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ABSTRACT

This paper looks at the problem of multi-streaming in 3D tele-
immersion and describes how a protocol architecture called
CP (for Coordination Protocol) can be used to coordinate
video frame transport between application clusters. CP pro-
vides application endpoints with information about current
network conditions, and an open architecture for implement-
ing application-specific coordination schemes. The scheme de-
scribed in this paper apportions available bandwidth among
flows such that frame transport synchrony, important for 3D
reconstruction performance, is significantly enhanced.

Results demonstrating the effectiveness of CP in increasing
multi-stream coordination, while at the same time maintain-
ing aggregate congestion responsiveness, are obtained from a
FreeBSD/Linux implementation and a live experimental net-
work. Results underscore the importance of consistency in
network information across flows for realizing dramatic im-
provements in frame arrival synchrony.

Categories and Subject Descriptors: C.2.2 Computer
Communication Networks: Network Protocols [applications].
General Terms: Design, Algorithms, Performance, Experi-
mentation.

Keywords: Network protocols, distributed applications, flow
coordination.

1. INTRODUCTION

The goal of tele-immersion is to enable users in physically
remote spaces to interact with one another in a shared space
that mixes both local and remote realities, and allows partic-
ipants to share a mutual sense of presence. In the 3D Tele-
immersion (3DTI) [9, 19] system, for instance, a user wears
polarized glasses and a head tracker as a view-dependent scene
is rendered in real-time on a large stereoscopic display in 3D.
Ideally, there exists a seamless continuum between the user’s
experience of local and remote space within the application.

Two important components of the 3DTI architecture are
scene acquisition and 3D reconstruction. The former is com-
prised of an array of digital cameras and computing hosts set
up to capture a remote physical scene from a wide variety of
camera angles. The cameras are calibrated and registered to a
world coordinate system and are designed to capture images in
synchrony. The images are then streamed to a remote location
where the 3D reconstruction system uses pixel correspondence
and camera calibration information to extract depth values
on a per pixel basis. The resulting view-independent depth
streams can then be rendered from any viewpoint depending
on the user’s head position. [11]
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Figure 1: 3D Tele-immersion.

In this paper, we are interested in the problem of coor-
dinated multi-streaming between scene acquisition and 3D
reconstruction components of the 3DTT architecture. Specifi-
cally, we are interested in providing reliable transport of frame
ensembles (a set of n video frames captured from n cameras
at the same instant in time) such that aggregate streaming is

e Responsive to network congestion.
e Highly synchronous with respect to frame arrivals.

Congestion responsiveness is important not only to prevent
unfairness to competing flows and the possibility of congestion
collapse[7], but to minimize unnecessary loss and retransmis-
sions. 3D reconstruction places a high demand on data in-
tegrity to be effective, and hence it is a basic requirement in
3DTI that data transport be reliable. Frame synchrony is the
notion that frames within the same ensemble are received by
the reconstruction subsystem at the same time. A low degree
of frame synchrony will result in stalling as the 3D recon-
struction pipeline waits for remaining pixel data to arrive, a
highly undesirable effect for 3DTI as a real-time, interactive
application.

The problem of coordinated multi-streaming is significant
because it represents an instance of a much wider class of dis-
tributed multimedia applications that we refer to as cluster-
to-cluster applications. Unlike end-to-end applications where
the endpoints of communication are single hosts, a cluster-to-
cluster (C-to-C) application uses collections of computing and
communication devices. The many flows typically employed
in a C-to-C application transfer data between endpoints on
one cluster and endpoints on another. To be effective, a C-
to-C application must carefully coordinate the use of network
resources across these flows to properly reflect application-
level goals and priorities.

Figure 2 illustrates the general architecture of a C-to-C
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Some identifying characteristics of this architecture include:
e A common intermediary path called the cluster-to-cluster
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Figure 2: C-to-C application model.

data path. This is the path over the wide-area that flows
passing between clusters will share.

e A natural aggregation point through which all data leav-
ing one cluster will converge to the same forwarding
host. We refer to this aggregation point as an AP. Typ-
ically the AP is the first-hop gateway router connecting
a cluster to the rest of the Internet. In cluster-to-cluster
applications, two APs exist, one in front of each cluster
on either side of the C-to-C data path.

e Independent, but semantically related flows of data that
are part of the same C-to-C application.

e Complex adaptation requirements as the priority and
bandwidth requirements of flows within the application
change dynamically.

In general, the network within a cluster is under local ad-
ministrative control and can be provisioned to comfortably
support the needs of the application. In contrast, the path
between clusters is shared with other Internet flows and typi-
cally cannot be provisioned. As such, it is the primary source
of changing network conditions including congestion.

As we consider ever more complex multimedia applications
such as tele-immersion that exhibit a cluster-to-cluster archi-
tecture, the lack of mechanisms to manage aggregate bundles
of related flows becomes increasingly problematic. Network-
level protocols like IP are concerned only with the next hop
while transport-level protocols like TCP are concerned with
end-to-end semantics such as reliability. A void exists be-
tween these two levels for addressing the concerns of related
flows that share only a portion of their end-to-end paths.

The problem to be solved in cluster-to-cluster applications
is that of flow coordination. Application flows share a com-
mon intermediary path between clusters, and yet employ trans-
port protocols that operate in isolation from one another.
As a result, related flows of the same application may com-
pete with one another when network resources become lim-
ited instead of cooperating to use available bandwidth in
application-controlled ways.

Our approach to the problem of coordinated multi-streaming
in 3DTT is one that highlights a generalized architecture for
solving flow coordination problems in C-to-C applications of
all kinds. We call this architecture the Coordination Proto-
col or CP. CP provides application endpoints with informa-
tion on current conditions on the C-to-C data path, including
the aggregate bandwidth that is available to the application
as a whole. At the same time, it serves as a repository of
state information that can be exchanged between flows in an
application-defined manner. The result is an open architec-
ture that can be exploited by any C-to-C application to realize
flow coordination and aggregate congestion responsiveness in
ways specific to the application’s problem domain.

In this paper, we show how CP can be applied to the prob-
lem of multi-streaming in 3DTI. The scheme described dy-
namically apportions available bandwidth among flows such
that frame transport synchrony, important for 3D reconstruc-
tion performance, is significantly enhanced while preserving
end-to-end reliability semantics. Results demonstrating the

effectiveness of CP in increasing multi-stream coordination
and at the same time maintaining aggregate congestion re-
sponsiveness are obtained from a FreeBSD/Linux implemen-
tation and a live experimental network.

The organization of this paper is as follows. In Section 2, we
summarize the Coordination Protocol architecture. Section 3
discusses the problem of multi-streaming in 3DTI and how
CP can be applied to increase frame arrival synchronization.
We present results in Section 4 showing that CP significantly
enhances application performance. In Section 5, we mention
related work. Finally, Section 6 summarizes the paper.

2. COORDINATION PROTOCOL

In this section, we describe the Coordination Protocol (CP).
Our focus here will be on CP services rather than internal
mechanisms and implementation detail. For more information
on aggregate congestion control mechanisms used by CP, the
reader is referred to [14].

2.1 Overview
The CP protocol architecture is designed with two goals in
mind:

e To inform endpoints of network conditions over the cluster-
to-cluster data path, including aggregate bandwidth avail-
able to the application as a whole, and

e To provide a lightweight infrastructure for exchanging
state among flows and allowing an application to imple-
ment its own flow coordination scheme.

To realize these goals, CP makes use of a shim header in-
serted in C-to-C application packets. Ideally, the position
of this header would be between the network layer (IP) and
transport layer (TCP, UDP, etc.). This makes it transparent
to IP routers on the C-to-C forwarding path and preserves
end-to-end transport-level protocol semantics. Our UDP-
based implementation, however, places the CP header in the
first several bytes of UDP application data, thus obviating
the need for endpoint OS changes and making the protocol
more deployable. In either case, each flow of a C-to-C appli-
cation employs a transport-level protocol that makes use of
CP information in various ways.

The main CP mechanism is actually implemented at the
aggregation point (AP). This may be the cluster’s first hop
router, or a forwarding agent in front of the first hop router
through which all application traffic must pass. The AP is
part of the cluster’s local computing environment and, as
such, is under local administrative control.

The CP header of packets belonging to the same C-to-C
application are processed by the AP during packet forward-
ing. Essentially, the AP uses information in the CP header
to maintain a state table. Flows deposit information into the
state table of their local AP as packets traverse from an ap-
plication endpoint through the AP and on toward the remote
cluster. Packets traveling in the reverse direction pick up
entries from the state table and report them to the transport-
level protocol layered above CP and/or the application.

In addition, the two APs conspire to measure characteristics
of the C-to-C data path such as round trip time, loss, avail-
able bandwidth, etc. These measurements are made using all
packets of all flows belonging to the same C-to-C application.
These values are also inserted into the state table. Figure 3
illustrates the header and its contents at different points on
the network path.

Report information is received by an application endpoint
on a per packet basis. This information can take several
forms including: information on current network conditions
on the C-to-C data path (round trip time, loss, available band-
width), information on peer flows (number of flows, aggregate
bandwidth usage), and/or application-specific information ex-
changed among flows using a format and semantics defined
by the application. An endpoint uses a subset of available
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Figure 3: CP packet structure as it traverses the cluster-to-cluster data path.

information to make send rate and other adjustments (e.g.,
encoding strategy) to meet application-defined goals for net-
work resource allocation and other coordination tasks.

While our overview of CP here is brief, an important point
should be emphasized. CP’s role is to provide information
useful to application endpoints in implementing their own self-
designed coordination schemes. In a sense, it is merely an
information service piggybacked on packets that traverse the
cluster-to-cluster data path. As such, aggregation points do
no buffering, scheduling, shaping, or policing of application
flows. Instead, coordination is implemented by the application
which must configure endpoints to respond to CP information
with appropriate send rate adjustments that reflect the higher
objectives of the application.

2.2 AP State Tables

An AP creates a state table for each C-to-C application
currently in service that acts as a repository for network and
flow information, as well as application-specific information
shared between flows in the C-to-C application.

The organization of a state table is as follows:

e The table is a two dimensional grid of cells each of which
can be addressed by an address and an offset. (We will
use the notation address.of fset when referring to par-
ticular cells.)

e There are 256 addresses divided into four types: report
pointers, network statistics, flow statistics, and general
purpose addresses.

e For each address, 256 offsets are defined. The value
and semantics of the particular cell located by the offset
depend on the address context.

Each cell in the table contains a 24-bit value. Our current
implementation uses four bytes per cell to align memory ac-
cess with word boundaries, making the state table a total of
256 KB in size. Even with a number of concurrent C-to-C
applications, tables can easily fit into AP memory.

An endpoint may read any location (address.offset) in the
table by using the report address mechanism described below.
In contrast, an endpoint may only write specific offsets of the
report and application addresses; network and flow statistic
addresses are assigned by the AP and are read-only. The state
table is illustrated in Figure 4.

2.2.1 Setting Cells of the State Table

The CP header of outgoing packets can be used to set the
value of up to 4 cells in the state table. When an outbound
packet (i.e., a packet leaving a cluster on its way toward the
other cluster) arrives at the AP, the CP header includes the
following information:

e The flow id (fid) of the specific flow to which this packet
belongs. Each flow of the application is assigned a unique
fid in the range [0,63]. How this flow id assignment is
made is an orthogonal issue which is not important to
our discussion and can be achieved in a number of dif-
ferent ways.

e Four “operation” fields which are used to set the value
of specific cells in the state table. The operation field
is comprised of two parts. The first is an 8-bit address
(Addr;) and the second is a 24-bit value (Val;). The ¢
subscript is in the range [0, 3] and simply corresponds to
the index of the 4 operation fields in the header. Figure 3
illustrates this structure.

When an AP receives an outbound packet, each operation
field is interpreted in the following way. The cell to be as-
signed is uniquely identified by Addr;.fid. The value of that
cell is assigned Val;. In this manner, each flow is uniquely
able to assign one of the first 64 cells associated with that
address.

Although the address specified in the operation field is in
the range [0,255], not all of these addresses are valid for writ-
ing (i.e., some of the addresses are read-only). Similarly, since
a flow id is restricted to the range [0,63], in fact only 64 of
the offsets associated with a particular writable address can
be set. As previously mentioned, the address space is divided
into four address types. The mapping between address range
and type is illustrated in Figure 4. The semantics of a cell
value at a particular offset depends on the specific address
type and is described in the following subsections.

2.2.2 Report Pointers

Four of the writable addresses are known as report pointers.
Using the mechanism described above, each flow is able to
write a 24-bit value into R;.fid where R; is one of the 4
report pointers (i.e., R1, R2, R3, and R4 in Figure 4) and
fid is the flow id. The value of these 4 cells (per flow) control
how the AP processes inbound packets (i.e., packets arriving
from the remote cluster) of a particular flow.

When an inbound packet arrives, the AP looks up the value
of R;.fid for each of the four report addresses. The 24-bit
value of the cell is interpreted in the following way. The first
8 bits are interpreted as a state table address (addr). The
second 8 bits are interpreted as an offset (of f) for that ad-
dress. The final 8 bits are interpreted as a validation token
(vid). The AP then copies into the CP header the 24-bit value
located at (addr.of f) concatenated with the 8-bit validation
token wvid. This is done for each of the four report fields.

Thus, outbound packets of a flow are used to write a value
into each of four report pointers, R1 through R4. These con-
figure the AP to report values in the state table using inbound
packets. The validation token has no meaning to the AP per
se, but can be used by the application to help disambiguate
between different reports.

2.2.3 Network Statistics

One of the addresses in the table is known as the network
statistics address (NET). This is a read-only address. The
offsets of this address correspond to different network statis-
tics about the C-to-C data path as measured by APs across
the aggregate of all flows in the C-to-C application including:

e Round trip time (NET.rtt)
e Loss (NET.loss)
e Bandwidth available (NET.bw)
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Figure 4: CP state table maintained at each AP.

This list is far from complete, merely giving the statistics
that come into play when we describe how we use CP mecha-
nisms to solve the synchronous frame ensemble transfer prob-
lem. Bandwidth available provides an estimate of the band-
width available to a single TCP-compatible flow given the
current round trip time, packet loss rate, average packet size,
etc. How this estimate is calculated, and how the value can
be scaled to n application flows is described in [14].

2.2.4 Flow Statistics

While statistics characterizing the C-to-C data path are
available through the N ET address, statistics characterizing
the application flows themselves are provided by offsets of the
flow statistics address FLOW . Offsets of this address include
information about:

e Number of active flows (FLOW.num)
e Throughput (FLOW.tput)
o Average packet size (FLOW.pktsize)

Again, this is merely a partial list enumerating the offsets
of this address that we currently use within the 3DTI system.
Other offsets correspond to other types of statistics. Up to
256 different statistics can be provided.

2.2.5 General Purpose Addresses

The general purpose addresses (i.e., GP1 through GP250)
in Figure 4 give a cluster-to-cluster application a set of tools
for sharing information in a way that facilitates coordination
among flows. For example, general purpose addresses may
be used to implement floor control, dynamic priorities, con-
sensus algorithms, dynamic bandwidth allocation, etc. Gen-
eral purpose addresses may also be useful in implementing
coordination tasks among endpoints not directly related to
networking.

Offsets for each general purpose address are divided into
two groups: assignable flow offsets and read-only aggregate
function offsets. We have already discussed how the offsets
equal to each flow id can be written by outbound packets of
the corresponding flow. These are the flow offsets. While
this accounts for the first 64 offsets of each of general purpose
address, the remaining 196 offsets are used to report aggregate
functions of these first 64 flows offsets. Some examples are:

e Statistical offsets for functions such as sum, min, max,
range, mean, and standard deviation.

e Logical offsets for functions such as AND, OR, and XOR.

e Pointer offsets. For example, the offset of the minimum
value, the offset of the maximum value, etc.

e Usage offsets. For example, the number of assigned flow
offsets or the most recently assigned offset.

Operations are implemented using lazy evaluation for ef-
ficiency. Which operations to include is an area of active
research. Flow offsets are treated as soft state and time out
if not refreshed.

2.3 Implementing Flow Coordination

While CP provides network and flow information, and pro-
vides facilities for exchanging information, it is up to the
cluster-to-cluster application to exploit these services to achieve
coordination among flows. Typically this involves a distributed
adaptation scheme in which current network conditions and
application state dictate the send rate modifications on indi-
vidual hosts.

An important point to note here is that aggregate band-
width available to the application as a whole (equal to CP’s
bandwidth available estimate for a single flow times the num-
ber of active flows in the application) may be distributed
across endpoints in any manner. That is, it is not necessarily
the case that a given application flow receives exactly 1/n of
the aggregate bandwidth in an n-flow application. In fact,
an application may apportion bandwidth across endpoints in
any manner as long as the aggregate bandwidth level is not
exceeded. We believe this to be a powerful feature of our
protocol architecture.

Here we provide a couple brief examples to illustrate. Ex-
amples are “miniature” in the sense that realistic C-to-C ap-
plications are likely to have many more flows and networking
requirements that are more complex and change dynamically.

Ezample 1. Flows A, B, and C are always part of the
same cluster-to-cluster application, but flows D and E join
and leave intermittently. Each requests NET.bw reports to
inform them of the estimated bandwidth available to a sin-
gle application flow. In addition, they request FLOW.num
reports that tell them how many flows are currently part
of the application. Since the application is configured to
run at no more than 3 Mbps, each flow sends at the rate
R = min(3Mbps/F LOW.num, Net.bw).

Ezample 2. Flow A is a control flow. Flows B and C are
data flows. All flows request N ET.bw and GP1. fid(A) which
informs them of the value flow A has assigned to general pur-
pose address 1 at the offset equal to its flow id. When running,
the application has two states defined by the value flow A has
assigned to GP1.fid(A): NORMAL (GP1.fid(A) = 0) which
indicates normal running mode, and UPDATE (GP1.fid(A) =
1) which indicates that a large amount of control informa-
tion is being exchanged to update the state of the appli-
cation. During NORMAL, A sends at the rate R = (3
NET.bw) * .1 while B and C each send at no more than
R = (3% NET.bw) % .45. During UPDATE, A sends at the
rate R = (3 * NET.bw) * .9 while B and C each send at no
more than R = (3« NET.bw) * .05.

These simple examples help to illustrate some of the advan-
tages of the CP state table mechanism. Flows can be tightly
coordinated and exchange state information on a per packet
basis. Distributed local decisions can be made in informed
ways that result in the appropriate global behavior using AP
state table information piggybacked on packets that are al-
ready being sent and received as part of the application. Ag-
gregate measures of application performance that can be ef-
fectively gathered only at the AP and not at any one end host
are made available to the application. AP performance is not
a bottleneck because the amount of work done for each for-
warded packet is limited to simple accounting and on-demand
state table updates.

3. COORDINATED MULTI-STREAMING

The design and implementation of CP was inspired by the
multi-streaming requirements of applications like tele-immersion.
As such, we have been collaborating 3D Tele-immersion (3DTT)
developers to showcase how CP can help with some of their
most difficult data transport challenges. The rest of this paper
explores ways in which CP was employed within this context
and the resulting improvements in application performance.
The central problem faced by the developers of 3DTI was that
of asynchrony among multiple video flows.



The scene acquisition subsystem in 3DTI is charged with
capturing video frames simultaneously on multiple cameras
and streaming them to the 3D reconstruction engine at a re-
mote location. The problem of synchronized frame capture is
solved using a single triggering mechanism across all cameras.
Triggering can be handled periodically or in a synchronous
blocking manner in which subsequent frames are triggered
only when current frames have been consumed. The trigger-
ing mechanism itself can be hardware-based (a shared 1394
Firewire bus) or network-based using message passing.

3DTI uses synchronous blocking and message passing to
trigger simultaneous frame capture across all hosts. A master-
slave configuration is used in which each camera is attached
to a separate Linux host (i.e., slave) that waits for a triggering
message to be broadcast by a trigger host (i.e., master). Once
a message has been received, a frame is captured and written
to the socket layer which handles reliable streaming to an
endpoint on the remote reconstruction subsystem. As soon as
the write call returns (i.e., the frame can be accommodated in
the socket-layer send buffer), a message is sent to the trigger
host notifying it that the capture host is ready to capture
again. When a message has been received for all hosts, the
trigger host broadcasts a new trigger message and the process
repeats.

Some key issues in multi-streaming video frames in this
context include
Send buffer size,
choice of transport protocol,
aggregate responsiveness to network congestion,
bandwidth utilization, and
synchronization across flows.

In the original 3DTI design, TCP was chosen to be the
transport-level protocol for each video stream. TCP, while
not typically known as a streaming protocol, was an attractive
choice to the 3DTI developers for several reasons. First, it
provided in-order, reliable data delivery semantics which, as
mentioned in Section 1, is an important requirement in this
problem domain. Second, it is congestion responsive. Use of
TCP for multi-streaming in 3DTT insures that C-to-C traffic
as an aggregate is congestion responsive by virtue of the fact
that individual flows are congestion responsive. The original
developers had hoped that by using relatively large capacity
networks (i.e., Abilene), performance would not be an issue.

The resulting application performance, however, was poor,
but not necessarily because of bandwidth constraints. In-
stead, the uncoordinated operation of multiple TCP flows
between the acquisition and reconstruction clusters resulted
in large end-to-end latencies and asynchronous delivery of
frames by different flows. By adding CP mechanisms to the
architecture and developing a CP-based, reliable transport-
level protocol, we demonstrate how a small bit of coordina-
tion between peer flows of a C-to-C application can go a long
way toward achieving application-wide networking goals.

3.0.1 Multi-streaming with TCP

The major disadvantage of TCP in the multi-streaming
problem context, is that individual flows operate indepen-
dently of peer flows within the same application. Each TCP
stream independently detects congestion and responds to loss
events using its well-know algorithms for increasing and de-
creasing congestion window size. While the result is a conges-
tion responsive aggregate, differences in congestion detection
can easily result in a high degree of asynchrony as some flows
detect multiple congestion events and respond accordingly,
while other flows encounter fewer or no congestion events
and maintain a congestion window that is, on average dur-
ing the streaming interval, larger. The result, for equal size
frames across all capture endpoints, is that some flows may
end up streaming frames belonging to the same ensemble more
quickly at the expense of peer flows that gave up bandwidth
in the process.

=

The problem is heightened when video frames are of un-
equal size. This might be the case when individual capture
hosts apply compression as part of the capture process. A
flow with more data to send might, in some cases, encounter
more congestion events and, as a result, back off more than a
flow with less data to send. The result is a high probability of
stalling as some flows finish streaming their frame and wait for
the remaining flows to complete before the next frame trigger
can proceed.

The problem of stalling can be mitigated, of course, by
increasing socket-level send buffering, but at the expense of
increasing end-to-end delay which is highly undesirable since
3DTI is an interactive, real-time application. What is needed,
we argue, is an appropriate amount of buffering: large enough
to maintain a full data pipeline at all times, but small enough
to minimize unnecessary end-to-end delay. Maintaining this
balance requires information about conditions on the C-to-C
data path, however, something that TCP cannot provide.

3.0.2 Multi-streaming with CP-RUDP

To address these problems, we deployed CP-enabled soft-
ware routers in front of each cluster to act as APs. Then
we developed a new UDP-based protocol called CP-RUDP
and deployed it on each endpoint host in the application.
CP-RUDP is an application-level transport protocol for ex-
perimenting with send rate modifications using CP informa-
tion in the context of multi-stream coordination. Essentially,
it provides the same in-order, reliable delivery semantics as
TCP, but with the twist that reliability has been completely
decoupled from congestion control. This is because the CP
layer beneath can now provide the congestion control infor-
mation needed for adjusting send rate in appropriate ways.
In addition, CP-RUDP is a rate-based protocol, while TCP
is a window-based protocol.

In the context of 3DTI, our work focused on two areas:

e Better bandwidth distribution for increased frame ar-
rival synchrony.

e Adjusting sender-side buffering to maximize utilization
but minimize delay.

To accomplish the first goal, we rely on an important prop-
erty of the CP state table: consistency of information across
endpoints. Because the APs are now in charge of measuring
network characteristics of the C-to-C data path for the appli-
cation as a whole, individual flows can employ that informa-
tion and make rate adjustments confident that peer flows of
the same application are getting the same information and are
also appropriately responding. In particular, endpoints see
the same bandwidth availability estimates, round trip time
measurements, loss rate statistics, and other network-based
statistics.

With this in mind, we found the most effective coordina-
tion algorithm for 3DTI’s multi-streaming problem to be the
application of two relatively simple strategies.

e Fach endpoint in the application sends at ezactly the
rate given by the Net.bw report value. The value, as
described in [14], incorporates loss and round trip time
measurement information on the cluster-to-cluster data
path and uses a TCP modeling equation to calculate the
instantaneous congestion-responsive sending rate for a
single flow [6, 8].

e Fach endpoint uses an adaptive send buffer scheme in
which buffer size, B, is continually updated using the
expression B = 1.5% (Net.bw* Net.rtt). In other words,
the send buffer size is set to constantly be 1.5 times
the bandwidth delay product. By using the bandwidth
delay product, we insure that good network utilization
is effectively maintained at all times. The 1.5 multi-
plicative factor is simply a heuristic that insures some
additional buffer space for retransmission data and data
that is waiting to be acknowledged.

Experimental results demonstrating the effectiveness of this
scheme are presented in the following section.
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4. RESULTS

In this section, we present experimental results demonstrat-
ing the effectiveness of flow coordination to the problem of
multi-streaming in 3DTI. Included is a description of our ex-
perimental setup and performance metrics. Our goal is to
compare multi-streaming performance between TCP, a reli-
able, congestion responsive but uncoordinated transport pro-
tocol, and CP-RUDP, an equivalently reliable, congestion re-
sponsive transport protocol but with the added feature that it
supports flow coordination. Our results show a dramatic im-
provement in synchronization while maintaining a bandwidth
utilization that does not exceed that of TCP. They also un-
derscore the tremendous benefit of information consistency
across flows as provided by the CP architecture.

4.1 Experimental Setup

Our experimental network setup is shown in Figure 5. CP
hosts and their local AP on each side of the network represent
two clusters that are part of the same C-to-C application and
exchange data with one another. Each endpoint sends and
receives data on a 100 Mb/s link to its local AP, a FreeBSD
router that has been CP-enabled as described above. Ag-
greate C-to-C traffic leaves the AP on a 1 Gb/s uplink. At
the center of our testbed are two routers connected using two
100 Mb/s Fast Ethernet links. This creates a bottleneck link,
and by configuring traffic from opposite directions to use sepa-
rate links, emulates the full-duplex behavior seen on wide-area
network links.

In order to calibrate the fairness of application flows to TCP
flows sharing the same bottleneck link, we use two sets of hosts
(labeled “T'CP hosts” in Figure 5) and the well-known utility
wperf [1]. Iperf flows are long-lived TCP flows that compete
with application flows on the same bottleneck throughout our
experiment. The normalized flowshare metric described in
Section 4.2 then provides a way of quantifying the results.

Also sharing the bottleneck link for many experiments are
background flows between traffic hosts on each end of the net-
work. These hosts are used to generate Web traffic at various
load levels and their associated patterns of bursty packet loss.
More is said about these flows in Section 4.4.

Finally, network monitoring during experiments is done in
two ways. First, tepdump is used to capture TCP/IP headers
from packets traversing the bottleneck, and then later filtered
and processed for detailed performance data. Second, a soft-
ware tool is used in conjunction with ALT(Q [10] extensions
to FreeBSD to monitor queue size, packet forwarding events,
and packet drop events on the outbound interface of the bot-
tleneck routers. The resulting log information provides packet
loss rates with great accuracy.

4.2 Performance Metrics

Define frame ensemble to be a set of n frames captured by n
different frame acquisition hosts at the same instant in time.
A frame ensemble is generated after each triggering event as
described in Section 3.

Overall, our goal is to compare the level of synchrony in
frame arrivals within the same frame ensemble. With this in
mind, we define the metric completion asynchrony for frame
ensemble ¢ as follows. Within any given frame ensemble i,

there is some receiving host that receives frame ¢ in its entirety
first. Let’s call this host Hy; and the time of completion cy,;.
There’s another host that receives frame i in its entirety last
(i.e., after all other hosts have already received frame 7). Call
this host H;; and the time of completion ¢; ;. Completion
asynchrony C; is defined as the time interval between frame
completion events ¢;,; and cy;. Intuitively, it reflects how
staggered frame transfers are across all application flows in
receiver-based terms.

(1)

An important metric to the application as a whole is the
frame ensemble transfer rate which we define as the number
of complete frame ensemble arrivals f over time interval p.

! (2)

R=*=
p
Finally, we wish compare the bandwidth taken by flows in
the application to that of TCP iperf flows competing over the
same bottleneck link. Define average flowshare (F) to be the
mean aggregate throughput divided by the number of flows.
The normalized flowshare is then the average flowshare among
a subset of flows, for example CP-RUDP flows (Fcp—rupp),
divided by the average flowshare for all flows (Fai). (All flows
here refers to CP-RUDP flows and competing T'CP iperf flows,
but not background traffic flows.)

Ci=ci—cy

Fep_ruDP
_— 3
Fan ®)

1.0 represents an ideal fair share. A value greater than 1.0
indicates that CP-RUDP flows on an average have received
more than their fair share, while for less than 1.0 the reverse
is true.

4.3 Loss Experiments

In this section we compare the performance of TCP multi-
streaming with that of CP-RUDP under conditions of varying
packet loss rates. In each experiment, TCP’s send buffer is
necessarily configured to be large in order to maximize uti-
lization in the face of frame asynchrony and insure that good
frame ensemble rates are maintained.

To generate controlled loss, we used the dummynet [16] traf-
fic shaping utility found in FreeBSD 4.5. Dummynet provides
support for classifying packets and dividing them into flows.
A pipe abstraction is then applied that emulates link charac-
teristics including bandwidth, propagation delay, queue size,
and packet loss rate. We enabled dummynet on bottleneck
routers and configured it to produce loss at various rates.

Runs lasted for 10 minutes during which the initial 5 min-
utes were spent on ramp-up and stabilization, and the subse-
quent 5 minutes were used to collect performance data. Trials
with longer stabilization and run intervals did not show sig-
nificantly different results.

Completion asynchrony results in Figure 7 show a dramatic
difference between TCP and CP-RUDP. Values for TCP show
frame arrival asynchrony to be 5 to 20 times larger than CP-
RUDP.

Figure 7 shows CP-RUDP getting a slightly better frame
ensemble transfer rate for various loss rates, but not by much.
Likewise, Figure 8 shows CP-RUDP getting slightly more
bandwidth, but not by much.

Fep-rupp =

In summary, the benefit of CP-RUDP to 3DTI multi-streaming

is a substantial increase in synchronization while maintaining
appropriate utilization and fairness to TCP peer flows.

4.4 Load Experiments

While testing CP performance under various dummynet
loss conditions is instructive, a random loss model is wholly
unrealistic. In reality, losses induced by drop tail queues in
Internet routers are bursty and correlated. To better capture
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this dynamic, we tested TCP and CP-RUDP performance
against various background traffic workloads using a Web traf-
fic generator known as thttp.

Thitp uses empirical distributions from [17] to emulate the
behavior of Web browsers and the traffic that browsers and
servers generate on the Internet. Distributions are sampled to
determine the number and size of HTTP requests for a given
page, the size of a response, the amount of “think time” before
a new page is requested, etc. A single instance of thttp may
be configured to emulate hundreds of Web browsers and sig-
nificant levels of TCP traffic with real-world characteristics.
Among these characteristics are heavy-tailed distributions in
flow ON and OFF times, and significant long range depen-
dence in packet arrival processes at network routers.

We ran four thttp servers and four clients on each set of
traffic hosts seen in Figure 5. Emulated Web traffic was given
a 20 minute ramp-up interval and competed with TCP and
CP-RUDP flows on the bottleneck link in both directions. We
varied the number of browsers emulated from 1000 to 6000.
Resulting loss rates are between .005 and .05 as measured at
bottleneck router queues.

Figure 9 completion asynchrony results once again illus-
trate the vast improvement CP-RUDP represents over TCP
in terms of frame arrival synchrony.

Figure 10 shows that frame ensemble rates are once again
very similar between CP-RUDP and TCP, indicating similar
throughput for both. Normalized flowshare results in Fig-
ure 11 show CP-RUDP achieving almost perfect fairness with
competing TCP flows, while TCP application flows receive a
little less than their fair share due to stalling.

4.5 Fixed Frame Size Experiments

In this set of experiments, we chose a background thitp
load of 6000 browsers and looked at the effect of frame size
on transfer asynchrony.

Figure 12 completion asynchrony results show CP-RUDP
to be a vast improvement over TCP in terms of frame ar-
rival synchrony. Furthermore, CP-RUDP asynchrony values
remain consistently low across all frame sizes.

Frame ensemble rates in Figure 10 and normalized flow-
share results in Figure 11 repeat the pattern discussed in the
previous sections.

[}
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transfer rate vs. thitp load.
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Frame ensemble Figure 11: Normalized flowshare

vs. thttp load.
4.6 Variable Frame Size Experiments

Finally, we look at the effect of variable frame size on trans-
fer asynchrony. Here, variable frame size refers to differences
in frame size within the same frame ensemble. This situation
might occur, for example, when compression is applied by in-
dividual endpoints on frames that differ somewhat in image
content.

To generate variable sized frames, we have each sender sam-
ple a normal distribution to determine frame size at each cap-
ture event. The mean frame size of the run and a standard
deviation value of 25% are used as input parameters to the
distribution.

Figure 9 completion asynchrony results once again show a
dramatic and consistent improvement over TCP. Frame en-
semble rates in Figure 10 and normalized flowshare results in
Figure 11 once again repeat the pattern discussed in previous
plots.

5. RELATED WORK

The initial concept of the Coordination Protocol (CP) was
sketched in [12], and early simulation results presented in [13].
[14] presents work on CP’s aggregate congestion control mech-
anisms, including bandwidth filtered loss detection. The work
presented in this paper, in contrast to previous work, looks
at applying CP to the problem of multi-streaming in 3D tele-
immersion, emphasizing CP mechanisms for state sharing and
experimental results from a real implementation.

The ideas behind CP were primarily inspired by the Con-
gestion Manager (CM) architecture developed by Balakrish-
nan [3]. CM provides a framework for different transport-level
protocols on the same host to share information on network
conditions. CM is an excellent example of a coordination
mechanism, but operates only when flows share the entire
end-to-end path.

Pradhan et al. propose a way of aggregating TCP connec-
tions sharing the same traversal path in order to share con-
gestion control information [15]. Their scheme takes a TCP
connection and divides it into two separate (“implicit”) TCP
connections: a “local subconnection” and a “remote subcon-
nection.” This scheme, however, breaks the end-to-end se-
mantics of the transport protocol (i.e., TCP).

Active networking, first proposed by [18] allows custom pro-
grams to be installed within the network. Since their original
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conception, a variety of active networking systems have been
built (20, 2, 5], for instance). They are often thought of as a
way to implement new and customized network services. In
fact, CP could be implemented within an active networking
framework. Active networking, however, mandates changes
to routers along the entire network path. This severely hin-
ders deployment. CP requires changes only at the endpoints
and at the aggregation points.

[4] describes a lightweight scheme that allows IP packets to
manipulate small amounts of temporary state at routers using
an ephemeral state store (ESS). The CP state table extends
these ideas by including measures of network conditions, flow
information, and aggregate functions of application-deposited
state.

6. SUMMARY

In this paper, we motivate the need for coordination among
peer flows of a broad class of futuristic multimedia appli-
cations that we call cluster-to-cluster (C-to-C) applications.
These applications involve multi-stream communication be-
tween clusters of computing resources across which the appli-
cation is distributed. One such application at the focus of our
attention is a tele-immersion system called 3DTT.

To address the multi-stream coordination issues of C-to-C
applications, we have developed a protocol architecture called
the Coordination Protocol (CP) that measures network con-
ditions between clusters across all application flows and pro-
vides them with a generalized state sharing mechanism. The
result is an open architecture for implementing flow coordi-
nation in application-defined ways.

In particular, we have used CP to develop a new reliable
streaming protocol called CP-RUDP that addresses the syn-
chronization requirements found in 3DTI. We presented re-
sults showing how CP-RUDP is able to dramatically improve
multistream synchronization within the context of this appli-
cation.
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