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Abstract. An algorithm is presented for generating a succinct encoding of all pares shortest path

reformation in a directed planar graph G with real-valued edge costs but no negative cycles. The

algorithm runs m O(prI ) time, where n M the number of vertices in G, and p is the mimmum cardinalit y

of a subset of the faces that cover all vertices, taken over all planar embeddings of G. The algorithm is
based on a decomposition of the graph into O(pn ) outerplanar subgraphs satisfying certain separator
properties. Lmear-time algorithms are presented for various subproblems including that of finding an
appropriate embedding of G and a corresponding face-on-vertex covering of cardinabty 0(p). and of
generating all pairs shortest path Information in a directed outerplanar graph.

Categories and Subject Descriptors: E. 1 [Data Structures]: graph~: F.22 [Analysis of Algorithms and
Problem Complexity]: Nonnumencal Algorithms and Problems—computatmm on discrete s[rwtures:

G.2.2 [Discrete Mathematics]: Graph Theory—graph algormhms, network problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: All pairs shortest paths, approximation algorithm, compact routing
table, graph embeddmg, NP-completeness, outerplanar graph, planar graph, succinct encoding

1. Intsodlletion

A fundamental problem in graph algorithms is that of determining shortest path

information in a graph [1, 5]. Efficient algorithms for various versions of this

problem have been proposed [6, 9, 11, 14, 15, 23], with recent emphasis on

exploiting topological features of the input graph, such as edge sparsity and planarity

[11, 15]. Consider the all pairs shortest paths problem on a directed graph with

real-valued edge weights, but no negative cycles. In this paper. we introduce a new

approach for this problem, using a succinct encoding of shortest path information

based on the topology of the graph. We present algorithms that handle ~~-vertex

planar graphs in time that ranges from O(n) up to 0(n2) as the topological

properties of the graphs become more complex. By encoding shortest path infor-

mation in what we call compact routing tables, we avoid a lower bound of !J(nz)
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FIG. 1. An embedded graph with a face-on-vertex covering of five faces
shown as shaded.

time that would be needed if the output were required to be in the form of n

shortest path trees.

Let 6 be a plane embedding of a planar graph G. We call a set of faces of G that

together cover all the vertices a~ace-on-vertex covering. An example of an embedded

planar graph ~ and a face-on-vertex covering of G is shown in Figure 1. Let p be

the minimum cardinality of any face-on-vertex covering over all plane embedding

of G. The value of p ranges from 1 up to O(n), depending on the planar graph.

Given planar graph G, but no embedding, our algorithm constructs compact

routing tables for all pairs shortest paths in a directed planar graph in O(pn ) time.

Previous algorithms had performance of 0(n3(log log n) l/3/(log n) 1/3) for general

graphs [14]. O(nm + nzlog n) for sparse graphs [15], 0(n2) for planar graphs [11].

and O(n) for undirected outerplanar graphs [12], where m is the number of edges

in the graph.

Our choice of output in the form of compact routing tables is natural, as shortest

path information in this form is useful in space-efficient methods for message

routing in distributed networks [12, 13]. In the conclusion, we shall discuss an

alternative encoding that costs only O(n + pz) time to generate. We also give an

algorithm that identifies all edges that violate the generalized triangle inequality in
O(n + p’) time,

We identify several nice structural properties of planar graphs. Given a face-on-
vertex covering of cardinality p‘, we identify a decomposition of a planar graph

into O(p’ ) particularly appropriate subgraphs, called hammocks. We prove a
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monotonicit~’p ropert~’, which characterizes the difference of the distance from a

vertex to two other vertices as the vertex moves around a face in the embedding.

To handle our all pairs shortest paths problem, we identify and solve the following

four subproblems (the latter two of which are approximation problems for

NP-hard problems!):

(1) Suppose we are given a directed outerplanar graph with real-valued edge

costs, but no negative cycles. We present an algorithm that determines shortest

path information in O(n) time. The approach in [12] for undirected outerplanar

graphs does not work in the directed case, since for directed outerplanar graphs

there is no property comparable to the reflection property.

(2) Suppose we are given a directed planar graph G with real-val~ed edge costs

but no negative cycles. Supp:se we are also given an embedding G of G, and a

face-on-vertex covering of G of cardinality p‘. We present an algorithm that

determines shortest path information in O(p’ n ) time.

(3) Suppose that an embedding G of an undirected planar graph G is given, but
no face-on-vertex covering is provided. It has been shown in [3] and [8] that it is

NP-complete to determine if there is a face-on-vertex covering of cardinality at

most p‘. We present an algorithm that determines a face-on-vertex covering of

cardinality at most twice that of a minimum cardinality face-on-vertex covering

for ~. This algorithm is based on an approach in [2], and runs in O(n) time.

(4) Suppose we are given an undirected planar graph G, but no embedding G.

Note that there are planar graphs for which one embedding has a face-on-vertex

covering of cardinality 2, while another embedding has a face-on-vertex covering

of minimum cardinality ~(n). An algorithm to determine a minimum cardinality

face-on-vertex covering and associated embedding is given in [3], but takes 0(2p~z)

time. This is too much for our shortest paths application except when p is ~(1).

We give an algorithm that finds an embedding G and a face-on-vertex covering in

G of cardinality within a constant factor of the minimum cardinality covering for

an embedding of G, The algorithm uses a decomposition of G into triconnected

components [18], and runs in O(n) time.

Our algorithm for problem (1) is used in the solution of problem (2), and our

algorithm for problem (3) is used in the solution of problem (4). The all pairs

shortest paths problem in planar graphs can then be solved as follows. Given a

directed planar graph G, we first find a good embedding and a good face-on-vertex

covering by converting the directed edges to undirected edges, and then applying

the algorithm for problem (4). Given the good embedding and the good face-on-

vertex covering, we then use the algorithm for problem (2).

our paper is organized as follows: In Section 2, we discuss compact routing
tables, and then describe a decomposition of a planar graph. In Section 3, we

present an algorithm for finding all pairs shortest paths in directed outerplanar

graphs. In Section 4, we sketch our basic approach for solving all pairs shortest

paths in planar graphs, and present the monotonicity property and its application.

In Section 5, we show how to generate shortest path information between the

subgraphs in our decomposition. In Section 6, we show how to generate shortest

path information within each subgraph in our decomposition. In Sections 7 and 8,
we describe our approximation algorithm for finding a good embedding and a good

face-on-vertex covering. In Section 9, we discuss verifying the triangle inequality,

and give another encoding of all pairs shortest paths.



Planar Grap/1 Decomposition and AllPairs Shortest Paths 165

2. Structure of Planar Graphs

In this section, we first review the notion of compact routing tables. We then

define, relative to a given face-on-vertex covering of a planar graph, subgraphs that

we term hammocks. Hammocks have several nice properties that make them

especially appropriate for use in shortest paths algorithms. A hammock is outer-

planar, each hammock shares at most four vertices with the rest of the graph, and

the vertices in a hammock form two chains of consecutive vertices along faces in

the face-on-vertex covering. Our definition of hammocks leads to a linear-time

algorithm for decomposing a planar graph into O(p’ ) hammocks, if the given face-

on-vertex covering has p‘ faces.

We first discuss the idea of compact routing tables, which appears in [12] and is

based on ideas in [21] and [22]. Let the vertices be assigned names from 1 to n in

an appropriate manner to be discussed. For every edge (v, W)) incident from any

given vertex v, let S(V, w) be the set of vertices such that there is a shortest path

from v to each vertex in S(V, w) with the first edge on this path being (v, w)). A tie

occurs if there is a vertex u such that there is a shortest path from v to u with the

first edge on this path being (v, w) and also a shortest path from ]’ to N with the

first edge on this path being (v, w‘ ) for some w‘ # WI. In the event of ties, an

appropriate tie-breaking rule is employed so that for each pair of vertices v and

u # v, u is in just one set S(v. w) for some w. Let each set S(v, w’) be described as

a union of a minimum number of subintervals of [ 1, H]. Here we allow a subinterval

to wrap around from n back to 1, that is, a set {i, i + 1, . . . . n, 1, 2, . . . ,j], where

i > j + 1 will be described by [i, j]. We call the set S(v, w) described in the form

of a minimum number of subintervals of [ 1, n] the label of edge (v, }!’).

For example, consider an outerplanar graph. (A graph is outerplanar if it can be

embedded in the plane such that all vertices are on one face [17].) It was shown in

[12] that if the vetiices of an undirected outerplanar graph are named in clockwise

order around this one face, then each set S(V, W) is a single interval [1, h]. Clearly

this property also holds for directed outerplanar graphs. A compact routing table

for v consists of a list of initial values i of each interval, along with pointers to the

corresponding edges. The list is a rotated list (see [10] and [20]), and can be

searched using a modified binary search.

A linear-time algorithm has been presented in [12] for determining the labels of

all edges of an undirected outerplanar graph. (For an undirected graph, each edge

has two labels, one corresponding to each endpoint of the edge, since the edge can

be traversed in either direction.) In the next section, we give a linear-time algorithm

for determining the labels of all edges of a directed outerplanar graph. If the graph

is not outerplanar, that is, p < 1, then an edge label S(v, u’) can consist of more

than one subinterval. A compact routing table will then have an entry for each of

the subintervals contained in an edge label at v. It can be shown that the total size

of all compact routing tables for directed planar graphs is O(pn ). (The proof is

essentially the same as the proof in [12] for undirected planar graphs.)

For the remainder of the section, we discuss a decomposition of an embedded

directed planar graph with no self-loops into subgraphs, each of which is outer-

planar, and each of which shares at most four vertices with all other subgraphs in

the decomposition. Let G = (V. E, F’) be an embedding of G with a face-on-vertex
covering F’ of p‘ faces, where p‘ > 1. To generate the decomposition, we shall

first convert the embedded directed graph ~ into an embedded undirected planar

graph d, = ( J’l, El, F,) with certain nice properties, along with aAface-on-vertex

covering F j of size p‘. We shall then identify certain subgraphs in GI, and convert
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these back into the desired subgraphs of G. The conversion will be such that ~1

has no parallel edges, that all faces in ~, – F ( are bounded by three edges, that no

pair of faces in F{ share a vertex. and that the boundary of each face is a simple

cycle. We call an embedded undirected planar graph that satisfies the above

assumptions neatly prepared. We describe the structure of 61 with respect to F{.

and give a decomposition of ~1 into O(p’) outerplanar graphs. At the end of the

section, we discuss how to perform the conversions.

In the case that p‘ = 2, there is a special procedure that we discuss subsequently.

Otherwise, for p‘ >2, let the faces in F: be indexed with the integers from 1 to p‘.

We label the faces of F1 – F ( with a 4-tuple (i, j, k, r). The values i, j, and k are

the indices of the faces in F; containing the three vertices of the face. These are

ordered so that k = j implies i = j. The value r is the number of edges of the face

that are shared with faces in F ~. Thus, (i, i, j, 1) represents a face that has two

vertices on face j; and one on face J, with the two vertices on face j adjacent via

an edge on face J. Also, (i, i, i, 2) represents a face with three vertices on face /~,

with one pair of vertices adjacent via an edge on .fi, and a second pair adjacent via

a second edge that is also on f.

We now show how to group the faces together to form hammocks, using two

operations: absorption and sequencing. We first perform absorption. Consider a

pair of faces in F, – F{ that share an edge. Suppose the labels are (i, i, i, 2) and

(i, i, j. r), where eitherj = i and r = 1, orj # i and r = O. Absorb the first face into
the second, and relabel it as (i, i, j, r + 1). This is equivalent to performing the

following operations on the embedded graph. First, contract an edge that the first

face shares with face j. The first face becomes a face bounded by two parallel

edges, one of which is shared with the second face. Then, delete this edge, effectively

merging the faces. Repeat the absorption operation until it can no longer be

applied.

Once the absorption operation can be applied no longer, we group the remaining

faces by sequencing. Identify maximal sequences of faces such that each consecutive

pair of faces in the sequence share an edge in common, and all faces have the label

(i, i, j. 1) or (j, j, i. 1) for some pair of indices i and j. A special case arises if such

a sequence of faces extends all the way around one of the faces in F{, say j;. In this

case, there is a vertex on J that is contained in both the first and last faces of the

sequence. Split this vertex into two vertices. Each such sequence of faces then

comprises an outer planar graph. Expanding the faces that were absorbed into faces

in the sequence yields a graph that is still outerplanar. Each such resulting graph is

called a (major) hummock, so called because it stretches between two faces. The

first and last vertices on each of these two faces of the hammock are called the

vertices ofattach~ne~lt. Any edge that is not included in a major hammock is taken

individually to induce a (minor) hawzrnock. The set of all major and minor
hammocks comprises a hammock decomposition of the embedded graph G,.

Figure 2 shows an undirected embedded planar graph that was generated from

the directed embedded planar graph given in Figure 1. (We discuss this generation

later.) Let the faces in the face-on-vertex covering be indexed: .fi covers vertices

1-7, j; covers vertices 8-11, A covers vertices 12-14, j“ covers vertices 15-20.

and ~5 covers vertices 2 I –23. The face containing vertices 9, 10, and 11 will have

label (2, 2, 2, 2), and the face containing vertices 3, 9, and 11 will have label

(2, 2, 1, O). Absorbing the first face into the second by contracting edge (9, 10) and

deleting edge (9, 11) will yield a face with vertices 3, 9, and 11 and label (2, 2.
1, 1). Then, a maximal sequence of faces between faces j and A contains faces

with vertex sets {3, 9, 11~, {3, 4, 9}, {4, 9, 8}, {4, 8, 11}, and {4, 5, 11}. (The face
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FIG. 2. An undirected embedded graph generated from the graph in
Figure 1, with faces not in the face-on-vertex covering triangulated.

{3, 9, 11} in this sequence is the result of absorbing face {9, 10, 11} into the origi-

nal face {3, 9, 11} of Figure 2. As noted earlier, this resulting face has edge (9, 11)

on face fz.) Note that this sequence extends all the way around face f~. Thus, the

vertex 11 should be split into two vertices, say 11’ and 11”. The edges in the corre-

sponding major hammock will be (9, 10), (9, 11 “), (10, 11 “), (3, 9), (3, 4), (4, 9).

(8, 9), (4, 8), (8, 1 l’), (4, 11 ‘), (4, 5), (5, 11 ‘), and (3, 1 l“). These are listed in an

order of six instances of an edge that can be contracted followed by an edge that

can be deleted, culminating with a final edge that remains, as discussed in the

proof of the upcoming Lemma 2.2. Note that the vertices of attachment of this

hammock are 3, 1 l“, 5, and 11’.

Note that a major hammock can span between two different sequences of vertices

on the same face in Fi, as is shown by the hammock that spans vertices {1, 7, 3}.

There can also be two different hammocks spanning between the same pair of

faces, as shown by the hammock spanning vertices {5, 6, 7, 16, 15, 20} and the

hammock spanning vertices {7, 16, 17). Other major hammocks span the vertex

sets {1, 2, 3, 12, 13, 14], {17, 18, 19, 20, 21, 22, 23}, and {7, 21, 23}. Note that

edges (7, 11) and (11, 16) each induce a minor hammock.

If D‘ = 2. then 61 can be decomposed as follows. (Note that after absorbing all
possible faces, there would be a cycle of faces rather than a sequence of faces.)

Identify a face not in F ~ that contains vertices not all on the same face in F;. Of

the vertices on this face, choose two which are on different faces of F (. Split each

of these vertices into two vertices, and reconnect the edges so that the face not in

F{ and the two faces in F f are merged. The resulting graph is outerplanar, and we
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designate it a major hammock. The vertices of attachment are the four vertices

resulting from the splitting.

LEMMA 2.1. The above algorithm generates a decomposition ofa neatly prepa~ed

embedded undirected planar graph into hammocks.

P}OOF. We claim that there is a one-to-one correspondence between the ~dges

in G, and the edges in the hammocks of the hammock decomposition of G1. If

p‘ = 2, then this is clearly ~rue. Thus, we consider the case in which p‘ >2. First,

it is clear that any edge in GI has at least one corresponding edge in the hammocks

of the decomposition, since any edge not in a major hammock is inserted into a

hammock of its own. Suppose that there were an edge in 61 that is in more than

one major hammock. This edge cannot be an edge on some face J in F;, since

such an edge is in only one face in F1 – F{, and each face in Fl – F ~ is included

in at most one sequence of faces. Thus, this edge must be shared by two faces in

F, – F [, each of which is included in a different hammock. Let one face have

label (i, 1,j, 1) after all absorption. The edge it shares must be between faces~ and

j. Thus the other face must have label ( i, i. j, 1) or (I, j, i, 1) after all absorption.

But, in either case, this face would be in the same sequence as the first. It follows

that an edge cannot be shared by two faces in FI – F ~. Thus, the claim follows:

It is not hard to verify that the vertices of attachment of any hammock are the

only vertices shared with any other hammocks. ❑

LEMMA 2.2. Let ~, be u neatl~ prepared embedded undirected planar graph

fl’ith a face-on-ve~tex covering ofp’ >1 faces. There are max {3p’ – 6, 1 } hammocks

in a hammock decomposition of G1.

PROOF. Ifp’ = 2. then clearly there is only one hammock. For p‘ >2, consider

the following construction. Generate embedded graph G~,from ~1 as follows: First,

mimic the absorption of faces by contracting and deleting edges as discussed

previously. After the absorption of faces has been mimicked, we compress major

hammocks as follows: For every edge that is on some face-fin F I and in a major

hammock, contract the edge, and delete one of the two resulting parallel edges.

Such operations should be performed ;O as to preserve the embedding. Call the

resulting graph G},. It follows that, in Gh, there is a vertex corresponding to each

face in F f, and each edge in ~}1 corresponds to a hammock in G,. It is also clear

that there is no face bounded by two parallel edges in Gll. There are no faces

bounded by a single edge, which follows from the way faces labeled by (i, i, i, 2)

are absorbed.

Let Vh, Eh, and F{, be the sets of vertices, edges and faces of G},. Since there is

no face bounded by a single edge and no face bounded by just two edges, any face

in G), must be bounded by three edges. (Note that there are potentially loops in the
graph, but these do not individually enclose faces in the embedding, and similarly

that there may be two edges with the same endpoints, but these do not alone bound

any face.) Thus. I F}, I = 2 I E}, I /3. Since ~h is planar. Euler’s formula [17] gives

I Vh I – IEA I + IFA I =2. Combining yields I Ehl = 3 I L’), I – 6. Since I V;ll =p’,
and I E}, I is the number of hammocks, the result follows. ❑

We now discuss how to convert an embedded undirected graph Go = ( VO1EO,

Fo), with face-on-vertex covering F6, into an embedded undirected graph G, =

( V,, E,, F, ) with face-on;vertex covering F{, which is neatly prepared. Recall that
G, is neatly prepared if G, has no parallel edges, all faces in F, – F( are bounded

by three edges, no pair of faces in F i share a vertex, and the boundary of each face
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is a simple cycle. First, consider any vertex v appearing more than once in a

clockwise walk around a face. Since there are no loops or parallel edges in the

graph, the preceding and succeeding vertices u and WIon the walk are distinct from

v and from each other. Vertices u and w are not adjacent, since every path from u

to ~’ must necessarily contain v. Add an edge from u to w’. If the face so split was

in Fd, replace it with the resulting face that is enclosed by the clockwise walk, but

with edges (u, ~’) and (v, w) replaced by (u, w). Repeat this operation until the

boundary of every face is a simple cycle.

Designate as a shared vertex any vertex shared by two faces in FL. Suppose a

face j in FA contains at least four vertices, with at least one shared vertex v. Let u

and ~vbe the preceding and succeeding vertices in a clockwise walk around f;. Add

an edge from u to w, and replace .fi in Fi with the resulting face that is enclosed by

the clockwise walk but with edges (u, v) and (v, w) replaced by (u, w). Repeat

this operation until every remaining shared vertex is on a face in Fb with three

vertices.

For any remaining vertex v shared by faces j; and j;, replace v by vertices v’ and

VJand edge (v’, v’), Replace edges (v, w) by (vi, ~t’) or (v’, ~~’),so that the clockwise

walks around ~ and j are the same except with ~’replaced by 1“ and v’, respectively.

and planarity is preserved. Finally, add edges as necessary to triangulate faces in

FO – FA. The resulting undirected graph G satisfies the assumptions stated earlier.

We handle an embedded directed graph ~ in the following way. We assume that

if both edges (v, It’) and (u’. ]’) are in 6, then they together bound a face. To

generate undirected graph GO, replace each directed edge (~), JI’) by an undirected

edge (v, N’). and remove duplicates. Embedded graph 81 is generated from GO in

the manner discussed above. The hammocks for ~1 are determined using the main

algorithm o~this s~ction. Delete any edges from the hammocks that were added in

converting GOto Gl, noting that any minor hammocks that lose their single edges

can be deleted. Replace the remaining edges by the directed edges that they replaced

in the conversion from G to GO. We call the resulting subgraphs hammocks of the

embedded directed planar graph.

THEOREM 2.1. Let ~ be an embedding of an n-vertex directed planar graph lvith

a fclee-on-verte.x covering F‘ of p‘ .jhces. Gi~le?l e arid F‘, the above aigo~ith~~l ~rill

generate a decomposition of G into O(p’) hammocks in O(n) time.

PROOF. lt is reasonable to assume that ~ is presented so that edges are

maintained in circular doubly-linked lists in order around each vertex. and are also

maintained in circular doubly-linked lists in order around each face. Then, the

conversions of d to Go, and Go to 61 will take O(n) time. The conversions will

result in a planar undirected graph of O(n ) vertices, with a face-on-vertex covering

of p‘ faces. The hammocks are determined by our procedure in O(n) time, since

each absorption can be performed in constant time, and the handling of a maximal

sequence of faces can be performed in time proportional to the number of faces in

the sequence. By Lemma 2.1, the decomposition generates outerplanar subgraphs,

each of which shares at most four vertices. By Lemma 2.2, the number of such

graphs generated will be O(p ‘). ❑

An undirected embedded planar graph is given in Figure ? for the directed

embedded planar graph in Figure 1. Note that vertex 4 was a shared vertex, and

an edge (8, 11) was added to remedy this situation. In addition, edges (1, 14),

(3, 12), (5, 15), (6, 16) (7, 11), (7, 21), (7, 23), and (11, 16) were added to triangulate
faces not in F’.
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FIG. 3. A hammock decomposition for the graph m Figure 1, with the attachment
vertices emboldened,

A decomposition for the directed embedded graph of Figure 1 is given in Fig-

ure 3, with the attachment vertices shown as emboldened. The generation and the

decomposition for the associated undirected embedded graph in Figure 2 has been

discussed earlier. Note that both minor hammocks in that decomposition were

discarded, since they were induced by edges that had been added. Also note that

the hammock spanning vertices {7. 21, 23} has been trimmed to a subgraph

containing vertices {21, 23 j. This was done because both edges (7. 21 ) and (7, 23)

were added, and when removed they left vertex 7 isolated within the subgraph.
The final decomposition is comprised of seven outer-planar subgrdphs.

3. Shortmt Paths [n Directed Outerplanar Graphs

In this section, we show how to determine in linear time the labels for all edges in

a directed outerplanar graph. The major portion of the section assumes that the

outerplanar graph has several nice features, while the latter part of the section

shows how to deal with an outerplanar graph that does not have these nice features.

A key idea used in both is to make use of the natural tree structure of biconnected

outerplanar graphs. In both algorithms, sweeps are made through the graph based

on this tree structure. Another key idea used in our algorithm is the notion of split
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vertices, which are actually the initial values in the intervals labeling the edges, and

thus are the values stored in the compact routing tables.

We now discuss briefly the organization of the section. We first identify the nice

features assumed for most of the section. We then define the notion of a split

vertex, and also discuss the natural tree structure of an outerplanar graph. Given

this preliminary discussion. we are then able to provide an overview of our

algorithm, which employs a sweep through the tree structure. processing each face

in turn. We introduce the data structures upon which our algorithm operates, and

then give a detailed discussion about how each face is processed. We then establish

the correctness and time complexity of this algorithm. Finally, we discuss how to

handle an outerplanar graph in which the nice features identified earlier are not

present.

We now identify the nice properties that we assume in the major portion of this

section. We assume that for each directed edge (v, w ) there is an edge (u, r ) in

the graph, and that the graph with the orientation of edges removed is biconnected.

We also assume that edge costs satisfy the generalized triangle irzegualit]’, that is,

each edge (v, M) is a shortest path from v to M. We assume that vertices are named

in clockwise order around the exterior face. With the vertices named in this order,

we can describe meaningful sets of vertices using interval notation. For ex-

ample, {i+l, i+ 2,... , j – 1} can be described by the open interval (i, j ). and

{i+l, i+ ~,..., j} by the half-open interval (i, j]. At the end of this section. we

examine how to handle a directed outerplanar graph in which these assumptions

are not necessarily satisfied.

We next define several terms, that lead up to the definition of a split vertex,

Define an interior face in an outerplane embedding to be any face other than the

exterior face that is bounded by more than two edges, that is, not bounded by a

pair of edges (v, u) and (w, v) for any v and w. Recall that for every edge (v, u’)

we defined S(v, w) to be the set of vertices such that there is a shortest path from

v to each vertex in S(V, M)) with the first edge on this path being (v, ~$’). We now

specify the tie-breaking rule that guarantees that u will be in one set S(V, M) for

each v. Let w and u‘ be neighbors of v on some interior face, with k!’ in the open

interval (v, M”) and with u in the half-open interval (~i, w”]. If there is a shortest

path from v to u with the first edge on this path being (v, w’) and also a

shortest path from v to u with the first edge on this path being (v, w‘ ), then IL is

in only the set S(v, w’). If a vertex u is in a set S(V. }v’), we say that edge (v, Ii’)

claims u. Let z be the farthest vertex from v in a counterclockwise direction

around the exterior face that is claimed by (v, w‘ ). We call z the split vertex qfver-

tex v relative to neighbors n and w‘, or the split verte.s for (v, w’, w‘ ).

Consider the outerplanar graph in Figure 4. Note that it satisfies the assumptions

in the first paragraph of this section. There are four interior faces. Consider the

face containing 5, 6, 7, 12, 13, 14, 19, and 20. Vertex 7 has neighbors 12 and 6 on

this face. Edge (7, 6) claims vertices in the interval [17, 7), and edge (7, 12) claims

vertices in the interval [12, 17). The split vertex of 7 relative to neighbors 12 and

6 is vertex 17. (Vertex 7 is also on the face containing vertices 7, 8, . . . . 12.

Edge (7, 8) claims vertices in [8, 12). The split vertex of 7 relative to neighbors 8

and 12 is vertex 12,)
We next discuss the natural tree structure of the outerplanar graph. Consider a

relation on interior faces, with two faces related if they are separated by precisely

two edges, (v, w)) and (W), v), for any v and w>.There is a natural tree structure

based on this relation. (This is the dual graph restricted to interior faces.) Root this
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FIG. 4. A directed outerplanar graph,

tree at an interior face that is related to only one other interior face. Our algorithm

sweeps through the tree bottom-up, that is, an interior face is handled once all

interior faces that are children of it in the tree have been handled. For any intenor

face j“other than the root, there is a unique interval [x, .Y’] comprising the set of

names of all vertices on faces in the subtree rooted at-t Associate with each interior

face other than the root the pair of edges (x, x‘ ) and (x’, x). Associate with the

intenor face that is the root a pair of edges (x, x‘ ) and (x’, x ) on the exterior

face, where x follows x‘ in clockwise order around the exterior face.

We illustrate the tree with respect to the outerplanar graph in Figure 4. Let the

root be the interior face with vertices in [20, 5]. Edges (7, 12) and ( 12, 7)

will be associated with the face containing vertices in [7, 12], edges ( 14, 19)

and ( 19, 14) will be associated with the face containing vertices in [14, 19], and

edges (5, 20) and (20, 5 ) will be associated with the face containing vertices in

[5, 7] U [12, 14] U [19, 20]. We choose edges (3, 2) and (2, 3) as the edges

associated with the root.

As the algorithm sweeps up through the tree, it determines split vertices. The
algorithm processes each interior face j’ in turn, by which we mean the following:

For face~not the root of the tree, let interval [x, x‘] be associated with .t After face

j’is processed. the split vertex z will have been found for each triple (v, MI, w‘) such

that z is in (x, .x’]. (Some of these split vertices may have been found already when

proper descendants of ~ in the tree were processed.) Every other triple (v, W, u‘)

such that v, w), and w‘ are in [x. x‘] will be stored on a list, ordered by appearance

of 1’ on the exterior face. This list will mimic a face in that there are edges between

consecutive entries on the list, with edge costs that preserve the difference in

distances d(~, x) – d(v, x ‘). In addition, every vertex ]1in [x, x‘] that can be a split

vertex for some vertex not in (x, x‘ ] will also be in a list, ordered by appearance

of v on the exterior face, with edge costs that preserve the difference in distances
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d(.x, v) – d(x’, v). By carefully traversing and manipulating these lists, split vertices

can be found and vertices can be eliminated as candidates for split vertices, in time

proportional to the number of changes in the lists.

We now discuss the definition and manipulation of these lists. For each interior

face j associate a doubly-linked list LI (f) of triples (v, ]v, M ‘), where v is a vertex

on ~ and 1~’and u” are clockwise and counterclockwise neighbors, respectively, of

I on jl List L, (f) is an ordered list of all triples (v, w, w‘ ) on face f: ordered on

vertex v around facej’from x to x‘. Each link in the list will have a cost, representing

the distance between the corresponding vertices. Also associate with j“ a doubly-

linked list Lj(~) of vertices from x to x‘. List 1,~(~) is an ordered list of vertices

on face j all of which are candidates for being split vertices. Again, links will

have costs.

Before ~ is processed, list L,(f) will be modified to a list L ( (f) that holds all

triples of j“and any triples (]’, w, u”) of descendants of j“in the tree, such that the

split vertex for (v, w, MI’) is not determined before j“is processed. Certain link costs

in L j(f) will represent modified distances, which will be adequate for determining

split vertices not already identified. The modified distances are chosen to satisfy

several properties such as the generalized triangle inequality and the no negative
cycle property. Also beforefis processed, list Lj(~) will be modified to a list L~ (~)

of vertices in [.Y, x ‘], such that if ~ is not on L4 (f), then y is not a split vertex for

any remaining triples. The upcommg Lemma 3.1 will guarantee that list L? (f) will

be modified correctly.

The lists LI (f) and Lo(f) together represent a face of the embedded graph. If

face~is a leaf, then LI (f) = L1 (f) and Li (f) = Lz(f). If facej’is not a leaf, then

once these lists have been modified, the resulting lists L i(f) and L! (:f) do not

strictly represent in general a face of a graph. since L { (f) may contain a triple

(v, ~i’, w’ ‘), but L4 (f) does not contain the corresponding vertex v, or vice versa.

Also, the costs may not correspond from L ~(f) to L;(f). This situation seems to

be the result of having a nonsymmetric cost function. We do not know of a simpler

approach that is as efficient and avoids using these modified lists.

To process face f-with associated edges (.~, x‘ ) and (.x’, x), do the following:

Processing face ~will consist of determining the split vertex z for every (v, w, it>’)

on L ((f) such that z is in (x, x‘ ], and modifying the lists L {(f’) and L4 (f’),

where f‘ is the parent of~in the tree. A certain prefix of L ~(f) and a certain suffix

of L j(f) will together constitute the set of triples (v, w, w)’) on L I (f) such that

their split vertices z are in (.x, .~’ ]. In turn we shall discuss handling the first triple

in L ~(f), handling the remaining triples in the prefix of L ~(f), handling the suffix

of L i (f), modifying list L j (f’ ) of the parent ~’ ofx and modifying list L$ (f’ ).

We first describe how to handle the prefix of L ~(f). First determine the split

vertex z for the first triple (v, w, u”) on List L { (f). (Note that ~’ = x and w‘ = x‘

for this first triple.) This is accomplished by traversing up L;(f) from the other

end, starting with J’ = x‘, and computing for each vertex y the shortest distances

from v to y through M’ and through W)’. The split vertex z will be the last vertex

encountered on L;(f) such that d(v, W”) + dot”’ , z) s d(v, kt’) + d(u), z). Note that

d(v, w’) + d(w’. Z) – (d(v, WI) + d(}t, z)) is monotonically nondecreasing as
L;(f) is traversed, since there are no negative cycles. Save a pointer to the
list node containing z, the split vertex for x, and compute the shortest distance

from x‘ to ~ as the shortest distance from x to z through w‘ minus the cost of

edge (x, x’).

As an example, consider the face ~associated with edges ( 14, 19) and ( 19, 14)

in Figure 4. List L ~(f) and Lj (f) will be the same as lists LI(~) = (14, 15, 19),
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(15, 16, 14), (16, 17. 15), (17, 18, 16), (18, 19, 17), (19, 14, 18), and Lc(~) =

14, 15, 16, 17, 18, 19, respectively. The algorithm determines the split vertex for

(14, 15, 19)as 18, since d(14, 19)+ d(19, 18)= 11 andd(14, 15) + d(15, 18) =
12whiled(14, 19)+ d(19. 17)= 15 andd(14, 15)+ d(15, 17)= 10.

Each distance computation will require constant time, if we had initially com-

puted the clockwise and counterclockwise distance around each interior face. For

J’ = x‘, the shortest distance through M‘ will be the cost of (.x, x‘ ), and the shortest

distance through w will be the cost of the clockwise distance around j“minus the

cost of (.Y’, x). In moving from vertex J’ to vertex J” on L 4(f), one value needs

to be added to the shortest distance through M‘, and one value needs to be

subtracted from the shortest distance through JV.The cost of link (y, y‘ ) is added

to the distance from v through }iI’, and the cost of link ( ]”, ~’) is subtracted from

the distance from v through w’.
We next discuss handling the remainder of the prefix of L ~(f). Having found

the split vertex z for (t’, w, }t ‘), we move down the list L [(j’) to the next entry

(v’, M’”, M’ ‘“). BY the upcoming Lemma 3.2, we know that split vertex D‘ for
(v’, u’”. }V‘“ ) is in [z, .~]. Compute the shortest distances from }” to z through ~~1”

and through It’ ‘“. Reset v, w’ and }V’ to v‘, ~t” and w ‘“, respectively. Reset ~ to ~.

While d(v, w“) + d(}i)’, y) > d(v, u’) + d(w, J’) and I) # .%-’, reset J’ to be the next

vertex back toward x‘ on L; (/’). When a split vertex z for (]), WJ,w”) is found, once

again move to the next triple (v’, w’”, w)’”) on the list L j(f) from .x, If d(]), M’) +

dot’” , j’) > d(v, It>) + d(}t. y) where j> = .x’, then the split vertex for (v, M, ]tI’ )

cannot be found on the face. Save a pointer to the list node for the triple

(t’. }i, }t’), and compute the shortest distance from v to .x through M’ as the shortest

distance from v to x‘ through M‘, minus the cost of (.x, x‘ ).

In Figure 4, the split vertex for ( 15, 16. 14) will be 19. The split vertex for

(16. 17, 15) cannot be found on the face, since d(16, 15) + d(15, 19) = 16>

d(16, 17)+ d(17. 19)= 11.

To handle triples in the suffix of L ( (f), perform the same type of computation

as above, but reversing the roles of x and x‘, and the direction in which the lists

are traversed. The test will be slightly different because the tie-breaking between

edges is not symmetric. The split vertex z for (v, M’, M”) will be the last vertex J) in

the interval (.Y, x‘) encountered on L4 (f) such that d(v, }V’ ) + d(}v’, ]) s d(v, w’)

+ d(}v, y). Note that j’ is not allowed to be x, since if y = x and v = .Y’, then by

definition x is claimed by edge (.T’, x), while if y = x and v # x‘ then z may be

outside of face j’. In Figure 4, the split vertex for (19, 14, 18) will be 16 and the

split vertex for (18, 19, 17) will be 15. (The split vertex for ( 17, 18, 16) will be

outside of face ~ and will turn out to be vertex 7.)

Once split vertices have been found for triples in the prefix and suffix of L i (f).

lists L \ ( f) and Lj( f’) are trimmed and inserted into L i ( f’) and Lj ( f’), respec-
tively, where j“ is the interior face that is the parent ofj. If the trimmed version of

L {(j”) is not empty, then insert the trimmed version of L ~(j”) between x and x‘

in L i (f’), and set the costs of the links as follows. Let (v, M’, w‘) and (v’, w“, w ‘“ )
be the first and last triples in the trimmed version of L [ (f). Using distances with

respect to L((j”), set c’(t)’, x’) to O. c’(x’, v’) to c(x’, x-) + d(v’, x’) – d(v’, x),

c’(Y, .Y) to d(~’. x) – d(v’, x’), and c’(.Y, v) to c(x, .Y’) – d(v, }1’). Note that d(v, v’)

is the distance from v to x through w minus the distance from }” to x through }V”.
The above operation preserves a number of nice properties. It is shown in the

proof of Theorem 3.1 that the generalized triangle inequality is preserved, and that

no negative cycles are introduced. It can be verified that d’(x, x‘) = c(.Y, x‘) and
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d’(x’, x) = c(x’, x), where d’ is the new distance function for list L {(f’). Thus,

for any triple (v, w, w‘) on L I (f’), the insertion of the trimmed version of L ~(f)

will be transparent with respect to distances from v to other vertices whose triples

are already on L f (f’). In addition, d’(zL x’) – d’(u, x) = d(u. x’) – d(u, x), where

u is any vertex in the interval [v, v‘ ] that is on L ~(f). Since the split vertex for any

vertex u in the trimmed version of L { (f) will be in [x’, x], the modified distances

will not affect any choice of split vertex. Thus, the split vertices found for triples

in the modified list L ~(f’) will be correct. Also note that the time to modify the

list is clearly constant.

With respect to Figure 4, the trimmed version of L I (f) will contain the triples

(16. 17, 15), (17, 18, 16) in that order. These will be inserted between (14, 19, 13)

and (19, 20. 14) on L j (f’), and the costs of new links on this list will be

set as c’(17, 19) = O, c’(19, 17) = 7 + 7 – 10 = 4, c’(16, 14) = 8 – 7 = 1, and

c’(14, 16)= 8 –4=4.

List L; ( f’ ) can be modified similarly. Let z and z‘ be the split vertices of x and

x‘, respectively. By the upcoming Lemma 3.1, no split vertices yet to be determined

will fall in (x, z‘ ) U (z, .~’ ). Furthermore, it can be shown that any edge (v, }t’ ),

with }’ in the interval (.x’, .I) that claims vertex x’ will also claim z. If z # z‘, let D“

be the vertex in interval [z’, .-) that immediately precedes z on L:(f). If z = z’.

then simply give x’ in LI ( f“) a new name of z. Otherwise, we trim Li (f) so that

z‘ is the tl-st vertex and z“ is the last vertex, and insert the trimmed version of

L4(f) between x and .x’ in Lj(f ‘). We give x’ in Lj(j”) a new name of z, and

set the costs of the links as follows: Using distances with respect to L j ( f ), set

C’(x’, z“) to o, C’(2° , x’) to C(X, x’) + d(.~-’, z“) – d(x, z’) – d(z’, z“), C’(X, z’) to

d(.x, z’) – d(x’, z“), and c’(u’, x) to c(x’, x) – d(z”, z’). Note that d(:”, z’)

is the distance from x‘ to ~‘ minus the distance from x‘ to z”. It can be verified

that d’(x, x’) = C(X, x’), d’(x’, x) = c(x’, x), and d’(x’, u) – d’(.x, u) =

d(x’, u) – d(x, u), where d’ is the new distance function for list L4 ( f ‘), and u is

any vertex in the interval [n’, z”] that is on L;(f).

With respect to Figure 4, the trimmed version of L; (f) will contain the vertices

16, 17 in that order. These will be inserted between 14 and 19 on L; ( f ‘), and 19

will be relabeled as 18. The costs of new links on this list will be set as c‘( 18, 17)

=0, C’(17, 18)= 8 +7 – 6 –4= 5, c’(14, 16)= 6 – 7 = –l, andc’(16, 14) =

7–2=5.

Once the interior face at the root is handled, let any remaining triples be assigned

the split vertex .~.

In the next two lemmas. we prove the crucial properties about where split vertices

can fall, which allow us to traverse the graph efficiently. The first property allows

certain vertices to be ruled out as potential split vertices, on the basis of work

already completed. We give an example of the first property before stating it

formally. Consider interior edge (.~, x‘ ) = ( 14, 19), and the face containing vertices

in the interval [14, 19]. The split vertex for triple (.x, U, x’) = (14, 15, 19) is G =

18, and the split vertex for triple (x’, x, ~L’) = (19, 14, 18) is :’ = 16. Consider a

vertex in the interval (19, 14), say v = 6, with neighbors }V = 7 and WI’ = 5 on the

same face. Then the split vertex for (]’, ~v, w”) = (6, 7, 5) will not be in (x, z‘ ) U

(z, x’) = (14, 16) u (18, 19), that is. will not be vertex 15.

LEMMA 3.1. Let G be a directed outerplanar graph. Let x and x‘ be endpoints

of an in[erior edge. Let u and u‘ be the neighbors of x and x‘, respectivel~’, that are

in the interval (x, x‘) and are on the same interior face as x and x‘. Let : be the
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split verte,~.for (x, w x ‘), and z‘ be t)le split verte.x.for (x’, s, LL‘). Let v be a vertex

in (x’, x), ~ith neighbon w’ and w” on the fame face, ~t’here MI is in interval (v, u ‘).

Then. the split vertex }’Jor (v, w’, w‘ ) is not Zn (x, z‘ ) U (c, x‘ ).

PROOF. Suppose that ~’ is in (x, x ‘). It follows that

d(v> w’) + d(w’ , x’) + d(.~’, .x) > d(v> w) + d(w, x),

d(v, w’) + d(w’ , x’) s d(v, w) + d(w, x) + d(x, x’).

Suppose that y were in (.x, z ‘). Since z‘ is the split vertex for (x’, x, u ‘).

d(x’, u’) + d(u’, y) > d(x’, x) + d(x, u) + d(u, y).

Since y is the split vertex for (v, w, IV’),

~(V, w“) + d(u’, x’) + d(x’, LL’) + d(u’> J’)

s d(v, w) + d(w, x) + d(x, u) + d(u, y).

Adding (1) and (3) yields a contradiction to (4). Thus, ]’ is not in (x, z‘ ).

Suppose that y were in (z, .~’ ). Since z is the split vertex for (x, u, .x’),

d(x, x’) + d(x’, L/’) + d(z4’, z) s ~(.%-, ~~) + ~(1~, z).

Since y is the split vertex for (v, w, w’), and)’ is in (z. x’),

d(v, M’) + d(w’, X’) + d(x’, u’) + d(u’, z)

> d(v, M) + d(w, x) + d(x, u) + d(u, z).

Adding (2) and (5) yields a contradiction to (6). Thus. J is not in (x’, z).

The lemma then follows. El

(1)

(~)

(3)

(4)

(5)

(6)

The second property indicates in which direction to look for a split vertex, if we

already know the split vertex of a relevant triple. This justifies the correctness of

our scan through L;(f) as we scan through L ~(f). Consider two triples (v, WI,w”)

and (v’, w“, M ‘“ ) whose vertices are in faces f‘ and f”, respectively, that are

contained in the subtree rooted at J Suppose that the split vertices for these triples

are not determined before face f is processed. There are two cases that arise. Either

f is the lowest common ancestor of f‘ and f” in the tree, or it is not.
The simpler example is when f is not the lowest common ancestor ofj” and f”.

Then, there is an edge (t, t‘) on j such that v and v‘ are both in the interval

(t,t‘].For example, consider the face .f containing the vertices 5, 6, 7.12, 13, 14.

19, and 20. and consider the triples (16, 17, 15) and (17, 18, 16). The vertices in

these triples are contained in the same face, containing vertices 14, 15, 16, 17.18,

and 19, and this face is thus the lowest common ancestor. The edge (t, t‘ ) is edge

( 14, 19). The split vertex for triple ( 16, 17, 15) is in the interval ( 19, 14). (In fact,

the split vertex for (v, kt, )11’) = (16, 17. 15) is vertex z = 6.) Vertex ~’ = 17 is

in the interval (v, t‘)= (16,19), and the split vertex z’ for triple (V’, M,”, ~,’”) =

(17, 18. 16) is also in the interval (19, 14). Then, z’ is in [z, t)= [6, 14). (In fact,

?’ = 7.)
The more complicated case to state is when f is the lowest common ancestor of

f‘ and f”. Consider the face fcontaining vertices 5, 6, 7, 12, 13, 14, 19, and 20,

and consider triples (13, 14, 12) and (16, 17, 15). The vertices in triple (13, 14, 12)

are on face~ and the vertices in triple (16, 17, 15) are on a face that is a descendant

of face j; so that f is the lowest common ancestor. Consider the edges (u, u‘ ) =

( 12, 13) and (t, t‘) = (14, 19) on this face. The split vertex z for a triple
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(v, w), vi)’) = (13, 14, 12) is in the interval (13, 12). (In fact, z = 3.) Vertex v’ =

16 is in the interval (14, 19], and the split vertex z‘ for triple (v’, MI”, }iI ‘“ ) =

(16, 17, 15) is in the interval (19, 14). Then, z’ is in [z, t) = [3, 14). (In fact,

z’ = 6.)

LEMMA 3.2. Let G be a directed outerplanar graph. Let -f be an interim face,

and let (u, u‘ ) and (t, t‘ ) be edges bounding this face, w’lth u‘ follovting u in

clockwise order around f and similarly for t‘ and t, ~here either u = t and u‘ = t‘

or u‘ is in (u, t] and t is in [u’, t ‘). Let v be a vertex in the interval (u. u‘] whose

split vertex z for (v, w, N‘) is in (u’, u), }vhere B’ and w‘ are neighbors on some

interior face, ~’ith ~’ in the interval (v, w‘ ). Let v‘ be a vertex in the interval

(1, t‘] II (I’. t‘] vt’hose split vertex Z’ fos (v’, ~v”, N’”] is in (t’, t), bvhere u“ [l~ld N’”

are neighbors on some interior face, with w” in the interval (v’, w ‘“ ). Then z‘ is in

the interval [z, t).

PROOF. Suppose that z’ were in the interval (t’,:).Let P and P’ be the shortest

paths to z from v through w and w‘, respectively. Let P“ and P ‘“ be the shortest

paths to s‘ from v‘ through w’” and w ‘“, respectively. Let rl be the nearest vertex

from v contained in both P and P“. and r? be the nearest vertex from v contained

in both P‘ and P’”. Let r3 be the nearest vertex from v contained in both P and

P’”. Such a vertex exists, by the following argument. Since u is in (u’, u), the

portion of P on f will include the clockwise path around f“from LL’ to t‘.Since z‘

is in (t,t‘),the portion of P’” on f will include the counterclockwise path around f

from u‘ to t‘.These portions clearly share a vertex except when u = u‘ and t= t‘.

In that case, if v and v‘ are on the same interior face, then either P contains v‘ or

P’” contains v. If v and v‘ are not on the same interior face, then there is a face f‘

with all its vertices in the interval [u, u‘ ] such that it contains edges (N”, u ‘“ ),

(1( ‘“, Lf”), (t”, t’”), and (t’”,t“),where v is in [u”, u’”] and v’ isin [t”,t’”].Thus,

the previous argument applies.

Since the portion of P’ from v to rz is a shortest path,

d(v, rz) s d(v, r3) + d(rs, rz). (7)

Similarly, since the portion of P“ from v‘ to r, is a shortest path,

d(v’, rl) s d(v’, r~) + d(r~, r,). (8)

Since z‘ is the split vertex for (v’, MI”, w ‘“ ),

d(v’, rs) + d(rs, r?) + d(r~, z’) s d(v’, r,) + d(r,, z’). (9)

Since z is the split vertex for (v, w’, UI‘), and z‘ is in (t’, ~),

d(v, rz) + d(rz, :’) > d(v, r3) + d(r,, r,) + d(r,, z’). (lo)

Adding (7), (8), and (9) yields a contradiction to ( 10). Thus, z‘ is not in the interval

(t’,z).Since z ‘ is by assumption in (f’, t), z‘ is in [z, t). El

THEOREM 3.1. The abo~’e procedure will correctly determine in O(n) time all

split vertices in an n-vertex directed outerplanar graph in }vhich for every edge

(v, ~’) there is an edge ( ]v, v), the graph with edge orientation removed is

biconnected. and the edge costs satitij the generalized triangle ineguali~~).

PROOF. Correctness follows from Lemmas 3.1 and 3.2 and the fact that the

costs of links of edges (v’, x’), (.Y’, v’), (v, x), and (x, v) are set so as to preserve

the generalized triangle inequality and the property that there are no negative
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cycles. We establish the latter fact with respect to the operation of inserting the

trimmed version of L ~(f) between x and x‘ in L ~(f’). The argument for handling

L; (f’) is similar. We assume inductively that the desired properties hold, and

show that the operation of setting the new link costs preserves the properties.

We first derive several useful inequalities. Since the split vertices of v and v‘

have not been determined by that point in the algorithm, then it must hold that

d(v’, v) + d(v, x) s d(v’, X’) + C(.Y’, x) (11)

and

d(v, v’) + d(v’, x’) < d(v, x) + C(.T, x’). (12)

Summing (11 ) and ( 12) gives

d(v, v’) + d(v’, v) < C(.Y. x’) + C(.Y’, x). (13)

Let u and u‘ be the first vertices in two triples on the trimmed version of L [ (f),

with the triple containing IL preceding the triple containing u‘. Since there are no

negative cycles, d(v’, u’) + d(u’, J“) z O and d(v, u) + d(u, v) >0. Thus,

(d(v’, u’) + d(u’, v’)) + (d(v, u) + d(tf, v)) 20. (14)

We now consider the effect on the generalized triangle inequality. Edges whose

endpoints are not both in [A-, x‘ ] will be unaffected. It can easily be verified that

the four (new) edges whose costs are set will all satisfy the generalized triangle

inequality. We consider the remaining edges. Solving ( 13) for d(v’, v) gives

d(v’, v) <0 + L“(X,x’) + (c(.Y’, x) – d(v, v’))
= C’(v’, x’) + C(x’, x) + C’(x, v),

which is equivalent to

(d(v’, u’) + d(u’, u) + d(u, v)) + d(u’, v’) + d(v, u)

< d(u’, v’) + C’(v’, x’) + C(x’, .Y) + C’(.x, v) + d(l’, u),

Subtracting (14) from the above gives

d(ll’, If) < d(14’, l“) + C’(V’ , x’) + C(X’, .Y) + C’(X, v) + d(v, If).

Thus. edge ( N‘, u ) is a shortest path from u‘ to N. We derive the similar result for

edge (u, u‘ ) as follows. Solving (13) for d(v. v‘ ), and adding and subtracting terms,

gives

d(v, v’)< (d(v, .Y) – d(v’, .Y’)) + C(X, .x’) + (c(x’, .x) + d(v’, .Y’) – d(v’, v) – d(v, .Y))

= C’(V, .Y) + C(.x, x’) + C’(x’, l“),

where d(v’, x) = d(v’, v) + d(v, .~). Applying (14) gives

d(u, u’)< d(u, v) + C’(V, .Y’) + C(X. x’) + C’(. Y’,v’) + d(v’, u’).

We next argue that no negative cycles are created. Since d ‘(x, x‘ ) = c(.Y, x‘) and

d’(x’, x) = c(x’, y), no simple negative cycle is introduced that includes both x

and x‘. We next consider the cycle consisting of edges (t”, x‘ ) and (.Y’, ~‘ ). NOW

C’(V’, X’)+ C’(x’, v’)= C(x’, x)+d(v’. x’)- d(v’, .x),

which is greater than O, by (11). Similarly, for edges (t’, x) and (x, v),

C’(v, x) + C’(.Y, l’) = d(v, .Y) – d(v’. .Y’) + C(X3x“’) – d(v, v’)

= d(v, x) + C(x, x’) – (d(v, v’) + d(v’, x’)),

which is greater than O, by (12). Thus, no negative cycles are introduced.
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With respect to trimming L;(f), we show that for any vertex ~ in the interval

(x’, .~) with neighbors w and }~” on the same face, if the split vertex z ‘“ for

(v, w, w‘) is in (y. .I’], then it is in (.L z]. Since z ‘“ is in (.~, x‘]

C(V, M“) + d(}t”, x’) s C(V, w) + d(w, x) + C(.t-,x’).

By the definition of u as a split vertex,

C(.Y,.T’) + d(.Y’, 2) s d(x-, 5’) + d(:’, 2).

Adding the above two inequalities gives

C(V>MI’) + d(w’, .x’) + d(.~’. z) s C(V, w) + d(u’, .~) + d(.~, z’) + d(;’, D),

which establishes that z ‘“ is in (y, z].

We finally analyze the time required by the algorithm. The time to initialize

relevant lists is O(n). In handling each interior face, the number of list nodes

deleted is within a constant additive term of the number of times that list nodes

are examined. Constant work is involved in examining a list node. ❑

We now consider how to handle an outerplanar graph in which our initial

assumptions do not hold. Suppose that outerplanar graph G with edge orientation

removed is not biconnected. For every vertex v such that there is no edge (~’, W’)

to the vertex w whose name follows v’s name numerically, insert edge (II. w) into

G with cost w. The resulting graph G without edge orientation will clearly be

biconnected. Suppose that there is some edge (v, }v) in G but no corresponding

edge (M>. v). For each edge (v, M’), if there is no edge (w), v), insert it into G with

cost ~. Clearly. the only possible change to the edge-labeling information resulting

from the above operations will be the inclusion into edge labels of vertices that

were not previously reachable.

Note that any edges included in the above operations will violate the generalized

triangle inequality. We enforce the generalized triangle inequality by identifying

any edge that does not satisfy it, labeling the edge as a “pseudoedge,” and changing

its cost to be the shortest distance from the vertex representing its tail to the vertex

representing its head. We discuss how to do this efficiently in the paragraphs below.

Once accomplished, we run our outerplanar algorithm on this modified subgraph.

The edge labels which result from this will be in general different from the edge

labels for the original subgraph. However, the original edge labels can be recovered

by unioning the edge label on each pseudoedge into the label on the first edge in

the shortest path realizing the shortest distance from tail to head. and setting the

label on the pseudoedge to the empty interval. If the shortest distance on the

pseudoedge is realized by two different paths, choose the path that moves counter-

clockwise around the corresponding face.

We now discuss how to identify edges that violate the generalized triangle

inequality and replace them with appropriate pseudoedges. Recall the relation on

interior faces, and the natural tree structure based on this relation. We sweep

through the tree structure twice, processing an interior face once on each sweep.

On the first sweep, we process an interior face after all its children in the tree have

been processed.
An interior face is processed as follows: Determine the cost of the cycles visiting

precisely the vertices of the face in clockwise and counterclockwise order. For each

edge (v, WI) on the clockwise cycle, do the following: If the cost of ( v, w) is greater

than the cost of the counterclockwise cycle minus the cost of edge (M’, v), make

(v, w) a pseudoedge of cost equal to the cost of the counterclockwise cycle minus

the cost of ( u’, v). Perform an analogous operation for counterclockwise edges.
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The second sweep processes interior faces in the reverse order from the first

sweep, and processes interior faces in the same way.

Suppose that vertices are not named in order around the exterior face. If the

names in clockwise order comprise a constant number of consecutive sequences,

then the graph can still be handled quickly. Such a case arises with respect to the

outerplanar graphs generated in the next section. Rename the vertices in order

around the exterior face, apply our outerplanar algorithm to generate edge labels,

and then translate the edge labels back to the original names. In the translation,

each edge label will grow larger by at most a constant factor.

THFOREM 3.2. The above algorithm will correctly determine in O(n) time all

edge labeling information in an n-vertex directed outerplanar gyaph with real edge

costs but no negative cycles.

PROOF. We first establish the correctness. After a face is processed, the cost of

any edge (v. M ) on the face represents the shortest distance from v to w along a

path constrained to include only vertices that are on the face.
Recall that for each interior face j there is an interval [x-, x’] comprising the set

of vertices on faces in the subtree rooted at J and there is a pair of edges (.x-, x‘ )

and (y’ , x) associated with J By induction on the number of faces processed

before face fin the first sweep, the following can be established. After face f is

processed, the costs on edges (x, x‘ ) and (x’, x) represent the shortest distances

from x to .x’ and from .~’ to x along paths constrained to include only vertices that

are in interval [x, x ‘].

By induction on the number of faces processed before face f in the second sweep,

the following can then be established. Just before an interior face fis processed in

the second sweep, the costs on edges (x, x‘ ) and (x’, x) represent unconstrained

shortest distances from x to x‘ and from x‘ to .x. Then after processing f on the

second sweep, the cost on any edge (v, w ) between vertices v and w on f will

represent the unconstrained shortest distance from ~’and ~ti. This follows since the

processing on the first sweep guarantees that the shortest path from t’ to w need

not detour off off onto faces that are proper descendants off and the processing

from the second sweep before f is processed guarantees that the shortest path from

v to w need not detour off of f onto the parent off

The time bound follows since the additional time to enforce the triangle

inequality, and the time to combine shortest path information from biconnected

subgraphs with shortest path information from the rest of the graph, will be

O(n). ❑

COROLLARY 3.1. .4 shortest path tree rooted at any vertex v in an outerplanar

graph can be foLl?ld in O(n) li?ne.

PROOF. Reverse the directicm of every edge, and apply the above algorithm.

For each vertex w’, put edge (u, }t ) in the tree if v is in the interval labeling edge

(M’, N) at vertex 14for the reversed graph. ❑

4. 0~’ert’iew of Basic .4pproach for Planar Graphs that Are not Outerplanar

In this section, we first sketch our approach to solving problem (2), that is, solving

all pairs shortest paths in planar graphs, given a good embedding and a good face-

on-vertex covering. We then discuss two crucial features of this solution. The first

is how to compress a hammock down to a graph of constant size, while preserving
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both planarity and the distances between the vertices of attachment in the ham-

mock. The second is the description ofa monotonicity property, and its application

to the traversal of special subgraphs that arise in Section 6.

We now sketch our basic approach, assuming we are given a good embedding

and a good face-on-vertex covering. First, we name the vertices, using the following

rule:

Vertex Naming Rule. Given an embedded directed planar graph G and a face-

on-vertex covering F’ of cardinalit y p‘, vertices are named in clockwise order

around each face of F’ in turn. If a vertex is encountered more than once in

traversing the faces of F’, the vertex receives its name on the first encounter.

Second, we determine a hammock decomposition of G, as discussed in Section

2. Third, we find all pairs shortest paths between every pair of attachment vertices.

For efficiency, we do this on a compressed graph that we generate as follows: For

each major hammock H, a compressed version C(H) of l+ is generated, as described

later in this section. Each C(H) will be planar and of constant size. The compressed

version C(G) of G is then generated from the compressed versions of the hammocks

by identifying corresponding attachment vertices, and adding in the minor ham-

mocks. Compressed graph C(G) will be of size O(p’ ). We then use the all pairs

shortest path algorithm for planar graphs in [11] to determine shortest distances

between all attachment vertices. This will take O((p ‘)z) time.

Fourth, for each pair of proper hammocks, we determine succinct shortest path

information for each vertex in one hammock to all vertices in the other hammock.

We show how to do this in time proportional to the total size of both hammocks,

which over all pairs of hammocks will be O(p ‘n), as discussed in Section 6.

Fifth, for each hammock, we determine shortest path information between

vertices in the same hammock. This would seem to be easy, since we have a linear-
time algorithm to find shortest path information in outerplanar graphs. However,

a shortest path in the graph between any pair of vertices in the same hammock H

may leave H at one attachment vertex and reenter at another. We give a fast

method for determining for each vertex v in H the set of vertices u in H for which

the shortest path from v to u stays in H. We then determine shortest path

information for those paths that leave H by taking two copies of H and treating

them as a pair of different hammocks, to which the methods of Section 5 are

applied. Combining shortest path information within the hammock with shortest

path information that detours out of the hammock gives the desired information.

All of this can be accomplished in O(n) time, as discussed in Section 6.

This completes the sketch of our approach for solving problem (2). The activity

in Section 5 is seen to dominate the running time of our algorithm, which is

O(p’n).

We next discuss how to generate a compressed version C’(H) of H for any

hammock H. The basic idea is to form a subgraph of the hammock that contains

shortest paths between pairs of attachment vertices. Then, replacement rules are

applied to this subgraph, which iteratively reduce the number of edges. We first

describe how to form the subgraph B(H). Let a, and a! be the attachment vertices

of H on face J, and as and ad the attachment vertices of H on face J, where a2 is
adjacent to a2, and al is adjacent to ao, in the corresponding triangulation used to

generate the hammocks. Let TI be a tree formed by taking the union of the shortest

paths in H (if they exist) from al to az and from al to as. Let Ti be a tree formed

by taking the union of the shortest paths in H (if they exist) from ao to a2 and as,



182 GREG N. FREDERICKSON

using edges from T1 to break ties. We can use our all pairs shortest paths algorithm

for outerplanar graphs to identify these trees in time proportional to the size of the

hammock. If we use the same edge-labeling information to set up Td as to set up

T,, this tie-breaking will be enforced. Similarly, let TZ be a tree formed by taking

the union of the shortest paths in H (if they exist) from a~ to aI and aq. and Ts be

a tree formed by taking the union of the shortest paths in H (if they exist) from

ag to al and a~. We initialize a graph B(lY) to be the graph T1 U Tz U Ts U Tq U

{(aI. a~), (ad, al). (a?, as), (as, a,)}, where the latter edges have cost equal to the
shortest distance between their endpoints in H. For each such pseudoedge, we

associate with it the actual edge in the corresponding shortest path. For edges in

each T,, we associate the edge with itself.

We next describe how to repeatedly replace edges and delete vertices until we

have compressed B(H) as much as possible, yielding C(H). Temporarily label

edges in TI U T~ as blue, edges in TZ U Tj as red, and the remaining four edges as

black. If any edge in T, U T2 U T3 U T~ is identical to a black edge except for

color, then delete it. Recall the definition of an interior face from the previous

section. Perform the following operations until they can no longer be applied.

Suppose that (u, v) and (v, ~V) are the only two blue edges incident with vertex v,

and u, v, w are consecutive vertices on the same interior face of the current B(H).

Then, replace ( z~.v ) and (v, \v) with blue edge (IL, iv) of cost C(U, v) + C(V, ~t).

Associate with edge (u, w) the edge associated with (u, v). If v becomes isolated

by this operation, then delete it. There is a corresponding operation for red edges.

Each such test and replacement can be performed in constant time, if B(H) is

stored in the following form. Keep the edges both to and from a vertex on the

adjacency list of the vertex. Maintain each adjacency list with edges in clockwise

order around the corresponding vertex. If both (v, w ) and ( }tI, v ) are present in

B(H). order edge (v, w) clockwise before (it’, v) in ll’s list. and (w, v ) clockwise

before (v, w) in M’s list.

When no further compression can be done on B(H), remove edge colors, and

call the result C(H).

LEMMA 4.1. Let H be a hammock in a planar graph, vtith attachment vertices

al, a~, a3. and a~. Graph C(H) is an outerplanar graph oj” constant size. For any

pair oj’ attachment vertices al and al. if there is a path from a, to al in H, there is

one m the compressed gyaph C(H), and the lengths of the shortest such paths are

identical.

PROOF. The initial version of the graph B(H) is outerplanar, and each appli-

cation of an operation leaves B(H) outerplanar. Furthermore, an application of an

operation will not change the shortest distance between any pair of attachment
vertices.

We argue that the resulting graph C(H) is of constant size as follows: For each

attachment vertex a, of H, let v, be the vertex farthest from a, that is common to

the shortest paths from a, to each of the two leaves in tree T,. Let MI,be the vertex

farthest from a, that is common to the shortest paths from the roots to al in the

two trees containing a, as a leaf. Let V’ = {a,. ~’1,w, I i = 1, 2, 3, 4}. Note that if for
example V1 # V4, then the shortest paths from al to a~ and from al to a3 do not

share a common vertex. (This is shown as follows: Suppose the shortest path PIZ

from a, to a? shares a common vertex with the shortest path P43 from a4 to a3. Let

x be the farthest such vertex from al. By the tie-breaking rule, the shortest path

from aj to .Y is a subpath of P,~, and the shortest path from x to a3 is a subpath of

P43. Thus, the shortest path from al to as follows P,? from al to x, and then follows
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PAq to a3. Similarly, it can be shown that the shortest path from alto a~ follows P~~

from a~ to .Y and then follows Plz to az. Thus, ~11= }q = .x.) We consider several

cases.

If v, # V4and Vz# V3, then every vertex v not in V’ can have the above operations

applied twice, once for blue edges and once for red edges. Thus, the only vertices

in C(H) will be the at most 12 vertices in V’. Similarly, if v, # V4and V2= 1’3, then

the only vertices in C(H) will be the vertices in V’, which will number at most 10,
since v, = V4, which implies W3 = ~vz. A corresponding argument applies if the

equality and inequality are reversed in the above condition.

If VI = Vqand V2 = V3, then V’ will have cardinality at most 8. The only vertices

in C’(H) will be V’, unless the following condition also holds. From faces .fi and fz

bounding hammock H in G, if v, and }t)j are not on the same face, and V3 and Mj

are not on the same face, then the shortest path from W3to VI and the shortest path

from WI to V3will intersect at at least one vertex. Exactly one of these vertices (call

it z) will be in C(H). Thus, in this case, at most nine vertices will be in C(H). ❑

In the next two sections, we show how to determine shortest path information

between vertices in different hammocks, and between vertices in the same ham-
mock. In the remainder of this section, we establish a property that will be

particularly useful.

First, we recall the qlladrangle inequality, whichAwill be useful in the proof of

the property. Let WI, WZ, U1, and U2 be vertices in G. If the shortest path from w’]

to UI intersects the shortest path from WZto U2, then

d(u’,, IIZ) + d(wz, u,) s d(w,> u,)+ d(w~, u2).

To show this, let z be a common vertex on the paths. Then

d(w,, =)+ d(z, u,) = d(w~, u,),

d(w2, Z) + d(z, u2) = d(w~, uz).

By the triangle inequality

d(wl , 212)s d(wl , Z) + d(z, M),

d(w~> uI) s d(w?> Z) + d(z, u1).

Summing the above inequalities and equations yields the claimed result.

We now define the following function that is described by our monotonicity

property. Let x and y be vertices in the graph, and~a face in the embedding of the

graph. Define

htY(v) = d(v, x) – d(v, J).

where \ is a vertex on the boundary of face j;

LEMMA 4.2 (MONOTONICI~Y PROPERTY). Let x and JJbe vertices and f a face in

an embedded planar graph G. Define h..,,(v) = d(v, .x) – d(v, ~’). Let v‘ and v” be

vertices at ~vhich h.V(. ) achieves a minimum and a maximum, respectivel~’. over all
vertices on J Then jzyy(. ) is nondecreasing on the clocku’ise sequence of vertices oj’f

from v ‘ to v“, cwd noni?zcreasing on the clocknvise sequent’e of vevtlees off from v‘(

to v‘. If x is on j then h,y,(. ) realizes a minimum at x, and jf ~) is on ~ then h~y(. )

realizes a maximum at ~’.

PROOF. We assume that h.v(v’) < h..}(v”), since ~therwise the lemma holds

trivially. Consider a set of all pairs shortest paths for G such that if for any pair of
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paths, and any two vertices IL and )i, if u precedes }t in both paths, then the

subpaths from u to M are identical. This can be enforced by assigning each edge a

unique index, and breaking ties lexicographically.

Consider any vertex v different from v‘. Suppose that the shortest path from v

to J intersects the shortest path from v‘ to x, Then, we claim that h,~(l) = hXY(v‘).

By the quadrangle inequality,

d(v, x) – d(v, y) s d(v’, x) – d(v’, j’).

Since /zyY(. ) realizes a minimum at v‘,

d(V ‘, X) – d(V ‘, J) ~ ~(V, X) – ~(V, ~),

which together imply that /z.Y(. ) realizes a minimum at ]. If the shortest path

from v to x intersects the shortest path from v‘ to J, then by a similar reasoning

hxy(v) = hxy(v’).

Since we assumed that ky.(v’) < h,~(v “), by the above we can conclude that the

shortest paths from v‘ to x and y do not intersect shortest paths from v” to ]’ and

x, respectively.

Now choose a vertex VI on face ~that is different from v‘ and v”, and such that

hly(v, ) > h.,y(v ‘). The above implies that shortest paths from v, to .x and y do not

intersect shortest paths from v‘ to ~’ and x. respectively. Then, either the shortest

path from v, to J’ intersects the shortest path from v” to .~, or the shortest path

from }’1 to x intersects the shortest path from v“ to J’.

Let 1’2be a vertex in the sequence of vertices on face ~ between II” and VI that

does not contain v‘, We shall show that II.,(v, ) s h,)(v?). Suppose the shortest path

from VI to y intersects the shortest path from ~1” to .x. Then, the shortest path from

v, to x must intersect either the shortest path from VI to y or the shortest path

f~om v“ to x. If it intersects the shortest path from v“ to x, then because of the

manner in which ties between shortest paths are broken, the rest of the shortest

path from Vj to x will follow the rest of the shortest path from ~” to X, and thus

must intersect the shortest path from VI to ~~anyway. Let the shortest path from V2

to x intersect the shortest path from v, to J’, at vertex z. By the quadrangle

inequality,

d(l’,, X) – d(V~ , J’) ~ d(V~, X) – d(l’~, J’),

which is the desired result. If the shortest path from VI to x intersects the shortest

path from )’” to J’, then a similar argument establishes that the shortest path from

VZ to y must intersect the shortest path from V1 to x, leading again to h.yY(vl) s

h.,v(v~),

If x is on face f a minimum for h,,(.) is achieved at x, since

h,,(v) = 62’(V,X) – d(l’, J’)

2 d(v, x) – (d(v, x) + d(x> ]’))

= –Zl(x, J’) = h.y(x).

A similar argument applies if y is on-f ❑

We define a related function as follows:

Z&(v)= Zi(x. v) – zi(j’, v).

By reversing the direction of all edges in the graph, and then applying the above

lemma, we note that the function Z,J (~) also possesses the Monotonicity Property.
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Consider a graph in which p‘ = 2, and the two faces in ~ and.~ share two

vertices. .Y and y, in common. Consider the two components Cl and Ca separated

by the pair x and ~’. Note that each component is outerplanar. We take advantage

of the monotonicity property in a procedure MON_LABEL that generates labels

for routing from one component through x or I’ to the other component. Let v be

in one component. and u in the other. The shortest path from v to u will be through

x if

~[(V, .X) + ~(.~, U) < ~(V. ~) + d(j’, U),

which holds if and only if

h.,(v) = d(l’, x) – d(v, J“) < d(j’, u) – d(x,u)= L.,(u).

The basic idea behind the application of the property is to simultaneously walk

through one component and through the other component, using the Iz.yyand 1,.,

functions. as though one wanted to merge two ordered lists of values.

Shortest paths from vertices in one component to vertices in the other component

can be computed in linear time as follows: We first compute the values h,v(v) for

all vertices v and return a list of vertices in each component ordered by htY(v), and

do the same for ~v..(u). This is accomplished by doing the following in each

component C,, i = 1, 2. Run the outerplanar algorithm from the previous section

to generate the edge labels. Determine the shortest path trees rooted at .x and y as

follows: Temporarily reverse the direction of edges, run the outerplanar algorithm

on the result, and then select for each vertex v # x the edge (W, v), where x is in

the label for edge (v, u’) for the reversed graph. Once the shortest path trees have

been found, traverse each tree and store at each vertex v the distances d(v, .~) and

d(v, J’). For each vertex v, form the difference h,Y(~I) = d(v, x) – d(v, j’). By the

Monotonicity Property, this difference is monotonically nondecreasing as v moves

around either face from x to y. Merge the list of vertices on each of the faces J and

A, in order of nondecreasing value h.,>(v). yielding a list 1,of vertices v for component
C,. We assume that the first entry on 1, is .~. Temporarily reverse the direction of

all edges in the component, reverse the roles of x and ~’, and repeat the above. The

result will be to compute ~V.X(Z[) = d(j), L{) – cl(x, u), along with the list ~[ of vertices

u, ordered by nondecreasing ~v.t(z/).
For each vertex v in component C,, i = 1, 2, define S.,(t)) to be the set of vertices

in component C3., whose shortest path from v goes through x, and Sy(\’) to be the

set of vertices in C3_, whose shortest path goes through J’. The set S..(v) (and also

set SY(V)) k the union of two sets of vertices, each set containing consecutive

vertices on one of the faces j; and fi. Assume that the vertices are named according

to the vertex naming convention. It follows that each set S..(v) (and also set S,(v))

can be described as the union of at most four intervals.

We finally describe the simultaneous walk through both components. For i =

1, 2, we then examine the vertices v of component C,, in order of nondecreasing

value h,~(~’), and simultaneously examine the vertices u of component C3–, in

order of” nondecreasing value ~l.Y(u ). This is done as follows: Initialize S} to the

empty set, and S.k to be the intervals describing vertices in component C3–,. Set v

to the first entry on 1,, and u to the first entry on ~s-,. Although hJvJ ~ &Ju),

delete u from S,., insert u into SY, and reset u to the next vertex on list 13_J. When

h,>(v) < &(u), set S’,(v) to S.., set SY(V) to SY, and reset v to the next vertex on lkt

l,. If the sets S.Y(~’) and S,(V) are each maintained as the union of two sets of vertices
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when insertions or deletions are performed. the work performed between consec-

utive reseatings of u and v will be constant. For any vertex v not equal to x or j’,

the edge (v, ~t)) incident from v that contains x in its edge label for its component

will receive the set S.,(v) into its label. The edge incident from v that contains y is

handled similarly. This completes our description of procedure MON_LABEL.

LEMMA 4.3. Let ($ be an embedded planar graph in which there is. face-on-verte.y

covering of cardinalir> 2, uith its n vertices named according to the vertf.s naming

convention. Suppose these t)t’o faces share tvto vertices that separate G into ttio

components. Procedure .410N_L.4BEL generates edge labels jor a?z~’ vertex in

one component to ~’ert ices in the othe~ component in O(n) time.

PROOF, By Theorem 3.2, the time to generate edge labels within each compo-

nent is O(n). Note that while vertices around the border of a component (as

opposed to a face fi or j;) are not necessarily named in order, the names in

clockwise order comprise a constant number of consecutive sequences. By the

remark preceding Theorem 3.2, this involves additional expense of at most a

constant multiplicative factor. The time to compute shortest path trees rooted at x

and I’ is O(n), since the time to identify all appropriate edges (M, }’) is proportional

to the total size of all edge labels, which is O(n). The creation of the lists 1, and ~,

by merging will take O(n) time. and the routine to search these lists will also take

O(n) time. ❑

5. Handling Shortest Paths be~~een Two Hammocks

In this section, we give an algorithm to generate shortest path information between

vertices in two different hammocks, assuming that distances between their vertices

of attachment are known. Our approach is based on computing information about

certain constrained shortest paths. and then combining it to yield information

about less and less constrained shortest paths. culminating with unconstrained

shortest paths. We first give a utility routine whose output is used in generating

information about highly constrained shortest paths. Then, we define information

for various levels of constrained shortest paths. Finally, we show how to generate

information about less constrained shortest paths, given information about more

constrained shortest paths.
We first give a utility routine that produces very basic information. Let H be a

hammock with attachment vertices al, az, a3, ab, and let .x be a vertex not in H.

Let N(x, H. a,) be the set of vertices in H such that a vertex J is in N(x, H, al) if

and only if ~~is in Hand a shortest path from .x to y goes through a,, but no shortest

path from x to J’ goes through any a, for j < i. Suppose the shortest distances are

given from .~ to each of a,, a2, a3, and ab. We describe a procedure to determine
the sets N(.T, H. a,), for t = 1.....4. First. generate graph H’ from H by introducing

vertices .Y,, 1 = 1, . . . . 4, and edges (.~l, a,), i = 1, . . . . 4, with cost equal to the

shortest distance from x to a, in the original graph.

Next, we label each vertex in H’ with the shortest distance to the nearest .z, as

follows: First, identify shortest path trees in H’ rooted at each .~,. For each x,, i =

1.2, 3, 4, traverse its shortest path tree, labeling a vertex v with i and the distance

from .~, to v if the distance to v is smaller than its previous distance. Note that the

vertices in each N(.y, H, al) will be the union of two sets of vertices, each set

contiguous along one face of the hammock. Since vertices are named in order

around each face, N(.K H, a,) can be described by the union of four intervals. It is

easy to traverse the edges along each face bounding the hammock, forming succinct

descriptions of the four sets. Call the above procedure.4 TZ4CH_ CL.41M.
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LEMMA 5.1. Given a hammock H btith attu&nent verlices a,, i = 1, . . . . 4,

vertex x not in H, und shortest dis~ances .fiom .y to ihe a,, procedu~e A TE4 CH_

CLAIM }t>ill generate the four sets N(x, H, a,) in O{n ’ ) time, where n‘ is the size

of H.

PROOF. By Corollary 3.1, each of the four shortest path trees can be determined

in O(n’) time. Traversing the shortest path trees, and then generating the sets

N(.x, H, a,), will each take O(n’) time. ❑

As before, let H be a hammock, and .y a vertex not in H. Let NR(x, H, a,) be the

set of vertices in H such that a vertex ~’ is in NR(.y, H, al) if and only if j’ is in H

and a shortest path from J’ to .x goes through a,, but no shortest path from ~i to x

goes through any a, forj < i. Sets NR(x, H, a,) can be computed in a fashion similar

to that of N(.~, H, a,), by reversing the direction of every edge. Note that given

shortest distances between all attachment vertices in the graph, and shortest

distances from any vertex x to the attachment vertices of its hammock, it is easy

to compute, in constant time, shortest distances from x to the attachment vertices

of any hammock.

We now discuss the information for various types of constrained shortest paths.

We start by defining this information from the least constrained to the most

constrained. We present this information in the form of sets. Let HI and HZ be

distinct hammocks. Let v be a vertex in H,, and (v, M) an edge in H,. Let

AIO(V, )i, HZ) be the set of vertices u in Hz whose shortest paths from v to u include

edge (r, t~’). In defining these sets MO, as in subsequently defining sets Vll. 1112,

and .M~, we assume that ties in the lengths of paths are broken in the following way

to yield shortest paths. Among various choices of paths of shortest length, the

preferred path will go through an attachment vertex of H, of smallest possible

index, and given that through an attachment vertex of HZ of smallest possible

index, and given that will be consistent with the shortest path information

generated by our outerplanar algorithm within each of H, and HZ.

Let .Y1 be an attachment vertex of HI. Let All (v. w’, Hz, xl) be the set of

vertices Z{ in H? whose shortest paths from v to u go through vertex xl and

include edge (v, It’ ). Clearly, Alo(v, )!’, H2 ) is the union of M1 (v, M’, HZ, xl) over all

choices of .~l.
Let ~~1be a second attachment vertex of HI. For vertices u in HZ, we term as

t~pe- 1 constrained shortest paths those paths from v to N that are shortest subject

to the constraint that they go through either .~l or ~~1.Let MQ(v, 1!, H?, xl, J’,) be

the set of vertices z{ in Hz whose type-1 constrained shortest paths from v to u

include edge (v, w’) and vertex .1-1.A vertex u is in All (~’, }t’, H2, X1 ) if for each

attachment vertex J’] # .~l of HI, u is in ~lz(~’, w’, Ho, .~i, J’I ).

Let .yz and J’2 be attachment vertices in Hz. Recall that for attachment

vertex j’ in hammock H and vertex x not in H, N(.Y, H, J’) is the set of vertices

in H whose shortest paths from .x go through J>. For vertices u in HZ, we

term as t~pe-2 constrained shortest paths those paths from v to u that are

shortest subject to the constraint that they go through either both xl and .-<?

or both J’1 and J’Z. Let Afo(v, u’, Hz , .~l, I’,, .~z, J’Z) be the set of vertices u in

N(.~,. H?, .~~) n N( J’,. Hz, ~’~) whose type-2 constrained shortest paths from
v to u include edge (I’, M ) and vertices .X1 and .Xz. Then, ~lfz(v, ]~J,Ho, xl, ]~j ) is

the union of ~f~(~’, }!), Hz, xl, }’L, x2, ]’2 ) over all choices of SZ and ]~ for which v

is in N~(.~Z, HI, xl) (l NR(~)z, Hi. -t’l).

We now show how the ,M, sets can be generated, once certain N(.,... ) sets have

been computed. We start with information about the most constrained shortest
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paths, and work toward the least constrained shortest paths. We can generate

lkf~(v, M, Hz, xl, ~’1, . _,~~ J’Z), as follows: Each set N(x, H. y) can be computed

using procedure .4 TT.4CH_ CLAIM. Generate the graph G(xI, J)], .x2, J’2) in-

duced on N(xI, Hz, x2) U ~(j),, Hz, j’z) U JVR(.YZ. HI, X,) U ~R(J’Z, HI, j’1 ),

with the edges (xl, .~~), (x?. xl ). ( .Ij, J~Z), and (J)?, J’1) added, of cost equal to

the length of the corresponding shortest paths. Perform procedure MON_LABEL

to generate edge labels for this graph. For edge (v, w ) incident from vertex v

in NR(.~z, H,. xl) (l NR(YZ, HI, ~),), intersect its label with N(xl, Hz, Xz ) n

N( j’,. Hz, J)Z) and with the label on the end of edge (Xl, .~~) incident at .x].

Once all sets fif~(r, w, Hz, .~l, J)I, .~?, JIZ) are generated, then set operations can

be performed to yield all sets lll~(v, M’, Hz, xl, Y1), then all sets MI (1’, w’, H~, Xl),

and finally all sets IWO(V, )i), Hz). Each set generated should be represented in the

compact interval notation. Once all sets ,UfO(v, w’, HC ) have been computed for

all v in H,, a similar computation will yield all sets A40(u, ~i’, HI).

THEOREM 5.1. Le~ H, and HZ be hammocks of sizes n, and n~, respectivel~’, in

an embedded graph G. Given shortest distances between the vertices oj’ attachment

of HI and Hz. the above procedure generates edge labels for an~’ vertex in one

hammock to an~’ vertex in the other hummock in O(H, + m) time.

PROOF. We first address the correctness of the set computation. It is clear that

lh~o(v, }t, H?) is the union of Ml (v, }iI, Hz, xl) over all choices of .yl. It is also clear

that a vertex u is in flfl (v, w, HQ, x,) if for each attachment vertex JII # xl of HI,

IL is in Mz(v, It, Hz. xl, J’1).

We next argue that }Iz (v, }LI.HS. x,, j] ) is the union of Alq (v, }v, HO, XJ, ]’], .XZ,.I’Z)

over all choices of X2 and y~ for which v is in NR(.I-2, HI, .~l ) n NR( I’Z, HI, yl ).

Since ~’ is in NR(x2, H,, xl), the shortest path from ~’ to .~z goes through xl. Since

~’ is in NR( J’z, HI, J’,), the shortest path from >’ to J*2goes through J*l. Consider a

vertex u in ~l~(v, W),Hz, x], 1)1, x?, y?). Since If k in N(.x1, Hz, x2), if the shortest

path from }’ to u goes through .~,, it goes through .~~. Since u is in fV(JIl, Hz, J’z), if

the shortest path from v to u goes through ~’,, it goes through J?. Thus, unioning

over kf~(v, ~v, Hz, xl, yl, S2. J12) for all choices of X2 and y~ is a correct approach.

The computation of each fil~ set is correct, since the graph G(.~l, j’,, .~z, -1’2)

contains the appropriate vertices.

We next address the time complexity. Given all relevant sets N(.~, H, j’), each

set MO( I’, MI, H2 ) can be computed in constant time. Each label generated

by performing procedure MON_L.4BEL will be the union of at most six sets

of vertices, each contiguous along one of the faces of hammocks HI and Hz,

The computation on graph G(.~1. }’,, X2. J~Z) need only be performed when

N~(.yj, H,, .yl) n N~(J2, Hl, Y,) # 0 and N(.~,, Hc, x2) n N(y,, Hz. y?) # 0. In

this case, the vertices in the graph are the union of at most six sets. each con-
tiguous along one of the four faces of the hammocks. Any edge label generated

by procedure MON_L.4BEL will be of the same type. The intersection of this

label with N(.~,, HZ, X2) n N( y,, Hz, J’?) will be the union of at most two sets

of vertices, each contiguous along a face of Hz. The intersection of this result

with the label on (xl, XQ) will yield a set again of the same type. Since a set of
contiguous vertices on a face can be described by the union of at most two

intervals, JW4(I), }t’. Hz, .~l, y] , .IZ, j’~ ) will be at most four intervals.
Each intersection operation involves a constant number of intervals, and hence

can be performed in constant time. There are 16 choices of pairs xz, J’2. Unioning

the corresponding labels can be done in constant time. There are three choices for
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J’1, and the intersection of a constant number of intervals can be done in constant
time. For all v in HI, the number of each type of set J&, Jll, fti?, Afq, will be

proportional to the total outdegree of H,, or O(nl ). For all u in H?, the number of

each type of set will be O(nl ). Thus the total time for the above procedure will be

O(nl + nz). ❑

6. Handling Shortest Puths het~teen Vertices in One Hammock

In this section, we give an algorithm to generate shortest path information between

vertices in the same hammock. assuming that distances between its vertices of

attachment are known. This problem is easy if shortest paths between vertices in

the hammock do not leave the hammock. It is also possible to determine efficiently

the information for shortest paths constrained to leave and reenter the hammock,

using the methods of the previous section. The challenging part is determining

efficiently for every pair of vertices v and u whether the shortest path from v to u

stays in the hammock or leaves and reenters the hammock. Our approach is to

determine for each each vertex ~’ the set of vertices of vertices u such that the

shortest path from v to u remains in the hammock. The key idea in the appropriate

subproblem is to perform a search of the hammock during which we determine

the shortest distance between many pairs of selected vertices t’ and u. Using a

special-purpose deque allows this to be accomplished in time linear in the size of

the hammock.

We first address a simple case in which a shortest path leaves and reenters the

hammock H, and show that it can be accommodated by a minor modification of

the hammock. Suppose the shortest distance from v to u in G is realized by a path

P that leaves and reenters H through attachment vertices at the same end, that is.

P would leave and reenter through vertices al and a~, or alternatively through

az and as. To handle such cases, just augment H with edges (al, aq ), ( aq. al ),

( a~, aJ ), and (as, a,) of costs equal to the lengths of the corresponding shortest
paths in G.

The harder case to handle is when any shortest path P that realizes the shortest

distance from v to u leaves H through an attachment vertex at one end and reenters

Hat the other end. Then, a portion of the shortest distance information between

vertices in H arises from edge labels for shortest paths within H. The rest of the

information arises from edge labels for shortest paths between vertices in two

copies of H. The challenge is to determine when to use each type of information.

Our approach is to determine for each vertex ~’in H a set U~(~) ) of vertices u such

that the shortest path from ~1to u is contained in H. We shall show that such a set

is the union of two sets of vertices, each of which is contiguous along one of the

faces bounding H. Thus, each set U~(}) has a constant size description. Then the

appropriate portions of edge labels for shortest paths within H can be unioned with

the appropriate portion of edge labels arising from shortest paths leaving H and

reentering H.

We show how to form the sets U,;(t)). Let a, be one attachment vertex of H, and

a, be an attachment vertex at the other end of H, that is, j # 5 – i. For each vertex

1’ in H, let LrJIl, (v) be the Set of vertices u such that the distance from }, to 11in
His no longer than the shortest distance from v to u along a path that leaves H
at at and reenters H at a,. We shall show in Lemma 6.1 that the set U~f,,(v) is the

union of two sets of vertices, each of which is contiguous along one of the faces

bounding H. (In fact, each contiguous set of vertices contains, if it is not empty, the
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attachment vertex on its face at the same end of the hammock as al. ) For each

vertex v, the set L~II(~’) is the intersection of the sets UH,/ (~’) over all valid choices

of i and j. Since each of these sets can be described in constant space, the intersection

can be formed in constant time.

We describe how to form the sets UII,,(}I) for all vertices v in H and for fixed

i and J. The key insight, which we show in Lemma 6.2, is that if we scan vertices ~’

in order along one face that bounds the hammock, starting from the end of the

hammock containing a,, the set UH,)(V) loses vertices in a monotonic fashion.

Thus, the last vertex in UH,,(V) on each face moves monotonically toward the end

of the hammock containing a, as vertex v moves toward that end along its face.

Thus, we perform a coordinated search. bringing along enough information to

compute shortest distances between v and vertices that are candidates for the last

vertex in L[H,,(v) on each face. We are able to perform this search in time

proportional to the size of H by using a special-purpose deque and the edge labels

to perform a search of H.

We now discuss the generation of the sets ~~ff,,(t’) in detail. For simplicity of

description we assume that i = 1 and j = 3, that is, we are considering paths that

leave Hat al and reenter Hat aj. Let face L be the face containing a, and a?, and

face.~ be the face containing a~ and a~. For any particular choice of i and J, }’ can

be on eitherj, orj?, and we can determine the vertices of L’~,,(v) on either of the

faces j or ~Z. The description of our algorithm is instantiated for ~’on face .L, and

for finding the last vertex in ll~,,(v ) on the face A. The three other cases can be

handled in essentially the same way. We initialize v to a2, and find all pairs shortest

distances in H from v to all vertices in H. We also initialize u to be the vertex in
LIH,,(~) closest to a~ on face A. It takes time proportional to the size of H to find

such a vertex, using the shortest path algorithm for outerplanar graphs. As the

result of the initialization, we associate the set of vertices from u to al on face ~Z

with vertex ~1.The set should be represented in compact form, as the union of a

minimum number of intervals. This form will be of constant size.

Also as a part of the initialization, we set up a deque with heap order [ 16] to aid

in the search of H. The deque will contain the edges in the shortest path from

}’ to u, as we move both v and ~~in H. Each edge (v. ~( ) has a cost associated with

it, as well as a label 5’(v, ]t ) in compact form, encoding shortest path information

in H. One of the implementations of the deque with heap order in [ 16] runs in

amortized constant time for the deque operations and constant time for the min

operation. The deque of [16] will perform just as well if the min operation is any

associative operation with no inverse. We thus define the min operation on two

subsets, each described as the union of a minimum number of subintervals, to be

the intersection of these subsets, also described as the union of a minimum number

of subintervals, Since the deque represents a shortest path from ]’ to z~, u must
appear in the min taken over all edges in the deque. In addition. we maintain in a

straightforward way a value that is the sum of the costs of the edges in the shortest

path from v to u.

We use the deque in our search as follows. handling in turn each vertex in

addition to v on face f;. Although v is not al, we do the following. First, advance

from v to the next vertex v‘ towards al on face J. Second, use edge labels to search

from v‘ towards u, stopping when we first encounter a vertex tin the shortest path

from ]’ to u, Third, we modify the deque. Delete from the deque all edges from

v to t,in order from the edge incident from ~’to the edge incident to t. Then, insert

the edges from v‘ to t,in order starting with the edge incident on tand finishing

with the edge incident from v‘. Fourth, set u’ to u. Fifth, we advance u‘ as
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necessary along face fz towards ci4,until u‘ is in U~l, (v ‘). We discuss in a moment

how this advancing operation is done. Sixth, we reset ~’ to v‘, and u to 11’, and

associate the set of vertices from N to U4 on face fz with vertex v. Once ~’= al, the

particular case we have described is handled.

We discuss how the advancing operation is performed, in which we advance u‘

along face f~ as necessary towards a~ until u‘ is in UH,, (V ‘). Although u‘ is not in

UH,~(]’ ‘), we do the following: First, let u“ be the next vertex from u‘ towards a~

on facef~. Second, while u” is not in the min for the path, delete nondummy edges

from the end of the path. Third, extend the path to u“, using the edge labels in H

to search for u“. Note that the removal of the end of the path, and also the

extension of the path can be carried out by deque operations. Fourth, set u‘ to u”.

At this point, we are ready once again for while-test involving u‘. Once N‘ is in

U~,,OI’ ), the advancing operation is complete.
We note that the test to determine if u‘ is in U~l,,(~” ) can be implemented as

follows: For vertices }’ and u in If, let d~ (v, u) be the length of a shortest path from

v to u that is constrained to stay in If. We must compare dH(v’, u‘ ) with

d~(v’, al) + d(al, as) + d~(a~. u’). The value d~(v’, u’) will be the total cost of

all edges on the path. The values dH(v’, al) can be precomputed for all vertices v‘

in H in time proportional to H, and similarly for d~f(a~, u‘ ). The value d(al, aJ ) is

available from the previous all pairs shortest paths computation on the com-

pressed graph C(G). The test itself will take constant time.

We call the above procedure for generating the U1{,,(]’) sets procedure

UVSE4RCH. The correctness of procedure UVSEARCH depends on several

properties. Recall the quadrangle inequality: For vertices w,, )VZ, u,, and U2, if the

shortest path from ~vl to Ill intersects the shortest path from ~’~ to u?, then

d(}t,, uZ) + d(w!, u,) s d(w,. u,) + d(wz, u~).

The first property establishes our characterization of UH,,(}’).

LEMMA 6.1. Let H be a hammock in graph G. Let x = a, and y = al be

attachment vertices at opposite ends of H. Let v and u be vertices in H, ~tith N on

face j: one qf the t}to faces that bound H. If vertex u is in UII,l(V), then so are all

vertices on face f from u to the attachment vertex on jilce j’ that is at the same end

of the hammock as al.

PROOF. Let u‘ be any vertex on face f from u to the attachment vertex on face

,f at the same end of the hammock as a,. We have two cases. In the first case. if u

and u‘ are on facejl and if v comes between u‘ and u on this face, then the shortest

path in H from v to x intersects the shortest path in H from ]’ to u‘. Then, by the

quadrangle inequality,

d~(v, LL‘) + dH(J’, X) = dH(V, X) + dH(J, 1[‘).

Since there are no negative cycles in the graph,

O s d(x, ~’) + d~,(y, .x).

Summing these yields

which is the desired result.

In the second case, if u and u‘ are not on face~ or they are but v does not come

between u‘ and u on this face, the shortest path in H from v to L4intersects the
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shortest path in H from I to u‘. By the quadrangle inequality, we get

dff(l’,u’) + dIf(.Y? u) = 41(V. IL)+ dd.1’>u’).

Since u is in LT~,,(v),

CL,(V$ u) s (&(v. x) + (i(.x, j’) + LiH(j’, u).

Summing these yields

d~(V. ~/’) = d~(l’, .y) + d(.L J’) + d,v(v, t{’),

which is the desired result. ❑

The second property establishes our characterization of the monotonic loss of
vertices from LT~I,j(V) as ~’ recedes toward a,.

LEMMA 6.2. Let H be a hammock in g~aph G. Let x = a, and ~ = aj be

attachment vertices at opposite ends of H. Let v and 11be vertices in H, )i’ith ~ on

facc$ ofle of the tit’o faces that bound H. If u is not in U~,,(v), thefl u is also not zn

UFI,)(\” ) for arzj’ vertex II’ on .fiwe -f between v and the attachment vertes OP1fiice f

that is at the sume end of the hammock as a,.

PROOF. By Lemma 6.1, u cannot be on face f between v and the attachment
vertex on this face at the same end of the hammock as a,. Thus, the shortest path

in H from 1’ to .x intersects the shortest path in H from 1” to u, for any vertex }”

on face j“ between v and the attachment vertex on this face at the same end of the

hammock as a,. By the quadrangle inequality, we get

d,,(v. X) + d,y(v’, u) > d,/(V. U) + d~(v’, x).

Since u is not in U~,,(v),

dlr(v, u) > d~(v, x) + d(x, y) + d~(~’, u).

Summing these yields

dH(~’ ‘, u ) > d]~(v’, x) + d(x, J’) + d,q(y, u),

which is the desired result. ❑

LEMMA 6.3. Let H be a hammock m graph G. Let a, and al be attachment

vert ice’s at opposite ends of H. Procedure Ub7SEARCH forms the sets U~,l (I)

for cdl vertices v in H in time linear in the size of H.

PROOF. We claim that UFrSE.4RC7H never deletes an edge from the deque and

then later reinserts it. This can be seen as follows: Consider three vertices v, v‘,

and v“ appeating on the face containing a] and a~, with v‘ between v and al, and
v” between v‘ and al. Consider three vertices u, u‘ and u” appearing on the face

containing a~ and as. with u‘ between u and a~, and 24” between u‘ and ad. If the

shortest paths from v to u and from v” to u” share an edge, then the use of edge

labels ensures that this same edge will be on the shortest path from v‘ to u‘.

Thus, every edge in the hammock is added to the deque at most once, at either

the front or the rear of the path. Every edge in the hammock can be deleted at

most once, and will be deleted from either the front or the rear of the path. As

discussed already, the deque with heap order structure of [ 16] supports amortized

constant deque operations, and a constant time for the min operation. Thus,

inserting and deleting edges will take time proportional to the size of the hammock.
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Whenever the cost of the path from ~” to u‘ is accessed, or a min operation is

performed, progress is made, either in the form of a deletion from the deque, or

advancing Z1’ toward al. Each such operation can be performed at most once for

each edge or vertex in the hammock. Since each such operation takes constant

time, the total time for handling such tests will be proportional to the size of the

hammock.

The time for performing the searches for u” among the edge labels can be

accounted as follows: The vertices along the face containing a3 and al are visited

in order from a3 to a4. If edges around each vertex are stored in clockwise order

according to an outerplane embedding, then the edges can be scanned in order,

without backtracking. to find the label containing the current N”, starting from

the edge whose label contained the previous u”. This implies that each interval in

an edge label is scanned just a constant number of times. Thus, the time is

proportional to the total size of all edge labels, which is proportional to the number
of vertices in H. ❑

THEOREM 6.1. Let H be a hammock of size n, in an embedded graph ~.

Given shortest distances in G bet~ee?l thg ~ertices of attach nlent of H, tjle abo~ze

appvoach genemtes edge labels for an>’ vertex in H 10 af~~yother ~w-lcx in H in

O(nl ] ti~ne.

PROOF. Lemmas 6.1 and 6.2 establish the correctness of our approach for

computing the sets U~,l(l’). Since the set U~(}’) is the intersection over a number

of such sets, U~(~)) is the union of two sets, each of which is a set of contiguous

vertices along a face bounding H.

Lemma 6.3 shows that the search to determine the sets Ull(v ) for all vertices

1) in H will require time linear in the size of H. By Theorem 3.2, determining

information for shortest paths constrained to remain in H will take O(~zl ) time. By

Theorem 5.1, determining information for shortest paths constrained to detour out

of H will take O(nl ) time. Combining this information will take constant time per

edge in H. Thus, the total time will be O(nl ). ❑

We have now given all the pieces of our algorithm as discussed in Section 4.

T~~ORENI 6.2. Given a planar embedding ~ and a -face-on-vertex covering of

cardinalit~’ p‘, our algorithms compute all pairs shortest paths in O(p ’ n ) time.

PROOF. Given the face-on-vertex covering, a hammock decomposition can be

determined in O(n) time. The compressed graph C(G) can be determined in O(PI)

time, and all pairs shortest paths solved on it in O((p’ )Z) time, using the algorithm

in [11]. Shortest path information between vertices in H,, and all other vertices can

be determined in 0( p‘ n, + n) time, by Theorem 5.1. Summing over all proper

hammocks gives O(p ‘n) time. By Theorem 6.1, shortest path information between

vertices in the same hammock H,, of size n,, can be found in O(n, ) time, or O(n)

time over all hammocks. ❑

7. Determining an Appropriate Face-on-Vertex Covering

I! this section. we briefly give a solution to Problem (3). Given a planar embedding
G of an undirected planar graph G, we show how to generate a face-on-vertex

covering whose cardinality is no more than twice the cardinality of a minimum

face-on-vertex covering for ~. We find such a covering by using an approximation

algorithm based on techniques found in [2]. We first recall several definitions from
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[2]. A vertex is on level 1 if it is on the exterior face in ~. A cycle of level i vertices

is called a level i face if it is an interior face in the emb~dded subgraph

induced by level i vertices and consistent with the embedding of G. By an induced

embedded subgraph beingAconsistent with G, we mean that the embedded subgraph

c~n be extended to yield G by adding ~ertices and edges. For each level i face j let

G, be the embedded subgraph of G induced by all vertices inside ~ in G.

All vertices on the exterior face of ~f are level i + 1 vertices.

We sketch the method of [2], which is a generic approach for approximation

algorithms for certain NP-hard problems on planar graphs. The approach guaran-

tees a solution within a fixed degree of closeness to optimal. in time that is the

product of n times an exponential in the inverse of the degree of closeness. Let k

be a small positive integer greater than 1, to be chosen subsequently. The idea is

to consider k different “partitions” of an embedded planar graph. For each partition,

solve a particular hard problem exactly on each subgraph, and union the solutions

on the subgraphs together. Then, take as the approximate solution the solution to

one of the k partitions that is closest in cost to optimal. The exact notion of

partition depends on the particular problem being handled. In general, a partition

is created by repeatedly peeling off vertices in a number of levels to create a

subgraph, with every subgraph except the first and the last having exactly k levels,

and the first and the last having no more than k levels.

We instantiate* this approach for our problem. ~For j = O, 1, . . . and r =

1,2, ..., k, let G,, be the embedded subgraph of G containing every face in (?

incident on a vertex in level i, where k(j – 1) + r < i s kj + r. Let all vertices on

levels k(j – 1)+ r< is kj + r be called reqmred vertices of 6,,. The general dynamic

programming algorithm in [2] can be adapted to find a minimum cardinality

subset F,, of faces of G,,. (We omit the details of this adaptation; it is a rela-

tively straightforward adaptation.) Let F, be the union of F,, over j >0. Choose F’

to be a set among F, of minimum cardinality.

Let the restricted face-on-vertex covering problem be the problem of finding a

minimum cardinality face-on-vertex covering for an embedded graph in which

certain faces are required to be in the covering. other faces are not allowed to be

in the covering, and certain vertices are not required to be covered. We note that

the above approximation algorithm can easily be modified to yield a restricted
face-on-vertex covering of cardinality at most (k + 1)/k times the minimum

cardinality.

LEMMA 7.1. Let & be an embedded planar graph, and k >1 a positive integer.

There is an 0(8% )-ti~~~e approximation algorithm that generates a restricted face-

on-vertex covering for G whose cardlnality is at most (k + 1)/k times the cardinalit~

of a minim wn restricted face- on-~’erte-x covering.

PROOF. For each r, the set of embedded subgraphs ~,, collectively contain all

vertices of G. Thus, F, will be a covering of the required vertices, containing faces

required to be in the covering, and excluding faces not allowed to be in the covering.

Consider an optimal face covering F*. In a fashion consistent with [2]. we argue

that lF’l=l F*l(k+l)/k. Forr =1. 2,... , k, let b, be the number of faces in

F* that contain vertices from both level kj + r and kj + r + 1 for some j. Since

x~=l b,= IF* 1, there is some r’, 1 ~~ ~’ ~ k, such that b,, ~ IF* I/k. Then a (not

necessarily optimal) face covering of G,, will consist of faces in F* that are incident

with required vertices on levels k( j – 1) + r‘ + 1 through kj + r‘. Taken over all

j the total number of such faces is IF* I (1 + l/k).
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The adapted dynamic programming algorithm from [2] will take 0(8 %j,) time

on graph d,,, where n,r is the number of vertices in ~,,. For each r, the sum of n,,

over all j is O(n). Thus, the algorithm. runs in 0(8 ‘n ) time. ❑

Note that if I F‘ I < k, then F’ achieves the minimum.

8. Determining an .4ppropriate Embedding and an .4ppropriate Covering

In this section, we address problem (4). Given an undirected pla~ar graph G, but

no embedding of G, we show how to generate an embedding G and a face-on-

vertex covering, such that the cardinality of the covering is at most four times the

cardinality of a minimum face-on-vertex covering over all possible embedding.

Our approach is based on decomposing G into triconnected components. We

initialize a set to hold these components, and then handle elements of the set one

at a time recursively. Handling a component corresponds to running the algorithm

in the last section in several variations. and based on the relative performance for

the variations, choosing a gadget to substitute into a component that shared two

vertices with it. The choice of component can encode an ambiguity as to the

embedding, which is resolved as the recursion is unwound. Once we have given an

algorithm for solving problem (4), we conclude the section by claiming the main

result of the paper.

As mentioned in the introduction. there are planar graphs for which one

embedding has a face-on-vertex covering of cardinality 2, while another embedding

has only face-on-vertex coverings of cardinality ~(n). A family of such graphs is

represented in Figure 5a, where the number n of vertices is 2 more than a multiple

of 3, and n 2 11. The graph can be viewed as consisting of (~z– 2)/3 pieces in the

shape of pie slices, with all slices the same, except for the middle one of the

three shown. A minimum face-on-vertex covering for this embedding contains

(n – 2)/3 faces. We shall exhibit an embedding of this graph that has a

face-on-vertex covering of cardinality 2.

We first discuss the use of triconnected components. We use the linear-time

algorithm of [ 18] to decompose G into triconnected components. Each triconnected

component will be either a bond, a polygon. or a triconnected graph. and will

consist of actual edges from G and virtual edges representing portions of G that

were split off. Any virtual edge in a component will have a corresponding virtual

edge in some other component. The decomposition into triconnected components

of the graph in Figure 5a is given in Figure 5b. Each virtual edge is drawn as a

dashed edge, and placed next to its corresponding edge.

Our algorithm uses a notion of e.~tended components of a graph G, which are

modified triconnected components of G. Sets of extended components are defined

recursively as follows. The set of triconnected components of planar graph G is a

set of extended components of G. Let 17 be a set of extended components of G,

with I r I > 1. Then, r‘ is a set of extended components of G, of cardinality

I r I – 1, defined as follows. Let C’l be an extended component in r that contains

some number of actual edges and precisely one virtual edge e, and let Cz be the ex-

tended component in r that contains the virtual edge e‘ corresponding to e. Then,
r‘ = r – {Cl, C~ ] u {c’s }, where C3 is a component generated when edge e” in Cs

is replaced by any one of the gadgets in Figure 6. (Our definition allows an arbitrary

choice of gadget. Of course, our algorithm will make a particular choice of gadget.

This choice will be discussed subsequently.) Note that the components in any set

of extended components are in one-to-one correspondence with the components

in a set of components obtained when certain of the triconnected components of
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FIG.5. Anexample fordetermin-

inga good embedding. (a) An em-

bedded planar graph. (b) Its de-

composition into unconnected
components,
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G are merged back together. Thus, the components in the set of extended compo-

nents can be merged together to yield a planar graph G‘. (Because of the replace-

ment by gadgets, G‘ will in general be different from G.) A set of extended

components of the graph in Figure 5a is given in Figure 7a, and a second set is

given in Figure 7b.

The designation “can’t use” in certain faces of some of the gadgets refers to the

restriction that when a component is embedded in the plane. the corresponding

face cannot be used in the face-on-vertex covering. Note that each gadget is

symmetrical with respect to reflection about the axis through the top and bottom

vertices. Thus, for any extended component that was not initially a bond, there are

at most two nonequivalent embedding of this component, one a reflection of the

other. in which any one particular face is the exterior face.
We now give a recursive procedure to determine a good embedding and a good

face-on-vertex covering. We assume as input a data structure containing a set r of

extended components of G, arranged in lists according to the number of virtual

edges in each. At the top level of recursion, r will be the set of triconnected

components of G. If r contains exactly one extended component Cl, we generate

an embedding and a face-on-vertex covering of Cl, as discussed below. If f’ contains

more than one extended component, choose an extended component Cl that has

exactly one virtual edge e. Remove C, from the set, handle it, and modify the

component CZ that contains the corresponding virtual edge e‘. Component C? is

modified by replacing virtual edge e‘ by one of the four gadgets shown in

Figure 6, generating a resulting set of extended components r‘. We discuss the

rule for the choice of gadget below. The algorithm is applied recursively to r‘,
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(a) (b)

FIG. 6. The gadgets that can substitute for a compo-
nent. (a) Type 1. (b) Type 2. (c) Type 3. (d) Type 4.

e~
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and the resulting embedding and face-on-vertex covering is finally modified to

reflect the processing of Cl.

We discuss how to handle the compon~nt C,. Suppose C, was not initially a

bond. Choose one of the two embedding Cl of the component, using a linear-time

planarity testing algorithm [4, 7, 19]. If Cl does not contain a virtual edge, then

use the approximation algorithm from the last section on the embedded component

~1, using the parameter k = 4. If Cl does contain a virtual edge, letfi and.fi be the

faces incident on the virtual edge. Run four versions o~the approximation algorithm

from the last section on the embedded component C,, again using the parameter

k = 4. In the first version require both j and.6 to be used. In the second, require

fi to be used and.~~ not to be used. In the third, requirefi to be used and.fi not to
be used. In the fourth, require neither to be used. In all four problems, the endpoints

of the virtual edge are not required to be covered. Let PI, P2, P3, and p~ be the

respective number of faces in the face-on-vertex coverings generated. (If no covering

is possible, given the restrictions, then take the number of faces to be w.) Without

loss of generality. assume p? 5 p3.

If PI s rein{ p~, P4 }, then the solution to the first problem is preferred in an
approximation, since including .L and fz in the covering can only help in covering

vertices in other components. Replace the corresponding virtual edge in C? with

the gadget oft ype 3 in Figure 6. Note that the middle two faces in this gadget are

excluded from being used in any face-on-vertex covering of an embedding of Cz.

This then forces the two faces on either side of this gadget to be in the face-on-
vertex covering.

If p~ s rein{ p, – 1, PJ 1, then the solution to the second problem is preferred.

This follows since including ,fi can only help as compared with the solution to the

fourth problem, and including .L later to help cover vertices in other components

would boost the total cost only to p2 + 1 s pl. Replace the corresponding virtual
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(a)

:

(b)

FIG. 7. Sets of extended components generated by: (a) Replacing
certain components in Fig. 5b. and (b) Replacing all components
except the largest one.

edge in C’? with the gadget of type 2 in Figure 6. This forces one of the two faces

on either side of the gadget to be in any face-on-vertex covering.
If pq s rein{ p, – 2, p, – 1}, then the solution to the fourth problem is preferred.

This follows since including one of fi and j“ later to help cover vertices of other

components would boost the total cost only to pl + 1 s Pz, and including both of

.fi and L later would boost the cost of P4 + Z s p,. In this case, replace the

corresponding virtual edge with the gadget of type 1 in Figure 6.

When none of the above conditions hold, we have that p, = P4 + 1 s p~. In this

case, we would like to use either the solution to the first or the fourth problem.

depending on which is more advantageous. We replace the corresponding virtual

edge with the gadget of type 4 in Figure 6. Note that the top and bottom interior

faces are not allowed to be used in the face-on-vertex covering. This means that

either the middle interior face is used, or both outside faces will be used. Using the

outside faces corresponds to choosing the solution to the first problem, while

otherwise not using both outside faces corresponds to choosing the solution to the

fourth problem. This ambiguity about which solution to use is left unresolved until

the procedure returns back from the recursion. This concludes the description of

how to handle a component that was not intially a bond.

Suppose component C, was initially a bond. In the worst case, there will be

many different possible embedding for Cl. We describe how to generate an
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embedding that has a face-on-vertex covering of minimum cardinality, subject to

restrictions on how many faces bounding a virtual edge are to be contained in the

covering. For convenience, we view any edge in Cl that was an actual edge in the

original bond as a gadget of type 1. An embedding will be specified by giving a

cyclic ordering, around one of the vertices originally in the bond, of the gadgets in

C’l, along with the virtual edge, if present. First, have all the gadgets of type 1, then

all gadgets of type 4, then one gadget of type 2 if there is one, then all gadgets of

type 3, and then remaining gadgets of type 2. If there is no virtual edge, then the

above embedding is sufficient. If there is a virtual edge, then we generate three

different embedding, each dependent on how many faces next to the virtual edge

would be required to be used in the covering. If both such faces are. then put the

virtual edge after the gadgets of type 3. If exactly one such face is. then put the

virtual edge in front of all gadgets. If no faces next to the virtual edge are to be

included in the covering, then put the virtual edge after the first gadget in the list.

A minimum cardinality face-on-vertex covering of each embedding can be gener-

ated by a straightforward greedy algorithm.

LEMMA 8.1. Let C, be a component that was o~iginall~ a bond. Suppose eit~les

Cl contains no ~irtual edge, or Cl contains a ~’irt ual edge and an embedding is

required to hale cyactl~ i faces incident on the t’irtua[ edge, }i’llere i is O, 1, or 2.

The abo~e algorithm gives an embcddi~zg ~1 that has a tninimum cardinalit~’ftice-

on-~erte.x covering ~~’henever such an embedding e.~ists.

PROOF. Suppose C’l contains no virtual edge. One face will be needed for each

gadget of type 3 or type 4, and every two gadgets of type 2. Furthermore, if there

are no gadgets of type 2, and at least one of type 1, then one additional face will

be needed. It is easy to verify that the embedding given has a face-on-vertex

covering of this size.

When there is a virtual edge in Cl, the proof involves verifying a number of

cases. Let g, be the number of gadgets of type j in Cl. We note that if ,g2 + g3 +

gi >0 and g, + g. + g~ <2, then there will be no embedding with both of the
faces incident on the virtual edge not used. If either g. = 1 and g, + gz + gs = 0,

or gs >0 and gl + g~ + g~ = O, then there will be no embedding with exactly one

of those faces not used. ❑

We complete the discussion of how to handle a component that was initially a

bond. If Cl contains no virtual edge, then an embedding and a minimum face-on-

vertex covering have been determined. Otherwise, let p], pz, and p~ be the number

of faces in a minimum cardinality covering when respectively 2, 1, 0 faces incident

on the virtual edge are included in the covering. Perform the comparisons between

P1. PO. and PA as described earlier, substituting the selected gadget in place of the
corresponding virtual edge in some component C2.

We now illustrate how to handle components. Consider the set of triconnected

components in Figure 5b. Consider each component that has precisely one virtual

edge. For each of these components, the solutions generated by the algorithm of

Section 7 for the various problems will have PI = 2. p? = PS = 1, and p. undefined.

Since Pz s pl – 1, each such component will be replaced by a gadget of type 2.
The resulting set of extended components is shown in Figure 7a. The solutions

generated by the algorithm of Section 7 for the component shown in the middle

slice of Figure 7a for the various problems will have PI = 2. PZ = P3 = 2, and

P4 = 1. Since pi = pi + 1 s P2, the component will be replaced by a gadget of
type 4. The solutions generated by the algorithm of Section 7 for the components
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shown in the other slices of Figure 7a for the various problems will have PI = 2.

Lb = P3 = 1. and p~ undefined. Thus, these components will be replaced by gadgets
of type 2. The resulting single component is shown in Figure 7b. The face-on-

vertex covering generated by the approximation algorithm in Section 7 is shown in

Figure 8a. Note that the cardinality of the covering is the smallest possible.

This must necessarily be so since the cardinality of this covering is less than k.

We finally discuss how to return from the recursion, and resolve ambiguous

choices for the embedding. Thus, we discuss how to modify the solution for 17’ to

yield a solution for r. The embedded graph G‘ for r‘ contains the gadget that was

substituted in place of component Cl. Replace the gadget with component Cl

minus its virtual edge, If the gadget is type 2, choose the reflection of Cl that forced

the choice of the gadget originally. Union the covering of C’, into the covering for

the embedding being constructed. If the gadget is of type 4, choose the covering of

C, that is consistent with the way the vertices of the gadget were covered.

THEOREM 8.1. The above approximation a[gorithwz generates an embeddi~lg oj’

G and a face-on-vevte.x covering of cardinalit) at most jour times the cardina[ity oj

the nurumwn covering over all possible ennbeddings.

PROOF. The proof is by induction on the number of extended components

of G. Suppose there is just one extended component. If the component was not

initially a bond, then there are just two embedding, which are reflections of each

other. Our algorithm uses the approximation algorithm from Section 6, that is

guaranteed to get within a factor of (k + 1)/k= 5/4. If the component was initially

a bond, then by Lemma 8.1, our algorithm identifies an embedding that allows for

a minimum face-on-vertex covering, and finds this covering.

Suppose there is more than one extended component. We assume as the

induction hypothesis that our algorithm gets within a factor of 4 on any graph with

fewer extended components. Given a graph G, let P(G) be the minimum number

of faces in any face-on-vertex covering of any embedding. Let F* be a face-on-

vertex covering for G that is of cardinality P(G). For extended component Cl of G

that has one virtual edge, let F*’ be a minimum cardinality subset of F* needed

to cover all vertices in C, except the endpoints of the virtual edge. Let P(C, ) be the

cardinality of F*’.
Let p‘ be the minimum of the P,. i = 1, 2, 3, 4, for component C’,. Let G‘ be

the graph resulting after our algorithm deletes component C, and substitutes a

gadget in place of a virtual edge in component CZ. Let j(G) be the cardinality of a

covering generated by our algorithm.

Suppose P(C) s 3. This means that rein{ p,, p2, p~ ] s 3. Consider the case in

which PI s min~pz, P4}. We have p(G’) s P(G) – (pi – 2), since pl is the mini-
mum. Thus, B(G) < p, – 2 + j(G’) < p, – 2 + 4p(G’), by the induction

hypothesis. Substituting, we get j(G) s PI – 2 + 4(P(G) – p, – 2) s 4p(G),

since pl > 2. Consider the case in which pz s rein{ p, – 1, p4 }. We have

P(G’) s p(G) – (PZ – 1), since m is the minimum, and PI – 2 2 PZ – 1. Thus,

~(G) ~ P? – 1 + O(G’) s PZ – 1 + 4P(G’ ), by the induction hypothesis. Substi-
tuting, we get D(G) < pz – 1 + 4(p(G) – pz – 1) = 4p(G), since p~ > 1. Consider
the case in which pd s min{pl – 2, pz – 1]. Ifp4 s 2, then p(G’) s p(G) – p4,

since PI – 2 > P4 and PZ – 1 z p~, and PI and PZ are the smallest possible values,
not approximations. Thus, B(G) s Pq + ~(G’) s p~ + 4p(G’), by the induction

hypothesis. Substituting, we get fl(G) s PA + 4(P(G) – p.) s 4p(G). If PA = 3,

then p(G’) sp(G) –pq + 1, sincepq – 1 SP1 – 2. Thus, j3(G) SpJ +j(G’) s
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P4 + 4P(G’ ), by the induction hypothesis. Substituting, we get fi(G) s p~ +
4(p(G) – p~ + 1)= 4p(G) – 3p4 + 4< 4P(G),

Suppose p(C) > 3. Since at most two faces in F*’ cover vertices not in C,

p(G’) = p(G) – p(C) + 2. Then, O(G) = p’ + j(G’) s p’ + 4p(G’), by the in-

duction hypothesis. Substituting, we get fi(G) s (~)p(C) + 4(p(G) – p(C) + 2) =

4p(G) = (~)p(C) + 8 s 4p(G). ❑
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We suspect that the constant of 4 can be improved by careful analysis. We

complete our running example by seeing how the embedding and face-on-vertex

covering in Figure 8a is expanded to yield a good embedding and face-on-vertex

covering for the graph in Figure 5a. For each gadget of type 2 substituted into

Figure 7a to yield Figure 7b, we replace the gadget by its corresponding component.

Note that we are careful to use the appropriate reflection of components replacing

gadgets of type 2. Also note that since the gadget of type 4 had both outside faces

in the covering, both outside faces of the component are included. Since these

components are rather simple, no faces other than outside faces were in their

coverings. The resulting graph, embedding, and covering are shown in Figure 8b.

Substituting for gadgets in Figure 8b gives the original graph of Figure 5a, along

with an embedding and a face-on-vertex covering. The covering is of cardinality 2,

the best possible for this family of graphs.

We are now able to claim the main result of the paper.

THEOREM 8.2. Let G be a directed planuv graph, i~ith n vertice,y, and ~eal-valued

edge costs but no negutiie cycles. Let p be th~ minimum cardinality of a jace-on-

~’erte.x covering o~’er all pjanar embedding of G. Our algorithm ~’onstructs co~n-

pucted routing tables jbr all pairs shortest paths in G in 0( pn) time.

PROOF. The result follows directly from Theorems 6.2 and 8.1 ❑

9. J-erijj’ing the Triangle Inequality}:, and Anothw E~lcoding

It is possible to determine all edges violating the triangle inequality in time that is

better than O(pn ) whenever p is o(n). The time will be O(n + p2), as we now show.

Perform all the portions of our algorithm except for finding edge labels between

vertices in different hammocks. For each edge (v, ~V), test if ~!’ is in the interval

labeling edge (v. )~) in the hammock containing (}), w). An edge (v, }t’ ) violates

the triangle inequality if and only if the test fails.

THEOREM 9.1. Let G be a directcdplanar graph, uith n vertices, and real-~a[ued

edge costs but no negative i’>cles. Let p be the minimum cardinalit~ qf a .face-on-

verte.x covering over all planar embedding oj G. All edges that violate the general-

ized triangle i}zequalit~’ can be determined in O(n + pz) time.

PROOF. Since each edge is in some hammock, it is not necessary to find shortest

path information for two vertices in different hammocks. The time to perform all

the portions of our algorithm except for finding edge labels between vertices in

different hammocks is O(n + p2). Given the edge label information within ham-

mocks, the time to perform each test is constant per edge, or O(n) overall. ❑

We know of no class of graphs for which the current best algorithm for verifying

the generalized triangle inequality is faster than the current best algorithm for

solving all pairs shortest paths. The class of planar graphs with a minimum

cardinality face-on-vertex covering of size p appears to be no different, if we allow

an alternative encoding of all pairs shortest paths information.

The encoding consists of all pairs shortest distances and shortest paths in the

compressed graph C(G), edge labels in each hammock H, the sets ~~~(v) for all

vertices }’ in each hammock H, and shortest distances between each vertex in H to

the attachment vertices of H.

Given this encoding, the first edge (v, MI) on a shortest path from v to u is

determined as follows: Suppose v and u are in the same hammock H. If ZLis in
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UII(V ), then the shortest path from v to u stays within ~. Thus. (v, M) is the edge

incident from v with t{ in its edge label. If u is not in UII(]I ). or if v is in hammock

H and u is in hammock H’ # H, then we consult the distance information. (If

v and u are in the same hammock H, but N is not in U~(V), then let H’ = H in the

following.) Let al, a~, as, and al be the attachment vertices of H, and bl, h?, Iu,

and bd be the attachment vertices of H’. Choose i and j to minimize d(~’, a,) +

cl(a,, bj) + ti(b,. u). If v # a,, then edge (v, u) will be the edge incident from v with

a, in its edge label. If v = a,, then (v, M) will be the first edge in a shortest path

from a, to b, in C’(G).

THEOREM 9.2. Let G be a directed planar graph, }ti~h n verlices. and real-valued

edge costs but no negative c~rles. Let p be the minimm cardinalit~ of a jace-on-

verk.r co~’ering over all planar embedding of G. The above encoding cf all pairs

shortest path information can be computed in O(n + p?) time.

PROOF. The above encoding can be generated by performing all the portions

of our algorithm except for finding edge labels between vertices in different

hammocks. This requires time O(n + Pz). ❑

While this encoding can be generated in general more quickly than compact

routing tables, it obviously cannot be used in place of compact routing tables for

point-to-point message routing in a network.
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