
read from the I/O stream of the system in the encrypted

�KeyGenerator kgen = KeyGenerator.getInstance("AES");
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
SecretKeySpec skeySpec =

new SecretKeySpec(raw, "AES");

Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
byte[] encrypted =

cipher.doFinal("This is just an example".getBytes());

(a) JCE

SecureRandom sr = new SecureRandom();
AESkey = new byte [16];
sr.nextBytes(AESkey);
CipherParameters params = new KeyParameter(AESkey);

BufferedBlockCipher cipher =

new BufferedBlockCipher(new AESFastEngine());
cipher.init(true, params);
int len = cipher.processBytes(in, 0, in.length, out, 0);

(b) Bouncy Castle API

Figure 8. Key Management Examples.

�
Embedded CPU

Main Memory

Heap Region

Object

Key
File System

Key

Key

Key
System Bus

Expose!

Key

�

Expose!

Key

Expose!

I/O Stream

Figure 9. Threats of Secret Key Exposure.

308

form. The static key can be used for the encryption of the
dynamic key.

In both cases, the cryptographic algorithm is executed inside of
the DPA resistant co-processor, concealing the secret key against
the DPA attacks.

Figure 11 shows the design flow of the proposed approach.
As described in section 3, the cryptographic algorithm is
performed on the co-processor written in GEZEL. First, the co-
processor is converted to the synthesizable VHDL description by
the VHDL converter (fdlvhd) for GEZEL [19]. Once the VHDL
code is generated, we follow the design flow proposed in [20].
Using WDDL the co-processor is made DPA resistant. This DDL
style is a set of logic components that consume the same amount
of charge/discharge power in all the clock cycles, and this is
independent of the inputs signals. The DDL is an effective way to
conceal the characteristics of power consumption related to the
input data (secret key) against DPA [21]. The DDL library
consists of inverter, AND-type, OR-type, and register types of
logic components. The VHDL code is synthesized by a logic-
synthesis tool with only a subset of the standard cell library so
that they can be replaced by the DDL components later.
Subsequently, the script replaces all the standard cells in the gate-
level netlist with the corresponding DDL cells. The resulting
DDL netlist can be put on a modified place and route tool to
perform the physical layout.

4.3 Key Management Example in AES and its
Performance

As an example of our proposed method, the AES design in

section 3 has been modified such that the key is not stored in the
Java or C program, and is not passed as a parameter over the
interfaces. Figure 12 shows the modification in which the
function call for the key scheduling has been removed from the
user application. Instead, one instruction is added for the co-
processor to load the secret key from secure storage. This key-
load instruction is inserted right before the data-load instruction in
the hardware driver function (Enc_G). The key storage is
modeled as a register in GEZEL, and it takes 4 clock cycles to
load a 128bit key.

For the architecture shown in Figure 12, the number of clock
cycles consumed for one AES encryption was counted as shown
in Figure 13. The number of cycles for the overhead of Java and
KNI interface is reduced from 18,938 (Figure 6) to 7,642. The
overall performance gain is 25x compared to the original Java
implementation and the encryption speed is 2.16Mbits/sec
assuming that the SH3-DSP and the AES co-processor is running
at 133MHz, including the overhead of Java and KNI interface.

To evaluate the cost of the proposed security optimization,
the AES co-processor (aes_decoder module in GEZEL) is

� CPU

(KVM)

Data / Instruction Only

DPA Resistant Hardware

Crypto Unit

Static
Key

(b) Case 2

CPU

(KVM)

Crypto Unit

(a) Case1

System Bus

Data / Instruction/ Encrypted Dynamic Key

Static
Key

Dynamic
Key

DPA Resistant Hardware

Encrypted
Dynamic

Key

I/O
 Stream

Figure 10. Key Management with DPA Resistant Co-Processor.

�

User Application

Java APIs

KVM

KNI (Java, C)

Co-Processor
(GEZEL)

Software on CPU

VHDL Converter
(fdlvhd)

Logic Synthesis

Subset of Standard
Cell Library

Script

DLL Gate Netlist

Cryptographic
Hardware

DPA Resistant
Co-processor

Figure 11. Security Optimization Design Flow.

� Key Scheduling Encryption

No function call Enc_J(in,out);

Enc_G(in,out);

aes_decorder

Java API I/F

KNI I/F

Acceleration I/F

Mem-Mapped I/F

 User Application
In Java

 Java Libs/
KNI in Java

 KNI in C

Acceleration in C/
HW Driver

Modeled in
GEZEL

Enc_J(in,out);
…

Enc_K(in,out);

Enc_K(in,out);
…

Enc_G(in,out);

key

� Java API I/F

KNI I/F

Acceleration I/F

Mem-Mapped I/F

260

7642

7902

(25x)

Total Cycles

Figure 13. Optimized AES Encryption Result.

Figure 12. AES Key Management Example.

309

implemented in WDDL using the design flow as specified in
Figure 11. The evaluation is performed with two versions of the
AES co-processor, one for a fast design, and the other for a small
design. This is done in the logic synthesis process. Table 3
shows the speed and area cost of the original (non-DDL) and the
DDL gate-level netlist using a 0.18 mm CMOS standard cell
technology.

Since WDDL consumes the same amount of
charge/discharge power at all clock cycles independent of the
input value, it costs more logic gates and delays for the same
logical functionality. One observation from this result is that the
cost of the security optimization is approximately 0.8nsec in the
critical-path delay, and 1.92x to 2.33x in the area. On the other
hand, the power consumption variations will be reduced by the
factor of 37 to 52 by the DDL [20].
The DDL is based on a precharge and evaluation cycle. During
the precharge cycle, a reset travels through the circuit. During the
evaluation cycle, the actual calculations take place. Therefore
new inputs can only be applied every 8.46nsec and 21.36nsec for
the fast design and the small design, respectively. This overhead
is still very small compared to the overall number of clock cycles
since it only adds to the encryption operation and not to the
communication interface which is the limiting factor in system
performance.

Critical Path

Delay
(nsec)

Area Cost
(Kgates)

Reduction Factor
of

Power Variation
Non-
DDL 3.44 53.2 Fast

Design
DDL 4.23 (+0.79

of non-DDL)
102.2(1.92x
of non-DDL)

Non-
DDL 9.84 26.3

Small
Design

DDL
10.68
(+0.84

of non-DDL)

61.3 (2.33x
of non-DDL)

37 to 52 [20]

5. CONCLUSION
This paper describes a design framework of Java

cryptographic application for secure embedded systems that
enables a DPA resistant implementation of co-processors and a
performance improvement of the cryptographic application.

The two Java cryptographic libraries, the Bouncy Castle
APIs and the IAIK APIs were first ported to a real embedded
device. The cost and performance were evaluated. The cost
ranged in 0.88Mbytes to 1.2Mbytes in the KVM footprint size
and the performance resulted in a few milliseconds for secret key
algorithms and message digests on the SA-1110 processor,
running at 206MHz.

The design framework for performance optimization was
then presented using the GEZEL environment for hardware
modeling and for co-design between the hardware co-processor
and the software on KVM. The simulation results of the AES
example on the SH3-DSP microprocessor show a performance
gain of 10.4x including the overhead in Java, C, and hardware
interfaces.

For further performance and security optimization, a design
method was introduced for secret key management in a co-

processor protected against eavesdropping. The design method is
based on a DDL that is resistant to DPA attacks. In the optimized
architecture for key management, the overall performance gain
was 25x. The AES co-processor was mapped onto the DDL in
0.18mm CMOS standard cell technology to evaluate the
performance and the area overhead.

The proposed design framework has the following main
benfits:
1) Fast prototyping using platform independent Java

cryptographic APIs.

2) Easy customizability by providing a way to partition software
and hardware to optimize for performance without modifying
the application code.

3) Security enhancement by allowing design of coprocessors
resistant to DPA attacks.

This paper shows that there exist systematic ways to improve
the performance of embedded security. Traditionally, the HW
accelerators and the embedded software routines are developed
separately in an ad-hoc way. Often up-front, a decision is made of
what parts will go in HW and what parts will go in SW. Our
approach allows a designer to gradually move from only SW to a
hardware accelerated design combined with a new WDDL style.

6. ACKNOWLEDGMENTS
The authors acknowledge the funding of NSF (Account no

CCR-0310527) and UC Micro (Account no 02-079). The authors
also acknowledge Renesas Technology Corp. Japan for providing
the SH3-DSP Instruction Set Simulator and for funding the first
author.

7. REFERENCES
[1] M. Renaudin, F. Bouesse, Ph. Proust, J. P. Tual, L. Sourgen,

F. Germain, “High Security Smartcards”, Proceedings of the
Design, Automation and Test in Europe Conference and
Exhibition Volume I (DATE'04) pp. 228-233

[2] Bruce Schneier, “Applied Cryptography”, John Wiley &
Sons, 1996 ISBN 0-471-12845-7

[3] J2ME Building Blocks for Mobile Devices - White Paper on
KVM and the Connected, Limited Device Configuration
(CLDC) http://java.sun.com/products/cldc/wp/KVMwp.pdf

[4] J2ME CLDC 1.1, http://java.sun.com/products/cldc/index.jsp

[5] Java Devices, http://www.microjava.com/devices

[6] Japan NTT DoCoMo's i-mode Article,
http://www.peterindia.net/i-ModeView.html

[7] The Bouncy Castle Lightweight API Release 1.20,
http://www.bouncycastle.org/download/lcrypto-j2me-
120.tar.gz

[8] IAIK JCE and iSaSiLk APIs,
http://jce.iaik.tugraz.at/download/evaluation/index.php

[9] Intel SA-1110 Processor,
http://www.intel.com/design/edk/product/strongarm_edk.htm

[10] The eCos OS, http://sources.redhat.com/ecos

Table 3. Speed and Area Cost of the AES Co-Processor.

310

[11] Michael Yuan, “Enterprise J2ME: Developing Mobile Java
Applications”,http://www.enterprisej2me.com/pages/enterpri
sej2me/book.php

[12] The GEZEL Design Environment,
http://www.ee.ucla.edu/~schaum/gezel/

[13] KPIT Cummins GNU Tools & Support,
http://www.kpitgnutools.com/

[14] Advanced Encryption Standard,
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[15] Java 2 Platform Security Architecture,
http://java.sun.com/j2se/1.4.2/docs/guide/security/

[16] Java Cryptography Architecture,
http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpe
c.html

[17] E. Hess, N. Janssen, B. Meyer, T. Schuetze, “Information
Leakage Attacks Against Smart Card Implementations of
Cryptographic Algorithms and Countermeasures – a Survey”,
EUROSMART Security Conference (2000) pp.55–64

[18] P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis”,
Proc. of Advances in Cryptology (1999) pp.388-397

[19] GEZEL User Manual,
http://www.ee.ucla.edu/~schaum/gezel/gzldata/gezelum.pdf

[20] K. Tiri, I. Verbauwhede, “A Logic Level Design
Methodology for a Secure DPA Resistant ASIC or FPGA
Implementation”, Design Automation and Test in Europe
Conference (DATE 2004) pp.246-251

[21] K. Tiri, I. Verbauwhede, “Securing Encryption Algorithms
against DPA at the Logic Level: Next Generation Smart Card
Technology”, Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2003) pp.125–136

[22] SH-Mobile Application Processor,
http://www.renesas.com/eng/products/mpumcu/shmobile/ind
ex.html

[23] P. Kocher, R. Lee, G. McGraw, A. Raghunathan and S. Ravi,
“Security as a New Dimension in Embedded System Design”,
Proc. of 41st Design Automation Conference (DAC 2004),
2004, pp.735-760

[24] S. Ravi, A. Raghunathan and S. Chakradhar, “Tamper
Resistance Mechanisms for Secure Embedded Systems”,
Proc. of 17th International Conference on VLSI Design
(VLSID 2004), 2004, pp.605-610

[25] C.Gebotys, "Design of Secure Cryptography against the
threat of power-attacks in DSP embedded processors", ACM
Transactions on Embedded Computer Systems, Vol. 3, No. 1,
February 2004

311

