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Abstract

Dynamic information flow tracking is a hardware mech-
anism to protect programs against malicious attacks by
identifying spurious information flows and restricting the
usage of spurious information. Every security attack to take
control of a program needs to transfer the program’s con-
trol to malevolent code. In our approach, the operating sys-
tem identifies a set of input channels as spurious, and the
processor tracks all information flows from those inputs. A
broad range of attacks are effectively defeated by disallow-
ing the spurious data to be used as instructions or jump tar-
get addresses. We describe two different security policies
that track differing sets of dependencies. Implementing the
first policy only incurs, on average, a memory overhead of
0.26% and a performance degradation of 0.02%. This pol-
icy does not require any modification of executables. The
stronger policy incurs, on average, a memory overhead of
4.5% and a performance degradation of 0.8%, and requires
binary annotation.

1 Introduction

Malicious attacks often exploit program bugs to obtain
unauthorized accesses to a system. \We propose an architec-
tural mechanism called dynamic information flow tracking,
which provides a powerful tool to protect a computer sys-
tem from malicious software attacks. With this mechanism,
higher level software such as an operating system can make
strong security guarantees even for vulnerable programs.

The most frequently-exploited program vulnerabilities
are buffer overflows and format strings, which allow an
attacker to overwrite memory locations in the vulnerable
program’s memory space with malicious code and program
pointers. Exploiting the vulnerability, a malicious entity can
gain control of a program and perform any operation that the
compromised program has permissions for. Since hijacking
a single privileged program gives attackers full access to

the system, vulnerable programs represent a serious secu-
rity risk.

Unfortunately, it is very difficult to protect programs by
stopping the first step of an attack, namely, exploiting pro-
gram vulnerabilities to overwrite memory locations. There
can be as many, if not more, types of exploits as there are
program bugs. Moreover, malicious overwrites cannot be
easily identified since vulnerable programs themselves per-
form the writes. Conventional access controls do not work
in this case. As a result, protection schemes which target
detection of malicious overwrites have only had limited suc-
cess — they block only the specific types of exploits they are
designed for.

To be effective for a broad range of security exploits, at-
tacks can be thwarted by preventing the final step, namely,
the malevolent transfer of control. In order to be successful,
every attack has to change a program’s control flow so as to
execute malicious code. Unlike memory overwrites, there
are only a few ways to change a program’s control flow.
Attacks may change a pointer to indirect jumps, or inject
malicious code at a place that will be executed without re-
quiring malevolent control transfer. Thus, control transfers
are much easier to protect for a broad range of exploits. The
challenge is to distinguish malicious control transfers from
many legitimate ones.

We make the observation that potentially malicious input
channels, i.e., channels from which malicious attacks may
come, are managed by operating systems. Therefore, oper-
ating systems can mark inputs from those channels as spu-
rious so that they are not allowed to be used as instructions
or jump targets. Unfortunately, spurious inputs are used in
various ways at run-time to generate new spurious data that
may result in malicious control transfers. Therefore, only
restricting the use of spurious input data is not sufficient to
prevent many attacks.

Dynamic information flow tracking is a simple hardware
mechanism to track spurious information flows at run-time.
On every operation, a processor determines whether the re-
sult is spurious or not based on the inputs and the type of



the operation. With the tracked information flows, the pro-
cessor can easily check whether an instruction or a branch
target is spurious or not, which prevents changes of con-
trol flows by potentially malicious inputs and dynamic data
generated from them.

Experimental results demonstrate our protection scheme
is very effective and efficient. A broad range of secu-
rity attacks exploiting notorious buffer overflows and for-
mat strings are detected and stopped. Our restrictions do
not cause any false alarms for applications in the SPEC
CPU2000 suite. We describe two different security poli-
cies that track differing sets of dependencies. Implementing
the first policy only requires, on average, a memory over-
head of 0.26% and a performance degradation of 0.02%.
The stronger policy requires, on average, additional mem-
ory space of 4.5% and a performance overhead of 0.8%.
The stronger policy also requires annotation of executables
prior to execution.

We describe our security model and general approach for
protection in Section 2 and Section 3, respectively. Sec-
tion 4 presents architectural mechanisms to track spurious
information flow at run-time. The two security policies we
consider are also defined. Practical considerations in mak-
ing our scheme efficient are discussed in Section 5. We
evaluate the first security policy in Section 6. Our second
security policy is described in detail and evaluated in Sec-
tion 7. Finally, we compare our approach with related work
in Section 8 and conclude the paper in Section 9.

2 Security Attack Model

In this paper, we consider attacks whose goal is to gain
unauthorized access to a computer system by taking control
of a vulnerable privileged program. Security attacks can
also try to crash programs, make programs produce incor-
rect results, read program’s execution state, etc. However,
attackers will not be able to obtain unauthorized access un-
less they hijack a privileged program. Therefore, we focus
on this specific type of attacks.

We assume that attackers can exploit a vulnerability that
allows them to modify an arbitrary memory location with an
arbitrary value. Thus, attackers effectively have write per-
mission to any stored program address. The only restriction
for attackers is that any initial input from attackers should
be through a communication channel that can be identified
by an operating system. This is a reasonable assumption
since all 1/0 channels are managed by the operating system
in modern computer systems.

Protected programs and compilers that generated the
programs are assumed to not be malicious. For example, we
do not prevent programs from being compromised if a back
door is implemented as a part of original program function-
ality. The protected programs, however, can be buggy and

contain vulnerabilities. To achieve the goal of taking con-
trol, attackers should either change a control flow of a pro-
gram in an unintended way, or inject its own code.

Given the above assumptions, our protection scheme tar-
gets the prevention of any attack that tries to take control
of a protected program. In the rest of the section, we ex-
plain how security attacks work in more detail. In the next
section, we show how we can defeat the attacks.
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Figure 1. Security attack scenario.

Figure 1 illustrates attacks which attempt to take control
of a vulnerable program. A program has legitimate com-
munication channels to the outside world, which are either
managed by the operating system as in most I/O channels
or set up by the operating system as in inter-process com-
munication. An attacker can control an input to one of these
channels.

Knowing a vulnerability in the program, attackers pro-
vide a malicious input that exploits the bug. This malicious
input makes the program change values in its address space,
in a way that is not intended in the original program func-
tionality.

Two frequently exploited bugs are buffer overflows and
format strings. The buffer overflow vulnerability occurs
when the bound of an input buffer is not checked. Attackers
can provide an input that is longer than an allocated buffer
size, and overwrite memory locations near the buffer. For
example, a stack smash attack can change a return address
stored in the stack [12] by overflowing a buffer allocated in
the stack.

The format string vulnerability [11] occurs when the for-
mat string of the pri ntf family is given by input data.
Using the % flag in the format, which stores the number of
characters written so far in the memory location indicated
by an argument, attackers can potentially modify any mem-
ory location to any value.

Finally, the modified values in the memory cause the pro-
gram to perform unintended operations. This final step of an



attack can happen in two ways. First, attackers may inject
malicious code exploiting the vulnerabilities and make the
program execute the injected code. Second, attackers can
simply reuse existing code and change the program’s con-
trol flow to execute code fragments that otherwise would
not have been executed by modifying one of the program
pointers in the memory.

For example, in the stack smash attack, attackers inject
malicious code into the overflown buffer as well as modify
a return address in the stack to point to the injected code.
When a function returns, the victim program jumps to the
injected code and executes it.

3 Protection Scheme

This section explains our approach to stop attacks un-
der the security model presented in the previous section.
We also provide two examples to illustrate our protection
scheme.

3.1 Overview

We protect vulnerable programs from malicious attacks
by restricting executable instructions and control transfers.
In order to take control of a program, every attack should
either make a processor execute injected malicious code
or change a program’s control flow to execute unintended
code. Attackers may still be able to make a program pro-
duce incorrect results, for instance, by overwriting the pro-
gram’s states in Step 2 of Figure 1. However, they will
not be able to gain unauthorized access to a system as long
as executable instructions and control transfers are properly
protected in Step 3 of Figure 1.

The key question in this approach is how to distinguish
malicious code from legitimate code, or malicious program
pointers from legitimate pointers. Because there are many
legitimate uses of dynamically generated instructions such
as just-in-time compilation, and legitimate uses of indirect
jumps, the question does not have a straightforward answer.

Figure 2 shows our approach to identify and prevent ma-
licious instructions and control transfers. Since the oper-
ating system manages communication channels for a pro-
gram, it identifies potentially malicious channels such as
network 1/0, and tags all data from those channels as spuri-
ous. On the other hand, other instructions and data includ-
ing the original program when it gets loaded are marked
as authentic. Note that the operating system can always
be conservative and consider all 1/O channels as spurious.
Thus, identifying potentially malicious channels is not a
major problem.

For our purposes, the term authenticity is used to indicate
whether the value is under a program’s control or not. For
example, a return address stored by the processor is under
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Figure 2. Our protection scheme against security
exploits.

the program’s control and safe to be used as a jump target.
On the other hand, a program cannot predict a value from
an 1/O channel, and it will cause unpredictable behavior if
the value is used as a jump target.

During an execution, malicious data may be processed
by the program before being used as an instruction or a
jump target address. Therefore, the processor also tags the
data generated from spurious data as spurious. We call this
technique dynamic information flow tracking.

Finally, if the processor detects the use of spurious data
as jump target addresses or execution of spurious instruc-
tions, it generates an exception, which will be handled by
the operating system. In general, the exception indicates an
intrusion, and the operating system needs to terminate the
victimized process.

3.2 Security Policies

Since programs and systems will have different mali-
cious 1/0 channels and different security requirements, the
protection scheme should be flexible enough to handle this
variance. For this purpose, security policies specify what
should be identified as spurious, and what operations are
allowed (or not allowed) with the spurious data. In our
scheme, the security policy consists of 3 parts: spurious in-
put channels, dependencies to be tracked, and restrictions.

The security policy first specifies which input channels
should be tagged as spurious. For most privileged applica-
tions such as daemons, attacks are mainly from network 1/0
and it will be sufficient to tag the network input as spurious.
However, one should be careful in placing absolute trust in
an untracked channel since no attack from this channel can
be detected.

Spurious information can propagate in various ways dur-
ing a program execution. Section 4 discuss the types of de-



pendencies in detail. The security policy specifies which
dependencies should be tracked by the processor. As noted
above, one can always be conservative and track all input
channels and all possible dependencies. The experiments
show that our protection scheme does not cause false alarms
even in this case. However, tracking unnecessary input
channels and dependencies will incur higher memory space
and performance overhead.

Finally, the security policy determines what kind of op-
erations are allowed for spurious data. In this paper, we
assume that spurious data is allowed for all operations ex-
cept when used as an instruction or jump target addresses.
These restrictions are enough to prevent attackers from
gaining control of protected programs. The operating sys-
tem may be able to provide security against a broader class
of attacks if it further restricts the use of spurious informa-
tion. We do not address this here.

In this paper, we assume the security policy is specified
in the operating system and enforced by the processor — the
processor throws an exception when it detects a security vi-
olation. It is also possible to have other software layers such
as program shepherding [8] to enforce more complicated
security policies using information from the flow tracking
mechanism. However, the flexibility provided by an addi-
tional software layer comes with increased space and per-
formance overheads (cf. Section 8).

3.3 Example 1: Stack Smashing

A simple example of the stack smashing attack is pre-
sented to demonstrate how our protection scheme works.
The example is constructed from vulnerable code reported
for Tripbit Secure Code Analizer at SecurityFocus”™ in
June 2003.

i nt single_source(char *fname)

{
char buf [ 256];
FI LE *src;

src = fopen(fnane, "rt");
whi | e(fgets(buf, 1044, src)) {

}

return O;

}

The above function reads source code line-by-line from
a file to analyze it. The program stack at the beginning of
the function is shown in Figure 3 (a). The return address
pointer is saved by the calling convention and the local vari-
able buf is allocated in the stack. If an attacker provides
a source file with a line longer than 256 characters, buf
overflows and the stack next to the buffer is overwritten as

Top of Stack Top of Stack
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return
Return Address S >
Malicious
bt Attack Input data\
256 Byt from T
( ytes) fget() "
Tagged
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Figure 3. The states of the program stack before
and after a stack smashing attack.

in Figure 3 (b). An attacker can modify the return address
pointer arbitrarily, and change the control flow when the
function returns.

Now let us consider how this attack is detected in our
scheme. When a function uses f get s to read a line from
the source file, it invokes a system call to access the file.
Since an operating system knows the data is from the file
1/O, it tags the I/O inputs as spurious. In f get s, the input
string is copied and put into the buffer. Dynamic informa-
tion flow tracking tags these processed values as spurious
(cf. copy dependency in Section 4). As a result, the val-
ues written to the stack by f get s are tagged spurious. Fi-
nally, when the function returns, it uses the r et instruction.
Since the instruction is a register-based jump, the processor
checks the security tag of the return address, and generates
an exception since the pointer is spurious.

3.4 Example 2: Format String Attacks

We also show how our protection scheme detects a for-
mat string attack with % to modify program pointers in
memory. The following example is constructed based on
Newsham’s document on format string attacks [11].

int main(int argc, char **argv)

{
char buf[100];
if (argc !'= 2) exit(1);
snprintf(buf, 100, argv[1]);
buf [ si zeof buf - 1] = O;
printf(‘‘buffer: %\n'’', buf);
return O;

}

The general purpose of this example is quite simple:
print out a value passed on the command line. Note that the



code is written carefully to avoid buffer overflows. How-
ever,the snpri nt f statement causes the format string vul-
nerability because ar gv[ 1] is directly given to the func-
tion without a format string.

For example, an attacker may provide ' ' aaaa%’ ’
to overwrite the address 0x61616161 with 4. First, the
snpri ntf copies the first four bytes aaaa of the input
into buf in the stack. Then, it encounters %, which is in-
terpreted as a format string to store the number of characters
written so far to the memory location indicated by an argu-
ment. The number of characters written at this point is four.
Without an argument specified, the next value in the stack
is used as the argument, which happens to be the first four
bytes of buf . This value is 0x61616161, which corre-
sponds to the copied aaaa. Therefore, the program writes
4into 0x61616161. Using the same trick, an attacker can
simply modify a return address pointer to take control of the
program.

The detection of the format string attack is similar to
the buffer overflow case. First, knowing that ar gv[ 1]
is from a spurious 1/0O channel, the operating system tags
it as spurious. This value is passed to snprintf and
copied into buf. Finally, for the % conversion specifi-
cation, snpri nt f uses a part of this value as an address
to store the number of characters written at that point (4 in
the example). All these spurious flows are tracked by our
information flow tracking mechanism (cf. copy dependency
and store-address dependency in Section 4). As a result, the
value written by snpri nt f is tagged spurious. The pro-
cessor detects an attack and generates an exception when
this spurious value is used as a jump target address.

4 Dynamic Information Flow Tracking

The effectiveness of our protection scheme largely de-
pends on the processor’s ability of tracking flows of spu-
rious data. An attack can be detected only if a malicious
information flow is tracked by the processor. This section
discusses the types of information flows that are relevant to
attacks under our attack model and explains how they can
be efficiently tracked in the processor.

4.1 Security Tags

We use a one-bit tag to indicate whether the correspond-
ing data block is authentic or spurious. It is straightforward
to extend our scheme to multiple-bit tags if there are many
types or sources of data. However, since we only have to
distinguish two types of data, one bit is sufficient for this
particular setting. In the following discussion, tags with
zero indicate authentic data and tags with one indicate spu-
rious data.

In the processor, each register needs to be tagged. In
the memory, data blocks with the smallest granularity that
can be accessed by the processor are tagged separately. We
assume that there is a tag per byte since many architec-
tures support byte granularity memory accesses and 1/0.
Section 5 shows how the per-byte tags can be efficiently
managed with minimal space overhead.

The tags for registers are initialized to be zero at program
start-up. Similarly, all memory blocks are initially tagged
with zero. The operating system tags the data with one only
if they are from a potentially malicious input channel.

The security tags are a part of program state, and should
be managed by the operating system accordingly. On a con-
text switch, the tags for registers are saved and restored with
the register values. The operating system manages a sepa-
rate tag space for each process, just as it manages a separate
virtual memory space per process.

4.2 Tracking Information Flows

Spurious data can affect the authenticity of other reg-
isters or memory locations in many different ways. We
categorize these dependencies into four types: copy depen-
dency, computation dependency, load-address dependency,
and store-address dependency.

e Copy dependency: If a spurious value is simply copied
into a different location, the value of the new location
is also spurious.

e Computation (Comp) dependency: A spurious value
may be used as an input operand of a computation.
In this case, the result of the computation directly de-
pends on the input value. For example, in an arith-
metic instruction ADD Rd, Rs1, Rs2,the valuein
Rd directly depends on the values of Rs1 and Rs2.
If either of the inputs are spurious, the output data is
considered spurious.

e Load-address (LDA) dependency: When a spurious
value is used to specify the address to access, the
loaded value is considered spurious. Unless the bound
of the spurious value is explicitly checked by the pro-
gram, the result could be any value since it is from an
unpredictable address.

e Store-address (STA) dependency: The stored value be-
comes spurious if the store address is determined by a
spurious value. If a program does not know where it
is storing a value, it would not expect the value in the
location to be changed when it loads from that address
in the future.

Processors dynamically track spurious information flows
by tagging the result of an operation as spurious if it has



[ Operation | Example | Meaning | Tag Propagation
Computation | ADD R1, R2, RO <R1>+—<R2> T[ R1] —T[ R2] &Vask[ 0]
(Copy) ADD Rl, RO, R2
ADDI R1, R2, #0

Computation | ADD Rl, R2, R3 <R1>+«<R2>+<R3> T[R1] —(T[R2] | T[ R3] ) &Vask] 1]

(Others) ADDI RL, R2, #lmm | <RI>—<R2>+l mm T[R1] —T[ R2] &ask[ 1]

Load LW R1, Im(R2) <R1>—Meni <R2>+I m] Tenp«—T[ Men{ <R2>+I M ] ;
T[ R1] —( Tenp&Wask[ 0] ) | ( T[ R2] &vask][ 2])

Store SwW Imm(Rl), R2 Men] <R1>+I nmi «—<R2> Tenmp—(T[ R2] &Vvask[ 0] ) | ( T[ R1] &Vask][ 3] ) ;
T[ Men{ <R1>+l mm ] —Tenp

Branch/Jump | JALR R1 <R31>+—PC+4; PC—<R1> | T[ R31] <0

Table 1. Tag computations for tracking each type of dependencies. <Ri > represents the value in a general

purpose register, and RO is a constant zero register.

Men{] represents the value stored in the specified

address. T[] represents the security tag for a register or a memory location specified.

a dependency on spurious data. For flexibility, dependen-
cies to be tracked are specified by the operating system
in a bit vector Mask[ 0: 3] . For example, copy depen-
dency is tracked only if the first bit in the vector Mask] 0]
is set. Similarly, Mask[ 1], Mask[ 2], and Mask[ 3]
indicate whether the processor tracks computation, load-
address, and store-address dependencies, respectively.

Table 1 summarizes how a new security tag is computed
for different operations. For arithmetic or logical opera-
tions, the result is spurious if any of the inputs are spurious
and computation dependency is specified to be tracked. In
some cases, computations are considered as a copy if they
are used to produce the result that is identical to an input.
Forexample, ADDI R1, R2, #0orOR Rl, R2, RO,
where RO is the constant zero register, is considered as a
copy. For load or store operations, the security tag of the
source always propagates to the destination since the value
is directly copied. In addition, the result may also become
spurious if the accessed address is spurious.

4.3 Two Security Policies

We define two security policies based on the types of in-
formation flows to be tracked, and use them in our simula-
tions. Policy 1 tracks copy, load-address, and store-address
dependencies, but not computation dependency. This pol-
icy represents a light-weight version that provides security
against known types of attacks with low overhead. Policy
2 tracks all four dependencies to provide security against a
broader class of attacks incurring more overhead.

Note that we do not track any form of control depen-
dency in this work. We believe that control dependency
is not essential to detecting attacks of the kind consid-
ered in this paper. This is because while control may de-
cide what values are assigned to a variable, the authentic-
ity/spuriousness of each value that is assigned is determined
by tracking computation and copy dependency on other au-
thentic/spurious values.

[ Type value | Meaning |
00 all 0 (per-page)
01 per-quadword tags
10 per-byte tags
11 all 1 (per-page)

Table 2. Example type values for security tags and
their meaning.

5 Efficient Tag Management

Dynamic information flow tracking requires the modi-
fications to the processing core for tag propagation as de-
scribed in Table 1. Further, managing a tag for each byte in
memory can result in up to 12.5% storage and bandwidth
overhead if implemented naively. This section discusses
how security tags for memory can be managed efficiently.

5.1 Multi-Granularity Security Tags

Even though a program can manipulate values in mem-
ory with byte granularity, writing each byte separately is not
the common case. For example, programs often write a reg-
ister’s worth of data at a time, which is a word for 32-bit
processors or a quadword for 64-bit processors. Moreover,
a large chunk of data may remain authentic for the entire
execution. Therefore, allocating memory space and manag-
ing a security tag for every byte is likely to be a waste of
resources.

We propose to have security tags with different granular-
ities for each page depending on the type of writes to the
page. The operating system maintains two more bits for
each page to indicate the type of security tags that the page
has. One example for 64-bit machines, which has four dif-
ferent types, is shown in Table 2.

Just after an allocation, a new authentic page holds a per-
page tag, which is indicated by type value 00. There is no
reason to allocate separate memory space for security tags
since the authenticity is indicated by the tag type.



Upon the first store operation with a non-zero security
tag to the page, a processor generates an exception for tag
allocation. The operating system determines the new gran-
ularity of security tags for the page, allocates memory space
for the tags, and initializes the tags to be all zero. If the gran-
ularity of the store operation is smaller than a quadword,
per-byte security tags are used. Otherwise, per-quadword
tags, which only have 1.6% overhead, are chosen.

If there is a store operation with a small granularity for
a page that currently has per-quadword security tags, the
operating system reallocates the space for per-byte tags and
initializes them properly. Although this operation may seem
expensive, our experiments indicate that it is very rare (hap-
pens in less than 1% of pages).

Finally, the type value of 11 indicates that the entire page
is spurious. This type is used for I/O buffers and shared
pages writable by other processes that the operating system
identifies as potentially malicious. Any value stored in these
pages is considered spurious even if the value was authentic
before.

5.2 On-Chip Structures
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Core * Tag Types,
DTag ¥ Pointers
Regs L i
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I I 1 : Security
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Figure 4. On-chip structures to manage security
tags. Dark (blue) boxes represent additional struc-
tures.

Figure 4 illustrates the implementation of the security
tag scheme in a processor. Dark (blue) boxes in the figure
represent new structures required for the tags. Each register
has one additional bit for a security tag. For cache blocks,
we introduce separate tag caches (T$-L1 and T$-L2)
rather than tagging each cache block with additional bits.

Adding security tags to existing cache blocks will require
a translation table between the L2 cache and the memory in

order to find physical addresses of security tags from phys-
ical addresses of L2 blocks. Moreover, this approach will
require per-byte tags for every cache block, which is waste-
ful in most cases. Similarly, sharing the same caches be-
tween data and security tags is also undesirable because it
would prevent parallel accesses to both data and tags unless
the caches are dual-ported.

Finally, the processor has additional TLBs for security
tags. For a memory access, the tag TLB returns two bits for
the tag type of a page. If the security tags are not per-page
granularity tags, the TLB also provides the base address of
the tags. Based on this information, the processor can issue
an access to the tag cache.

Note that new structures for security tags are completely
decoupled from existing memory hierarchy for instructions
and data. Therefore, latencies for on-chip instruction/data
TLBs and caches are not affected. In Sections 6 and 7, we
discuss the impact of security tags on performance in detail.

6 Evaluation

This section evaluates our protection scheme through de-
tailed simulations. We first study the functional effective-
ness of the scheme, and then discuss memory space and
performance overheads.

[ Architectural parameters | Specifications [

Clock frequency 1GHz
L1 I-cache 64KB, 2-way, 32B line
L1 D-cache 64KB, 2-way, 32B line
L2 cache Unified, 1IMB, 4-way, 128B line
L1 T-cache 8KB, 2-way, 8B line
L2 T-cache 1/8 of L2, 4-way, 16B line
L1 latency 2 cycles
L2 latency 10 cycles
Memory latency (first chunk) 80 cycles
1/D TLBs 4-way, 128-entries
TLB miss latency 160 cycles
Memory bus 200 MHz, 8-B wide (1.6 GB/s)
Fetch/decode width 4] 4 per cycle
issue/commit width 4/ 4 per cycle
Load/store queue size 64
Register update unit size 128

Table 3. Architectural parameters.

Our simulation framework is based on the SimpleScalar
3.0 tool set [1]. For the functional evaluation and mem-
ory space overhead, si m f ast is modified to incorporate
our information flow tracking mechanism. For performance
overhead study, si m out or der is used with a detailed
memory bus model. The architectural parameters used in
the performance simulations are shown in Table 3. Sim-
pleScalar is configured to execute Alpha binaries, and all
benchmarks are compiled on EV6 (21264) for peak perfor-
mance.



In both security policies 1 and 2 (cf. Section 4.3), all
input channels to a program are considered potentially ma-
licious. Thus, all input data from a system call are tagged
spurious. Note that this makes each policy as conservative
as possible, which implies potentially greater likelihood of
false alarms and overheads. The use of spurious values is
not allowed in executable instructions and branch/jump tar-
get addresses.

6.1 Effectiveness

To evaluate the effectiveness of our approach in detect-
ing malicious software attacks, we tested a set of bench-
marks with various vulnerabilities such as buffer overflows
and format strings.

e Stack buffer overflows: Stack smashing attacks based
on a “cookbook” [12] and Tripbit Secure Code Anal-
izer are tested with simulations.

e Heap buffer overflows: Attacks can also exploit
buffer overflows in the heap area. In most cases,
the attack involves injecting malicious code in the
heap. The following instances that are reported at
SecurityFocus”™ are studied.

WSMP3, Tinyproxy, and Solaris xlock: Attackers can
inject the shell code and a program pointer into the
heap by providing long inputs. Attackers can execute
arbitrary code with effective privileges of the vulnera-
ble programs.

Null HTTPd: By passing a negative content length
value to the server, attacks can modify the allocation
size of the read buffer, which results in a heap over-
flow.

e vudo: This is a special type of a heap buffer overflow
attack suggested in [7]. Attacks overwrite a field of a
double-linked list in mal | oc. On a subsequent call to
f r ee, the list update will overwrite an arbitrary loca-
tion. We consider a case where this overwrite modifies
function pointers or return addresses.

e Format string attacks: A basic format string attack
is described in Newsham’s document [11]. Here, we
study example cases of QPOP 2.53, bftpd, and wu-
ftpd 2.6.0 in a document from the TESO security group
[15]. QPOP 2.53 and bftpd cases use a format string
to cause buffer overflows, while the wu-ftpd 2.6.0 case
uses the technique described in our example.

Table 4 summarizes the effectiveness of our protection
scheme against various attacks. All attacks are detected
and stopped with either Policy 1 or Policy 2. In exam-
ples of buffer overflow attacks, malicious inputs are simply

Attacks

| Policy 1 | Policy 2 [ Dependencies [

Stack BO Yes Yes Copy

Heap BO Yes Yes Copy

vudo Yes Yes Copy+LDA+STA
QPOP, bf t pd Yes Yes Copy

wu- ft pd Yes Yes Copy+STA

Table 4. Effectiveness of our protection scheme
against various security exploits.

copied and used as instructions or jump targets. Similarly,
in wu-ftpd, the 1/0 input is simply copied into a buffer and
a part of it is used as a malicious store address. Therefore,
stack/heap buffer overflows, QPOP, and bftpd are detected
with just copy dependency, and attacks on wu-ftpd are de-
tected with copy and store-address dependencies. vudo re-
quires three dependencies to detect since it reads a spuri-
ous pointer to a node of a double-linked list (copy), reads
the pr ev field using a proper offset with the pointer to the
node (load-address), and updates the pr ev- >next field
(store-address). In general, the experiments indicate that
our protection scheme is very effective against a large range
of security attacks.

The other concern for the effectiveness of a protection
scheme is whether it causes false alarms without intru-
sion. To evaluate the false alarms, we simulated 17 SPEC
CPU2000 benchmarks [6] with our security policies. Each
benchmark is simulated for 100 billion instructions or to
completion to obtain the results.

The simulations showed that our scheme does not cause
any false alarms for the SPEC benchmarks. Policy 1 did
not have any use of spurious values as instructions or jump
target addresses for any of the benchmarks. In Policy
2, there are legitimate uses of spurious information after
bound checking, however, these do not cause false alarms
because they are successfully detected and allowed by our
mechanisms described in Section 7.

6.2 Memory Space Overhead for Policy 1

Dynamic information tracking only requires small mod-
ifications to the processing core. The only noticeable space
overhead comes from storing security tags for memory.

We now evaluate our tag management scheme described
in Section 5 in terms of actual storage overhead for secu-
rity tags compared to regular data. Table 5 summarizes the
space overhead of security tags for Policy 1.

For security policies without computation dependency,
the amounts of spurious data are often very limited. As are-
sult, most pages have per-page tags, and the space overhead
of security tags is almost negligible. For example, Policy
1 results in over 95.7% pages with per-page tags and only
0.26% space overhead on average.
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Figure 5. Performance overhead of Policy 1 for various L2 cache sizes (1/8 tag caches).
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Figure 6. Performance degradation of Policy 1 with small L2 tag caches (1-MB unified L2 cache).

6.3 Performance Overhead for Policy 1

Finally, we evaluate the performance overhead of our
scheme compared to the baseline case without any protec-
tion mechanism. For each benchmark, the first 1 billion
instructions are skipped, and the next 100 million instruc-
tions are simulated. Experimental results (IPCs) in figures
are normalized to the IPC for the baseline case without any
security mechanisms.

In the experiments, the same cache sizes are used for
both our mechanism and the baseline case. We note that
our scheme has on-chip logic overhead of additional tag
caches. However, it is also not accurate to simply increase
the caches for the baseline to compensate the tag overhead
because larger caches will have longer access latencies. At
the same time, the simulation framework did not allow us
to increase the cache size by just 12.5%. Given diminishing
performance returns for larger caches, the error from this
approximation is unlikely to be significant.

Our protection scheme can affect the performance in two
ways. First, accessing security tags consumes additional
off-chip bandwidth. Second, in the simulation framework,
we assume that the dispatch of an instruction waits until

both data and security tags are ready. Therefore, memory
access latency seen by a processor is effectively the max-
imum of the data latency and the tag latency. This is a
rather pessimistic assumption since there is no dependency
between the regular computation and the security tags; it
is possible to have more complicated logic for tag compu-
tations that allow regular computations to continue while
waiting for security tags.

Figure 5 shows the performance overhead of our scheme
for various L2 cache sizes. In this case, the tag caches are
always one-eighth of the corresponding caches for instruc-
tion and data. The figure demonstrates that the overhead
is modest for all benchmarks for various cache sizes. With
Policy 1, the performance degradation is negligible. There
is only 0.3% degradation in the worst case. The bench-
mark par ser is an extreme case with the least amount of
per-page tags and therefore suffers the highest performance
degradation.

Performance can also be affected by the size of tag
caches. In the worst case, we should have a tag cache whose
size is one-eighth of the corresponding data/instruction
cache in order to avoid the additional latency caused by tag
cache misses in case of data/instruction cache hits. How-



Policy 1 (%)

Benchmark || Per-Page | Per-QWord [ Per-Byte | Overhead
ammp 99.85 0.00 0.15 0.02
applu 99.99 0.00 0.01 0.00
apsi 99.97 0.00 0.03 0.00
art 82.46 0.00 17.54 2.19
crafty 99.02 0.00 0.98 0.12
eon 97.97 0.00 2.03 0.25
equake 99.71 0.00 0.29 0.04
gzip 82.25 14.10 3.65 0.68
mcf 99.99 0.00 0.01 0.00
mesa 99.62 0.00 0.38 0.05
mgrid 99.94 0.00 0.06 0.01
parser 69.53 26.75 3.72 0.88
sixtrack 99.69 0.00 0.31 0.04
swim 99.98 0.00 0.02 0.00
twolf 98.60 0.00 1.40 0.18
vpr 99.74 0.00 0.26 0.03

wupwise 99.98 0.00 0.02 0.00

[ ayg [ 9.8 ] 240 | 182 | 0.26 |

Table 5. Space overhead of security tags. The

percentages of pages with per-page tags, per-
quadword tags, and per-byte tags are shown. Fi-
nally, Over head representsthe space required for
security tags compared to regular data. All num-
bers are in percentages.

ever, given that we have only 0.21% overhead for security
tags, small tag caches do not hurt the performance for Pol-
icy 1 as shown in Figure 6.

7 Tracking Computation Dependency

In Policy 2, we track computation dependency in ad-
dition to the other dependencies. For the attacks that we
tested, Policy 1 was sufficient because these attacks do not
use any computation dependency. In fact, we could not find
any real world attacks that require computation dependency
for detection. However, we believe that some vulnerable
programs will need the stronger policy with computation
dependency for protection against buffer overflow and for-
mat string attacks.

For example, consider the following buffer overflow vul-
nerability.

int filter(void)

{
char buf [ 256];
int i =0;
fgets(buf);
while (buf[i]) {
buf[0] = 0.5*buf[i] + O0.5*buf[i+1];
i ++;
}
}
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In this example, the function gets an input string and filters
the string. Unfortunately, the bound of buf is not checked
in f get s and attackers can overwrite the stack near the
buffer. What is different in this example is that the pro-
gram performs computation on the buffer, again, without
checking the bound of the buffer. As a result, the overwrit-
ten return address will not be detected without computation
dependency.

Tag propagation basics for computation dependency
were described in Table 1. In addition, some instructions
need to be treated specially. We also require additional soft-
ware support to detect legitimate uses of spurious data.

7.1 Legitimate Use of Spurious Data

In general, programs should not use spurious data as
jump targets and load/store addresses since they cannot pre-
dict the resultant behavior. However, after explicit bound
checking, programs may use spurious data for these pur-
poses to implement efficient control structures. For exam-
ple, the swi t ch statement in C, jump tables, and dynamic
function pointer tables often compute pointers to case
statements or table entries directly from spurious inputs. In
these cases, spurious data effectively becomes authentic be-
cause its bound is explicitly checked.

dl r2, 56(r0) #r2 € MEM[r0+56)
cmpule r2, 20, r3 #r3 € (r2 <= 20)
beq r3, default # branch if (r3 == 0)
Idah 28, 1(gp) # Load ptr to table
sd4addq r2, r28, r28 #128 < r28 + 4*r2
[dl r28, offset(r28) # Load ptr
addq r28, gp, r28 #1r28 €< r28 + gp
jmp (r28) # go to a case

case 0: ...

case 1: ...

Bound checking

default:

Figure 7. A switch statement with a jump table.

As an example, Figure 7 shows a code segment from a
SPEC benchmark, which implements a switch statement us-
ing a jump table. A potentially spurious value is loaded into
r 2, and checked to be smaller or equal to 20 (bound check).
If the value is within the range, it is used to access an entry
in a jump table; r 28 is loaded with the base address of a
table, and r 2 is added as an offset. Finally, a pointer in the
table is loaded into r 28 and used for jump. Since this is
a legitimate use of spurious information, tracking the spu-
rious flows for computation and load-address dependency
will result in a false alarm.

One possible solution for this problem is to have com-
pilers mark these legitimate uses as safe. However, this
approach will require re-compilation of each program. In-
stead, the tag propagation scheme is slightly modified to



identify safe computations on spurious data, and a simple
software algorithm is used to statically inspect the binary
executable and mark safe loads (binary annotation).

Sp:argus Loaded data
F i Checked
§ AND/OR, § Intermediate
§ compare 3 s
: Safe ; I
e ‘ / v
- Conditional
Intermediate Intermediate branch

values values

] —

Use: Use:
jump target, jump target,
load address, load address,
store address store address

(a) AND/OR, compare operations (b) Conditional branches

Figure 8. Legitimate uses of spurious data.

There are two possible ways for programs to ensure that
spurious data is safe to use. First, before the use, programs
can perform special operations on the data that only produce
restricted results. Figure 8 (a) shows this case. For example,
AND R1, R2, #7 can only produce the result between
0 and 7, and compare operations only have two possible
results: true and false. Thus, these operations effectively
produce a bound-checked result.

We deem two types of operations as bound checking:
AND/OR and compare. For these operations, the tag propa-
gation is slightly modified. The processor marks the results
as spurious only if both inputs are spurious; the output is
authentic if an input is authentic or an immediate.

The second way to ensure the safety of spurious data is
to check the bound using conditional branches as shown in
the switch example. Figure 8 (b) illustrates the case. To
detect these bound checks, we use a simple software algo-
rithm to inspect and annotate the binary before execution.
Load instructions are modified to have one hint bit (safety
bit) indicating whether the bound of the value loaded will
be checked with conditional branches or not. At run-time,
if the processor reads a spurious value using a load instruc-
tion with the safety bit set, the value is tagged authentic.

The annotation can be done once when the binary is in-
stalled to a system and saved in the hard disk. Or the oper-
ating system can annotate a program in memory as a part of
a load process. In the latter case, the scheme is transparent
to executables.

Figure 9 summarizes the software algorithm to annotate
the binary. First, the algorithm walks through the program
ignoring any jump or branch. If a conditional branch is
found, the algorithm backtracks the dependency chain for
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For every conditional branch (Bxx Ri, target) in the program,
1. S={Ri};
2. addr = the address of the branch - 4;
3. while ((S # 0) && (S # {RO}) && (addr >text_base)) {

inst = the instruction at address addr;
if (¢nst == jump or branch) break;

if ((inst == Op Rd, Rsl, Rs2) &&
(Rd € S) && (R4 # RO)) {

S=9-{rRd} + {Rs1,Rs2};
}

if ((inst == Op Rd, Rs, #Imm) &&
(Rd € S) && (R4 # RO)) {

S=5-{Rrd} +{Rs};

}

if ((inst == load Rd, Imm(Rs)) && (Rd € S) {
Set the safety bit of the load;
S=5-{rd};

}
addr = addr — 4.

}

Figure 9. Safe load annotation algorithm. Some
details omitted for clarity.

the branch condition and marks all the loads that contribute
to it as safe.

The backtracking is quite simple. The annotation algo-
rithm uses a set S to track all the registers that contribute
to the branch condition, and attempts to find all the load
instructions that can affect the value in the branch register.
Moving backward from the instruction right before the con-
ditional branch, the algorithm adds the source registers of an
instruction to .S and removes the destination reigster from .S
when the instruction is a part of the dependency chain to the
conditional branch. When the algorithm encounters a load
that reads a value into a register in S, the load is marked as
safe.

Finally, if the algorithm encounters a jJump or a branch, it
aborts backtracking for the current conditional branch and
finds the next conditional branch. This is a conservative ap-
proach to ensure that we annotate loads only if we can guar-
antee that the conditional branch is always reached after the
loads. In our SPEC benchmarks, this conservative scheme
is enough to detect all legitimate uses of spurious values
since the values are checked right after they are loaded from
memory.



7.2 Memory Space Overhead for Policy 2

The additional hardware cost of Policy 2 relative to Pol-
icy 1 is the extra safety bit required for the load instructions.

We now evaluate Policy 2 for memory space overhead.
The results are summarized in Table 6. With the compu-
tation dependency tracked, the amount of spurious data is
often significant. In fact, there may be more spurious data
than authentic data as indicated by the 27% per-page tags
average. However, even in this case, most memory accesses
are done in quadword granularity and the space overhead
of tagging can be kept small. For example, ten out of sev-
enteen benchmarks had less than 2% space overhead. On
average, for Policy 2, the space overhead is 4.5% for the
chosen SPEC benchmarks.

Policy 2 (%)

Benchmark || Per-Page | Per-QWord [ Per-Byte | Overhead
ammp 1.58 4.58 93.84 11.80
applu 0.94 99.02 0.03 1.55
apsi 60.38 39.55 0.07 0.63
art 6.45 75.60 17.94 3.42
crafty 97.70 0.00 2.30 0.29
eon 79.73 6.76 13.51 1.79
equake 3.44 31.93 64.64 8.58
gzip 52.53 43.72 3.75 1.15
mcf 0.09 99.88 0.03 1.56
mesa 46.26 0.08 53.66 6.71
mgrid 1.61 98.27 0.12 1.55
parser 1.55 0.11 98.34 12.29
sixtrack 79.13 19.66 1.21 0.46
swim 0.49 99.47 0.04 1.56
twolf 2211 5.61 72.28 9.12
vpr 1.04 1.47 97.49 12.21

wupwise 0.53 99.43 0.04 1.56

| avg I 26.80 | 42.66 | 30.55 | 4.48 |

Table 6. Space overhead of security tags. The

percentages of pages with per-page tags, per-
quadword tags, and per-byte tags are shown. Fi-
nally, Over head representsthe space required for
security tags compared to regular data. All num-
bers are in percentages.

7.3 Performance Overhead for Policy 2

We evaluate the performance overhead of Policy 2 com-
pared to the baseline case without any protection mecha-
nism. As before, experimental results (IPCs) in figures are
normalized to the IPC for the baseline case without any se-
curity mechanism.

Figure 5 shows the performance overhead of Policy 2 for
various L2 cache sizes. As before, the tag caches are always
one-eighth of the corresponding caches for instruction and
data. For Policy 2, the protection scheme only incurs 0.8%
performance degradation on average, and 6% in the worst
case of t wol f .
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Figure 11 shows the performance under different tag
cache sizes. Even for Policy 2, smaller tag caches work
in most cases without imposing a significant performance
cost. In the figure, we observe that IPCs are stable with the
size of L2 tag cache in the range of 1/8 (128 KB) to 1/32 (32
KB) of the unified L2 cache size. Only when the program
has a large number of per-byte tags as in armp, par ser
and t wol f, the size of a tag cache can affect the perfor-
mance significantly.

This degradation is mainly due to the fact that we de-
lay the use of data until the corresponding tag is ready. If
we assume a mechanism to decouple data and tag compu-
tations, even t wol f with a 32 KB tag cache has only 5%
performance degradation. Other benchmarks such as amrmm,
par ser,and vpr show less than 1% degradation if the tag
access latency is ignored.

8 Related Work

Recent works have proposed hardware mechanisms to
prevent stack smashing attacks [18, 9]. In these approaches,
a processor stores a return address in a separate mem-
ory location and check the value in the stack on a return.
Unfortunately, this approach only works for very specific
types of stack smashing attacks that modify return addresses
whereas our mechanism is a general way to prevent a broad
range of attacks.

Our tagging mechanism is similar to the ones used for
hardware information flow control [14]. The goal of the in-
formation flow control is to protect private data by restrict-
ing where that private data can flow into. In our case, the
goal is to track a piece of information so as to restrict its
use, rather than restricting its flow as in [14]. Although the
idea of tagging and updating the tag on an operation is not
new, the actual dependencies we are concerned with are dif-
ferent, and therefore our implementation is different.

Secure processors such as XOM [10] and AEGIS [16]
target secure execution environments for programs. How-
ever, they assume that protected programs are well-written,
and are still vulnerable to attacks exploiting software bugs
such as buffer overflows and format strings. Because a pro-
cess within a secure compartment overwrites a memory lo-
cation, these attacks are not prevented.

There have been a number of software approaches to pro-
vide automatic detection and protection against buffer over-
flow and format string attacks. We briefly summarize some
successful ones below.

StackGuard [3], StackShield [17] are both compiler
patches that are targeted to prevent stack smashing attacks.
Both techniques only work for specific type of buffer over-
flow attacks that modify a return address in a stack, and re-
quire recompilation. Kernel patches such as StackGhost [5]
and the patches described in [4] and in PaX [13] have been
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Figure 11. Performance degradation for Policy 2 with small L2 tag caches (1-MB unified L2 cache).

successful against preventing some types of attacks. How-
ever, these techniques cannot be used for applications with
legitimate use of dynamically generated code such as just-
in-time compilation. FormatGuard [2] is a library patch
for eliminating format string vulnerabilities. It is applica-
ble only to functions that use the standard library functions
directly, and it also requires recompilation.

Program shepherding [8] monitors control flow transfers
during program execution and enforces a security policy.
Our scheme also restricts control transfers based on their
target addresses at run-time. However, there are significant
differences between our approach and program shepherd-
ing. First, program shepherding is implemented based on a
dynamic optimization infrastructure, which is an additional
software layer between a processor and an application. As a
result, program shepherding has high overheads. The space
overhead is reported to be 16.2% on average and 94.6% in
the worst case, compared to 4.5% and 12.5% in our case.
Program shepherding also incurs up to 7.6X performance
slowdown.

The advantage of having a software layer rather than a
processor itself checking a security policy is that the poli-
cies can be more complex. However, a software layer with-
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out architectural support cannot determine a source of data
since it requires intervention on every operation. As a re-
sult, the existing program shepherding schemes only allows
code that is originally loaded, which prevents legitimate use
of dynamic code. If a complex security policy is desired,
our dynamic information flow tracking mechanism can pro-
vide sources of data that can be used as part of a security
policy in program shepherding.

9 Conclusion

The paper presented a hardware mechanism to track dy-
namic information flow and applied this mechanism to pre-
vent malicious software attacks. In our scheme, the operat-
ing system identifies spurious input channels, and a proces-
sor tracks the spurious information flow from those chan-
nels. A security policy concerning the use of the spuri-
ous data is enforced by the processor. Experimental results
demonstrate that this approach is effective in automatic de-
tection and protection of security attacks, and very efficient
in terms of space and performance overheads.

We have only discussed how the information flow track-
ing can prevent attacks that try to take control of a vulner-



able program. However, the technique to identify spurious
information flow can be used to enhance other aspects of
security such as data integrity. For example, the current ap-
proach only detects attacks with malicious control transfers.
If we can disallow changing a security-sensitive memory
segment based on spurious data, it will be also possible to
protect the integrity of that segment. We plan to investigate
other applications of information flow tracking with more
complicated security policies.
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