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ABSTRACT

We address the problem of clustering multimodal group ac-
tions in meetings using a two-layer HMM framework. Meet-
ings are structured as sequences of group actions. Our ap-
proach aims at creating one cluster for each group action,
where the number of group actions and the action bound-
aries are unknown a priori. In our framework, the first layer
models typical actions of individuals in meetings using su-
pervised HMM learning and low-level audio-visual features.
A number of options that explicitly model certain aspects
of the data (e.g., asynchrony) were considered. The second
layer models the group actions using unsupervised HMM
learning. The two layers are linked by a set of probability-
based features produced by the individual action layer as
input to the group action layer. The methodology was as-
sessed on a set of multimodal turn-taking group actions, us-
ing a public five-hour meeting corpus. The results show that
the use of multiple modalities and the layered framework are
advantageous, compared to various baseline methods.
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1. INTRODUCTION

The automatic analysis of meetings has recently attracted
attention in a number of fields, including audio and speech
processing, computer vision, human-computer interaction,
and information retrieval [23, 16, 5, 13, 9, 24, 7]. Analyz-
ing meetings poses a diversity of technical challenges, and
opens doors to a number of relevant applications. On one
hand, meetings constitute an important case study of human
interaction. Understanding people interaction has been a
long-term goal in social psychology [15], so a computational
framework to analyze group behavior could be useful to fa-
cilitate analysis performed by psychologists in organizations
(e.g., for training of staff on issues like interpersonal commu-
nication and teamwork management). On the other hand,
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meetings can be seen as raw, unlabeled data, possibly gen-
erated in large amounts, for which automatic analysis could
add value for browsing and retrieval purposes, e.g., to struc-
ture a single meeting into a sequence of high-level items, or
to discover recurrent patterns in a large meeting collection.

Meetings are characterized by their multimodal and group
nature [11, 15]. Regarding the first factor, single modalities
[23, 16, 9, 24] have been used for various tasks, but there are
few works that model individual and group behavior in con-
versational settings using multiple modalities (as captured
by a network of cameras and microphones) [3, 13, 14], de-
spite the experimental evidence supporting this approach.
For the second factor, a meeting can be seen as proceeding
through phases, where a group disseminates information,
discusses, and makes decisions [15]. A simple model can
thus be used to define a meeting as a continuous sequence
of group actions (i.e., involving multiple simultaneous par-
ticipants) chosen from one or more pre-defined action dic-
tionaries, which is well suited for supervised learning [13, 7],
as long as the action dictionaries are well defined. This im-
plies that the actions comprising each dictionary should be
mutually exclusive, exhaustive, and unambiguous to human
observers, at least to a degree for which manually labeled
data for supervised learning can be reliably generated.

In reality however, meetings are not restricted to pre-
defined action sets. Furthermore, high-level group actions
in meetings can be ambiguous (and expensive) to label.
Roughly speaking, the degree of ambiguity correlates with
the actions’ level of semantic meaning. Basic actions like
writing or speaking can be clearly identified, group actions
like discussions are more ambiguous, and high-level actions
like information sharing might be very difficult to label re-
liably, which could seriously challenge supervised methods.

In this view, modeling high-level group actions with unsu-
pervised approaches, which find “action structure” in either
individual meetings or whole collections, without the need
for labeled data or previous knowledge of the actions, be-
come very attractive options [26, 28], especially given the
vast amount of data that is generated in many real cases.
Given adequate features, clustering an individual meeting
could partition it into action-consistent segments. Cluster-
ing an entire collection could further find action-consistent
clusters across meetings. Additionally, unsupervised meth-
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explicitly in supervised methods.
In this paper, we present a layered probabilistic frame-
work for group action clustering in meetings, as an alterna-



tive to fully supervised methodologies. Through the defini-
tion of an adequate set of individual actions, we decompose
the group action clustering problem into two layers. The
first one performs supervised learning to recognize individ-
ual actions of participants using low-level audio-visual (AV)
features. Supervision at this level can be especially conve-
nient because individual actions are often well-defined and
thus can be reliably labeled. Individual actions constitute
the link between low-level AV features and high-level group
actions. The second layer models group actions in an unsu-
pervised way, using the output of the first layer as observa-
tions, and producing a temporal segmentation of a meeting
into group action segments. Both layers use HMM-based ap-
proaches for action recognition and clustering, respectively.
Our framework is extensible: with minor modifications, it
can be used to cluster group actions in either individual
meetings or in an entire meeting collection. We apply the
methodology to a publicly available meeting corpus, for a set
of eight group actions based on multimodal turn-taking pat-
terns, and illustrate its validity with respect to a number of
baseline methods. In our view, our methodology constitutes
an attractive option for analysis of high-level group actions
in meetings, due to its potential to deal with actions that
would otherwise be difficult to pre-define and/or expensive
to label.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces our approach.
Section 4 presents experiments and discussion. Concluding
remarks are provided in Section 5.

2. RELATED WORK

Learning-based approaches for the automatic interpreta-
tion of human activities in videos have been used for the past
ten years. Most works have focused on supervised learning
methods, defining models for a handful of activities in a par-
ticular domain, and using statistical models for recognition.
Individual action [22], and interaction recognition [20, 10]
have been predominately investigated using visual features,
although some work on the speech community can be cate-
gorized as interaction recognition [9, 24]. To our knowledge
however, little work has been conducted on recognition of
group-based, multimodal actions from multiple audio-visual
streams captured by cameras and microphones [3, 13, 14].
[3] described automatic discovery of “influence” in a lounge
room where people played interactive debating games. Our
previous work studied various sequence models to recog-
nize turn-taking patterns in a formal meeting room scenario,
where people discuss around a table and use a white-board
and a projector screen [13, 14].

Most of the existing work has used Hidden Markov Mod-
els (HMMs) and extensions (see [18] for a recent review of
models). The basic HMM works well for temporally corre-
lated sequential data, but it is challenged by a large num-
ber of parameters, and the risk of over-fitting when learned
from limited data [19]. This situation might occur in the
case of multimodal group actions where, large vectors of
audio-visual features from all participants are concatenated
to define the observation space [13, 14].

The above problem has been recently addressed with hi-
erarchical representations [19, 7, 25]. In [19], (supervised)
layered HMMs were proposed to model multimodal single-
person office activities at various time granularities. The
lowest layer captured video, audio, keyboard and mouse ac-

tivity features; the middle layer classifies AV features into
basic events; the highest layer uses outputs of previous layers
to recognize higher-level office activities. In [7], two meth-
ods for meeting structuring from audio-only were presented,
using multilevel Dynamic Bayesian Networks (DBNs). In
[25], an approach for unsupervised discovery of multilevel
video structures using hierarchical HMMs was proposed, in
the context of sports videos. In this model, the higher-level
structure elements usually correspond to semantic events,
while the lower-level states represents variations occurring
within the same event. However, in both [25, 7], the low-
level actions have no obvious interpretation, and the num-
ber of low-level actions is a model parameter learned dur-
ing training, or set by hand, which makes the structure of
the models difficult to interpret. Recently, we proposed the
use of layered HMMs in a fully supervised setting to recog-
nize both individual and group actions in meetings [27]. Al-
though promising, the method might find problems of scal-
ability to large dictionaries of group actions, given the need
for labeled training data at the group action level.

Different from supervised methods for activity recogni-
tion, unsupervised data-driven approaches find action-based
clusters from the data, without a priori knowledge of the ac-
tion dictionaries [26, 28]. In [26], a normalized-cut approach
was used to cluster single-person actions like running, walk-
ing, etc., using features at different temporal scales, and a
distribution-based distance measure to compute similarity
between video segments. One limitation of such approach
was the lack of a sound mechanism to detect the number of
clusters. Recently, an unsupervised technique was proposed
to detect unusual human activity in a surveillance setting,
using analysis of co-occurrence between video clips and mo-
tion/color features of moving objects, without the need to
build models for usual activities [28]. The two approaches
relied only on visual information.

Unlike previous work, our work combines supervised HMM
recognition and unsupervised HMM clustering in a stratified
framework, to model multimodal group actions in meetings.
The layered structure in our approach, that explicitly con-
siders different semantic levels (individual and group) coin-
cides with the structure of meetings as modeled in social
psychology [15]. The distinct treatment for each layer (su-
pervised vs. unsupervised) tries to respond to the different
nature of each of the action types.

3. GROUP ACTION CLUSTERING

In this section, we first introduce our framework. We then
apply it to a specific set of individual and group actions.

3.1 Framework Overview

In our framework, we distinguish group actions (which be-
long to the whole set of participants) from individual actions
(belonging to specific persons)(see Table 1). Our ultimate
goal is to identify and group together all meeting segments of
the same group action, and so individual actions should act
as the bridge between group actions and low-level features,
thus decomposing the problem in stages. The definition of
both action sets is thus clearly intertwined.

Let I-HMM denote the lower recognition layer (individ-
ual action), and G-HMM denote the upper clustering layer
(group action). I-HMM receives as input audio-visual (AV)
features extracted from each participant, and outputs the
probability for each individual action model (see section
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Figure 1: Framework overview

3.2). In this layer, a number of HMM variants that might
capture better the characteristics of the data (e.g. asyn-
chrony [4], or different noise conditions [8] between the audio
and visual streams) can be used. For the second layer, G-
HMM uses as input both the output from I-HMM, and a set
of group features, directly extracted from the raw streams,
which are not associated to any particular participant (see
section 4.2). Our approach can be summarized into three
stages (Fig.1):

1. Feature Extraction: Extract individual-level and
group-level audio-visual features.

2. Supervised Individual Action Recognition: Given
individual features for each person, train I-HMM and out-
put probabilities for individual action models.

3. Unsupervised Group Action Clustering: Apply
G-HMM clustering using features constructed by concate-
nating individual action features and group-level features.

Compared with a single-layer HMM, which directly uses
audio-visual features for group action clustering, our ap-
proach has the following advantages: (1) a single-layer HMM
is defined on a possibly large observation space, which might
face the problem of over-fitting with limited amount of train-
ing data. In contrast, the layers in our approach are defined
on small-dimensional observation spaces, which might re-
sult in more stable performance in cases of limited data. (2)
The I-HMMs are person-independent, and in practice can be
trained with sufficient data, as each meeting in the training
set provides multiple individual streams. Better generaliza-
tion performance can then be expected. (3) The G-HMM
is less sensitive to variations in the low-level features be-
cause their observations are the outputs of the individual
action recognizers, which are expected to be well trained.
(4) The two layers are handled independently, and so differ-
ent HMM combination systems can be studied. The frame-
work is therefore simple to interpret, and can be improved
at each level. In particular, in this paper we explore models
for the lower layer that could be particularly suitable for
multimodal asynchronous data sequences.

3.2 Supervised I-HMM

The I-HMM layer is learned in a supervised fashion. We
investigate three models for the lower-layer, each of which
attempts to model specific aspects of the data (please refer
to the original references for details):

1. Early Integration (Early Int.), where a basic HMM [21]
is trained on combined AV features. This method involves
aligning and synchronizing AV features to form one concate-
nated set of features which is then treated as a single stream
of data.

2. Audio-Visual Multi-Stream (MS-HMM), which com-
bines the audio-only and visual-only streams. Each stream
is modeled independently. The final classification is based

on the the fusion of the outputs of both modalities by esti-
mating their joint occurrence [8].

3. Audio- Visual Asynchronous (A-HMM), which also com-
bines audio and visual streams, by learning the joint distri-
bution of pairs of sequences when these sequences are not
synchronized and are not of the same length or rate [4].

As features for the group action clustering algorithm, the
lower layer outputs the probability pf for each individual
action model My,Q = 1,..., Ny, given a sequence z} =
zi,...,Tt, where N1 denotes the number of individual ac-

tions. Let (s, t) = P(a:l,qt = 4) denote the forward vari-
able, which is the probability of having generated the se-
quence z¢ and being in the state i at time ¢ in the standard
Baum-Welch algorithm [21]. Given that the probabilities of
all states sum up to one, Z;le P(qg: = j) = 1, where Ng
is the number of all states for all models, the probability
P(q: = i|z}) of state i given a sequence z} is:

P(g = ilat) = 1301%1;3%) 0
Zj‘v:i P(g: = j, %)
(i, t)
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where i is the state in model My, which is a subset of the
states of all models, and Ng is the total number of all states.
The probability pi of model My is the sum of the prob-
abilities of all states in model M. For each participant,
the probabilities for all models are represented by a vector
(p1,....p,). We then concatenate the individual vectors
from all participants, together with the group features, into
a (Nr X Np + Ngr)-dimensional vector (where Np is the
number of participants, and Ngr is the dimension of the
group features) as observations for group action clustering.
Both individual features and group features were normalized
in the range of (0,1).

3.3 Unsupervised G-HMM

For the upper layer, we employ an agglomerative clus-
tering algorithm, recently proposed in the speech commu-
nity for speaker clustering [2], and that has shown good
performance for such a task. The algorithm is based on
an ergodic HMM framework with a minimum duration con-
straint, where the number of clusters and segmentation bound-
aries are unknown a priori. Each state of the HMM repre-
sents a cluster having several identical states in cascade to
impose the minimum duration constraint. A three-cluster
case is illustrated in Fig.2. The HMM clustering algorithm
can be summarized as follows:

1. Initialization: Start by over-clustering, i.e. clustering
the data into a number of clusters larger than the hypoth-
esized number of actions. The probability density function
of each cluster is represented by a Gaussian Mixture Model
(GMM) and the parameters of this GMM are estimated us-
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Figure 2: Fully connected HMM topology

ing the expectation maximization (EM) algorithm. The ini-
tialization for each distribution is done using K-means.

2. Segmentation: Obtain the segmentation automati-
cally using the Viterbi algorithm [21] on the current HMM
topology and parameters.

3. Training: Reestimate the parameters of all clusters
based on this segmentation.

4. Merging: Search for the best candidate pair of clus-
ters for merging based on the criterion described in [2].

The segmentation-training-merging process is iterated un-
til no more cluster pairs satisfy the merging criterion.

The HMM clustering algorithm has a number of advan-
tages [2]. First, the final number of clusters is decided au-
tomatically using a robust merging criterion. Secondly, in-
stead of making local threshold-based decisions, the HMM
clustering algorithm produces a global segmentation of the
meeting video without using any pre-defined threshold, which
is optimal in the maximum likelihood sense, while avoiding
the need for development data. Thirdly, the clustering al-
gorithm can be applied directly on the data sequences, de-
riving the segmentation in the process without assumptions
regarding the number of clusters and their boundaries.

The clustering algorithm can be applied to one individual
meeting, as well as to a complete meeting collection, with
a minor difference. When clustering a collection, the fea-
tures for all meetings are concatenated. However, the inter-
meeting boundaries are known a priori, so this particular
knowledge is used as part of the clustering process.

3.4 Definition of Actions

As an implementation of the proposed framework, we de-
fine a set of group actions and individual actions in this
section. Motivated by the relevance of turn-taking pat-
terns in meetings [11, 15], we defined a set of Ng = 8
group actions based on “multimodal turn-taking” actions,
commonly found in meetings. The list is defined in Ta-
ble 1. The set is richer than the one defined in our previ-
ous works [13, 14], as it includes simultaneous occurrence
of actions, like “monologue+note-taking” which could occur
during real situations, like dictating or minute-taking. As
discussed in section 1, this group action set is assumed to be
non-overlapping and exhaustive for modeling purposes, al-
though such situation does not strictly hold in practice. Also
note that this action set would likely be labeled with a good
degree of agreement by people (see section 4.1 for details
on ground-truth generation), so a fully supervised approach
would also be appropriate. For our purposes, this action set
is especially useful to thoroughly evaluate the performance
of the unsupervised modeling of group actions.

For individual actions, we define a small set (N; = 3)

Table 1: Description of actions

Group action description

Discussion most participants engaged in conversations
one participant speaking
Monologue continuously without interruption
Monologue+ one participant speaking continuously

Note-taking others taking notes

Note-taking most participants taking notes

one participant presenting

Presentation ) .
using the projector screen

Presentation+
Note-taking

one participant presenting using
projector screen, others taking notes

one participant speaking

White-board using the white-board

‘White-board+
Note-taking

one participant speaking using
white-board, others taking notes

Individual action description

Speaking one participant speaking
Writing one participant taking notes
Idle one participant neither speaking nor writing

which, as stated earlier, will help bridge the gap between
group actions and low-level AV features. The list appears in
Table 1. While the list of potentially interesting individual
actions in meetings is large, our ultimate goal is to cluster
group-level actions defined in Table 1.

Finally, meeting rooms can be equipped with white-boards
or projector screens which are shared by the group. Extract-
ing features from these group devices also helps recognize
group actions. They constitute the group features described
in the previous subsection. Their detailed description will
be presented in section 4.2.

The logical relations between individual actions, group ac-
tions, and group features are summarized in Table 2. The
group actions can be seen as combinations of individual ac-
tions plus states of group devices. For example, “presenta-
tion + note-taking” can be decomposed into “speaking” by
one individual, with more than one “writing” participant,
while the group device of projector screen is in use. Our
approach is not rule-based, but Table 2 is useful to concep-
tually relate the two layers.

4. EXPERIMENTS AND RESULTS

In this section, we first describe the data set we used in
the experiments. We then describe the audio-visual feature
extraction process. We later present the performance mea-
sures used to evaluate our results. Finally, we present results
for group action clustering and discuss our findings.

4.1 Meeting Data Set

We used a public meeting corpus [13], which was collected
in a room equipped with synchronized multi-channel audio
and video recorders'. The sensors include three fixed cam-
eras and twelve microphones. Each meeting consists of four
participants seated at a table in a typical workplace setting.
Two cameras have an upper-body, frontal view of two par-
ticipants and part of the table. A third wide-view camera
captures the projector screen and white-board, with little
overlap with the other two cameras. The room views and
visual feature extraction are illustrated in Fig.3. Audio was
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Table 2: Relationships between group actions, individual actions and group features. The symbol “x”’ indicates
that the white-board or screen are in use when the corresponding group action takes place. The symbol “/”
indicates that the number of participants for the corresponding action is not certain.

j Individual Actions Group Features
Group Actions speaking | writing | idle || white-board | projector screen
discussion >2 /
monologue 1 /
monologue+note-taking 1 /
note-taking 0 0
presentation 1 / *
presentation+note-taking 1 / *
white-board 1 / *
white-board+note-taking 1 / *
Table 3: Number of frames (Nr) and number of ac- Table 4: Audio-visual feature list
tions (N,) in different data sets. Description
. head vertical centroid
Individual Actions N train N N test N head eccentricity
_ F A F A Visual right hand horizontal centroid
speaking 35028 | 1088 | 33747 897 Person- right hand angle
ertmg 15803 363 27365 390 Specific right hand eccentricity
idle 127569 | 1426 | 112488 | 1349 Features head and hand motion
total 178400 2877 173600 2636 SRP_PHAT from each seat
Group Actions ~ test ~ Audio speech relative pitch
F A speech energy
discussion 14450 49 speech rate
monologue . 7585 26 sual mean difference from white-board
monologue + note-taking 6695 23 Group Visual e difference from projector screen
note-taking 320 3 Features [, . SRP-PHAT from white-board
presentation . 3345 9 udio SRP-PHAT from projector screen
presentation + note-taking 3865 9
white-board 265 1
white-board + note-taking 6875 19
total 43400 139

recorded using lapel microphones for all participants, and an
eight-microphone array located in the center of the table.
The corpus consists of 59 short meetings with five-minute
average duration. The group action structure was scripted
before recording, according to a group action set simpler
than the one we defined here [13], so for our work part of
the group actions labels were already available as part of the
public corpus. We manually relabeled the rest of the group
actions, and labeled the entire corpus for individual actions.
Among the 59 meetings, 30 are used as training and the
remaining 29 for testing. The number of actions and the
number of frames in the different data sets are summarized
in Table 3. The number of individual actions is much larger
than that of group actions for two obvious reasons. First,
for individual action recognition, there are 30 meetings x
4 participants = 120 streams for training, and 29 x 4 =
116 streams for testing. Second, the duration of individual
actions is typically shorter than that of group actions. For
group action clustering, there is no need for a training set.

4.2 Feature Extraction

We now describe the process to extract the two types
of features used in this work. Person-specific features are
extracted from participants. Group-level features are ex-
tracted from the white-board and projector screen regions.

4.2.1 Person-Specific AV Features

Person-specific visual features were extracted from the
cameras that have a close view of the participants. Person-
specific audio features were extracted from the lapel micro-
phones attached to each person, and from the microphone
array. The complete set of features is listed in Table 4.

Regarding visual features, for each video frame, the raw
image is converted to a skin-color likelihood image, using a
5-component skin-color GMM. We use the chromatic color
space, known to be less variant to the skin color of different
people. The chromatic colors are defined by a normaliza-
tion process: r = R 59 = ErG Skin pixels were
then classified based on thresholdlng of the skin likelihood.

‘Agenda for Next Week

Figure 3: Multi-camera meeting room and visual
feature extraction



A morphological postprocessing step was performed to re-
move noise. The skin-color likelihood image is the input
to a connected-component algorithm (flood filling) that ex-
tracts blobs. All blobs whose areas are smaller than a given
threshold were removed. We use 2-D blob features to repre-
sent each participant in the meeting, assuming that the ex-
tracted blobs correspond to human faces and hands. First,
we use a multi-view face detector to verify blobs correspond-
ing to the face. The blob with the highest confidence output
by the face detector is recognized as the face. Among the
remaining blobs, the one that has the rightmost centroid
horizontal position is identified as the right hand (we only
extracted features from the right hands since the partici-
pants in the corpus are predominately right-handed). For
each person, the detected face blob is represented by its ver-
tical centroid position and eccentricity [22]. The hand blob
is represented by its horizontal centroid position, eccentric-
ity, and angle. The motion magnitude for head and right
hand are also extracted and summed into one single feature.
For audio, we extracted two types of features using the
microphone array and the lapels. On one hand, speech ac-
tivity was estimated at four seated locations, from the micro-
phone array waveforms. The seated locations were fixed 3-D
vectors measured on-site. The speech activity measure was
SRP-PHAT [6], which is a continuous, bounded value that
indicates the activity at a particular location. On the other
hand, three acoustic features were estimated from each lapel
waveform: energy, pitch and speaking rate. We computed
these features on speech segments, setting a value of zero on
silence segments. Speech segments were detected using the
microphone array, as it is well suited for multiparty speech.
We used the SIFT algorithm [12] to extract pitch, and a
combination of estimators [17] to extract speaking rate.

4.2.2 Group AV Features

Group AV features were extracted from the white-board
and projector screen regions, and are listed in Table 4.

Group visual features were extracted from the camera
that looks towards the white-board and projector screen
area. We first get difference images between a reference
background image and the image at each time, in the white-
board and projector screen regions (see Fig.3). On these
difference images, we use the average intensity over a grid
of 16 x 16 blocks as features.

Group audio features are SRP-PHAT features extracted
using the microphone array from two locations correspond-
ing to the white-board and projector screen.

4.3 Performance Measures

Two measures (action error rate and frame error rate)
were proposed to evaluate results of supervised continuous
group action recognition in [7, 14]. However, these measures
cannot be used in unsupervised group action clustering be-
cause the labels of the clusters are unknown. Instead, we
use three measures used in speaker clustering to evaluate
our results: average cluster purity (acp), average action pu-
rity (aap) and overall evaluation criterion Q [1, 2]. These
measures are explained below. First we define:

- n4;: total number of frames in cluster ¢ by action j
- Nej: total number of frames of action j

- N4e: total number of frames in cluster 7

- N,: total number of actions

- N.: total number of clusters

Table 5: Clustering results for individual meetings

Method meanj\{c 7 aap (%) | acp (%) | K (%)
two-layer HMM
Visual 6.20 2.19 41.4 77.0 56.8
Audio 3.10 1.12 71.3 56.1 63.7
Early Int. 3.59 0.95 69.5 71.3 70.1
MS-HMM 4.17 1.13 72.7 70.8 71.8
A-HMM 3.51 0.78 78.6 70.0 73.8
Baseline: single-layer HMM
Visual 8.72 2.17 33.6 76.1 50.6
Audio 3.03 1.94 61.1 57.8 58.6
AV 4.10 1.35 68.8 64.2 65.7
Baseline: true number of clusters (N. = N,)
By 64.3 60.1 62.1
B 3.93 0.73 78.4 70.9 74.1
Ba —1 2.93 0.73 83.5 62.7 71.8
Ba +1 4.93 0.73 72.6 70.9 71.1

- N: total number of frames

The purity of a cluster p;e and the acp are defined as

N"’ n2
Pie = 3 (6)
i=1 1
1 &
acp = > " (pie X nis). (7

=1

Similarly, the action purity pe; and the aap are given by

Ne o2
Pej = Z n;J~7 (8)
i=1 )
1 e
aap = = D (pej X nej). )
j=1

The acp gives a measure of how well a cluster is limited to
only one action, while the aap gives a measure of how well
one action is limited to only one cluster. In the ideal case
(one cluster for each group action), acp = aap = 1.

However, from only acp or aap taken separately, it is hard
to evaluate the overall performance because acp can achieve
a high value with more number of clusters than really re-
quired, and aap can achieve a high value with less number
of clusters. In the extreme case, acp=1 if a cluster has only
one frame and aap=1 if there is only one cluster for the whole
meeting. In order to facilitate comparison between systems,
an overall evaluation criterion @ is defined as follows, where
larger @ indicates better overall performance.

K = \/acp X aap. (10)

As a percentage, the average criterion @ is around 70% for
the robust speaker clustering algorithm described in [1].

4.4 Results and Discussion

To test our approach, we investigated the following com-
binations of modalities and models for the lower layer:

Early integration, visual-only. The clustering algorithm
was applied on the concatenation of the results produced by
an early integration I-HMM trained on visual-only features,
and the visual group features.



Early integration, audio-only. Same as above, but replac-
ing visual-only by audio-only information.

Early integration, AV. Same as above, but using AV data.

Multi-stream, AV. Same as above, but using the MS-HMM
approach described in section 3.2 as I-HMM.

Asynchronous, AV. Same as above, but using the A-HMM.

Additionally, to analyze the benefit of the layered ap-
proach, we investigated a number of single-layer clustering
schemes, which use the same clustering algorithm directly
applied on the low-level features (visual, audio, and AV).

The performance regarding model selection was also stud-
ied. We define two baseline systems based on K-means
(B1), and HMM clustering (B2) respectively, which model
an “ideal” case, in which the final number of clusters is ex-
actly the same as the number of group actions (as indicated
by the ground-truth). For these systems, the model used for
the lower layer was A-HMM, as it produced the best perfor-
mance for the two-layer method (see discussion below).

Finally, we investigated two clustering cases. In the first
case, we cluster group actions for each meeting. Usually,
the number of group actions within one meeting is less than
the complete set of eight actions. In the second case, we
cluster the whole test meeting collection, which produces a
segmentation for each meeting where segments belonging to
the same cluster get consistent labels across the corpus. In
this case, there are eight group actions.

Parameter Selection. For the individual action layer,
parameters were selected by six-fold cross-validation, split-
ting the training set into training and validation subsets. For
the group action layer, we obtained results by varying the
number of initial clusters (10-30), the number of Gaussians
(5-10), and the minimum duration of each cluster (15-30s).
In Tables 5-6, the results for the number of clusters (IN.)
are shown in terms of mean and standard deviation. We re-
port mean values for average action purity (aap) and cluster
purity (acp), and for the overall criterion (Q).

The results can be summarized as follows.

Single- vs. multi-modality and single- vs. two-
layer HMM. For both the single- and the two-layer cases,
the use of AV features produced better results than using
only one modality. Audio-only features were more discrimi-
nant than video-only, which is not surprising given the type
of group actions we addressed. We noticed that methods us-
ing audio features got high aap and low acp while methods
using video features showed the opposite trend. This is be-
cause, according to the ground-truth, the number of clusters
(N¢) was usually underestimated using audio, while overesti-
mated using visual features. Audio-only features thus seem
to be described better by simpler models, while visual-only
features describe a more complex cluster structure. Addi-
tionally, the layered approach outperformed the single-layer
method under the same conditions (using one or multiple
modalities, and when clustering individual meetings or the
whole data set). Given the large total number of frames
(> 43,000), these improvements are significant, which con-
firms the effectiveness of the layered approach, and the mul-
timodal nature of group actions in meetings.

Comparison between I-HMM methods. The anal-
ysis of the performance of the various I-HMMs for indi-
vidual action recognition is described in detail in [27], but
overall, the asynchronous HMM produced the best results.
Regarding group action clustering, although multi-stream
HMM improved over early integration, the asynchronous

HMM also produced the best results among all HMM sys-
tems for the two meeting clustering cases. This indicates
that the probability-based features obtained from this model
were more discriminative, and suggests the presence of asyn-
chrony between the audio-visual streams for individual ac-
tions. In Tables 5-6, both acp and asp of A-HMM are above
70%. This means that more than 70% of all group actions
are in the right clusters, while more than 70% of all clusters
are composed of data from the same group action.

Comparison with “ideal” baseline systems. The
layered method using AV features outperformed the K-means
baseline (Bi1), while performed slightly worse than HMM
clustering baseline (Bz). We can also see that with a slight
increase/decrease of the number of clusters, the performance
of this baseline system decreased. (In Tables 5-6, “By — 17
and “Bg2 + 1”7 denote the baseline system, in which we de-
liberately increase or decrease the number of clusters by 1.)
Interestingly, the best two-layer HMM method outperforms
these two cases, which somewhat suggests that our approach
is not too far from the “ideal” case.

Single meeting vs. entire meeting collection. The
results of clustering the whole collection are slightly worse
than the results of clustering single meetings for the multi-
modal layered models (between 1.6-2.0%); the degradation
is more pronounced for the single-modality approaches. This
decrease in the clustering quality could be explained by the
larger variation in the data (the number of meeting partici-
pants in the test set taken as a whole is 10), but mainly by
the increasing possibility of overlap between different group
actions in the feature space, due to the larger number of ac-
tions. Note however that clustering the whole corpus gener-
ates consistent action labels across meetings; this important
benefit was traded by the decrease in performance.

Model selection. For both individual meeting clustering
and whole collection clustering, the methods using AV fea-
tures obtained a number of clusters closer to the true number
of actions. For the first case, there are 3.93 group actions on
average in the ground-truth. The average number of clus-
ters found using AV features ranges from 3.51 to 4.17, which
is close to the true number (Table 5). For the second case,
there are 8 group actions in the ground-truth. The two-layer
AV systems MS-HMM and A-HMM both converged around
7 clusters (Table 6), which is in good accordance with the
true number, although slightly underestimated.

To evaluate the quality of the clustering results, we dis-
play the found clusters and ground-truth actions in Fig.4,
for the top 13 meetings ranked by decreasing order, based
on the criterion @ (the symbol My is the meeting index
in the test set). Dashed-line rectangles denote automatic
clusters (with labels {1,2,...}), which are compared against
the ground-truth actions denoted by solid-line rectangles,
showing discussion (D), monologue (M), monologue + note-
taking (MN), note-taking (N), presentation (P), presenta-
tion + note-taking (PN), white-board (W) and white-board
+ note-taking (WN). The left and right columns of Fig.4
show the results of clustering individual meetings and the
entire meeting collection, respectively. For both cases, we
can see that for meetings with large overall criterion @, the
obtained alignments between clusters and actions are bet-
ter. The results degrade with decreasing (). Notice that, for
the case of clustering the meeting collection (Fig.4: right-
column), cluster labels are consistent across meetings. For
example, most clusters with label “3” correspond to “MN”



Table 6: Clustering results for meeting collection

Method mearfvlc il (%) | acp (%) | K (%)
two-layer HMM
Visual 11.67 | 2.16 31.0 47.2 38.2
Audio 3.50 2.65 7T 41.4 56.7
Early Int. 10.60 | 1.93 70.9 65.7 68.3
MS-HMM 7.28 1.41 74.8 65.2 69.8
A-HMM 7.10 1.70 74.0 70.5 72.2
Baseline: single-layer HMM
Visual 16.33 | 4.08 20.2 46.3 30.6
Audio 3.16 2.40 76.1 33.6 50.6
AV 6.73 2.51 64.3 60.1 62.1
Baseline: true number of clusters (N. = Ng)
By 8 0 47.3 51.1 49.2
Ba 71.5 73.8 72.6
Ba —1 7 0 74.5 67.1 70.7
Ba +1 9 0 63.9 78.5 70.8

(monologue + note-taking) group action, and clusters with
label“1” often correspond to the “D” (discussion) action.

5. CONCLUSIONS

In this paper, meetings were defined as sequences of mul-
timodal group actions. We addressed the problem of clus-
tering group actions, proposing a layered HMM framework
to decompose the group action clustering problem into two
subproblems. The first layer maps low-level AV features
into probability-based, individual-action features. The sec-
ond layer groups such features into clusters, which corre-
spond reasonably well to group actions. Experiments on a
public meeting corpus demonstrate the effectiveness of our
framework. For future work, we will consider the use of
semi-supervised approaches to assign semantic labels to the
clustering outputs, and the extension of our approach to
other dictionaries of group actions.

6. REFERENCES

[1] J. Ajmera, H. Bourlard, I. Lapidot, and I. McCowan.
Unknown-multiple speaker clustering using HMM. In
ICSLP, Colorado, 2002.

[2] J. Ajmera and C. Wooters. A robust speaker
clustering algorithm. In IEEE ASRU Workshop, 2003.

[3] S. Basu, T. Choudhury, B. Clarkson, and A. Pentland.
Towards measuring human interactions in
conversational settings. In Proc. CVPR Workshop on
Cues in Communication, Kawai, Dec. 2001.

[4] S. Bengio. An asynchronous hidden Markov model for
audio-visual speech recognition. In Proc. NIPS, 2003.

[5] R. Cutler, Y. Rui, A. Gupta, J. Cadiz, I. Tashev,

L. He, A. Colburn, Z. Zhang, Z. Liu, and S. Silverberg.
Distributed meetings: A meeting capture and
broadcasting system. In Proc. ACM Multimedia, 2002.

[6] J. DiBiase, H. Silverman, and M. Brandstein. Robust
localization in reverberant rooms. In Microphone
Arrays, chapter 8, pages 157—180. Springer, 2001.

[7] A. Dielmann, S. Renals. Dynamic Bayesian networks
for meeting structuring. In Proc. ICASSP, 2004.

[8] S. Dupont and J. Luettin. Audio-visual speech
modeling for continuous speech recognition. IEEE
Transactions on Multimedia, 2(3):141-151, Sep. 2000.

[9] D. Hillard, M. Ostendorf, and E. Shriberg. Detection
of agreement vs. disagreement in meetings: Training

with unlabeled data. In Proc. HLT Conf., May 2003.

[10] S. Hongeng and R. Nevatia. Multi-agent event
recognition. In Proc. ICCV, Vancouver, July 2001.

[11] R. Krauss, C. Garlock, P. Bricker, and L. McMahon.
The role of audible and visible back-channel responses
in interpersonal communication. Journal of
Personality and Social Psychology, 35(7),1977.

[12] J. D. Markel. The SIFT algorithm for fundamental
frequency estimation. IEEE Transactions on Audio
and Electroacoustics, 20:367-377, 1972.

[13] 1. McCowan, S. Bengio, D. Gatica-Perez, G. Lathoud,
F. Monay, D. Moore, P. Wellner, and H. Bourlard.
Modeling human interactions in meetings. In Proc.
IEEE ICASSP, Hong Kong, April 2003.

[14] 1. McCowan, D. Gatica-Perez, S. Bengio, and
G. Lathoud. Automatic analysis of multimodal group
actions in meetings. IDIAP-RR 27, IDIAP, Martigny,
Switzerland, May 2003.

[15] J. E. McGrath. Groups: Interaction and Performance.
Prentice-Hall, 1984.

[16] N. Morgan, D. Baron, J. Edwards, D. Ellis,

D. Gelbart, A. Janin, T. Pfau, E. Shriberg, and
A. Stolcke. The meeting project at ICSI. In Proc. of
the HLT Conference, San Diego, CA, March 2001.

[17] N. Morgan and E. Fosler-Lussier. Combining multiple
estimators of speaking rate. In Proc. I[CASSP, 1998.

[18] K. Murphy. Dynamic Bayesian networks:
Representation, inference and learning. Ph.D.
dissertation, UC Berkeley, 2002.

[19] N. Oliver, E. Horvitz, and A. Garg. Layered
representations for learning and inferring office
activity from multiple sensory channels. In Proc.
ICMI, Pittsburgh, Oct. 2002.

[20] N. Oliver, B. Rosario, and A. Pentland. A Bayesian
computer vision system for modeling human
interactions. IEEE PAMI, 22(8), Aug. 2000.

[21] L. R. Rabiner and B.-H. Juang. Fundamentals of
Speech Recognition. Prentice-Hall, 1993.

[22] T. Starner and A. Pentland. Visual recognition of
american sign language using HMMs. In Proc. Int.
Work. on AFGR, Zurich, 1995.

[23] A. Waibel, M. Bett, F. Metze, K. Ries, T. Schaaf,

T. Schultz, H. Soltau, H. Yu, and K. Zechner.
Advances in automatic meeting record creation and
access. In Proc. IEEE ICASSP, May 1999.

[24] B. Wrede and E. Shriberg. The relationship between
dialogue acts and hot spots in meetings. In Proc.
ASRU, Virgin Islands, Dec. 2003.

[25] L. Xie, S.-F. Chang, A. Divakaran, and H. Sun.
Unsupervised discovery of multilevel statistical video
structures using hierarchical hidden markov models.
In Proc. ICME, July 2003.

[26] L. Zelnik-Manor and M. Irani. Event-based video
analysis. In Proc. CVPR, Dec. 2001.

[27] D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan,
and G. Lathoud. Modeling individual and group
actions in meetings: a two-layer HMM framework. In
Proc. CVPR Workshop on FEvent Mining in Video,
Jul. 2004.

[28] H. Zhong, J. Shi, and M. Visontai. Detecting unusual
activity in video. In Proc. CVPR, June. 2004.



[ M _J(D I[P J_WN ][ D]  [MN DI WN ] D]
Moy Ty T A 2., QF0916L Mooy i s 1] Q70872
NN | A ) 1 S S oY | PN D ]
Magr ===y rr g ..., QTosu M T 6 QF08TI6
MDD P I WN | ) 1 ] NN N ) 1 .
Moty 3T T80l a2 looog QF0B0R Mm-S
[ M J[DIWN[__MN ] [(MNJ[M][D W[ ) 1
Ma gty g oss MmNt s 13 @708l
[MNJ[MJ D (W D ) MN__J[DJ_PN__J[_WN (D]
M T2 Ea 2 Q08098 Mo === == 6. (. 8 i3, Q70819
MN PN D MN PN M ||WN
My PN LD 1 5005 Mpres i PN IMIWNIL_D__T 5104
Ll,\L,,,g,,,,\Ll,\L ,,,,,,,,, S ,,,,,,,,, Jl,l,i L,S O, @ ,,,,,,,, \LQ \Lfg,,\L 1,\
l MN [DIWND] [MN[D] P D
Ms T oo iis) Q70763 Mo g 51y Q708040
[MNJD ]| P 1 ™M Pl WN 1
Mo a2 i3i2.d, Q01486 My T s @soTe2
M WN PN M WN PN
Mlolr’Wr””j***wlrl”g**ﬂ]rgllrfflelf@ Q=0.7415 Jvholrf——————fz—f——]—[——ng]rl—iju—ﬁ—vji@j] Q=0.7687
| N A JL - -2 | R I SO J L e e e e & oo oo JLaL oL Mo JL =4
Q=0.7403 Mayg Q=0.7527
L
l || [
=0.7390 My Fe==sg==r==x T e e —= Q=0.7524
Q 2Ty i 6 i QT
M D M
N i s s 2 1 ) N
,,,,,,2 ,,,,,, \L,,,,l,,,,JLé,\LS \Ll,\
MN PN M ||WN MN
My ML __PN__JIMIWNIL_D__] 750, My MN__ IIDIWNID] ()49
L,,,,l,,,,JL,,,,Z,,,, ,4,JL§JL9J L om e e e e e e e 3 ,,,,,,,,,,,, \LSJLZ,\
[MN DI WN I D ] [ M J[DIWN[__MN___]
Masr =y "3 T8 a3, @T06795 Ma T I  L iL ey QF0esl

Figure 4: Results of clustering individual meetings (left column), and entire meeting collection (right column).



