
http://crossmark.crossref.org/dialog/?doi=10.1145%2F102868.102870&domain=pdf&date_stamp=1991-03-01

Q

Q

T
here is real concern, and
not only on the part of
computer scientists, with
the lack of rigor and ac-
countability in software
engineering.

For example, consider the re-
cently released report [8] by the
subcommittee on Investigations
and Oversight of the House of Rep-
resentatives Committee on Science,
Space, and Technology, which ad-
dresses problems of software sys-
tem safety, reliability, and quality.
This report, in part, criticizes the
universities for providing inade-
quate education for software engi-
n e e r s - b o t h in their discipline and
in ethical training related to their
discipline. Cherniavsky, in com-
menting and summarizing this re-
port in an article in Computing Re-
search News [4], says the following:

[. . . there is] a fundamental
difference between software
engineers and other engi-
neers. Engineers are well
trained in the mathematics
necessary for good engineer-
ing. Software engineers are
not trained in the disciplines
necessary to assure high-qual-
ity software The problem
is not so much not having the
mathematics necessary to solve
the software problem, but in-
stead having the trained soft-
ware engineers.

As another example, the Computer
Science and Technology Board's
recently completed report on the
research agenda for software engi-
neering [5] indicates the need for
strengthened mathematical foun-
dations in the work force:

In the absence of a stronger
scientific and engineering
foundation, complex software
systems are often produced by
brute force As software
engineers begin to envision
systems that require many
thousands of person-years,
current pragmatic or heuristic
approaches begin to appear
less adequate to meet applica-
tion needs. In this environ-
ment, software-engineering
leaders are beginning to call
for more systematic ap-
proaches: More mathematics,
science, and engineering are
needed.

In the face of the growing problems
of developing and managing more
and more complex
software systems, David Gries

COMMUNICATIONS OF THE ACM/March 1991/Vol.34, No.3 4 S

This program, instruction manual, and reference materials are sold "as is"
without warranty as to their performance, merchantability, or fitness for any
particular purpose. The entire risk as to the results and performance of this
program is assumed by you.

However, to the original purchaser only, the publisher warrants the magnetic
media on which the program is recorded to be free from defects in materials
and faulty workmanship under normal use for a period of ninety days from
the date of purchase

A Statc;ment on a Software
Product

the report calls for a more
rigorous use of mathematical tech-
niques, in the hope that this can
help researchers manage and di-
minish complexity. Promising di-
rection~, the report says, include
the application of formal methods,
which involve mathematical proofs.

One symptom of the problem
with software production is the lack
of professionalism in the field. Few
software products are guaranteed,
and many products contain state-
ments like the one in Figure 1. Note
that this statement refuses even to
refund the price of the software,
should it not live up to expecta-
tions, yet there is a guarantee for
the hardware!

The lack of professionalism is
not limited to software firms that
develop programs for the PC mar-
ket. In large corporations, one can
find many instances of software
written from poorly prepared re-
quirements and specifications,
where a more professional engi-
neering practice would have been
to rewrite the specification com-
pletely before beginning design
and development. No professional
architect, bridge builder, or car
designer would work with specifica-
tions of the shoddy nature that one
finds !in software engineering.

This article will be presented as the keynote
address t~w the 1991 SIGCUE Symposium in
a jo int session with the ACM C o m p u t e r Sci-
ence Conference on March 7, 1991 in San
Antonio, Tex. Gries will receive the annual
SIGCUE Award for Outs tand ing Contr ibu-
tions to C o m p u t e r Science Education.

Many software engineers lack the
judgment to determine whether
their task is well defined, or at least
the sense of responsibility and con-
fidence to complain when it is n o t

well defined. One hears that soft-
ware projects are larger and more
complex than other classical engi-
neering projects, but that is even
m o r e - - a n d not less--reason to be
more professional in software engi-
neering.

The maintenance of programs is
another area in which lack of rigor,
precision, clarity, and professional-
ism is evident. Many programs are
difficult to modify in order to re-
flect changing specifications only
because they are poorly organized,
poorly written, and poorly docu-
mented.

The problem with software is not
limited to the software-engineering
profession. As editor of several
journals, most notably Information
Processing Letters, I have read far too
many papers submitted by comput-
ing scientists that contained poorly
presented algorithms, which if pub-
lished would force each reader to
waste far too much time. I have
critiqued many papers, showing
how the algorithms could be pre-
sented more effectively. Generally,
the authors have been grateful for
the help, and in at least five in-
stances I have been asked to be a
coauthor simply because I made an
algorithm presentable! In general,
computing scientists and engineers
show amazingly little ability to pres-
ent algorithms effectively and are
setting appallingly low standards
for the next generation to follow.

Moreover, poor presentations of

algorithms in texts and lectures
cause a great waste of time and ef-
fort in courses on data structures,
operating systems, compiling, and
the like.

In summary, software engineer-
ing, computing, and computing
education all suffer from a lack of
basic mathematical skills that are
needed in dealing with algorithmic
concepts.

A Common Perception
of Formal Methods
The formal techniques that I am
discussing involve a calculational
style of working, in which, at least
part of the time, formulas of a cal-
culus are manipulated according to
the rules of that calculus. The tech-
niques are not restricted to pro-
gramming, but can be beneficial in
parts o f mathematics as well. (Also,
they are not the only techniques
needed in programming or mathe-
matics.)

Currently, formal techniques
and their application in program-
ming are taught too late (if at all) to
programmers and software engi-
neers in industry, to graduate stu-
dents, and to upper-level under-
graduates. Since these people do
not have the basic skills needed to
apply the techniques with any de-
gree of success, attention has to be
divided between teaching the basic
skills and discussing their advanced
applications. Consequently, both
topics suffer. To put it bluntly, in-
structors of graduate software-
engineering programs, like that at
the Software Engineering Institute
in Pittsburgh, are forced to spend
time introducing material at the

46 March 1991/Vol.34, No.3/COMMUNICATIONS OF T H E A C M

Master's degree level that should
have been taught at the freshman
or even high school level.

A great deal of the probiem lies
in the typical percept ion of logic as
an object of study. For example,
while texts on discrete mathematics
for computer science students have
a chapter on logic, the material is
rarely used in the rest of the text.
Hence, the student and the instruc-
tor come away with the feeling that
the mathematical tools are of aca-
demic interest only. They have seen
some of the techniques but lack skill
in their use and question their ap-
plicability. Certainly, most pro-
grammers and software engineers
feel this way. So much so that they
vociferously voice the opinion that
their problems are too big and com-
plex to be handled by those formal,
mathematical methods. The retort
"We know what we want to do, and
it's too big a task to formalize" is
heard far too often.

Contrast this with scientists in
most other fields. Have you ever
heard physicists say that their prob-
lems are too big and complex to be
handled by mathematical tech-
niques? On the contrary, the size
and complexity of their problems
force them to turn to mathematics
for help.

The negative percept ion of the
role of mathematical techniques in
p rogramming is not limited to pro-
grammers and software engineers.
It can be heard in many computer
science graduate courses and in-
dustrial short courses given by aca-
demic faculty. It is passively voiced
by the authors of the far-too-many
introductory p rogramming texts
that teach p rogramming in a
clumsy and awkward manner and
by every algorithmicist who pres-
ents an algori thm in a less-than-
effective operat ional style.

Chandy and Misra, in their book
[3] on foundations of parallel pro-
gramming, have an insightful essay
on the interplay of formalism and
intuition. Much programming and
mathematics is inspired by intui-
tion, they say, and that will con-
tinue. Formalism does not supplant

intuition; it complements and sup-
ports it. Formal reasoning is not
merely intuitive a rgument couched
in mathematical notation; indeed,
formal reasoning often allows us to
take short cuts that have no coun-
terparts in an informal argument .
Formal reasoning also provides a
degree of rigor and precision that is
almost impossible to obtain using
intuition alone. On the one hand,
Chandra and Misra say, we should
not hesitate to rely on intuition to
propose programs and theorems;
on the other hand, we should not
hesitate to dispense with intuition
in our proofs.

However, we can only make sub-
stantial use of formalisms if we have
had p roper education and training,
and this education and training has
been lacking in our undergradua te
curricula.

A few years ago, I reviewed a
Ph.D. thesis whose author had used
a great deal of mathematical nota-
tion, but in a ra ther strange way. As
I studied the thesis, it dawned on
me that mathematical notation was
used only to abbreviate English. For
example, a theorem would read, "V
elements E the set, 3 a value satis-
fying proper ty P." The proof
would be in the same style, with no
at tempt at using the mathematics to
aid in reasoning. When asked about
it, the author readily admit ted
using mathematical notation only
for abbreviating and not for help-
ing him reason. It was quite clear
that his education was inadequate.

Overcoming the perception that
formal methods are not applicable
requires a change in how and what
we teach, early in the curriculum.
We should be giving the students a
real skill with formal methods, so
that the methods become as in-
grained as the techniques learned
in elementary school for manipu-
lating arithmetic expressions.

Teaching Calculational Skills
Every high school student is taught
to solve word problems, like the fol-
lowing one.

Mary has twice as many apples

flllllIC
as John. Mary e~
throws half of his away be-
cause they are rotten. Mary
still has twice as many apples
as John. How many did each
have initially?

We solve this problem as follows.
We first translate the statement into
a formal, mathematical notation, in
this case, into two equations. Using
M and J to denote the number of
apples Mary and John have ini-
tially, we write the equations

M = 2 * J a n d M - 2 = 2 * (J / 2) .

We then solve these equations,
using methods that have been
taught in class. In this case, we sub-
stitute 2 * J for M in the second
equation, yielding

2 * J - Z = Z * (J / Z) ,

and then solve for j , y ie ld ingJ = 2.
Substituting 2 for J in the first
equation yields M: M = 4.

The next step is to check the an-
swers. We substitute the answers
M = 4 and J = 2 in the second
equation and check to see if it is
true:

4 - 2 = 2 . (2/2)
= 2 = 2 . 1
= true

I f an er ror is found while checking
the answer, we go through the cal-
culations per formed earl ier to de-
termine where a mistake was made.

In summary, part of the mathe-
matical method that is taught in
high school goes as follows:

Method. Formalize the prob-
lem; solve the problem using
known techniques; check the
solution; and if the solution is

COMMUNICATIONS OF THE ACM/March 1991/Vol.34, No.3 47

Proof of Equivalence of Well Foundedness and Math Induction

: I G U R E 3
A Mathematician's Proof of ASsOClatlvity Of Relation Composition

48 March 1991/Vol.34, No.3/COMMUNIGATIONS OF THE ACM

wrong, de termine where a
mistake was made in formaliz-
ing or solving the problem.

Now, consider the following related
problem.

Mary has an even number of
apples. Twice the number of
apples that Mary has plus the
number of apples that John
has is some (unknown) con-
stant C. Suppose Mary throws
half her apples away. What
should be done with John 's
apples so that twice the num-
ber of apples that Mary has
plus the number of apples that
John has is still C?

This kind of problem occurs fairly
frequently in programming. For
example, the body of a loop typi-
cally makes progress toward termi-
nation (throw half of Mary's apples
away), and some other statements
are needed to maintain a loop in-
variant (what should be done with
John 's apples?). The problem can
be formalized as the problem of
f inding an expression E that makes
the following Hoare triple valid:

(1) {even(M) A 2 * M + J = C }
M , J : = M d i v 2 , E
{ 2 * M + J = C}.

Instead of using the general
method for solving this problem,
most comput ing scientists would
guess the answer, test it by running
it on a computer or hand simulat-
ing it, and, if a mistake were de-
tected, would guess another an-
swer. There would be no
formalization, no calculation, and,
upon f inding an error , no at tempt
to determine the mistake made
dur ing the calculation.

This, we believe, is at the heart of
the problem in software engineer-
ing. There is no a t tempt to teach
methods for formalizing, for solv-
ing by calculation, and for checking
calculations. The field relies far too
much on intuition and guessing.

Problem (1) can actually be
solved quite simply. I t is equivalent
to solving for E in

(2) even(M) A 2 * M + J = C
wp("M,J := M div 2, E",

2 * M + J = C) ,

which can be solved by setting aside
the antecedent and manipulat ing
the consequent:

wp("M,J := M div 2, E",
2 * M + J = C)

= (Def. o f : = and textual subst.)
2 * (M div 2) + E = C

= (Use antecedent to replace C)
2 . (M d i v 2) + E = 2 * M + J

= (Solve for E, note M is even)
E = M + J

This example is only the tip of
the tip of the iceberg with regard to
calculation in programming. Many
more examples could be given to
show the use of formalizing and
calculating, dealing with assign-
ments, loops, recursive functions,
and the like.

Here is another example of the
use of calculations, due to Dijkstra,
which deals with mathematical in-
duction. Generally speaking, stu-
dents are taught how to per form
mathematical induction over the
natural numbers. They are not
taught why it works, and they are
not taught how it generalizes to
other sets and relations besides the
natural numbers and operat ion <.

One can give the students a far
better feel for mathematical induc-
tion, as well as addit ional education
in formal manipulation, by proving
to them that the validity of the prin-
ciple of mathematical induction
over a set U and relation < is equiv-
alent to the pair (U, <) being well
founded.

(U, <) is well founded means
that every nonempty subset of U
contains a minimal element (ac-
cording to <). Using S to denote an
arbi trary subset of U, we write this
formally as

(3) ~empty(S) =-
(::ly : :y E S A (Vx:x < y :x ~ S))

On the other hand, mathematical
induction can be formalized as fol-
lows (P is a boolean function, or

[IlNC
predicate, of one
P.x denotes its application to x):

(4) (Vx : : P,x) =-
('fly :: (Vx : x < y : P.x) ~ P.y),

which, by the laws of implication
and De Morgan, is equivalent to

(5) (Vx ::P.x) =-
(Vy : : P.y k~ (3x : x < y : ~P.x))

In Figure 2, we prove, using a cal-
culational style, that well founded-
ness and the principle of mathe-
matical induction are equivalent. I
can attest to the fact that this p roof
is well within the grasp of jun io r
computer science majors, so much
so that they can repeat it on a test.
Further , my experience leads me to
believe that, with p roper education,
f reshmen will have little difficulty
mastering it.

Consider another example,
taken from a draf t of a text on dis-
crete mathematics, written for com-
puter scientists by mathematicians.
Figure 3 is a proof, from the text,
that the composition of binary rela-
tions is associative. Note that the
p roof is given basically in English
and that it requires two proofs, the
so-called "i£' and "only i£' parts.

A calculational p roof of the same
theorem is given in Figure 4. It is
shorter, and it shows directly the
equivalence of po (~o 0) and
(p o ~) o 0. It is easier to internalize,
since it follows a form that is com-
mon to many proofs of propert ies:
replace a notation by its definition,
manipulate, and re introduce the
notation.

In showing these examples of a
calculational style of p roof or devel-
opment , I am at tempting to con-
vince the reader that the style has
broad application and that it results

GOMMUNIGATIONS OF THE AGM/March 1991/Vol.34, No.3 49

A Calculatlonal Proof of
ASSOCiativity Of Relation
Composition

in crisper, shorter, and more pre-
cise work. I am not advocating the
formal p roof of correctness of all
programs. I am simply arguing that
acquiring calculational skill can
produce a marked change in one's
percept ion and use of formal meth-
ods.

In developing a calculational
skill, one learns that formalization
can lead to crisper and more pre-
cise descriptions. One learns that
the shape of the formalization can
itself lend insight into developing a
solution. One acquires the urge to
clarify ~.nd simplify, to seek the
right notation in which to express a
problem. One acquires a frame of
mind that encourages precision and
rigor. This f rame of mind can have
a strikingly beneficial effect on
whatever work one does later as a
professional in computing.

Teaching Discrimination
Generally speaking, our text books
in computing, and hence our
courses, teach facts. We teach a pro-
g ramming language. We teach sets,

relations, functions, graphs, logic,
Tur ing machines, automata, and
formal languages. We teach a few
data structures, compiler construc-
tion, opera t ing systems, and so
forth.

In few places in the undergradu-
ate curr iculum do we discuss judg-
ment and discrimination. For ex-
ample, rarely do we compare the
advantages and disadvantages of
two styles, or several different
methods for per forming a task; or
introduce different notations and
discuss the contexts in which each is
better, the reasons for their exis-
tence, and their history; or ask stu-
dents to compare two proofs.
Rarely are formal and informal
techniques for the same problem
juxtaposed.

Consequently, many students
think they have learned the way the
science is, has to be, and will be in
the future. They have not learned
that science is a living thing, which
changes and grows. They have not
learned to question, to think for
themselves, to discriminate.

Some students go on to graduate
school and, through research,
begin to think as scientists or engi-
neers. The majority, however, do
not, and the comput ing profession

is poorer for it. We end up with
professionals who are unable to
make technical decisions on techni-
cal grounds. This is unfor tunate ,
because j udg ing and choosing
based on technical meri t seem to be
impor tant in computing, with its
many different languages and
styles, especially in software engi-
neering.

Thus in the int roductory
courses, I would place more em-
phasis on style, taste, making
choices based on technical reasons,
and compar ing advantages and dis-
advantages. The following are ex-
amples of what I am refer r ing to:

Th ree ways of proving an impli-
cation X ~ Y are (0) t ransform it to
true using equivalence transforma-
tions; (I) assume X true and, using
its conjuncts as new axioms, trans-
form Y to true; and (2) assume Y
false and prove X false. A course
may look at all three methods, but
rarely is there any real discussion
and comparison of them. The stu-
dents are simply shown the three
methods, given a different example
of each, and are expected automati-
cally to be able to choose the appro-
priate one from then on.

Consider the problem of proving
~ P =- P -~false, given various axi-

S O March 1991/Vol,34, No.3/COMMUNICATIONS OF THE ACM

oms and theorems, including the
following three:

A x i o m 0 (-zp =- p) =- ~ (p =- p)

A x i o m 1 P =- P =- true

A x i o m 2 ~true =-false

Below are two proofs done by
students in a course of mine, in
which the majority of the students
already had B.S. degrees in com-
puter science. The lef thand proof
was the predominant one, even
though it is l onge r - - i t requires the
copying of "=- false" on every for-
mula except the last.

~ P =- P =-false --zp =- p
= (Axiom O) = (Axiom O)

~ (P =-- P) =--false -J(P =- P)
= (Axiom 1) = (Axiom 1)

-ztrue =- false ~true
= (Axiom 2) = (Axiom 2)

true false

Do you think this example is too
trivial to dwell on? I f we do not
teach students to search for the
simplest and shortest solutions on
small problems, how will they learn
to do it on larger ones? Through
many exercises, discussions, and
comparisons, we can get students to
see that a choice can make a big dif-
ference, and that they should seek
the best choice in each situation.

The conventional mathematical
notation for function application is
f (x, y). We also use infix notation
x f y (for some functions), postfix
notation x y f , the notation (f x y)
used in some functional languages,
the notation of currying, and a
newer notation f.x.y, with which
some comput ing scientists are ex-
perimenting. These notations could
be discussed and compared, and
each one could be used in the con-
text in which it is most appropr ia te .

For the ancient Greeks, number-
ing began with 2. In the modern
world, most people think the num-
bers start with 1. However, there
are good technical reasons for be-
ginning with 0, and these can be
discussed in detail.

In Figure 2, we provided a calcu-
lational p roof of equivalence of the

validity of mathematical induction
over (U, <) and well foundedness
of (U, <). Some mathematicians
and computer scientists would
ra ther see a more English-style
proof, with more "intuition." Such
a proof, done by a colleague of
mine, is given in Figure 5. In dis-
cussing the differences in the two
proofs, the students will begin to
develop their own sense of judg-
ment and discrimination. (I am
amazed at how many people like
the p roof in Figure 5 better, but
they never have an answer to my
argument that the p roof in Figure 2
is shorter and, more importantly,
far easier to internalize and then to
repeat to others. Basically, one
needs to know the definitions of
well foundedness and mathematical
induction and to be able to translate
these definitions into logical formu-
lae. Thereaf ter , simple manipula-
tions are used to translate one into
the other, and the shapes of the
formulae help t remendously in this
translation. Heuristics can be
taught that help one gain skill in
such manipulations.)

Compare two formulas for ex-
pressing mathematical induction:
(9) in Figure 5 and (4). One uses an
implication and the other an equiv-
alence. Why the difference? Which
is better? Does it matter? Which of
the two proofs in Figures 2 and 5
p roof is shorter? Which is easier to
internalize, so that one can repeat it
without having to read it again?
Why is one longer than the other?

The re will be other situations in
which the better technique or
method is not so clear, and discus-
sions with students will begin to
build discrimination based on tech-
nical reasons.

One should also illustrate from
time to time how our experiences
and habits with syntactic for-
malisms can hur t or help. For ex-
ample, is the following, in which x,
y, and z are integers, t rue or false?
After de termining the answer, try it
out on your friends; see how long it
takes them to solve this problem
and what techniques they use in
doing so.

x > z ~ x > y

As another example, consider the
following problem, due to Wim
Feijen. Let x m a x y denote the max-
imum of x and y. Is the following
true or false, and how do you prove
it?

(11) x + y > - x m a x y =-
x - > 0 A y - 0

Before looking at the solution given
below, try to solve this problem
yourself. Be conscious of the tech-
niques you apply.

Often, one attempts to devise a
p roof by looking at examples, or by
per forming a case analysis of one
sort or another. A better approach
may be to depend on a formal defi-
nition of m a x , one that allows for
calculation. We can define m a x by

z > x m a x y =- z > x A z > y

for all z. Then we manipulate the
LHS of (11) as follows.

x + y > x m a x y
(Definition of m a x)

x + y > x A x + y > y
(Arithmetic)

y > 0 A x > 0

Thus, by relying on formal defi-
nitions and calculation, we see in an
extremely simple manner that (11)
is true.

Overhauling the Beginning
of the CS Major
In many undergradua te computer
science programs, a second pro-
g ramming course (the one beyond
the remedial first course) is fol-
lowed by a course in discrete math-
ematics. The second programming
course teaches analysis of algo-

COMMUNICATIONS OF THE A C M / M a r c h 1991/VoL34, No.3 S l

rithms, recursion, abstract data
types, a bit about correctness
proofil, abstraction and design, and
the like, sometimes using a func-
tional approach [1, 2]. The dis-
crete-math course teaches logic, re-
lations, sets, formal languages,
automata theory, combinatorics,
and graph theory. Much of the the-
ory taught in discrete mathematics
could be applied in the program-
ruing course, but the order in which
the material is presented conveys
the opposite impression! Many stu-
dents justifiably question the use-
fulness of the discrete mathematics

I~lZ,-t I]T~=I 1-2111

Alternative Proof of Equivalence
of Induction and Well Foundedness

courses they have to take. Rarely
does either course teach skill in for-
mal manipulation or attempt to
convey a sense of judgment and
discrimination.

I suggest merging the contents of
the two courses into a two-semester
course and, at each stage, teaching
theory and then putting it into
practice. My choice for the first
topic would be five to six weeks'
worth of mathematical logic, taught
so that the students acquire a skill in
calculation. Completeness, non-
standard logics, and so forth would
not be taught at this time; instead,
the emphasis would be on the ac-
quisition of skill in formal manipu-
lation. This topic would form the
basis for a calculational style of

thinking that would permeate the
whole two-course sequence. I
would rely on references like [6]
and [7], which place importance on
the form or shape of mathematical
arguments in developing heuristics
and techniques for shortening and
simplifying proofs. They deal with
method, rather than simply with
facts.

Thereafter, the course could
teach the conventional topics, but in
a way that would rely on the calcu-
lational skill just acquired. The
proof of equivalence of mathemati-
cal induction and well-foundedness
when dealing with mathematical
induction is an example. Also, since
the students would have a thorough
knowledge of logic, it would be far

I~ 2 March 1991/Vol.34, No.3/COMMUNICATIONS OF THE ACM

easier to teach about specifications
of a program, the theory of correct-
ness of programs, and the like, and
then to put it all into practice.

In such a two-semester course, I
would teach both functional and
imperative algorithmic styles, illus-
trating the advantages and disad-
vantages of each and pointing out
similarities in developmental meth-
ods for the two. The functional
style would probably come first, for
it is a simple step from teaching
mathematical induction to talking
about and manipulat ing recursive
functions. The imperative ap-
proach would enter the picture
when talking about economy of
space and time.

One of the key notions for com-
puter science is abstraction. Abstrac-
tion seems to be more important to
us than to mathematicians--at least
we talk about it more. The func-
tional approach seems more appro-
priate for conveying a sense of ab-
straction, for building larger
program units out of smaller ones.
This, however, may be due more to
the status of our current under-
standing of programming notations
than to anything else.

There is the age-old problem of
giving the students more experi-
ence with "real" languages and pro-
gramming assignments. Where it
makes sense, applications of theory
should be backed up by computer-
based assignments. However, we
should not let the problems of our
implemented languages, with all
their idiosyncracies, dictate the con-
cepts and their applications that we
teach. In fact, it would not be so bad
if the students began to feel frus-
trated with some of the languages
and implementations that they are
forced to use. Exposing the stu-
dents to several different imple-
mented programming notations
within the two-semester course
would help them to see the value of
knowing several notations and the
contexts in which each is useful.

One does have to be careful with
the students' time. Too many in-
structors are insensitive to the fact
that students take several courses

and have limited time for each.
These instructors glory in giving a
difficult and time-consuming
course and pride themselves on the
number of students who drop it.
Programming assignments espe-
cially are often unreasonable: in-
structors expect a high level of per-
formance from the students, but do
not provide them with the skill
needed to complete the assignment
effectively (a skill that the instruc-
tors often do not have themselves,
because of their own poor educa-
tion).

This macho attitude endears the
student neither to the instructor
nor to the content of the course. It
serves little purpose except to
falsely boost the ego of the instruc-
tor. Instead, the aim should be to
structure our teaching and home-
work so that the students can learn
the maximum amount in the mini-
mum amount of time.

On Method and Design
These days, the notion of an algo-
rithm, as well as some skill in pro-
gramming, is important in almost
every scientific and engineering
field. More and more research and
practice deals with implementing
ideas on the computer and requires
the presentation of algorithms.

The computer science viewpoint
has also affected some fields of
mathematics. New research ideas
have sprung from computer scien-
tists' use of logic. Constructive logic
has become an area of hot activity,
due to its use in extracting pro-
grams from proofs. Computational
complexity has excited many a
mathematician. Category theory is
f inding applications in computing.
All sorts of mathematical concepts
are becoming more and more im-
portant in applications such as
graphics and robotics, requiring
mathematicians and computer sci-
entists to work side by side.

In this context, it appears to me
that the proposed two-semester
course, which includes program-
ming as well as mathematics from a
computer-science viewpoint, would
be of interest to both engineers and

mathematicians.
However, there are even

stronger reasons for students from
mathematics and engineering to
take the proposed course. Let us
consider the mathematics student
first.

It was mathematician Morris
Kline who said, "More than any-
thing else, mathematics is Method."
Yet, few courses in mathematics at-
tempt to teach method, and many
mathematicians do not even think it
can be taught. Rather, they think
that method is something one
learns in a rather unconscious fash-
ion over the years. (Polya, of
course, was interested in method
and wrote several i l luminating
books on the subject.)

I believe that one can furnish the
student with some idea of method
quite early in the game and that this
may give the student more of a
sense of appreciation for mathe-
matics and how it is done. The sim-
ple heuristics that we can teach con-
cerning syntactic calculations in
proofs and programs, along with a
sense of discrimination, can be of
t remendous help to the student.
(Of course, we should not convey
the idea that all proofs arise simply
out of following a few heuristics.)

Computing, like most fields that
have been shown to be amenable to
mathematical treatment, has bene-
fited greatly from that mathemati-
cal treatment. And, like those
fields, computing has repayed the
debt by enriching mathematics with
new areas of concern and new
problems to tackle. But another
kind of enrichment stands out in
my mind: the emphasis on method
that is associated with the calcula-
tional approach to proofs and pro-
grams. The calculational approach
is not really new, of course, and

COMMUNICATIONS OF THE ACM/March 1991/Vo1.34, No.3 S 3

many mathematical proofs have
been accomplished using it. What is
new is the sense of its pervasiveness
and its ability to simplify, which
comes by treating the proposit ional
and predicate calculi as calcula-
tional systems and using them
throughout o ther areas of mathe-
matics, wherever appropr ia te .

Now let us consider the proposed
course as it relates to engineering.
The main activity that is supposed
to sept, rate engineer ing from other
fields is design: the actual activity of
p repar ing plans for some object (a
bridge, radio, electronic circuit,
whatever). Within the engineer ing
curriculum, design is viewed as a
pervasive, pragmatic activity. Dur-
ing design, the student is particu-
larly encouraged to learn to deal
with issues of structure and to eval-
uate designs With regard to differ-
ent measures, such as cost, time,
complexity, reliability, and ease of
production.

In this regard, I believe that the
two-course sequence that I am pro-
posing could be an impor tant part
of the engineer ing curriculum.
First, it at tempts to teach something
about the design of (some form of)
proofs, giving the students heuris-
tics for their construction and a few
ways of compar ing them (e.g. with
regard to simplicity, length, struc-
ture). It helps make the student
more aware of choices and the need
for discrimination. Second, it at-
tempts to teach about the design of
programs, using principles and
heuristics for algorithmic develop-
ment that arise out of a theory of
p rogram correctness. The need for
r igorous specifications before de-
signing a p rogram becomes clear.
The use of different notations, each
with its suitable domain of dis-
course, is discussed. The use of ab-
straction to help structure pro-
grams, as well as discussions of
notations for expressing structur-
ing, is expounded upon. Compari-
son of algorithms with regard to
time and space requirements, struc-
ture, simplicity, and the like is an
impor tant activity. Laboratories, in
which the students receive practical

experience, are an integral part of
the course.

Thus, aside from the obvious
benefit of more (and useful) mathe-
matical formalism in the engineer-
ing curriculum, the second benefit
would come from the notion of de-
sign based on theoretical principles,
which is so evident in the proposed
course.

The Effect on More
Advanced Courses
Providing a solid mathematical
foundat ion and a skill in manipula-
tion can have a p rofound effect on
later courses. The presentat ion of
almost any algori thm becomes eas-
ier when the instructor and s tudent
share a common basis for the speci-
fication and presentat ion of pro-
grams in a r igorous and calcula-
tional m a n n e r - - r a t h e r than the
ineffective operat ional approach
that is so prevalent today. The idea
behind an algori thm can be con-
veyed more effectively and in less
time, and often it is the idea ra ther
than the whole algori thm that
counts. Thus, the increased under-
s tanding of the students should
allow us to cover more material and
to compress some of the courses in
our burgeoning curricula.

Courses that would be most di-
rectly affected by the proposed
change in the introductory course
are assembly language program-
ming and machine architecture,
data structures, algorithms, compu-
tational complexity, compiler con-
struction, and operat ing systems,
since they deal most directly with
the development and presentat ion
of algorithms.

Conclusion
Software engineering, and to some
extent the rest of computing, suf-
fers from a lack of r igor and pro-
fessionalism, which stems partly
from the belief that formal meth-
ods in algorithmic analysis, devel-
opment , and presentat ion are use-
less. As long as comput ing is taught
in a manner that conveys the im-
pression that formal methods are
useless, students will believe that

formal methods are useless. The
calculational methods that have
been developed in the past 15 years
offer hope that the situation can be
changed.

Thus far, there has been little
a t tempt to teach this material to
f reshman in the United States;
therefore at this point my opinion
that the suggested changes will help
is more a matter of faith than fact.
Tha t faith, however, is based on the
solid experiences I and others have
had in using the calculational style
in our own programming, in the
presentat ion of programs, and in
the teaching of programming.

Calculational techniques deserve
to be given a fair chance, especially
since nothing else has appeared on
the horizon to solve the ills of the
profession. Let us all learn more
about calculational techniques and
gain skill with them; and let us
begin to teach comput ing using
them. Then, the 1990s may see the
drastic revisions of our texts' and
lower-level courses that are needed
to effect the change. []

References
1. Abelson, H., and Sussman, G.J.

Structure and Interpretation of Com-
puter Programs. The MIT Press,
Cambridge, Mass., 1985.

2. Bird, R., and Wadler, P. Introduction
to Functional Programming. Prentice
Hall, N.Y., 1988.

3. Chandy, K.M., and Misra,J. Parallel
Program Design. Addison Wesley,
Menlo Park, 1988.

4. Cherniavsky, J.C. Software failures
attract congressional attention.
Comput. Res. News 2, 1 (Jan. 1990),
4-5.

5. Computer Science and Technology
Board Report. Scaling up: A re-
search agenda for software engi-
neering. National Academy Press.
Excerpted in Commun. ACM 33, 3
(Mar..1990), 281-293.

6. Dijkstra, E.W., and Scholten, C.S.
Predicate Calculus and Program Se-
mantics. Springer Verlag, N.Y.,
1990.

7. Gasteren van, A.J.M. On the shape
of mathematical arguments. Ph.D.
dissertation, Technical University
Eindhoven, Eindhoven, The Neth-
erlands, 1988.

8. GPO 052-070-06604-1. Bugs in the

S4 March 1991/Vol.34, No.3/COMMUNICATIONS OF THE ACM

n IIVlOR

prog ram- - 1
ernment computer software devel-
opment and regulation, 1989. Su-
per intendent of Documents;
Government Printing Office; Wash-
ington, D.C. 20402.

9. Gries, D. The Science of Programming.
Springer Verlag, N.Y., 1981.

10. Hoogerwoord, R. The design of
functional programs: a calculational
approach. Ph.D. dissertation. Tech-
nical University Eindhoven, Eind-
hoven, The Netherlands, December
1989.

CR Categories and Subject Descrip-
tors: D.2.2 [Software Engineering]:
Tools and Techniques; D.2.10 [Soft-
ware Engineering]: Design--
methodologies, representation; F.4 [Theory
of Computation]: Mathematical Logic
and Formal Languages; G.2.0 [Mathe-
matics of Computing]: Discrete Mathe-
mat ics -Genera l ; K.3.2 [Computers
and Education]: Computer and Infor-
mation Science Education

General Terms: Verification
Additional Key Words and Phrases:

Accountability, rigor

About the Author
DAVID GRIES has been a faculty mem-
ber of the computer science depar tment
at Cornell University since 1969 and its
chair in 1982-87. He has a doctorate in
mathematics from the Munich Institute
of Technology, and his research inter-
ests revolve around programming
methodology. Author's Present Ad-
dress: Computer Science Department,
Upson Hall, Cornell University, Ithaca,
NY 14853-7501.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© A C M 0 0 0 2 - 0 7 8 2 / 9 1 / 0 3 0 0 - 0 4 4 $1.50

Computing Archive: Bibliography and Rer~iews ffom ACM. Access
more than 130,000 records on one disc wi th a PC-based search
system you can master in minutes.
Computing professionals, professors, academic and industry researchers
students, information professionals: Perform research at your own
pace; don ' t rush to complete searches online as charges soar...
don ' t struggle wi th volumes of pr inted indexes.

Comprehensive literature searches
Whether you're hunt ing for a specific article or all works of an
author, compiling a bibl iography of an emerging area, or retracing
developments in a research frontier, Computing Archive encom-
passes every subject: hardware to software, data encryption to
computer graphics, wi th 18,000 book citations, more than 75,000
citations of journal articles and conference papers, and citations
from 475 scholarly and industry periodicals...plus 9,000 reviews.

Wide browsing, precise selection
Search by keyword, title, author, publisher, date, reviewer, ACM
Category System, and more. Every word of full-text reviews is
indexed and searchable. Page images of reviews allow viewing
and print ing of formulas and tables. ACM--p ionee r in comput-
ing informat ion--backs Compu t ing Aichive wi th superior
customer support.

CALL NOW (212) 869-7440 Ext. 246 (Sales Dept.)
or FAX YOUR O R D E R (212) 869-0481

[] YES! Enter my Computing Archive Charter Subscription today.
I save $50 off the regular Premier Edition price. I receive all annual
updates automatically at the 5% Charter Discount Rate and can
cancel my standing order any time after the Premier Edition.

[] ACM member, $799* [] nonmember, $999*
[] Send me the Premier Edition only.

[] ACM member, $849* [] nonmember, $1049"
[] Payment enclosed (payable to ACM). Bill my [] Amex [] MasterCard [] Visa

Acct. No. Exp. Date

Signature (required to process your order)

[] I'd like more information. Have ACM's representative call me.
()
Telephone Ext. ACM member # (required for member price)

Name Title

Organization

Address

City State ZIP

~ A C M C D - R O M P u b l i c a t i o n s "Single use prices only. Network pricing available,

11 West 42nd Street, NY, NY 10036 CA/CACM 3/91

Minimum configuration: IBM XT/AT or 100% compatible with 512KB memory;
1 floppy drive (360KB); 1 CD-ROM drive with interface to your PC; PC DOS or MSDOS version 30 or higher

