
Autonomous Visual Model Building based on 
Image Crawling through Internet Search Engines 

Xiaodan Song 
Department of Electrical 

Engineering                         

   University of Washington,  
Box 352500, Seattle, WA 

98195, USA 
song@ee.washington.edu 

Ching-Yung Lin 
IBM T.J. Watson Research  

Center                           

    19 Skyline Drive, Hawthorne, 
NY 10532,  

USA  
cylin@watson.ibm.com

Ming-Ting Sun 
Department of Electrical 

Engineering                         

University of Washington,  
Box 352500, Seattle, WA 

98195, USA 
sun@ee.washington.edu 

 
 

ABSTRACT 
In this paper, we propose an autonomous learning scheme to 
automatically build visual semantic concept models from the 
output data of Internet search engines without any manual 
labeling work. First of all, images are gathered by crawling 
through the Internet using a search engine such as Google. Then, 
we model the search results as “Quasi-Positive Bags” in the 
Multiple-Instance Learning (MIL) framework. We call this 
generalized MIL (GMIL). We propose an algorithm called “Bag 
K-Means” to find the maximum Diverse Density (DD) without 
the existence of negative bags. A cost function is found as K-
Means with special “Bag Distance”. We also propose a solution 
called “Uncertain Labeling Density” (ULD) which describes the 
target density distribution of instances in the case of quasi-
positive bags. A “Bag Fuzzy K-Means” is presented to get the 
maximum of ULD. By this generalized MIL with ULD, the 
model for a particular concept is learned from the crawled 
images of the Internet search engines. Experiments show that 
our algorithm can get correct models for the concepts we are 
interested in. Compared to the original Google Image Search, 
our algorithm shows improved accuracy.  
 
Categories and Subject Descriptors 
H.3.3 [Information Storage And Retrieval]: Information 
Search and Retrieval—retrieval models 

General Terms 
Algorithms 

Keywords 
Content-based Image Retrieval, Cross-Modality, Automatic 
Training, Multiple-Instance Learning, Uncertain Labeling 
Density, Quasi-Positive Bag, Image Crawling 
 
1. INTRODUCTION 
As the amount of image data increases, content-based image 
indexing and retrieval is becoming increasingly important. 
Semantic model-based indexing has been proposed as an 

efficient method, which matches human experience in search. 
Supervised learning has been used as a successful method to 
build generic semantic models  [11].  This approach performed 
best in the NIST TRECVID concept detection benchmarking in 
2002 and 2003 [17][11]. However, in this approach, tedious 
manual labeling is needed to build tens or hundreds of models 
for various visual concepts. For example, in 2003, 111 
researchers from 23 institutes spent 220+ hours to annotate 63 
hours of TREC 2003 development corpus [16]. This manual 
annotating process is time- and cost- consuming, and, thus, 
makes the system hard to scale.  Even with this enormous 
labeling effort, any new instances not previously labeled would 
not be able to be dealt with. Semi-supervised learning or partial 
annotation was proposed to reduce the involved manual effort 
[21][22]. Once the database is partially annotated, traditional 
pattern classification methods are often used to derive semantics 
of the objects not yet annotated. However, it is not clear how 
much annotation is sufficient for a specific database, and what 
the best subset of the objects to be annotated is. It is desirable to 
have an automatic learning algorithm, which totally does not 
need the costly manual labeling process. 
The work we proposed in [1] tries to solve this problem by 
making use of the correlation between audio and visual data in 
video sequences. The correlation between the textual and the 
visual modalities for the huge amount of image data available on 
the web would be another possibility for our autonomous 
learning scheme to build models for concepts for content-based 
retrieval.  Recently, some Internet search engines have 
supported image searches.  Among them, Google's Image Search 
is the most comprehensive on the Web, with more than 150 
million images indexed and available for viewing. Google 
gathers a large collection of images for its search engine by 
analyzing the text on the page adjacent to the image, the image 
caption, and dozens of other factors to determine the image 
content. Google also uses sophisticated algorithms to remove 
duplicates, and to ensure that the most relevant images are 
presented first in the results.  Traditionally, relevance feedback 
technique is involved for image retrieval based on these 
imperfect data [18][19][20]. Widely used in text retrieval 
[23][24], relevance feedback was first proposed by Rui et al [18] 
as an interactive tool in content-based image retrieval. Then, it 
becomes a powerful tool and a major focus of research for 
bridging the gap between low-level features and high-level 
semantics. During the retrieval process, the user interactively 
selects the most relevant images and provides a weight 
according to the preference for each relevant image. By 
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 Figure 1. The framework for autonomous concept learning based on image crawling through Internet search engines 

dynamically updating weights based on the feedback, user's high 
level query and perception subjectivity is captured. Relevance 
feedback moves the query point towards the relevant objects or 
selectively weighs the features in the low-level feature space 
based on user feedback. However, relevance feedback still needs 
human involvements. Thus, it is very difficulty, if not 
impossible, to build a large amount of models based on 
relevance feedback. In this paper, we propose a solution to this 
major obstacle of machine learning. We show that it is possible 
to automatically build up the models without any human 
intervention for various concepts for future search and retrieval 
tasks.   
       Our scheme is based on the Multiple Instance Learning 
(MIL) approach. MIL was recently proposed for machine 
learning to solve the ambiguity in the manual labeling process 
by making weaker assumptions about the labeling information 
[2][3][4]. In this learning scheme, instead of giving the learner 
labels for individual examples, the trainer only labels collections 
of examples, which are called bags. A bag is labeled negative if 
all the examples in it are negative. It is labeled positive if there 
is at least one positive example in it. The key challenge in MIL 
is to cope with the ambiguity of not knowing which instances in 
a positive bag are actually positive and which are not. Based on 
that, the learner attempts to find the desired concept.  

MIL helps to deal with the ambiguity in the manual 
labeling process. However, users still have to label the bags in 
the MIL framework. To prevent the tedious manual labeling 
work, we need to generate the positive bags and negative bags 
automatically. In practical applications, it is very difficult if not 
impossible to generate the positive bags reliably.  Also, negative 
bags are often not available. In this paper, we propose a 
Generalized MIL (GMIL) concept by introducing “Quasi-
Positive bags” to remove the strong requirement of using strictly 
positive bags in the MIL framework. In the GMIL framework, 
we also avoid the strong dependency on the negative bags. 
Maron et al. proposed a Diverse Density algorithm as an 
efficient solution for MIL [2]. In this paper, we first propose an 
efficient algorithm called “Bag K-Means” to find the maximum 
Diverse Density (DD) with the absence of negative bags. We 
develop a cost function, which uses K-Means with a special 
“Bag Distance”. We also propose “Uncertain Labeling Density” 
(ULD) to resolve the “quasi-positive bags” issues in the 
generalized MIL problem. Compared to DD, ULD pays more 

attention to the structure of the “Quasi-Positive bags” instead of 
depending on the distribution of the negative instances like 
many traditional MIL algorithms do. A “Bag Fuzzy K-Means” is 
proposed to efficiently get the maximum of ULD. Compared to 
what we proposed in [1], a more general formulation for ULD 
and theoretical analysis is given in this paper.  Based on our 
proposed GMIL and ULD approach, we propose an automatic 
learning scheme to generate models automatically for various 
concepts from cross-textual and visual information.  

The overall process of the cross-modality automatic 
learning scheme is shown in Figure. 1. First of all, images are 
gathered by image crawling from the Google search results. 
Then, using the GMIL solved by ULD, the most informative 
examples are learned and the model of the named concept is 
built. This learned model can be used for concept indexing in 
other test sets. One of the applications is to use it as a ”quasi-
relevance feedback” mechanism, which can be used to improve 
the accuracy of the original retrieved image dataset. For instance, 
a revised relevance score rank list can be generated by the 
distance from the model and the retrieved image dataset. This 
can also be used to improve the retrieval accuracy.  

The rest of this paper is organized as follows. In Section 2, 
we briefly review MIL and generalize it by introducing “Quasi-
Positive bags” so that the learning process can be done based on 
the cross-modality correlation without any manually labeling 
work. In Section 3, DD for solving the MIL problem is 
introduced. The MIL is then generalized to allow false-positive 
bags, and ULD is proposed to solve the generalized MIL 
problem. Both theoretical and experimental analyses are given 
for ULD. The details of our autonomous learning algorithm are 
described in Section 4. Finally, experimental results and 
conclusions are given in Sections 5 and 6 respectively. 
 
2. GENERALIZED MULTIPLE-INSTANCE 
LEARNING  

In this section, we present a brief introduction to Multiple-
Instance Learning, and generalize it for autonomous learning by 
introducing the concept of “Quasi-Positive Bags”.  
 
2.1 Multiple-Instance Learning  

Given a set of instances 1 2, ..., Nx x x , the task in a typical 
machine learning problem is to learn a function 
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 ( )1 2, , , Ny f x x x= L   (1) 
so that the function can be used to classify the data. In 
traditional supervised learning, training data are given in terms 
of ( ),i iy x to learn the function for classifying the data outside 
the training set. In MIL, the training data are grouped into 
bags 1 2, , , MX X XL , with { }:j i jX i I= ∈x and { }1,jI K⊆ L . 

Instead of giving the labels iy  for each instance, we have the 

label iY  for each bag. A bag is labeled negative ( 1jY = − ), if all 

the instances in it are negative. A bag is positive ( 1jY = ), if at 
least one instance in it is positive. 

The MIL model was first formalized by Dietterich et al. [5] 
to deal with the drug activity prediction problem. Following that, 
an algorithm called Diverse Density (DD) was developed in [3] 
to provide a solution to MIL, which performs well on a variety 
of problems such as drug activity prediction, stock selection, and 
image retrieval [4]. Later, the method is extended in [6] to deal 
with the real-valued labels instead of the binary labels. Many 
other algorithms, such as k-NN algorithms [7], Support Vector 
Machine (SVM) [8], and EM combined with DD [15] are 
proposed to solve MIL. However, most of the algorithms are 
sensitive to the distribution of the instances in the positive bags, 
and cannot work without negative bags. 

In the MIL framework, users still have to label the bags. To 
prevent the tedious manual labeling work, we need to generate 
the positive bags and negative bags automatically. However, in 
practical applications, it is very difficult if not impossible to 
generate the positive and negative bags reliably.  Without 
reliable positive and negative bags, DD may not give reliable 
solutions.  To solve the problem, we generalize the concept of 
“Positive bags” to “Quasi-Positive bags”, and propose 
“Uncertain Labeling Density” (ULD) to solve this generalized 
MIL problem. 
  
2.2 Quasi-Positive Bag 

In our scenario, although there is a relatively high 
probability that the concept of interest (e.g. a person’s face) will 
appear in the crawled images, there are many cases that no such 
association exists (e.g. Figure. 3 in Section 5). If these images 
are used as the positive bags, we may have false-positive bags 
that do not contain the concept of interest.  In this case, DD may 
not be able to give correct results as will be shown later. To 
overcome this problem, we extend the concept of “Positive 
bags” to “Quasi-Positive bags”. A “Quasi-Positive bag” has a 
high probability to contain a positive instance, but may not be 
guaranteed to contain one. The introduction of “Quasi-Positive 
bags” removes a major limitation of applying MIL to many 
practical problems.  

 
Definition: Generalized Multiple Instance Learning (GMIL) 

In the generalized MIL, a bag is labeled negative ( 1jY = − ), 
if all the instances in it are negative. A bag is Quasi-Positive 
( 1jY = ), if in a high probability, at least one instance in it is 
positive. 
 
 
 

3. DIVERSE DENSITY and UNCERTAIN 
LABELING DENSITY  

In this section, we first give a brief overview of Diverse 
Density proposed by Moron et al. [2]. We show that it has a 
similar cost function as the K-Means algorithm but with a 
different definition of distance, which we call “bag distance”. 
Then, an efficient Bag K-Means algorithm is presented to 
efficiently find the maximum of DD instead of using the time-
consuming gradient descent algorithm. We also prove the 
convergence property of this Bag K-Means algorithm. This 
algorithm can be used to find the maximum DD solutions in 
MIL with the existence of positive bags but without the negative 
bags. Then, for the GMIL, we introduce a concept called 
Uncertain Labeling Density (ULD) to solve the problem of 
quasi-positive bags.  A Bag Fuzzy K-Means algorithm is 
presented to find the maximum of ULD.  
 
3.1 Diverse Density 
One way to solve MIL problems is to examine the distribution 
of the instance vectors, and look for a feature vector that is close 
to the instances in different positive bags and far from all the 
instances in the negative bags. Such a vector represents the 
concept we are trying to learn. This is the basic idea of the 
Diverse Density algorithm [2].  

Diverse Density is a measure of the intersection of the 
positive bags minus the union of the negative bags. By 
maximizing Diverse Density, we can find the point of 
intersection (the desired concept). Here a simple probabilistic 
measure of Diverse Density is explained. We use the same 
notations as in [2]. We denote ith positive bag as iB+ , the jth 

instance in that bag as ijB+ , and the jth instance from a negative 

bag as iB− . Assume the intersection of all positive bags minus 
the union of all negative bags is a single point t, we can find this 
point by  

 ( ) ( )( )arg max Pr | 1 Pr |i it i i

t B t B+ −−∏ ∏ .  (2) 

This is the formal definition of Diverse Density. ( )Pr | it B is 
estimated by the most-likely-cause estimator, in which only the 
instance in the bag which is most likely to be in the concept tc is 
considered: 

( ) ( ){ }Pr | max Pr |i ijj
t B t B=      (3) 

The distribution is estimated as a Gaussian-like distribution of: 

( ) ( )2
Pr | expij ijt B B t= − −          (4) 

where ( )22

ij ijk kk
B t B t− = −∑ . For the convenience of 

discussion, we define “Bag Distance” as: 
2

mint
i ijj

d B t−�              (5) 

3.2 The Bag K-Means Algorithm for Diverse 
Density with the absence of negative bags 

In our special application, where negative bags are not 
provided, (2) can be simplified as: 

( )arg max Pr | arg min t
i itt ii

t B d+ = ∑∏                  (6) 
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which is to minimize a metric of sum of the average distance to 
the centroid. It has exactly the same form of the cost function as 
K-Means’ but with a different definition of d in (5).  We call it 
Bag K-Means in this paper. Basically, when there is no negative 
bag, the DD algorithm is trying to find the centroid of the cluster 
by K-Means when 1K = . With this conclusion, we propose an 
efficient algorithm to find the maximum DD by the Bag K-
Means algorithm as follows: 

(1) Choose an initial seed t 
(2) Choose a convergence threshold ε  
(3) For each bag i, choose one example is which is closest 

to the seed t , and calculate the distance t
id  

(4) Calculate new i
i

t s N=∑ , where N is the total number 

of bags. 
(5) If newt t ε− ≤ , stop, otherwise, update newt t= , and 

repeat (3) to (5). 
The algorithm starts with an initial guess of the target point t 
which is obtained by trying instances from Qusi-Positive bags, 
then an interactive searching algorithm is performed to update 
the position of this target point t so that equation (6) is achieved.  
      We now provide the proof of convergence of Bag K-Means 
algorithm. 
 
Theorem: The Bag K-Means algorithm converges. 
Proof: Assume it is the centroid we found in the iteration i, and 

ijs is the sample obtained in step (3) for bag j. By step (4), we 

get a new centroid 1it + . We have: 
2 2

1ij i ij i
j j

s t s t+− ≤ −∑ ∑       (7)  

with the property of the traditional K-Means algorithm. 
Because of the criterion of choosing new 1i js + , we have: 

 2 2

1 1 1i j i ij i
j j

s t s t+ + +− ≤ −∑ ∑  (8) 

Combine (7) and (8), we get  

 2 2

1 1i j i ij i
j j

s t s t+ +− ≤ −∑ ∑ ,  (9) 

which means the algorithm decreases the cost function J in (6) 
each time. Therefore, this process will converge. 
 
3.3 Uncertain Labeling Density 
In our generalized MIL, what we have are Quasi-Positive bags, 
i.e., some false-positive bags do not include positive instances at 
all. In a false-positive bag, by the original DD definition, 

( )Pr | it B+ will be very small or even zero. These outliers will 

influence the DD significantly due to the multiplication of the 
probabilities. Based on our previous deduction, which proves the 
equalization between the DD when there is no negative bag and 
the proposed Bag K-Means algorithm, this outlier problem is a 
correspondence of the challenging outlier problem to the 
traditional K-Means algorithm [9][10]. Many algorithms have 
been proposed to handle this outlier problem in K-Means. 
Among them, fuzzy K-Means algorithm is the most well known 
[9][10]. The intuition of the algorithm is to give different 
measurements (weights) on the relationship each example 
belonging to any cluster. The weights indicate the possibility a 

given example belongs to any cluster. By assigning low weight 
values to outliers, the effect of noisy data on the clustering 
process is reduced. In this paper, based on this similar idea from 
fuzzy K-Means, we propose an Uncertain Labeling Density 
(ULD) algorithm to handle the Quasi-Positive bag problem for 
GMIL.  
 
Definition: Uncertain Labeling Density (ULD) 

 
( ) ( )( )Pr |

bt
i

i

i
i

t

i

ULD t t B

N

µ

µ

+ 
=   

 
=

∏

∑
 (10) 

where t
iµ represents the weight of bag i belonging to concept t, 

and 1b > is the fuzzy exponent. It determines the degree of 
fuzziness of the final solution. Usually, 2b = . 

Similarly, we get the conclusion that the maximum of ULD 
can be obtained by Fuzzy K-Means with the definition of “Bag 
Distance” (5), with maximizing the cost function: 

( )( ) ( )argmax Pr | argmin
bt

i bt t
i i itt ii

t B d
µ

µ+ = ∑∏  (11) 

 
3.4 The Bag Fuzzy K-Mean Algorithm for 
Uncertain Labeling Density 

The Bag Fuzzy K-Means algorithm is proposed as follows: 
(1) Choose an initial seed t among the Quasi-Positive bags 
(2) Choose a convergence threshold ε  
(3) For each bag i, choose one example is which is closest 

to t this seed, and calculate the Bag Distance t
id  

(4) Calculate 

( )

( )

( ) ( )

( ) ( )

1

1

1 1

1 1

1

1/

1/

N bt
i i

i
new N bt

i
i

bt
it

i N bt
j

j

s
t

N d

d

µ

µ

µ

=

=

−

−

=

=

=

∑

∑

∑

  (12) 

where N is the total number of bags. 
NOTE: In practice, we add a small number ε ′ to t

id to 
avoid the situation of divided by 0. 
(5) If newt t ε− ≤ , stop, otherwise, update newt t= , and 

repeat (3) to (5). 
Essentially, the weights indicate the possibility an instance 
belongs to the interested cluster. By assigning low weights to 
outliers, the effect of them on the clustering process is reduced. 
In each step, the weight of each instance is updated according to 
the distance to the centroid t. And the updated weighted mean is 
set as the current centroid. The convergence of this Bag Fuzzy 
K-Mean algorithm can be obtained by the previous proof of the 
Bag K-Means algorithm and the convergence of the original 
Fuzzy K-Means algorithm. 
Figure 2 shows an example with Quasi-Positive bags, and 
without negative bags. Different symbols represent various 
Quasi-Positive bags. There are two false-positive bags, which 
are illustrated by the inverse-triangles and circles, in this 
example. The true intersection point is the instance with the 
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value (9, 9) with intersections from four different positive bags. 
Just by finding the maximum of the original Diverse Density, 
the algorithm will converge to (5, 5) (labeled with a “+” symbol) 
because of the influence of the false-positive bags. Figure 2(b) 
illustrates the corresponding Diverse Density values. By using 
the ULD method, it is easy to obtain the correct intersection 
point with the ULD as showing in Figure. 2(c). 

 
(a) An example with Quasi-Positive bags 

 
(b) The corresponding Diverse Density  

 
 (c) Using Uncertain Labeling Density 

 
Figure 2. Comparison of MIL using Diversity Density and 

Uncertain Labeling Density Algorithms in the case of quasi-
positive bags 

 

4. CROSS-MODALITY AUTOMATIC 
TRAINING  

In this section, we describe the features we used and how to 
automatically generate the quasi-positive bags in our scheme. In 
this paper, we only show the procedure of the cross-modality 
training on face models. For generic visual models, the system 
can use a region segmentation, feature extraction and supervised 
learning framework as in [17]. 
 
4. 1 Feature Generation 

We focus on the frontal face model. We first extract frontal 
faces from the images obtained from the search engine, use skin 
detection to exclude some false alarm detections, and then 
obtain the projection coefficients based on eigenfaces for the 
face recognition.  
 
4.1.1 Face detection 
The face detection algorithm we used is based on the approach 
proposed in [12], which extends Viola et al.’s rapid object 
detection scheme [13]. It is based on a boosted cascade of 
simple features by enriching the basic set of simple Haar-like 
features and incorporating a post optimization procedure.  This 
algorithm reduces the false alarm rate significantly with a 
relative high hit-rate and fast speed. However, there are still 
some false detections since it is based on gray value features 
only. We propose to reduce those false alarms by skin color 
detection.  Our skin detection algorithm is based on a skin pixel 
classifier, which is derived using the standard likelihood ratio 
approach in [14].  After getting skin pixel candidates, we post-
process the candidates to determine the skin regions, using 
techniques including Gaussian blurring, thresholding, and 
mathematical morphological operations such as closing and 
opening. 
 
4.1.2 Eigenface generation 
The eigenfaces we use in this paper is the same as what we 
obtained in [1]. The frontal faces, which are in a relatively large 
scale (larger than 48 48× ) and include certain skin regions 
(face regions which cover more than a quarter of the whole 
image), are detected from the crawled images. After normalized 
to a size of 64 64× and a median value 128 of gray level, they 
are used to get the top 22 eigenfaces with 85% energy for 
recognition. The features used throughout this paper are the 
projection coefficients based on these eigenfaces. 
 
4.2 Quasi-positive bag generation 
The quasi-positive bags are those gathered images with the 
extracted frontal faces as the instances.  An illustration of the 
quasi-positive bags is shown in the bottom part of Figure 3. 

 
 
5. EXPERIMENTAL RESULTS  

We applied our algorithm to learn models of four particular 
persons, Bill Clinton, Hillary Clinton, Newt Gingrich, and 
Madeleine Albright. Figure 3 shows the dataflow in our scheme. 
First of all, a name is typed in Google Image Search Engine, 
such as “Bill Clinton”.  Then, an image crawler is applied to the 
resultant images from the search. These images were gathered in 
May 2004. The gathered images are in the form of .jpg or .gif. 
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Because most .gif images are just animations, we only consider 
jpeg images as the experimental data. After that, faces are 
extracted from those images automatically and the faces from 
the same image constitute a Quasi-Positive bag. Then, the most 
informative example for that person is learned by our proposed 
GMIL by ULD algorithm and a rank list is generated based on 
the distance from this example.   

...

...

Learned Model

1.0 0.97 0.95

0.1 0.070.09
...

GMIL
by ULD

Quasi-Positive
Bags

Image Datasets
Image Search Engines

Image Crawling

Textual information

Visual
information

Frontal Face Extraction

 
Figure 3. An example of building the face model of “Bill 

Clinton” 
To illustrate the performance of our algorithm, we compare 

the top ranked retrieved images as well as the precision values. 
Figure 4 and Figure 5 show part of the original top 8 searched 
results by Google, and the top 10 images in the rank list 
obtained by our algorithm with the left top image as the most 
probable face for that person by our autonomous learning 
algorithm separately. We can see that among those top ranked 
faces, our algorithm can find the correct face for the person we 
are interested in, while Google may not.  

To compare the precision values, we manually annotated 
the ground truth, which is a huge work and thus limits the 
comparisons we can get.  The images with profile faces and very 
small faces are all considered in the ground truth. Figure 6 and 
Table 1 show the precision and recall comparisons. We can see 
that even though we only extract the relatively big and frontal 
faces, which is not effective to those data with profile and very 
small faces, our algorithm still gets correct face models for those 
persons and improves the accuracy. For the case of “Bill 
Clinton”, “Newt Gingrich”, and “Hillary Clinton”, we can get 
around 10% improvements on Average Precision [11] over the 
Google Image Search. For the case of “Madeleine Albright”, 
where Google Search does a very good job and many profile and 
small faces occur, our average precision is still better. 

 

 
(a) “Newt Gingrich” 

 
(b) “Hillary Clinton” 

Figure 4. Illustration of Google Image Search Results 
 

 
(a) “Bill Clinton”  
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(b) “Newt Gingrich” 

 
(c) “Hillary Clinton” 

 
(d) “Madeleine Albright” 

Figure 5. Illustration of the results by our algorithm 
 

  
(a) 

 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 6. Performance comparison 
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Table 1: Comparison of Average Precision 
Average 
Precision Bill Clinton Newt 

Gingrich 
Hillary 
Clinton 

Madeleine 
Albright 

Google Image 
Search 0.6250 0.4100 0.5467 0.8683 

GMIL-ULD 0.7546 0.5339 0.6107 0.8899 

 
6. CONCLUSIONS  

We have presented a cross-modality autonomous learning 
algorithm to build models for visual concepts based on image 
crawling from the results provided by search engines. 
Generalized MIL is proposed by introducing “Quasi-Positive 
Bags”, and “Uncertain Labeling Density” is proposed to handle 
the Quasi-Positive Bags in order to find the most probable 
example for the concept we are interested in.  Bag K-Means and 
Fuzzy Bag K-Means algorithms are proposed to find the 
maximum of DD and ULD respectively in an efficient way 
instead of the time-consuming gradient descent algorithm. The 
convergence of the algorithm is proved. Experiments are 
performed for learning the models for four persons. Comparing 
to Google Image Search results, our algorithm improves the 
accuracy and is able to build a correct model for a person. 
Ongoing works include applying this algorithm to learn more 
general concepts, e,g., outdoor and sports, as well as using these 
learned models for concept detection and search tasks in generic 
image/video databases, e.g., NIST TRECVID corpuses.  
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