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T 
here is real concern, and 
not only on the part of  
computer scientists, with 
the lack of  rigor and ac- 
countability in software 
engineering. 

For example, consider the re- 
cently released report  [8] by the 
subcommittee on Investigations 
and Oversight of  the House of  Rep- 
resentatives Committee on Science, 
Space, and Technology, which ad- 
dresses problems of  software sys- 
tem safety, reliability, and quality. 
This report, in part, criticizes the 
universities for providing inade- 
quate education for software engi- 
n e e r s - b o t h  in their discipline and 
in ethical training related to their 
discipline. Cherniavsky, in com- 
menting and summarizing this re- 
port in an article in Computing Re- 
search News [4], says the following: 

[ . . .  there is] a fundamental 
difference between software 
engineers and other engi- 
neers. Engineers are well 
trained in the mathematics 
necessary for good engineer- 
ing. Software engineers are 
not trained in the disciplines 
necessary to assure high-qual- 
ity software . . . .  The problem 
is not so much not having the 
mathematics necessary to solve 
the software problem, but in- 
stead having the trained soft- 
ware engineers. 

As another example, the Computer  
Science and Technology Board's 
recently completed report  on the 
research agenda for software engi- 
neering [5] indicates the need for 
strengthened mathematical foun- 
dations in the work force: 

In the absence of  a stronger 
scientific and engineering 
foundation, complex software 
systems are often produced by 
brute force . . . .  As software 
engineers begin to envision 
systems that require many 
thousands of  person-years, 
current pragmatic or heuristic 
approaches begin to appear 
less adequate to meet applica- 
tion needs. In this environ- 
ment, software-engineering 
leaders are beginning to call 
for more systematic ap- 
proaches: More mathematics, 
science, and engineering are 
needed. 

In the face of  the growing problems 
of  developing and managing more 
and more complex 
software systems, David  Gries 

COMMUNICATIONS OF THE ACM/March 1991/Vol.34, No.3 4 S  



This program, instruction manual, and reference materials are sold "as is" 
without warranty as to their performance, merchantability, or fitness for any 
particular purpose. The entire risk as to the results and performance of this 
program is assumed by you. 

However, to the original purchaser only, the publisher warrants the magnetic 
media on which the program is recorded to be free from defects in materials 
and faulty workmanship under normal use for a period of ninety days from 
the date of purchase 

A Statc;ment on a Software 
Product 

the report  calls for a more 
rigorous use of  mathematical tech- 
niques, in the hope that this can 
help researchers manage and di- 
minish complexity. Promising di- 
rection~, the report  says, include 
the application of  formal methods, 
which involve mathematical proofs. 

One symptom of  the problem 
with software production is the lack 
of  professionalism in the field. Few 
software products are guaranteed, 
and many products contain state- 
ments like the one in Figure 1. Note 
that this statement refuses even to 
refund the price of  the software, 
should it not live up to expecta- 
tions, yet there is a guarantee for 
the hardware! 

The lack of  professionalism is 
not limited to software firms that 
develop programs for the PC mar- 
ket. In large corporations, one can 
find many instances of  software 
written from poorly prepared re- 
quirements and specifications, 
where a more professional engi- 
neering practice would have been 
to rewrite the specification com- 
pletely before beginning design 
and development. No professional 
architect, bridge builder, or car 
designer would work with specifica- 
tions of  the shoddy nature that one 
finds !in software engineering. 

This article will be presented as the keynote 
address  t~w the 1991 SIGCUE Symposium in 
a jo int  session with the ACM C o m p u t e r  Sci- 
ence Conference  on March 7, 1991 in San 
Antonio,  Tex. Gries will receive the annual  
SIGCUE Award for  Outs tand ing  Contr ibu-  
tions to C o m p u t e r  Science Education.  

Many software engineers lack the 
judgment  to determine whether 
their task is well defined, or at least 
the sense of  responsibility and con- 
fidence to complain when it is n o t  

well defined. One hears that soft- 
ware projects are larger and more 
complex than other classical engi- 
neering projects, but that is even 
m o r e - - a n d  not less--reason to be 
more professional in software engi- 
neering. 

The maintenance of  programs is 
another area in which lack of  rigor, 
precision, clarity, and professional- 
ism is evident. Many programs are 
difficult to modify in order to re- 
flect changing specifications only 
because they are poorly organized, 
poorly written, and poorly docu- 
mented. 

The problem with software is not 
limited to the software-engineering 
profession. As editor of  several 
journals, most notably Information 
Processing Letters, I have read far too 
many papers submitted by comput- 
ing scientists that contained poorly 
presented algorithms, which if pub- 
lished would force each reader to 
waste far too much time. I have 
critiqued many papers, showing 
how the algorithms could be pre- 
sented more effectively. Generally, 
the authors have been grateful for 
the help, and in at least five in- 
stances I have been asked to be a 
coauthor simply because I made an 
algorithm presentable! In general, 
computing scientists and engineers 
show amazingly little ability to pres- 
ent algorithms effectively and are 
setting appallingly low standards 
for the next generation to follow. 

Moreover, poor presentations of  

algorithms in texts and lectures 
cause a great waste of  time and ef- 
fort in courses on data structures, 
operating systems, compiling, and 
the like. 

In summary, software engineer- 
ing, computing, and computing 
education all suffer from a lack of  
basic mathematical skills that are 
needed in dealing with algorithmic 
concepts. 

A Common Perception 
of  Formal Methods 
The formal techniques that I am 
discussing involve a calculational 
style of  working, in which, at least 
part of  the time, formulas of  a cal- 
culus are manipulated according to 
the rules of  that calculus. The  tech- 
niques are not restricted to pro- 
gramming, but can be beneficial in 
parts o f  mathematics as well. (Also, 
they are not the only techniques 
needed in programming or  mathe- 
matics.) 

Currently, formal techniques 
and their application in program- 
ming are taught too late (if at all) to 
programmers and software engi- 
neers in industry, to graduate stu- 
dents, and to upper-level under- 
graduates. Since these people do 
not have the basic skills needed to 
apply the techniques with any de- 
gree of  success, attention has to be 
divided between teaching the basic 
skills and discussing their advanced 
applications. Consequently, both 
topics suffer. To put it bluntly, in- 
structors of  graduate software- 
engineering programs, like that at 
the Software Engineering Institute 
in Pittsburgh, are forced to spend 
time introducing material at the 
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Master's degree  level that should 
have been taught  at the freshman 
or  even high school level. 

A great deal of  the probiem lies 
in the typical percept ion of  logic as 
an object of  study. For example,  
while texts on discrete mathematics 
for computer  science students have 
a chapter  on logic, the material  is 
rarely used in the rest of  the text. 
Hence, the student  and the instruc- 
tor come away with the feeling that 
the mathematical tools are of  aca- 
demic interest only. They have seen 
some of  the techniques but lack skill 
in their use and question their ap- 
plicability. Certainly, most pro- 
grammers  and software engineers 
feel this way. So much so that they 
vociferously voice the opinion that 
their  problems are too big and com- 
plex to be handled by those formal, 
mathematical methods.  The  retort  
"We know what we want to do, and 
it's too big a task to formalize" is 
heard far too often. 

Contrast  this with scientists in 
most other  fields. Have you ever 
heard physicists say that their  prob- 
lems are too big and complex to be 
handled  by mathematical  tech- 
niques? On the contrary,  the size 
and complexity of  their problems 
force them to turn to mathematics 
for help. 

The  negative percept ion of  the 
role of  mathematical techniques in 
p rogramming  is not limited to pro- 
grammers  and software engineers.  
It can be heard in many computer  
science graduate  courses and in- 
dustrial short  courses given by aca- 
demic faculty. It is passively voiced 
by the authors of  the far-too-many 
introductory p rogramming  texts 
that teach p rogramming  in a 
clumsy and awkward manner  and 
by every algorithmicist who pres- 
ents an algori thm in a less-than- 
effective operat ional  style. 

Chandy and Misra, in their book 
[3] on foundations of  parallel pro- 
gramming,  have an insightful essay 
on the interplay of  formalism and 
intuition. Much programming  and 
mathematics is inspired by intui- 
tion, they say, and that will con- 
tinue. Formalism does not supplant  

intuition; it complements  and sup- 
ports it. Formal  reasoning is not 
merely intuitive a rgument  couched 
in mathematical  notation; indeed,  
formal reasoning often allows us to 
take short  cuts that have no coun- 
terparts  in an informal argument .  
Formal reasoning also provides a 
degree of  rigor and precision that is 
almost impossible to obtain using 
intuition alone. On the one hand,  
Chandra  and Misra say, we should 
not hesitate to rely on intuition to 
propose programs and theorems; 
on the other  hand, we should not 
hesitate to dispense with intuition 
in our  proofs. 

However,  we can only make sub- 
stantial use of  formalisms if we have 
had p roper  education and training, 
and this education and training has 
been lacking in our  undergradua te  
curricula. 

A few years ago, I reviewed a 
Ph.D. thesis whose author  had used 
a great deal of  mathematical nota- 
tion, but in a ra ther  strange way. As 
I studied the thesis, it dawned on 
me that mathematical  notation was 
used only to abbreviate English. For 
example,  a theorem would read, "V 
elements E the set, 3 a value satis- 
fying proper ty  P." The  proof  
would be in the same style, with no 
at tempt  at using the mathematics to 
aid in reasoning. When asked about 
it, the author  readily admit ted 
using mathematical  notation only 
for abbreviating and not  for help- 
ing him reason. It was quite clear 
that his education was inadequate.  

Overcoming the perception that 
formal methods are not applicable 
requires a change in how and what 
we teach, early in the curriculum. 
We should be giving the students a 
real skill with formal methods,  so 
that the methods become as in- 
grained as the techniques learned 
in elementary school for manipu-  
lating arithmetic expressions. 

Teaching Calculational Skills 
Every high school student  is taught  
to solve word problems, like the fol- 
lowing one. 

Mary has twice as many apples 

flllllIC 
as John.  Mary e~ 
throws half of  his away be- 
cause they are rotten. Mary 
still has twice as many apples 
as John.  How many did each 
have initially? 

We solve this problem as follows. 
We first translate the statement into 
a formal, mathematical  notation, in 
this case, into two equations. Using 
M and J to denote  the number  of  
apples Mary and John have ini- 
tially, we write the equations 

M = 2 * J a n d M - 2 = 2 * ( J / 2 ) .  

We then solve these equations, 
using methods that have been 
taught in class. In this case, we sub- 
stitute 2 * J  for M in the second 
equation, yielding 

2 * J - Z = Z * ( J / Z ) ,  

and then solve for j ,  y ie ld ingJ  = 2. 
Substituting 2 for J in the first 
equation yields M: M = 4. 

The  next step is to check the an- 
swers. We substitute the answers 
M = 4 and J = 2 in the second 
equation and check to see if it is 
true: 

4 - 2 = 2 .  (2/2) 
= 2 = 2 . 1  
= true 

I f  an er ror  is found while checking 
the answer, we go through the cal- 
culations per formed  earl ier  to de- 
termine where a mistake was made. 

In summary,  part  of  the mathe- 
matical method that is taught  in 
high school goes as follows: 

Method.  Formalize the prob- 
lem; solve the problem using 
known techniques; check the 
solution; and if the solution is 
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wrong, de termine  where a 
mistake was made in formaliz- 
ing or solving the problem. 

Now, consider the following related 
problem. 

Mary has an even number  of  
apples. Twice the number  of  
apples that Mary has plus the 
number  of  apples that John 
has is some (unknown) con- 
stant C. Suppose Mary throws 
half  her  apples away. What  
should be done with John 's  
apples so that twice the num- 
ber of  apples that Mary has 
plus the number  of  apples that 
John has is still C? 

This kind of  problem occurs fairly 
frequently in programming.  For 
example,  the body of  a loop typi- 
cally makes progress toward termi- 
nation (throw half  of  Mary's apples 
away), and some other  statements 
are needed to maintain a loop in- 
variant (what should be done with 
John 's  apples?). The  problem can 
be formalized as the problem of  
f inding an expression E that makes 
the following Hoare  triple valid: 

(1) {even(M) A 2 * M  + J = C }  
M , J : = M d i v 2 ,  E 
{ 2 * M  + J  = C}. 

Instead of  using the general  
method for solving this problem, 
most comput ing scientists would 
guess the answer, test it by running  
it on a computer  or hand simulat- 
ing it, and, if a mistake were de- 
tected, would guess another  an- 
swer. There  would be no 
formalization, no calculation, and, 
upon f inding an error ,  no at tempt 
to determine  the mistake made 
dur ing  the calculation. 

This, we believe, is at the heart  of  
the problem in software engineer-  
ing. There  is no a t tempt  to teach 
methods for formalizing, for solv- 
ing by calculation, and for checking 
calculations. The  field relies far too 
much on intuition and guessing. 

Problem (1) can actually be 
solved quite simply. I t  is equivalent 
to solving for E in 

(2) even(M) A 2 * M + J = C 
wp("M,J := M div 2, E", 

2 * M + J = C ) ,  

which can be solved by setting aside 
the antecedent  and manipulat ing 
the consequent: 

wp("M,J := M div 2, E", 
2 * M  + J = C )  

= (Def. o f :  = and textual subst.) 
2 * (M div  2) + E = C 

= (Use antecedent  to replace C) 
2 .  ( M d i v 2 )  + E = 2 * M  + J  

= (Solve for E, note M is even) 
E = M + J  

This example is only the tip of  
the tip of  the iceberg with regard  to 
calculation in programming.  Many 
more examples could be given to 
show the use of  formalizing and 
calculating, dealing with assign- 
ments, loops, recursive functions, 
and the like. 

Here  is another  example of  the 
use of  calculations, due to Dijkstra, 
which deals with mathematical in- 
duction. Generally speaking, stu- 
dents are taught  how to per form 
mathematical  induction over the 
natural  numbers.  They are not 
taught  why it works, and they are 
not taught  how it generalizes to 
other  sets and relations besides the 
natural  numbers  and operat ion <.  

One can give the students a far 
better  feel for mathematical induc- 
tion, as well as addit ional education 
in formal manipulation,  by proving 
to them that the validity of  the prin- 
ciple of  mathematical  induction 
over a set U and relation < is equiv- 
alent to the pair  (U, <) being well 
founded.  

(U, <)  is well founded means 
that every nonempty subset of  U 
contains a minimal element  (ac- 
cording to <). Using S to denote  an 
arbi trary subset of  U, we write this 
formally as 

(3) ~empty(S)  =- 
(::ly : :y E S A  (Vx:x < y  :x  ~ S)) 

On the other  hand, mathematical 
induction can be formalized as fol- 
lows (P is a boolean function, or  

[IlNC 
predicate, of  one 
P.x denotes its application to x): 

(4) (Vx : : P,x) =- 
('fly :: (Vx : x < y : P.x) ~ P.y), 

which, by the laws of  implication 
and De Morgan, is equivalent to 

(5) (Vx ::P.x) =- 
(Vy : : P.y k~ (3x : x < y : ~P.x)) 

In Figure 2, we prove, using a cal- 
culational style, that well founded-  
ness and the principle of  mathe- 
matical induction are equivalent. I 
can attest to the fact that this p roof  
is well within the grasp of  jun io r  
computer  science majors, so much 
so that they can repeat  it on a test. 
Further ,  my experience leads me to 
believe that, with p roper  education, 
f reshmen will have little difficulty 
mastering it. 

Consider  another  example,  
taken from a draf t  of  a text on dis- 
crete mathematics,  written for com- 
puter  scientists by mathematicians. 
Figure 3 is a proof,  from the text, 
that the composition of  binary rela- 
tions is associative. Note that the 
p roof  is given basically in English 
and that it requires two proofs, the 
so-called "i£' and "only i£' parts. 

A calculational p roof  of  the same 
theorem is given in Figure 4. It is 
shorter,  and it shows directly the 
equivalence of  po (~o 0) and 
(p o ~) o 0. It is easier to internalize, 
since it follows a form that is com- 
mon to many proofs of  propert ies:  
replace a notation by its definition, 
manipulate,  and re introduce the 
notation. 

In showing these examples of  a 
calculational style of  p roof  or devel- 
opment ,  I am at tempting to con- 
vince the reader  that the style has 
broad application and that it results 
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A Calculatlonal Proof of 
ASSOCiativity Of Relation 
Composition 

in crisper, shorter,  and more pre- 
cise work. I am not advocating the 
formal p roof  of  correctness of  all 
programs.  I am simply arguing that 
acquiring calculational skill can 
produce  a marked  change in one's 
percept ion and use of  formal meth- 
ods. 

In  developing a calculational 
skill, one learns that formalization 
can lead to crisper and more  pre- 
cise descriptions. One learns that 
the shape of  the formalization can 
itself lend insight into developing a 
solution. One acquires the urge to 
clarify ~.nd simplify, to seek the 
right notation in which to express a 
problem. One acquires a frame of  
mind that encourages precision and 
rigor. This f rame of  mind can have 
a strikingly beneficial effect on 
whatever work one does later as a 
professional in computing.  

Teaching Discrimination 
Generally speaking, our  text books 
in computing,  and hence our  
courses, teach facts. We teach a pro- 
g ramming  language. We teach sets, 

relations, functions, graphs,  logic, 
Tur ing  machines, automata,  and 
formal languages. We teach a few 
data structures, compiler  construc- 
tion, opera t ing  systems, and so 
forth. 

In few places in the undergradu-  
ate curr iculum do we discuss judg-  
ment  and discrimination. For  ex- 
ample, rarely do we compare  the 
advantages and disadvantages of  
two styles, or  several different  
methods for per forming  a task; or  
introduce different  notations and 
discuss the contexts in which each is 
better,  the reasons for their  exis- 
tence, and their  history; or ask stu- 
dents to compare  two proofs. 
Rarely are formal and informal 
techniques for the same problem 
juxtaposed.  

Consequently, many students 
think they have learned the way the 
science is, has to be, and will be in 
the future. They have not learned 
that science is a living thing, which 
changes and grows. They have not 
learned to question, to think for 
themselves, to discriminate. 

Some students go on to graduate  
school and,  through research, 
begin to think as scientists or  engi- 
neers. The  majority, however, do 
not, and the comput ing profession 

is poorer  for it. We end up with 
professionals who are unable to 
make technical decisions on techni- 
cal grounds.  This is unfor tunate ,  
because j udg ing  and choosing 
based on technical meri t  seem to be 
impor tant  in computing,  with its 
many different  languages and 
styles, especially in software engi- 
neering. 

Thus  in the int roductory 
courses, I would place more  em- 
phasis on style, taste, making 
choices based on technical reasons, 
and compar ing  advantages and dis- 
advantages. The  following are ex- 
amples of  what I am refer r ing  to: 

Th ree  ways of  proving an impli- 
cation X ~ Y are (0) t ransform it to 
true using equivalence transforma- 
tions; (I) assume X true and,  using 
its conjuncts as new axioms, trans- 
form Y to true; and (2) assume Y 
false and prove X false. A course 
may look at all three methods,  but  
rarely is there  any real discussion 
and comparison of  them. The  stu- 
dents are simply shown the three 
methods,  given a different example 
of  each, and are expected automati-  
cally to be able to choose the appro-  
priate one from then on. 

Consider  the problem of  proving 
~ P  =- P -~false, given various axi- 
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oms and theorems, including the 
following three: 

A x i o m  0 ( -zp  =- p )  =- ~ ( p  =- p)  

A x i o m  1 P =- P =- true 

A x i o m  2 ~true =-false 

Below are two proofs done by 
students in a course of  mine, in 
which the majority of  the students 
already had B.S. degrees in com- 
puter  science. The  lef thand proof  
was the predominant  one, even 
though it is l onge r - - i t  requires the 
copying of  "=- false" on every for- 
mula except the last. 

~ P  =- P =-false --zp =- p 
= (Axiom O) = (Axiom O) 

~ ( P  =-- P) =--false -J(P =- P) 
= (Axiom 1) = (Axiom 1) 

-ztrue =- false ~true  
= (Axiom 2) = (Axiom 2) 

true false 

Do you think this example is too 
trivial to dwell on? I f  we do not 
teach students to search for the 
simplest and shortest solutions on 
small problems, how will they learn 
to  do it on larger ones? Through  
many exercises, discussions, and 
comparisons,  we can get students to 
see  that a choice can make a big dif- 
ference, and that they should seek 
the best choice in each situation. 

The  conventional mathematical  
notation for function application is 
f (x,  y). We also use infix notation 
x f y  (for some functions), postfix 
notation x y f ,  the notation ( f x y )  
used in some functional languages, 
the notation of  currying, and a 
newer notation f.x.y, with which 
some comput ing scientists are ex- 
perimenting.  These  notations could 
be discussed and compared,  and 
each one could be used in the con- 
text in which it is most appropr ia te .  

For the ancient Greeks, number-  
ing began with 2. In the modern  
world, most people think the num- 
bers start with 1. However,  there 
are good technical reasons for be- 
ginning with 0, and these can be 
discussed in detail. 

In  Figure 2, we provided a calcu- 
lational p roof  of  equivalence of  the 

validity of  mathematical induction 
over (U, <)  and well foundedness  
of  (U, <). Some mathematicians 
and computer  scientists would 
ra ther  see a more English-style 
proof,  with more "intuition." Such 
a proof,  done by a colleague of  
mine, is given in Figure 5. In  dis- 
cussing the differences in the two 
proofs, the students will begin to 
develop their own sense of  judg-  
ment  and discrimination. (I am 
amazed at how many people like 
the p roof  in Figure 5 better,  but  
they never have an answer to my 
argument  that the p roof  in Figure 2 
is shorter  and, more importantly,  
far  easier to internalize and then to 
repeat  to others. Basically, one 
needs to know the definitions of  
well foundedness  and mathematical 
induction and to be able to translate 
these definitions into logical formu- 
lae. Thereaf ter ,  simple manipula-  
tions are used to translate one into 
the other,  and the shapes of  the 
formulae help t remendously in this 
translation. Heuristics can be 
taught that help one  gain skill in 
such manipulations.) 

Compare  two formulas for ex- 
pressing mathematical induction: 
(9) in Figure 5 and (4). One uses an 
implication and the other  an equiv- 
alence. Why the difference? Which 
is better? Does it matter? Which of  
the two proofs in Figures 2 and 5 
p roof  is shorter? Which is easier to 
internalize, so that one can repeat  it 
without having to read it again? 
Why is one longer than the other? 

The re  will be other  situations in 
which the better  technique or  
method is not so clear, and discus- 
sions with students will begin to 
build discrimination based on tech- 
nical reasons. 

One should also illustrate from 
time to time how our  experiences 
and habits with syntactic for- 
malisms can hur t  or  help. For ex- 
ample, is the following, in which x, 
y, and z are integers, t rue or  false? 
After  de termining  the answer, try it 
out  on your friends; see how long it 
takes them to solve this problem 
and what techniques they use in 
doing so. 

x > z  ~ x > y  

As another  example,  consider the 
following problem, due to Wim 
Feijen. Let x m a x  y denote the max- 
imum of  x and y. Is the following 
true or  false, and how do you prove 
it? 

(11) x + y > - x m a x y  =- 
x - > 0 A y - 0  

Before looking at the solution given 
below, try to solve this problem 
yourself. Be conscious of  the tech- 
niques you apply. 

Often, one attempts to devise a 
p roof  by looking at examples,  or  by 
per forming  a case analysis of  one 
sort or another.  A better  approach 
may be to depend  on a formal defi- 
nition of  m a x ,  one that allows for 
calculation. We can define m a x  by 

z > x m a x y  =- z > x  A z > y  

for all z. Then  we manipulate  the 
LHS of  (11) as follows. 

x + y > x m a x y  
(Definition of  m a x )  

x + y > x  A x + y > y  
(Arithmetic) 

y > 0  A x > 0  

Thus,  by relying on formal defi- 
nitions and calculation, we see in an 
extremely simple manner  that (11) 
is true. 

Overhauling the Beginning 
of the CS Major 
In many undergradua te  computer  
science programs,  a second pro- 
g ramming  course (the one beyond 
the remedial  first course) is fol- 
lowed by a course in discrete math- 
ematics. The  second programming  
course teaches analysis of  algo- 
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rithms, recursion, abstract data 
types, a bit about correctness 
proofil, abstraction and design, and 
the like, sometimes using a func- 
tional approach [1, 2]. The dis- 
crete-math course teaches logic, re- 
lations, sets, formal languages, 
automata theory, combinatorics, 
and graph theory. Much of  the the- 
ory taught in discrete mathematics 
could be applied in the program- 
ruing course, but the order  in which 
the material is presented conveys 
the opposite impression! Many stu- 
dents justifiably question the use- 
fulness of  the discrete mathematics 

I~lZ,-t I ]T~=I 1-2111 

Alternative Proof of Equivalence 
of Induction and Well Foundedness 

courses they have to take. Rarely 
does either course teach skill in for- 
mal manipulation or attempt to 
convey a sense of  judgment  and 
discrimination. 

I suggest merging the contents of  
the two courses into a two-semester 
course and, at each stage, teaching 
theory and then putting it into 
practice. My choice for the first 
topic would be five to six weeks' 
worth of  mathematical logic, taught 
so that the students acquire a skill in 
calculation. Completeness, non- 
standard logics, and so forth would 
not be taught at this time; instead, 
the emphasis would be on the ac- 
quisition of  skill in formal manipu- 
lation. This topic would form the 
basis for a calculational style of  

thinking that would permeate the 
whole two-course sequence. I 
would rely on references like [6] 
and [7], which place importance on 
the form or shape of  mathematical 
arguments in developing heuristics 
and techniques for shortening and 
simplifying proofs. They deal with 
method, rather than simply with 
facts. 

Thereafter,  the course could 
teach the conventional topics, but in 
a way that would rely on the calcu- 
lational skill just acquired. The  
proof  of  equivalence of  mathemati- 
cal induction and well-foundedness 
when dealing with mathematical 
induction is an example. Also, since 
the students would have a thorough 
knowledge of  logic, it would be far 
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easier to teach about specifications 
of a program, the theory of correct- 
ness of programs, and the like, and 
then to put it all into practice. 

In such a two-semester course, I 
would teach both functional and 
imperative algorithmic styles, illus- 
trating the advantages and disad- 
vantages of each and pointing out 
similarities in developmental meth- 
ods for the two. The functional 
style would probably come first, for 
it is a simple step from teaching 
mathematical induction to talking 
about and manipulat ing recursive 
functions. The  imperative ap- 
proach would enter the picture 
when talking about economy of 
space and time. 

One of the key notions for com- 
puter science is abstraction. Abstrac- 
tion seems to be more important to 
us than to mathematicians--at  least 
we talk about it more. The func- 
tional approach seems more appro- 
priate for conveying a sense of ab- 
straction, for building larger 
program units out of smaller ones. 
This, however, may be due more to 
the status of our current  under-  
standing of programming notations 
than to anything else. 

There  is the age-old problem of 
giving the students more experi- 
ence with "real" languages and pro- 
gramming assignments. Where it 
makes sense, applications of theory 
should be backed up by computer- 
based assignments. However, we 
should not let the problems of our  
implemented languages, with all 
their idiosyncracies, dictate the con- 
cepts and their applications that we 
teach. In  fact, it would not be so bad 
if the students began to feel frus- 
trated with some of the languages 
and implementations that they are 
forced to use. Exposing the stu- 
dents to several different imple- 
mented programming notations 
within the two-semester course 
would help them to see the value of 
knowing several notations and the 
contexts in which each is useful. 

One does have to be careful with 
the students' time. Too many in- 
structors are insensitive to the fact 
that students take several courses 

and have limited time for each. 
These instructors glory in giving a 
difficult and time-consuming 
course and pride themselves on the 
number  of students who drop it. 
Programming assignments espe- 
cially are often unreasonable: in- 
structors expect a high level of per- 
formance from the students, but do 
not provide them with the skill 
needed to complete the assignment 
effectively (a skill that the instruc- 
tors often do not have themselves, 
because of their own poor educa- 
tion). 

This macho attitude endears the 
student neither to the instructor 
nor to the content of the course. It 
serves little purpose except to 
falsely boost the ego of the instruc- 
tor. Instead, the aim should be to 
structure our teaching and home- 
work so that the students can learn 
the maximum amount  in the mini- 
mum amount  of time. 

On Method and Design 
These days, the notion of an algo- 
rithm, as well as some skill in pro- 
gramming, is important  in almost 
every scientific and engineering 
field. More and more research and 
practice deals with implementing 
ideas on the computer and requires 
the presentation of algorithms. 

The computer science viewpoint 
has also affected some fields of 
mathematics. New research ideas 
have sprung from computer  scien- 
tists' use of logic. Constructive logic 
has become an area of hot activity, 
due to its use in extracting pro- 
grams from proofs. Computational 
complexity has excited many a 
mathematician. Category theory is 
f inding applications in computing. 
All sorts of mathematical concepts 
are becoming more and more im- 
portant in applications such as 
graphics and robotics, requiring 
mathematicians and computer sci- 
entists to work side by side. 

In this context, it appears to me 
that the proposed two-semester 
course, which includes program- 
ming as well as mathematics from a 
computer-science viewpoint, would 
be of interest to both engineers and 

mathematicians. 
However, there are even 

stronger reasons for students from 
mathematics and engineering to 
take the proposed course. Let us 
consider the mathematics student 
first. 

It was mathematician Morris 
Kline who said, "More than any- 
thing else, mathematics is Method." 
Yet, few courses in mathematics at- 
tempt to teach method, and many 
mathematicians do not even think it 
can be taught. Rather, they think 
that method is something one 
learns in a rather unconscious fash- 
ion over the years. (Polya, of 
course, was interested in method 
and wrote several i l luminating 
books on the subject.) 

I believe that one can furnish the 
student with some idea of method 
quite early in the game and that this 
may give the student more of a 
sense of appreciation for mathe- 
matics and how it is done. The sim- 
ple heuristics that we can teach con- 
cerning syntactic calculations in 
proofs and programs, along with a 
sense of discrimination, can be of 
t remendous help to the student. 
(Of course, we should not convey 
the idea that all proofs arise simply 
out of following a few heuristics.) 

Computing, like most fields that 
have been shown to be amenable to 
mathematical treatment, has bene- 
fited greatly from that mathemati- 
cal treatment. And, like those 
fields, computing has repayed the 
debt by enriching mathematics with 
new areas of concern and new 
problems to tackle. But another 
kind of enrichment  stands out in 
my mind: the emphasis on method 
that is associated with the calcula- 
tional approach to proofs and pro- 
grams. The  calculational approach 
is not really new, of course, and 
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many mathematical proofs have 
been accomplished using it. What  is 
new is the sense of  its pervasiveness 
and its ability to simplify, which 
comes by treating the proposit ional  
and predicate calculi as calcula- 
tional systems and using them 
throughout  o ther  areas of  mathe- 
matics, wherever appropr ia te .  

Now let us consider the proposed 
course as it relates to engineering.  
The  main activity that is supposed 
to sept, rate engineer ing from other  
fields is design: the actual activity of  
p repar ing  plans for some object (a 
bridge, radio, electronic circuit, 
whatever). Within the engineer ing 
curriculum, design is viewed as a 
pervasive, pragmatic  activity. Dur- 
ing design, the student  is particu- 
larly encouraged to learn to deal 
with issues of  structure and to eval- 
uate designs With regard  to differ- 
ent  measures,  such as cost, time, 
complexity, reliability, and ease of  
production.  

In this regard,  I believe that the 
two-course sequence that I am pro- 
posing could be an impor tant  part  
of  the engineer ing curriculum. 
First, it at tempts to teach something 
about the design of  (some form of) 
proofs, giving the students heuris- 
tics for their  construction and a few 
ways of  compar ing them (e.g. with 
regard  to simplicity, length, struc- 
ture). It helps make the student  
more aware of  choices and the need 
for discrimination. Second, it at- 
tempts to teach about the design of  
programs,  using principles and 
heuristics for algorithmic develop- 
ment  that arise out of  a theory of  
p rogram correctness. The  need for 
r igorous specifications before de- 
signing a p rogram becomes clear. 
The  use of  different  notations, each 
with its suitable domain of  dis- 
course, is discussed. The  use of  ab- 
straction to help structure pro- 
grams, as well as discussions of  
notations for expressing structur- 
ing, is expounded  upon. Compari-  
son of  algorithms with regard  to 
time and space requirements,  struc- 
ture, simplicity, and the like is an 
impor tant  activity. Laboratories,  in 
which the students receive practical 

experience,  are an integral part  of  
the course. 

Thus,  aside from the obvious 
benefit  of  more  (and useful) mathe- 
matical formalism in the engineer-  
ing curriculum, the second benefit  
would come from the notion of  de- 
sign based on theoretical principles, 
which is so evident in the proposed  
course. 

The Effect on More 
Advanced Courses 
Providing a solid mathematical  
foundat ion and a skill in manipula-  
tion can have a p rofound  effect on 
later courses. The  presentat ion of  
almost any algori thm becomes eas- 
ier when the instructor and s tudent  
share a common basis for the speci- 
fication and presentat ion of  pro- 
grams in a r igorous and calcula- 
tional m a n n e r - - r a t h e r  than the 
ineffective operat ional  approach 
that is so prevalent  today. The  idea 
behind an algori thm can be con- 
veyed more effectively and in less 
time, and often it is the idea ra ther  
than the whole algori thm that 
counts. Thus,  the increased under-  
s tanding of  the students should 
allow us to cover more material  and 
to compress some of  the courses in 
our  burgeoning  curricula. 

Courses that would be most di- 
rectly affected by the proposed  
change in the introductory course 
are assembly language program-  
ming and machine architecture,  
data structures, algorithms, compu- 
tational complexity, compiler  con- 
struction, and operat ing systems, 
since they deal  most directly with 
the development  and presentat ion 
of  algorithms. 

Conclusion 
Software engineering,  and to some 
extent  the rest of  computing,  suf- 
fers from a lack of  r igor and pro- 
fessionalism, which stems partly 
from the belief that formal meth- 
ods in algorithmic analysis, devel- 
opment ,  and presentat ion are use- 
less. As long as comput ing is taught  
in a manner  that conveys the im- 
pression that formal methods are 
useless, students will believe that 

formal methods are useless. The  
calculational methods that have 
been developed in the past 15 years 
offer  hope that the situation can be 
changed.  

Thus  far, there has been little 
a t tempt  to teach this material  to 
f reshman in the United States; 
therefore  at this point  my opinion 
that the suggested changes will help 
is more a matter  of  faith than fact. 
Tha t  faith, however, is based on the 
solid experiences I and others have 
had in using the calculational style 
in our  own programming,  in the 
presentat ion of  programs,  and in 
the teaching of  programming.  

Calculational techniques deserve 
to be given a fair chance, especially 
since nothing else has appeared  on 
the horizon to solve the ills of  the 
profession. Let us all learn more 
about calculational techniques and 
gain skill with them; and let us 
begin to teach comput ing using 
them. Then,  the 1990s may see the 
drastic revisions of  our  texts' and 
lower-level courses that are needed 
to effect the change. [ ]  
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