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ABSTRACT
Recently, there is a growing interest in the research com-
munity to use tamper-resistant processors for software copy
protection. Many of these tamper-resistant systems rely on
a specially tailored secure processor to prevent, 1) illegal
software duplication, 2) unauthorized software modification,
and 3)unauthorized software reverse engineering. The pub-
lished techniques primarily focused on feasibility demonstra-
tion and design details rather than analyzing security risks
and potential attacks from an adversary’s perspective. The
uniqueness of software copy protection may lead to some po-
tential attacks on such a secure environment that have been
largely ignored or insufficiently addressed in the literature.
One should not take security for granted just because it is im-
plemented on a tamper-resistant secure processor. Detailed
analysis on some proposed ideas reveal potential vulnerability
and attacks. Some of the attacks are known to the security
community, nevertheless, their implications to software copy
protection are not well understood and discussed. This paper
presents these cases for designers to improve their systems
and circumvent the potential security pitfalls and for users
of such systems to be aware of the potential risks.

Categories and Subject Descriptors: C.0.X [General]:
Hardware/software interfaces

General Terms:Security

Keywords:tamper resistance,copy protection,attack

1. INTRODUCTION
Recently, there is a growing interest of designing secure

processor architectures to provide a secure software exe-
cution environment on unprotected computing platforms.
Such secure processor architectures adopt new features that
support tamper resistance inherently. Coupled with crypto-
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graphic schemes, the secure processor architectures can be
used to enable a secure environment where only authorized
and un-tampered applications can be executed. Security is
achieved by protecting data located inside the untrusted ex-
ternal hardware devices, mainly the off-chip memory and
hard disks, by means of encryption and dynamic integrity
checking [10, 16, 17, 18, 19, 11]. The fine-grained on-demand
integrity checking and decryption mean that only when the
data and instructions are brought into the tamper-resistant
processor will they be decrypted and their integrity be veri-
fied. When executing applications, the architecture ensures
that sensitive data and instructions of the applications will
not be disclosed at any time and the software integrity is al-
ways guaranteed. The secure processor architectures can be
used not only to prevent possible software-based attacks on
protected applications, but also to prevent many hardware
attacks which have not been addressed by any other similar
secure systems [7]. Due to the strong protections provided,
the secure processor architectures are able to address many
security issues that have been haunting computer industry
for decades, e.g. software copy protection, virus protection
and trusted computing.

Although software copy protection based on tamper resis-
tant processor is a promising direction for enforcing software
right protection, there are still several remaining issues to
be resolved before it can be accepted by the industry. These
issues include, software testing issues, compatibility issues,
programming model issues, privacy issues, performance is-
sues, security issues, and etc.

Historically, computer crackers/hackers tend to be well-
knowledged, highly motivated and, sometimes, well sup-
ported financially to attack computing platforms. Systems
with weak security protection can be broken by sophisti-
cated hackers as evidenced by the case of XBOX security
key leak [8, 3]. Therefore, it is crucial to perform detailed
investigations on the security of tamper-resistant processor
architectures so as to ensure that the proposed designs can
meet high security standards. The security analysis on se-
cure processor architecture is twofold — the generic crypt-
analysis; and the security analysis from the architectural
perspective. The techniques for generic cryptanalysis are
well-known to the security community. Consequently, such
analysis is relatively easy to perform. However, processor
architectures and software copy protection also inherently
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Figure 1: Secure computing model

possess some unique characteristics which could have secu-
rity impacts. Examples of such characteristics are program
traces, program branches, the patterns among instruction
sequences and etc. Those characteristics must receive se-
rious attention while evaluating the security on processor
architectures. This paper particularly focuses on the secu-
rity issues from the architectural perspective for proposed
designs and analyzes the security pitfalls of secure processor
architectures from an adversary’s perspective. The goal is
to provide useful and valuable insights to the system design-
ers. Note that awareness of the potential attacks can lead
to much more secure solutions and avoid security pitfalls.
Besides, users of the secure processor will also benefit by
knowing the potential weakness and risks.

The rest of the paper is organized as follows. In the next
section, we briefly address some general security issues as-
sociated with tamper resistant/copy protection system and
the basic assumptions made by most proposed solutions. It
also presents some copy protection models that are used as
example systems for the succeeding attack analysis. Then,
in section 3, detailed explanation of various potential risks
are presented where each attack is discussed. Section 3 is
followed by analysis of implications of the presented attacks
and suggestions for strengthening security. The last section
concludes the paper.

2. HARDWARE ATTACKS ON SOFTWARE
COPY PROTECTION

A typical secure processor architecture model consists of a
tamper-resistant/copy protection processor, external mem-
ory and peripherals as shown in figure 1. Naturally, the
protection boundary is drawn between the processor and
the external hardware units. Hardware units, like registers
and on-chip caches, are protected from any possible attack
while the remaining of the hardware units such as the ex-
ternal memory and peripherals are considered vulnerable to
physical attacks. Besides the aforementioned hardware, the
secure computing model also includes a small trusted pro-
gram, e.g., the XVMM in XOM and the secure kernel in
Aegis [10, 16]. The trusted program will be called the se-
cure kernel hereafter. The secure kernel runs at a higher
privilege level than any other program including the regular
operating systems and is responsible for performing encryp-
tions/decryptions for the protected applications when their
data are crossing the protection boundary. The secure kernel
is also responsible for protecting sensitive data that resides
in the private memory and registers during context switches.

Some common features of software copy protection solu-
tions based on tamper resistant systems are described as
follows.

• It is assumed that everything outside the processor is
unprotected and subject to potential malicious tamper-
ing. The physical RAM itself is unprotected and hackers
could read/overwrite the memory content directly with-
out involving the processors. Furthermore, all the sys-
tem/peripheral bus traffic is exposed and could be traced
by the hackers.

• Like other tamper resistant systems, there is a pair of
public-private keys associated with each secure proces-
sor. The secure processor’s private key is permanently
burnt inside the processor core and can not be accessed
by any software [10].

• There is hardware supported encryption/decryption and
integrity check. When an instruction or data cache line
is brought into the secure processor, it is decrypted and
integrity of the entire virtual memory space is verified us-
ing a hash tree or MAC tree [15, 1]. When a cache line
is evicted from the secure processor, it is encrypted and
the hash/MAC tree is updated. The keys used for en-
cryption/decryption and integrity verification are given
by the software vendors and encrypted by the secure pro-
cessor’s public key.

Most of the proposed systems support separate protec-
tion on software confidentiality and integrity. Some systems
also support selective protection where either sections of ap-
plication software or slices of application program are pro-
tected [19].

Wherever there is copy-protection measure, there will be
attacks. Computer hackers often have many techniques at
their disposal to crack out the secret designers try to hide in
either software or hardware. If necessary, they can construct
specialized hardware or even specially designed printed cir-
cuit boards or cracking/spoofing machine to recover the pro-
tected secret. Their efforts and dedication should never be
underestimated. When comes to the issue of copy-protection
and software confidentiality, the problem becomes even harder.
The entire protection on software confidentiality is broken
if an adversary compromises a single copy of the protected
software. In this paper, we study the security issues on pro-
cessor architecture from an adversary’s perspective. In con-
sequence, we present possible attack scenarios for cracking a
piece of secure software executed on a hardware-facilitated
tamper resistant/copy protection environment. Also note
that the attacks are applicable to other forms of secure pro-
cessor architectures as well, such as TCPA [7].

There are some typical hardware techniques for breaking
software copy protection, including software execution trace
analysis, mod-chip spoofing devices, and machine emulator.

• Trace analysis. Adversary can collect information of
protected software through logging and analyzing soft-
ware execution traces. Many programming primitives
even in encrypted form are highly predictable from ob-
servation of program execution traces. For examples,
conditional/unconditional branches can be easily identi-
fied and traced even after they are encrypted. Index and
counting variables that are widely used in programming
may also be recovered with the assistance of program
traces. For instance, if a program initializes a large ar-
ray, loop and other related variables can be recovered by
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analyzing the memory access pattern. As to the feasibil-
ity of tracing front side bus traffic, it could be achieved
by using an interposer board [9] and multi-channel high
frequency logic analyzer. As shown by [8, 3], skillful
computer hackers may build custom tracing devices us-
ing cheap and available commodity components. Pro-
gram traces also provide feedback to the adversary after
changes are made to the protected software.

• Mod-chip. Here we use the word mod-chip to refer to
all the spoofing devices designed for unraveling copy pro-
tection mechanism. Mod-chip can be used to record and
replay memory and bus transactions. They can also be
designed for hijacking another device’s signal or launch-
ing device spoof attacks.

• Emulator. Software copy protection is deemed broken
if the protected software can be executed on a machine
emulator without authorization. It is very difficult to
fight against this attack without using software encryp-
tion. Protection on software confidentiality can prevent
a machine emulator from breaking protection on software
rights.

3. RISKS ANALYSIS OF CERTAIN DESIGN
CHOICES

A number of software copy protection solutions based on
tamper resistant processors have been proposed recently.
Most of them share similar assumptions and features pre-
sented in the previous section. In XOM [10], a per-process
encryption key (triple-DES) is used to decrypt software on
the fly, while Aegis [16] system uses AES. One major dif-
ference between Aegis and XOM is that Aegis employs an
on-chip hash tree to verify the integrity of the entire process
space in execution time, thus preventing a memory replay
attack. As studies have indicated, block-cipher-based sys-
tems can incur non-trivial performance penalty for bench-
mark suites [16, 18]. Systems using counter-mode encryp-
tion and relaxed integrity checks [17, 18] are proposed be-
cause they accelerate software execution. Alternative solu-
tions for better performance have been proposed, such as
encrypting only small amounts of carefully selected instruc-
tions, dubbed software slices [19]. 1 lists some of the systems
and their differences.

Although many systems have been proposed, very few
studies were performed on security analysis and risk assess-
ment of tamper resistant processor based copy protection
systems. Most of the documented systems rely on certain
assumptions where security is taken for granted. Here we
will examine some of these assumptions and their security
implications. The purpose is to gain meaningful insight on
the security of tamper resistant/copy protection systems. It
is important to point out the difficulty of analyzing proposed
tamper-resistant processors. Since they are not real systems,
many times, interpretation of a design could be subjective.
The goal of this paper is security analysis based on docu-
mented design ideas instead of comparing or evaluating the
robustness of these proposed systems.

3.1 Lazy Authentication and Counter-mode
Encryption

By “lazy” integrity checking, we mean that either in-
tegrity of instructions are not verified promptly on a in per-
instruction basis or machine state (memory/processor) can
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Figure 2: Alpha Instruction Format

be altered before per-instruction integrity checking is com-
pleted. “Lazy” integrity check also refers to the situation
where the data source is used as an operand and the re-
sult of computing using un-authenticated data is allowed to
modify the processor state before its integrity is authenti-
cated. Techniques for “Lazy” integrity check are proposed
for their performance advantage over more rigorous, secure,
and timely integrity checking.

Many modern processors such as Alpha, MIPS, and ARM
embraced RISC design philosophy. The simplicity of RISC
instruction set allows processor designers to perform more
aggressive instruction fetching/decoding and pipelining. How-
ever, the regular format and simplicity of RISC instruction
set also eases an adversary’s effort to guess encrypted RISC
instructions. In subsequent sections, we will use Alpha in-
struction set as an example to illustrate how an adversary
can exploit the simplicity of Alpha instructions to crack in-
structions encrypted using counter-mode. The attack re-
quires that the adversary is able to obtain front side bus
traces of program execution.

The vulnerabilities of the RISC instruction set are, 1) all
the instructions have the same length and in many cases
they are short, 16 bits, 24 bits, or 32 bits. One weakness
of short instructions is that it may be vulnerable to brute
force attacks; 2) the instructions are well formatted (e.g.
fixed opcode field) for reducing the complexity of decoding
logic. For example, bit[31:26] of Alpha ISA is fixed as the
opcode. As shown in the example below, one risk posed by
this RISC property is that it may allow incremental guess-
ing of instructions. In such an attack, the adversary di-
vides each instruction into portions (opcode, operand one,
operand two, and etc.) and launch brute-force guess piece
by piece on each portion of the targeted instruction. This
significantly reduces the search space of a brute-force attack.
For instance, to apply brute force attack on a 32 bit instruc-
tion, there are 232 possibilities. However if the instruction
could be divided into four 8-bit portions and each portion
could be exhaustively attacked, only 4*256 brute-force trials
are needed, way smaller than 232; 3) RISC philosophy ad-
vocates a small set of instructions instead of a large number
of complex instructions. This also reduces the search space
of brute-force attack. Figure 2 shows some of the Alpha
instruction formats used in the example attack [5].

To make it easier to understand, assume that the tar-
geted Alpha binary does not use any dynamically linked li-
braries, all the instructions are packed into one code section,
and each instruction is encrypted using counter-mode (re-
gardless how the pseudo-random one-time-pad is generated).
Assume also that the adversary has no priori knowledge of
the program but is able to obtain front-side bus traces of
program execution. Further assume that the secure proces-
sor only performs a “lazy” integrity checking on executed
instructions.
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Table 1: Some Tamper Resistant/Copy Protection Systems
System Run Time Integrity Confidentiality Range

XOM [10] hash triple-DES instructions and data
Aegis [16] hash tree AES instructions and data

Yang, Zhang, and Gao [18] not specified DES counter mode instructions and data
LogHash [17] log hash AES counter mode instructions and data

Zhang,Gupta [19] not specified not specified instruction slices

In order to launch the attack, the adversary has to start
from something s/he already “knows”, even though the codes
are encrypted. One candidate would be invariant instruc-
tion sequence that is pretty much fixed in almost all the
executable images generated by a compiler. For example, al-
most all the benchmarks in the compiled SPEC2000 binary
have the same startup prologue instructions as the follows,

lda sp,-16(sp)
stq zero,8(sp)
...

Starting from these two known instructions, the adversary
could launch known-plaintext attack and crack out more in-
structions that s/he could not guess so easily. A few good
candidates would be the instructions in the middle of the
code section. Assisted with the two known instructions,
the adversary could control the next executed instruction
by modifying the known instruction into a jump instruc-
tion with any target address. We use a sample code from
benchmark 186.crafty as an example in table 2.

The code section contains 37,789 instructions. The list
shows one candidate instruction (addq) in the middle that
the adversary may choose as the jump target. The reason to
choose instructions in the middle is because as shown later,
they, after being altered into jump instructions by changing
the opcode, are more likely to jump into valid code space
than instructions close to the boundaries. Next, the ad-
versary may perform a brute-force attack on the opcode of
the targeted instruction by changing it. Since the Alpha
instruction always uses bit[31:26] as opcode, the adversary
could figure out bit[31:26] of the one-time-pad with at most
64 trials of opcode guessing. The opcode of the targeted
instruction “addq” is 0x10. Assume that the adversary’s
first guess is opcode 0x4. The speculated bit[31:26] of the
one-time-pad would be 0x21. Then s/he could change the in-
struction into an unconditional jump by altering bit[31:26] of
the targeted instruction to the result of 0x21 ⊕ 0x30, where
0x30 is opcode of jump. Because the opcode guess is wrong,
the altered instruction will be decrypted into an AND (0x11)
instruction instead of a jump. Since there is no jump in
the trace of instruction fetch, the adversary is certain that
the guessed opcode is incorrect. Assume that the next op-
code guess is 0x10 and is correct. This time, the program
trace will show jump of program execution to target ad-
dress 0x1200263E0 from address 0x12001139c( 0x12001139c
+ 0x5411*4). This will reveal bit[20:0] of the encrypted tar-
get instruction. The rest 5 bits (bit[25:21]) could be guessed
by trying to alter the targeted instruction into a FETCH
instruction, where all the 5 bits should be zero for a valid
FETCH instruction. At most another 32 trials are required.
Note that the above opcode attack can be launched in par-
allel using multiple machines with each machine taking one
alternative guess. Given a moderate size of 64 machines,

only under two parallel trials, the adversary is able to crack
the encrypted target instruction.

The above case represents an ideal situation where the
altered instruction jumps to an address within the code sec-
tion. Since the displacement field of jump instruction has 21
bits, it is very likely that the targeted address may be outside
the range of the current code segment. The adversary could
tackle this problem in two possible ways, 1) modify the vir-
tual address to physical address translation table so that the
targeted address would be translated and fetched. A rigor-
ous integrity checking and protection on TLB (translation
lookup buffer) and process context of address translation
may prevent such an attack; 2) Brute force attack on both
the opcode and the remaining displacement field bits whose
range is outside the code segment. In the above benchmark
example, since there are about 37,000 instructions, only the
high 6 bits of the total 21 bits of the displacement field need
brute force guessing. Given 64 machines with each machine
taking one guess of the opcode, at most 64 parallel trials
are sufficient to break both the opcode and the remaining
high bit of the displacement field given the assumption that
there is no alternative way for the adversary to tamper the
address translation mechanism.

Many embedded systems do not use virtual physical ad-
dress translation. For those systems, the tampered addresses
could be observed directly on the bus. Since fetching the
next instruction could be started before execution of the
previous instruction is completed, even stronger instruction
authentication is required. In such systems, jump targets
of conditional and unconditional branches should not be
fetched before integrity of the jump instructions is verified.

An adversary may use the above technique to figure out
all the instructions. Alternatively, if only program code is
encrypted, the adversary can use the following “short-cut”
procedure. Firstly, s/he can figure out a short sequence of
instructions (about 40) in the middle of the code section
using method described above. Then s/he can speed up the
attack by trying to alter other encrypted instructions into a
STORE instruction. Take the mov instruction in 2 as one
example. Through brute-force attack on the opcode, the
mov instruction could be altered into, stw a12,a12(1043).

To crack out the remaining 26 bits, the adversary may
firstly transfer execution to the short code sequence which
s/he has figured out, load a constant value to all the 32
Alpha registers by altering the cracked 40 instructions so
that the computed data address (address register value +
displacement) would be certainly within the space of data
virtual address translation, then s/he can transfer execution
to the altered targeted instruction. All these can be com-
pleted using less than 40 altered instructions. By observing
the traces of data access, s/he would be able to figure out
the last 16 bits of the targeted instruction (0x0413). This
requires only one parallel trial or 64 single trials. To figure
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Table 2: List of Crafty Code Section
Address Plaintext Ciphertext Instruction

0x120008840 0x23defff0 0x3127d04a lda sp,-16(sp)
0x120008844 0xb7fe0008 0x4c0d4ef4 stq zero,8(sp)

...

0x120010194 0x46520413 0xa0481bf0 mov a2,a3
...

0x12001139c 0x40c05411 0x9426814a addq t5,0x2,a1
...

0x12002d670 0x23de0010 0x3704e241 lda sp,16(sp)
0x12002d674 0x6bfa8001 0x7a3250bf ret

out bit[25:16], the adversary may repeat the same proce-
dure. But instead of loading the same constant to all the
Alpha registers, s/he will load a unique value to each Alpha
register. Since the displacement is already known, subtract-
ing the displacement from the write address observed from
the memory trace will reveal one unique value loaded to the
alpha registers. This unique value will tell which alpha reg-
ister is used and its register ID reveals 5 bit plaintext of
bit[25:16]. The unique value stored will tell which register is
used as data source and its register ID reveals the remain-
ing 5 bits of bit[25:16]. In total, only two parallel trials are
sufficient to crack the mov instruction.

As shown above, with only an amortized cost of two paral-
lel trials/per instruction using 64 machines, the adversary is
able to figure out a counter-mode protected program within
a reasonable time. Assume that it takes 30 seconds for the
adversary to complete one parallel trial (in fact, this is an
overestimate and the real time needed could be much less
after the procedure is automated). It takes only about one
and half month to crack out a program with about 64K
instructions (256K code size).

We call the described attack technique, “alter then trace
attack” (ATT attack). To use this attack, 1) the adversary
must be able to alter a piece of software (program or data)
bit-by-bit (satisfied by all the “counter mode” based protec-
tion); 2) altered instructions can be executed and integrity
of executed instructions or used data is not verified promptly
or rigorously on per-instruction basis.

In this section, we show only one way of exploiting the
simplicity of RISC instruction set. Other methods based
on the same principle could be “invented” by a creative ad-
versary. In short, all the “counter-mode” based approaches
with “lazy” authentication check are potentially vulnerable.
Approaches that check integrity in a timely fashion but have
other flaws may also be vulnerable when certain conditions
are met such as when the adversary is able to tamper the
address translation or brute force attack on the integrity
code. Note that the risk of “lazy” authentication can be re-
duced by using hardware based control flow/memory fetch
address obfuscation, such as the techniques proposed in [21,
20]. However, the hardware complexity and overhead can
be high. It should be pointed out that software based infor-
mation hiding technique such as [14] could not prevent the
discussed ATT attack.

3.2 Software Slice
Since the cost of whole program protection is really high

and unacceptable for certain applications, solutions that
protect only portions of an application are also proposed

[19]. The rationale is that an application can be equally pro-
tected if the small protected portions are impossible for an
adversary to recover/copy and at the same time they are ab-
solutely necessary for the correct execution of the protected
application. A concept, called software slice, is introduced
to refer to a trace of dependent program instructions. Some-
times, traces of program can contain complicated operations
such as boolean, relational, high degree arithmetic opera-
tions, or conditionals (branches or program control flow).
A program trace with more complex operations and control
flows is assumed to be more difficult to recover than pro-
gram trace of simple arithmetic operations. It is assumed
that protection of only small number of program traces or
slices with high complexity is sufficient to protect the whole
software. The complexity of a program slice is often mea-
sured in terms of length of the trace, number of high degree
arithmetics, number of boolean and logic operations, num-
ber of conditionals, and etc. For example, complexity can be
defined according to the partial order constant < linear <
polynomial < rational < arbitrary (boolean and logic opera-
tions). Furthermore, control flow is considered to have high
complexity. It assumes that traces with boolean operations
or conditionals are harder to crack than traces with only
simple arithmetic operations. Protected software slices (pro-
tected component) are encrypted, stored and executed on a
security co-processor while the rest of the program (open
component) is executed on a regular un-protected proces-
sor. Communication between them is not protected.

Software slice based protection is a very interesting tech-
nique because of its potential connections with some other
research areas in computing. One interesting question about
software slice is whether its security can be more rigorously
defined using a metric other than a simple count of com-
plex operations and conditionals. From an adversary’s per-
spective, s/he does not have to recover the exact original
code sequence to break the security. As long as s/he can
come up a program that is functionally equivalent to the
protected program trace, it is enough. Since nothing else
is protected except the program slices, the adversary can
treat the protected codes as a black box and try to come up
with another code sequence that can emit the same output
under the same input. This is obviously a computationally
hard problem if the goal is to design a general approach for
emulating any random program black box. However, the
adversary may not be interested in designing such a uni-
versal approach that can model any program traces/slices.
S/he may be only interested in breaking some or maybe only
one trace/slice that matters to her/him in reasonable time.
To answer the questions of security strength of the software
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f(float x, float y, float z, bool b)
{

if (x<3.5 && b==true)
z = x*y;
else
z = 2*x*x;

}
...

Figure 3: Example Program

slice approach, some related research areas may be able to
give some insight,

Automatic programming and state machine inference us-
ing examples. The goal of automatic programming or soft-
ware synthesis using examples is to ask the computer to
generate desired software based on specified input/output
data. Some of the early work includes inferring lisp pro-
gram using examples [2]. The theory of inductive inference
has been one of the foundations for automatic programming.
It appears that the task of compromising a software slice is
similar to the task of synthesizing example-based programs.
However, an adversary has more restrictions recovering a
protected software slice than s/he does in the situation of
software synthesis, in which more information can be pro-
vided to guide the automatic programming. State machine
inference and automata learning based on input/output is
also closely related to software slice security.

Neural-networking modelling. Neural-networking has the
power for universal data interpolation/approximation. It
is known that neural network using rational modelling neu-
rons is able to interpolate or approximate multi-dimensional
contiguous functions. In [6], a unique technique that com-
bines data clustering and neural networking is presented to
approximate functions that are piecewise contiguous. For
example, the code sequence in figure 3 may be modelled
using techniques derived from [6] .

Furthermore, binary neural network [4] is known to be
very powerful to model binary function and finite automata.
The question is the time/space complexity of using binary
neural network to model a specific program slice. Prop-
erties of binary neural network has been well studied. A
theoretical concept called, linear separability [13], is intro-
duced to measure the complexity of a binary function that
is to be modelled by a binary neural network. According
to [12], time and space requirement to model a function is
proportional to linear separability. In reality, it would be
hard to give an estimate of linear separability for any given
program slice. However, this concept may give some insight
about the complexity of program traces/slices against po-
tential machine learning based attack.

The topic of the theoretical strength of program traces/slices
is an interesting problem and could become a shared subject
by the area of security, theory, and machine learning.

3.3 Active Information Flow Attack
Some proposed systems use the same encryption scheme

and the same key for protecting both software instructions
and dynamic data. Furthermore, to reduce potential perfor-
mance overhead, many systems expose protection control to
the users and allow users to configure which section of soft-

ware instructions or data should be protected. For instance,
new instructions can be proposed to allow fine granularity
control of confidentiality protection. 3 lists four such in-
structions and their corresponding semantic.

Instructions or code images desired to be kept as secret
are encrypted and enclosed by a pair of enter security and
exit security statements. Instructions outside the protected
domain are executed as usual. Similarly, data can be ex-
changed between a tamper-resistant processor and the un-
trusted memory using either regular load/store or protected
secure load/store. The difference is that only under secure
load/store will data be decrypted/encrypted and authenti-
cated. Introducing these fine-grained security instructions
on one side, improves the flexibility and programmability
of security control but on the other side, it increases the
difficulty of security protection. One consequence of fine
control on security protection is that some pieces of informa-
tion are in the protected domain while some others are not.
The boundary between them is often not set by the pair of
enter security and exit security statements but is actually
determined by the flow of information. Using secure load
and secure store as examples, although both instructions
are executed inside a protected code region enclosed by en-
ter/exit security, the actual data source and store/load ad-
dress may come from either protected memory or unpro-
tected memory. This property may attract attention of an
adversary. Although it is hard to give a complete picture
about the implication of exploits based on information flow
or even enumerate all the possible breaches, there is a likeli-
hood that an adversary could break a protected application
under certain conditions.

Consider the simple code in figure 4. The piece of code is
a simple example that shows that the actual security bound-
ary is not set by the pair of enter security and exit security.
In fact, every secure store or secure load could become a
boundary between protected and unprotected information.
In real world scenarios, the flow of information can be far
more complicated than this simple example. To decide whether
a secure load/store uses address or data from un-protected
world is not a simple matter as it requires complicated infor-
mation flow analysis such as memory disambiguation. For
the given example, because array dat is not protected, an
adversary can replace it with a short attacking code sequence
such as the one shown in figure 5. After the code sequence
is encrypted, a pair of enter security and exit security can
be inserted to the array dat to enclose the encrypted at-
tacking code. Now, the adversary has a piece of encrypted
malicious code that is ready to use. If the code space can be
overwritten, the adversary can patch/alter encrypted code
by supplying a pointer to the encrypted code as output ad-
dress to secure store.

To give another example that is purely data based, con-
sider that there is a link-list holding computed results that
need to be disclosed from protected memory to unprotected
memory, see figure 6. A real world scenario could be that a
user code (unprotected) wants data stored in a link-list to be
processed by some protected program (encrypted). To hide
the internal secret, the protected program may compute the
data in secret mode using secure store every time data of
each node is updated. After the computing is completed,
the protected program discloses the results by traversing the
link-list and converting each data element using secure load
followed by a regular store that stores the data to a place the
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Table 3: Example Security Instructions
Instruction Format Definition
enter security Start security mode after this instruction.

A key is used to decrypt all the succeeding instructions
exit security Exit security mode. No decryption for succeeding instructions
secure store sd $rt,offset($base) Stores $rt into memory [$base+offset]

(data encrypted with the same key used for decrypting codes)
secure load ld $rt,offset($base) Load $rt with memory [$base+offset]

(data decrypted using the same key used for decrypting codes)

// not protected data and code
unsigned int array dat[] = { ... };
...
//protected code,encrypted/authenticated
enter security
...
// load array dat and secure save
unsigned int x;
for (i=0; i<sizeof(array dat)/4; i++)
{

load array dat[i] to x;
secure store x to array dat[i];
...

}
...
exit security

Figure 4: Security Boundary Is Set by se-
cure load/store

...
secure load some secret
save secret to some unprotected memory
...

Figure 5: Attacking Code Sequence Used to Replace
array dat

encrypted data
needs to be

disclosed

Secret X

Last Node, E
First Node, F

Bogus node pointer

...

encrypted data
needs to be

disclosed
...

encrypted data
needs to be

disclosed
...

Figure 6: Compromising Secret X Using Flow At-
tack

// disclose results of computing to public
struct node t {

unsigned int dat;
...
node t* pnext;

}
//protected code,encrypted/authenticated
enter security
... //process link-list
//release results
node t* pnode = head of link list;
while (pnode)
{

secure load pnode->dat to temp;
save temp to un-encrypted memory;
pnode = pnode->pnext; // regular load

}
exit security

Figure 7: Disclosing Data in Link-list

user can access ( figure 7). Assume that pointers that point
to the next link-list node are kept in unprotected memory
(accessed using regular load). Furthermore, there is a secret
X hidden in the protected program that an adversary wants
to recover. What the adversary can do is right before the
protected program starts to disclose the link-list, s/he can
modify the NULL pointer of the last node so that it will
point to the secret X. This will cause the protected program
to disclose secret X into unprotected space.

It is not an easy task to give a complete picture of risks
associated with flow of information or even enumerate all
the possible scenarios. However, this is surely an interest-
ing problem. Techniques based on program analysis and
compiler technique could be a direction for solutions. Alter-
natively, protection can be extended to the whole program
and every load/store is protected.

3.4 Weak Cipher/Short Key
Sometimes, there are legitimate reasons to use short keys

or simple ciphers, for example performance consideration or
tight chip size constraints. However, weak ciphers and short
keys should be avoided when possible. The nature of soft-
ware execution provides many opportunities for an adver-
sary to launch brute force attacks to break weak ciphers or
short keys. To give a concrete example, considering the fol-
lowing code sequence protected with a short integrity code
stored side by side with every 8 instructions (cache line size),

If the purpose of attack is to bypass the security check,
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// Code Example Begin
push ax
push bx
push cx
push dx
push ex
call security check
/*a jump to a subroutine */
tst ax, 0
/* assume return value in ax*/
bne security failed
// Code Example End

Figure 8: Example Assembly Program

// Altered Code Example Begin
nop
nop
nop
nop
nop
nop
nop
nop
// Altered Code Example End

Figure 9: Altered Assembly Code

there are two brute-force modifications the adversary could
launch, one on the integrity code itself and the other one on
the code sequence. Firstly, to brute force attack on the short
integrity code, the adversary could alter the code sequence
to another sequence,

This new code sequence very likely will have a different
integrity code from the unaltered version. To fool the au-
thentication check, the adversary could try to execute the
altered code each time with a different integrity code guess.
If the integrity code is short, for example 16 bit long, af-
ter certain number of trials, a working integrity code could
be found. The adversary is able to test whether a trial is
successful through tracing of the program execution. If in-
struction fetch starts on the instruction after the last nop,
the adversary knows that it is a success trial.

Alternatively, the adversary could come up a huge number
of “equivalent” attacking code sequence and hope that one
of them will have the same integrity code as the unmodified
code sequence as shown in figure 10.

Different attacking code sequence will assign different ran-
dom number to ax, bx, or cx. If the integrity code is short,
by chance alone, some attacking code sequence will have the
same integrity code as the unmodified version. This allows
the adversary to replace the original code sequence with a
new one without changing the integrity code.

Another reason that short key should be avoided is that
they are vulnerable to so called “indexing/counting vari-
able attack”. Indexing/counting variables are indispensable
parts of a program. In certain cases, such variables may
count to very large number, for instance,

The risk associated with indexing/counting variable is

// Altered Code Example Begin
mov ax, random num
xor ax, ax
mov bx, random num
xor bx, bx
mov cx, random num
xor cx, cx
nop
nop
// Altered Code Example End

Figure 10: Altered Assembly Code

// count a large number
while (1) {
cycle count++;
...
}
// Code Example End

Figure 11: Predictable Counters

that they are highly predicable and traceable even after they
are encrypted. Recovery of certain indexing/counting vari-
ables may reveal immense amount of data to the adversary,
sometimes maybe enough to perform an off-line crack of the
encryption key if the key is short. Assisted with informa-
tion from branch analysis and knowledge of how a particular
compiler would generate codes for these variables, it would
be not too difficult for the adversary to discover the memory
locations of these variables. An alternative way for the ad-
versary to discover counters that count to a large number is
to find out most frequently updated memory locations (“hot
spots”) and investigate whether counting variables are held
in these locations.

As to the feasibility of the attacks, one argument is that
in today’s processor, most instructions and data are cached
inside the processor and their states are not visible to the
outside world. However, if the adversary could tamper the
memory management mechanism. S/he could mark certain
memory range as un-cachable. Alternatively, most of to-
day’s processors support bus snoop based cache-coherence
protocol. It is possible for an adversary to insert fake DMA
(direct memory access) requests causing a processor to mark
a cache line as shared and write the data back each time
it is updated. Such attack involves building a device that
is able to insert false coherent memory read to the system
memory. One way of doing this is to use a cheap FPGA
board designed for peripheral device development and load
it with logic that keeps sending coherent DMA requests to
the targeted memory address. Another way is physically
disabling the cache. Most processors allow user to disable
cache through resetting BIOS.

3.5 Design Recommendations
Based on the security analysis presented in this paper,

it is recommended that a strong encryption algorithm and
sufficient size key should be used. For stream ciphers and
counter-mode based schemes, a combination of the follow-
ing safeguards could be used to strengthen security, 1) to
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avoid modification of codes, no instruction should be allowed
to complete or modify processor/memory state before it is
authenticated and its integrity is verified. For embedded
systems that do not use virtual addressing, the instruction
fetch using the decoded jump target address should not be
issued before the jump instruction is authenticated. This
will prevent many of the attacks mentioned above; “lazy”
integrity check may enhance performance but at the same
time could undermine the security protection and should be
used with care when used together with counter mode en-
cryption; 2) Both the TLB and process context of address
translation should be well protected and authenticated. No
translated address is allowed to be effective unless integrity
of the translation is verified; 3) when fine-grained control of
security protection is exposed to the users, additional tech-
niques are preferred to prevent active information flow based
attacks.

4. CONCLUSION
This paper presents a security analysis and risk assess-

ment for software copy protection systems built on tamper
resistant processors. Illustrated by examples, we show that
the security of a secure processor supported copy protec-
tion system should not be taken for granted. More in-depth
studies toward security issue for such systems are needed
to develop a set of security guidelines for future designs of
secure processor based copy protection systems.
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