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Abstract

Trees and graphs are widely used to model biologi-
cal databases. Providing efficient algorithms to sup-
port tree-based or graph-based querying is there-
fore an important issue. In this paper, we propose
an optimal algorithm which can answer the follow-
ing question: “Where do the root-to-leaf paths of
a rooted labeled tree Q occur in another rooted la-
beled tree T?” in time O(m + Occ), where m is
the size of Q and Occ is the output size. We also
show the problem of querying a general graph is
NP-complete and not approximable within nk for
any k < 1, where n is the number of nodes in the
queried graph, unless P = NP.

1 Introduction

Trees and graphs have been widely used to model
data with complicated structures or relationships,
such as XML, Web, and structured documents [11].
The applications in life sciences also arise naturally,
such as the biological databases representing molec-
ular graphs, taxonomy, and pathways. The issue of
querying tree-based or graph-based databases effi-
ciently is therefore very important and attracts a
lot of attention [3, 4, 6, 12].

In this research, we first investigate how to query
tree-based biological databases, such as the newly
released KEGG Glycan database for glycan struc-
tures which contains thousands of tree-structured
entries [1]. More formally, given a database com-

∗To whom all correspondence should be sent.

posed of a rooted labeled tree1 T and a query com-
posed of a rooted labeled tree Q, we intend to iden-
tify where each root-to-leaf path of Q occurs in
T . This problem is named as the TRPF problem
(Tree version of Root-to-leaf Path Finding prob-
lem). An algorithm with optimal querying time for
the TRPF problem is proposed.

We also consider the situation where the database
is represented as a complex graph, such as the reg-
ulatory pathway. It can be first converted into a
directed labeled graph by the following steps: 1)
Determine the similarity between genes by the se-
quence alignment approach [8] and give the same
label to similar genes. 2) Construct a correspond-
ing pseudo-node ḡ labeled with ¬L(g) for each gene
g labeled with L(g). 3) If there exists an inhibi-
tion edge from g1 to g2, delete that inhibition edge
and add an activation edge from g1 to ḡ2. Figure 1
shows an example of converting part of the regu-
latory pathway “map04210hsa” in KEGG [9] to a
directed labeled graph.2 Based on a set of regula-
tory pathways which have been represented as di-
rected labeled graphs, some interesting paths can
be extracted and stored collectively as a tree, as il-
lustrated in Figure 2. For an unfamiliar pathway,
we could get more insight on its structure and func-
tionality by pointing out where those paths stored
in the collected tree occur in that pathway.

The application stated above motivates the more

1If the database is a forest, we can attach a pseudo root
to connect all the trees.

2CASP2, CASP7, CASP8 are assumed to be similar and
labeled with C. The other nodes are labeled with their first
character. Pseudo-nodes without edges are omitted in this
figure.
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Figure 1: Representing a pathway as a directed la-
beled graph.
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Figure 2: Representing a set of paths as a tree.

general problem, where the database to search is
a directed labeled graph G, and we want to iden-
tify where the root-to-leaf paths of a rooted labeled
tree Q occur in G. This is named as the Root-to-
leaf Path Finding (RPF ) problem. We show this
problem is NP-complete and is not approximable
within nk for any k < 1, where n is the number of
nodes in G, unless P = NP. Since the RPF prob-
lem is hard in general, a feasible solution in practice
might be converting the RPF problem to a slightly-
less-accurate TRPF approximation by considering
the spanning tree of the queried graph.

The rest of this paper is organized as follows. Sec-
tion 2 discusses some related researches. The for-
mal definitions of the RPF and TRPF problems
are given in Section 3. Section 4 describes an algo-
rithm for the TRPF problem and Section 5 proves
the hardness of the RPF problem. Section 5 con-
cludes the paper with a few remarks.

2 Related Work

Multi-disciplinary research results are relevant to
this research, and we describe a few here. The al-
gorithm proposed in this paper is mainly based on
the approach in [10], which applies the suffix tree for
efficient document retrieval. The well-established
genomic databases represent data as a sequence of
codes and querying is supported by sequence align-
ment algorithms [8]. Powerful query languages are

studied for next-generation database applications,
such as in the mobile environment [2].

There is also a huge amount of research results
in the field of XML query processing which is re-
lated to our research, since the XML document and
the XML query are usually represented as trees.
However, their researches differ from ours in sev-
eral ways due to the characteristics of XML. For
example, we allow the root of the path in the query
tree to match any point of the data tree, but the
simple path in the XML query tree needs to match
the root of the XML data tree. We will only discuss
the research results of some representative papers in
the following for comparison.

The Index Fabric indexing structure is proposed
in [4] to accelerate the searching of root-to-leaf
paths in the XML data tree which satisfy the query.
Their method is based on layered Patricia tries to
efficiently handle a large amount of disk-based data.
The ViST indexing structure proposed in [12] is
based on the notation of suffixes and uses the tree
structure as the unit of querying to avoid join op-
erations. Some researchers represent an XQuery
expression as the generalized tree pattern (GTP),
and the problem of evaluating an XQuery expres-
sion is reduced to the problem of finding matches
for its GTP representation [3]. The time complexity
of evaluating XPath is discussed in [6]. The full-
fledged XPath 1.0 expressions could be processed
in time O(|D|4 ∗ |Q|2), where |D| is the size of the
database and |Q| is the size of the query, and the
most common Core XPath Fragment can be effi-
ciently processed in time O(|D| ∗ |Q|).

3 Preliminaries

We define the problem formally and provide the
background knowledge for solving the problem.

Given a finite alphabet Σ = {l1, l2 . . . l|Σ|}, we call
G = (V, E,L) a directed labeled graph if (V, E) is a
directed graph and L : V → Σ is a labeling function.
Similarly, we call T = (V,E, r, L) a rooted labeled
tree if (V, E, r) is a rooted tree and L is a labeling
function. Both the directed labeled graph and the
rooted labeled tree are called directed labeled struc-
tures. Given two directed labeled structures G1 and
G2, we say a path p′ of G2 occurs at G1’s node v
iff there exists a simple path p of G1 starting from
v such that the concatenation of labels on p is the
same as p′. For convenience, we let labels(p) denote
the concatenation of labels on a simple path p. If v
is a node of a rooted labeled tree, σ(v) denotes the
path from the root to v.
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Figure 3: An example of a suffix tree.

Problem 1 The Root-to-leaf Path Finding (RPF )
problem: Given a directed labeled graph G =
(V, E,L) and a rooted labeled tree Q with leaves
(l1 · · · l`), the goal is to output (Occ1 · · ·Occ`),
where Occi = {v|σ(li) occurs in G at node v ∈ V}
for i = 1 · · · `.

Problem 2 The Tree version of the RPF (TRPF )
problem: Given a rooted labeled tree T = (V, E, L, r)
and a rooted labeled tree Q with leaves (l1 · · · l`),
the goal is to output (Occ1 · · ·Occ`), where Occi =
{v|σ(li) occurs in T at node v ∈ V } for i = 1 · · · `.

The query Q in both problems is in the form of
a rooted labeled tree. The difference is that the
database to search is a directed labeled graph in
Problem 1, and is a rooted labeled tree in Problem
2. In the following, we introduce the data structure
used to solve the TRPF problem.

Definition 1 Let S be a string ended with a special
symbol “$” which is not in the alphabet. A suffix
tree ST for S is a rooted tree with |S| − 1 leaves
numbered from 1 to |S| − 1, and each edge of ST is
labeled with a pair of integers such that the following
two conditions are satisfied: (1) If (g, h) and (i, j)
are the labels of two edges out of the same node,
S[g] 6= S[i]. (2) For each leaf node l of ST with the
number i, if (i1, j1), (i2, j2), . . . , (ik, jk) are the edge-
labels on the path from the root to l, then the con-
catenation of S[i1 . . . j1], S[i2 . . . j2], . . . , S[ik . . . jk]
spells out S[i . . . |S|].

Figure 3 shows the suffix tree for the string [A B
A B $], where the path from the root to the leaf
numbered with k will correspond to the kth suffix
of S. For example, the shaded path corresponds to
the third suffix of S, i.e., [A B $]. A linear time
algorithm of constructing a suffix tree for an input
string could be found in [7].

4 Algorithms for TRPF

Now we introduce the algorithms for solving TRPF.
Algorithm Preprocessing constructs the suffix
tree with indexing structures based on the input
tree in O(n2), where n is the number of nodes in the
input. Algorithm Querying can then identify the
paths of the query tree in the suffix tree in O(m +
Occ), where m is the number of nodes in Q and
Occ is the output size. We will first explain the
algorithms and then analyze the time complexity.

4.1 Preprocessing

The queried tree T is first augmented to T ′ as in
Figure 4.3 A suffix tree ST will be built based on
the concatenation of all root-to-leaf paths of T ′, and
each leaf node ` of ST is “colored” with the positive
integer k if ` corresponds to the path of T ′ starting
from the node with ID k. All the colors on leaves of
ST are collected into an array C from the leftmost
leaf to the rightmost leaf, and each leaf is labeled by
[i, i] if its color is represented by the ith entry of C.
By depth-first traversal of ST , we then label each
internal node with [l, r], if its leftmost descendant
leaf has the label [l, l] and the rightmost descendant
leaf has the label [r, r]. The last step is to build an
indexing structure on C, such that for any interval
[l, r], we can output the set of distinct colors, i.e.,
distinct node ID’s, in C[l, r] efficiently. The detailed
steps of the algorithm are listed as follows:

Algorithm Preprocessing
Input: A rooted labeled tree T on Σ .
Output: (ST, S, C).
0 for each leaf ` of T
1 add a new child with label $ to `;
2 end for
3 T ′ ← T ;
4 P ← concatenate all root-to-leaf paths of T ′;
5 S ← labels(P );
6 ST ← build the suffix tree of S;
7 for each leaf ` of ST /* from left to right*/
8 color ` with P [num] if `′s number is num;
9 C[i] ← P [num] /* i has initial value 1*/
10 assign label [i, i] to `;
11 i ← i + 1;
12 end for
13 for each internal node v
14 [l, l] ← v′s left-most-descendant-leaf’s label;
15 [r, r] ← v′s right-most-descendant-leaf’s label;
16 assign label [l, r] to v;

3The symbol “$” is assumed to be not in the alphabet.
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Figure 4: An illustrative example of Algorithm Preprocessing.

17 end for
18 build the indexing structure on C;
19 output (ST, S,C);

Figure 4 shows an illustrative example. Note that
the root-to-leaf path in ST where the leaf node is
numbered with i, corresponds to the path starting
from the node P [i] in the tree T ′. For example, the
leaf node of the shaded path in ST is associated with
the number 3 and colored with 3. This path repre-
sents [A$ABB$AAA$] and exactly corresponds to
the following path in T ′: 3 → 7.

The time complexity of the algorithm is analyzed
in the following. Lemma 1 guarantees the efficiency
of building the supplement indexing structure on C
(line 18). Based on Lemma 1, the time complexity
is shown to be quadratic.

Lemma 1 [10] Let C be a positive integer array. If
C[i] ≤ |C| for all i, there exists an O(|C|) time al-
gorithm to build an index structure on C such that
for any interval [l, r], we can output the set of dis-
tinct numbers in C[l, r] within time O(d), where d
is the output size.

Theorem 1 The time complexity of Algorithm
Preprocessing is O(n2), where n is the number of
nodes in the queried tree.

Proof. T ′ has at most n root-to-leaf paths and the
length of each root-to-leaf path is at most n + 1, so

|P | = |S| = O(n2 + n) = O(n2). It follows that the
time complexity of building the corresponding ST
is O(n2). The size of C is equal to the number of
leaves in ST , so |C| = O(n2). According to Lemma
1, it takes O(|C|) = O(n2) to preprocess C. The
total time complexity could be concluded as O(n2).
¤

4.2 Querying

Given a rooted labeled tree Q on Σ with leaves
l1 · · · l`, we describe how to find (Occ1 · · ·Occ`),
where Occi = {v|σ(li) occurs in T at node v ∈ V }
for i = 1 · · · `. Without loss of generality, we assume
that the root of Q has the label ε which denotes the
empty string and is not in Σ.

The first step of the algorithm is to match Q with
ST , which is done by traversing Q in the depth-first
order as follows: First set p as the position of the
root of ST . Whenever we step downward to a node
v in Q, we also step downward in ST from p to find
the position p′ in ST , such that p′ corresponds to
σ(v). If p′ is found, we set the match point of v
as p′, and reassign p as p′. If no such p′ exists, we
backtrack from v to process other nodes, and assign
p as the match point of v′s parent, if v is not the
root of Q; otherwise the procedure stops.

After finding all the match points for Q, suppose
that mk is the match point for the leaf lk. We will
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Figure 5: An illustrative example of Algorithm
Querying.

identify the nearest node below (including) mk in
ST and suppose its label is [ik, jk]. We can then
obtain Occk by determining the distinct colors on
mk’s descendant leaves, which will be the distinct
colors in C[ik, jk].

Algorithm Querying
Input: Q = (V ′, E′, r′, L′) with leaves { l1 · · · l`}.
Output: (Occ1 · · ·Occ`).
1 match the tree Q with ST ;
2 for k := 1 to l do
3 mk ← match point of lk in ST ;
4 if mk 6= NULL
5 N ← the nearest node not above mk ;
6 [ik, jk] ← label of N ;
7 else
8 [ik, jk] ← [0, 0];
9 end if
10 end for
11 for each leaf k ∈ {1 · · · `}
12 Occk ← distinct colors in C[ik, jk];
13 end for
14 output (Occ1 · · ·Occ`);

Continue the example as illustrated in Figure 4.
Suppose the query tree is the one shown in the bot-
tom of Figure 5. Take the leaf node l3 as an ex-
ample. Its corresponding match point in ST will
be the node labeled with [7, 9]. Since C[7, 9] =

[2 2 4], we output the distinct colors from the range
and obtain occ3 = {2, 4}.

Theorem 2 The time complexity of Algorithm
Querying is O(m + Occ), where m is the size of
the query and Occ is the output size.

Proof. The time to match Q with ST is O(m).
According to Lemma 1, it takes O(dk) time to out-
put the set of distinct colors in C[ik, jk] for each k,
where dk is the output size. Therefore, the total
time complexity is O(m) + O(d1) + · · · + O(d`) =
O(m + Occ), where Occ is the output size. ¤

5 Analysis of RPF

We define the Decision version of the RPF
(DRPF ) problem as follows: Given a directed la-
beled graph G, a rooted labeled tree Q with leaves
(l1 · · · l`), and a positive integer k, is (|Occ1| +
|Occ2|+ ... + |Occ`|) ≥ k ?

Theorem 3 The DRPF problem is NP-complete.

Proof. It is clear DRPF ∈ NP, so we only have to
show how to reduce the Hamiltonian path problem
[5] to DRPF . Given a graph G = (V,E), let G′ =
(V, E′, L) be a directed labeled graph such that: 1)
{v1, v2} ∈ E iff (v1, v2) and (v2, v1) ∈ E′ for all
v1, v2 ∈ V and 2) each node in G′ has the same
label. Let Q be a rooted labeled tree such that: 1)
Q has only one leaf, 2) each node of Q has the same
label as G′, and 3) the number of nodes in Q is |V |,
so Q is just a path of length |V |. It is easy to see
that G has a Hamiltonian path iff DRPF (G′, Q, 1)
is “yes”. ¤

We define the Optimization version of the RPF
(ORPF ) problem as follows: Given a directed la-
beled graph G to be queried and a rooted labeled
tree Q with leaves ( l1 · · · l`), S1 · · ·S` is a feasible
solution iff if v ∈ Si then σ(li) occurs in G at node v
for i = 1 · · · `. The goal is to find a feasible solution
such that the cost (|S1| + |S2| + · · · + |S`| + 1) is
maximun.

Theorem 4 Let n be the number of nodes in the
queried graph. The ORPF problem is not approx-
imable within ρ(n), where ρ(·) is any function with
two constants c1 and c2 such that xy ≥ ρ(xy+1) if
x > c1 and y ≥ c2.



Proof. Assume there is a polynomial time ρ(n)-
approximation algorithm A for ORPF . We shall
describe a polynomial time algorithm for the Hamil-
tonian path problem, so that we can conclude the
assumption is wrong unless P = NP.

Given a graph G, let n be the number of nodes
in G. If n ≤ c1 then we can determine whether G
has a Hamiltonian path by enumerating all simple
paths in G. Otherwise we construct G′ and Q as in
the proof of Theorem 3. Obtain G′′ by copying G′

nc2-times. Let C = cost(A(G′′, Q)). If C > 1 then
return “Yes” else return “No” .

It is clear this algorithm runs in polynomial time
and is correct when n ≤ c1. We now show this
algorithm is also correct when n > c1. Let C∗ be
the cost of the optimal solution of ORPF (G′′, Q).
According to our assumption, we know (C∗/C) ≤
ρ(nc2+1). If G has a Hamiltonian path, then C∗ ≥
nc2 +1 > ρ(nc2 +1). Therefore, C has to be greater
than 1 to make (C∗/C) ≤ ρ(nc2 + 1). If G does
not have a Hamiltonian path, clearly C∗ = C = 1.
¤

Corollary 1 Let n be the number of nodes in the
queried graph. The ORPF problem is not approx-
imable within nk for any k < 1, unless P = NP.

6 Concluding Remarks

We expect that trees and graphs will play an im-
portant role in biological data archives in the post-
proteomic era. In this paper, an efficient algorithm
is proposed to solve the TRPF problem and the
RPF problem is proven to be hard. We close this
paper by mentioning some directions for future re-
search: 1) improving the preprocessing time for the
TRPF problem, and 2) finding an efficient algo-
rithm for the RPF problem when the queried graph
is acyclic.
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