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ABSTRACT
Visual tracking of bare fingers allows more direct manipu-
lation of digital objects, multiple simultaneous users  
interacting with their two hands, and permits the interaction  
on large surfaces, using only commodity hardware. After  
presenting related work, we detail our implementation. Its  
design is based on our modeling of two classes of  
algorithms that are key to the tracker: Image Differencing  
Segmentation (IDS) and Fast Rejection Filters (FRF). We  
introduce a new chromatic distance for IDS and a FRF that  
is independent to finger rotation. The system runs at full  
frame rate (25 Hz) with an average total system latency of  
80 ms, independently of the number of tracked fingers.  
When used in a controlled environment such as a meeting  
room, its robustness is satisfying for everyday use.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces] :  Input devices and strategies;  I .4.8 [Scene  
Analysis]: Tracking -- fingers

Additional Keywords and Phrases: finger tracking with  
computer vision,  large interactive surface,  multi-user  
multi-hand interaction

INTRODUCTION
We present a system that tracks the 2D position of the tips of  
bare fingers on a planar display surface. The tracker is  
founded on computer vision techniques that process a video  
stream in real time. The position of the tip of the fingers is  
used to control a Graphical User Interface (GUI) projected  
on the surface. The maximum number of tracked fingers is  
only constrained by the space on the surface, thus the system  
supports multi-handed, multi-finger interaction of a group of  
users. The provided interaction is also more direct than the  
interaction offered by the mouse: the input device  
acquisition phase (grasping the mouse) is suppressed  
because the finger is the input device.

This work is aimed at providing a low-level, event-based  
input mechanism for a range of novel interactive system that  
supports multiple users interacting with a single system.  
Examples of such systems include the “Magic Table” [1]
and the “RoomPlaner” [9].

We focus on the implementation of a computer vision  
system that processes the video stream of a single standard  
video camera and doesn’t require any equipment of the  
surface. The key advantages of this particular setup are the  
following:
– computer vision hardware is off-the-shelf and affordable;  

we use low-end Firewire (IEEE 1394a) cameras, a  
standard video projector and a recent PC;

– the setup is transportable and compact; the PC used can be  
a laptop, thus making the whole hardware under 5 kg, and  
the whole system can be ceiling-mounted;

– the hardware is physically robust when setup out of reach  
from the users;

– richer data than simple fingertip location can be provided  
to the application developer using the same setup and  
video stream; for instance an object tracker (for graspable  
interfaces), or a surface digitizer [1].

The design choices of the system are justified by a number  
of human-centered requirements (described in [6] and [1]):  
low system latency, static stability, millimetric resolution,  
and robustness to our setup conditions. We also emphasis  
our work on autonomy: the system should not require  
complex setup or user maintenance.

RELATED WORK
Most finger tracking for Human-computer interaction make  
use of equipped surfaces. Commercial products include  
DViT from Smart Technologies (smarttech.com/dvit) that  
can only track 2 fingers and would be confused by a cup laid  
on  the  sur face .  Research  pro to types  such  as  the  
DiamondTouch [3] and the SmartSkin [5] can track many  
fingers but all surface-equipped solutions share some  
limitations: user interaction is required for calibration, the  
hardware is at reach from the users, and the device has to be  
as large as the interactive surface, which limits its  
portability. It should also be noted that the various research  
prototypes rely on custom hardware: reproducing them  
represents a non-trivial effort.

Our approach is to track fingers from a standard camera  
view, without using custom or expensive hardware (e.g. a  
thermoscopic camera such as in [4]). Aspect-oriented  
segmentation methods (such as color models, region-
growing or image differencing) are sensitive to camouflage  
and occlusion. We choose to use image differencing because  
it can be made autonomous, provides good resolution, and  
allows to balance performance and robustness.
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SYSTEM DESCRIPTION
Our system is founded on Image Differencing Segmentation  
(IDS). IDS generates a similarity map: an image where the  
value of each pixel is the probability that the pixel represents  
an object of the foreground. Difference maps must be post-
processed in order to extract finger position. Following other  
shape filtering proposals [4][6] we propose an original shape  
filtering algorithm that is optimized in processing and  
invariant to finger orientation. 

Our approach is a four-step process: (a) foreground  
extraction using IDS yields a grayscale difference map, (b)  
automatic thresholding converts it into a binary map, (c)  
shape filtering extracts the fingertip positions, and (d)  
association generates high-level events (such as “motion”)  
for the client application. We detail each of these steps in the  
following subsections.

Foreground extraction
The literature abounds with variants of IDS. In order to  
characterize and compare these variants, we first propose a  
general model of IDS. An IDS variant can be modeled as the  
combination of three choices:
– the form of the background model,
– the metric used to compare the background model and the  

current image,
– the background maintenance process.

Background model. Background modeling is achieved by  
modeling each pixel variations. This pixel-level model can  
be as complex as a mixture of Gaussians in the Hue  
Saturation Value (HSV) color space [8] or as simple as a  
simple luminance value [6]. In our operating conditions,  
pixel variations are due to camera and lighting noise, and to  
background changes; they are roughly the same over the  
image. Consequently, we model the background as a simple  
image: each pixel of the model is the mean over time of the  
measured pixel values.

Comparison metric. We note that hand and fingers cast a  
shadow on the surface when they are close to it. If shadows  
are segmented as part of the foreground, they make the task  
of finger shape recognition very difficult because they  
extend the finger silhouette to arbitrary shapes and connect  
fingers together [6].

We propose a new metric that is purely color-based (hence  
naturally robust to shadows) and which simplicity supports  
computational optimization. It is the Euclidian distance  
between corresponding pixels in the (r,g) normalized  
chromaticity plane. We name it Chrominance Euclidian  
Distance (CED). The similarity between pixels p and p’ is  
computed as d(p, p’) given by

p = [R,G,B]

[r, g] = [R/(R + G + B), G/(R + G + B)]

d(p, p’) = ||[r, g] - [r’, g’]||

Figure 1 show an example of the similarity map obtained  
using the CED metric.

Background maintenance. In order to adapt the segmen-
tation process to a changing background, we maintain the  
background model Bg by computing the average of recent  
pixel measurements. This is approximated by a running  
average. Let the current frame be Im; the background model  
at time t + 1 is given by

The learning rate  is biased by the IDS results, i.e.  
given small values over segmented objects, and high values  
over the background.

Dealing with the projected feedback. I n  t he  ca se  o f  an  
interactive surface, we project visual feedback on the  
surface. The feedback changes the appearance of the  
background and thus causes a lot of false alarms in the  
difference map. As the projection on a white surface is much  
brighter than the physical objects in the scene, we can  
eliminate this effect by augmenting the camera gain  
(causing overexposure on purpose).

Automatic thresholding
The shape filtering stage presented below requires the  
similarity map to be transformed into a binary image. Since  
our segmentation method ignores luminance variations over  
the image, we use a uniform threshold . We determine  
automatically from the similarity map. A typical histogram  
of the similarity map exhibits two modes. The lower mode  
represents the background noise; it contains roughly 80% of  
the pixels. Ideally  should be chosen to eliminate this first  
mode while preserving the other mode(s). We approximate  
the first mode’s moments by its median ( ) and median  
absolute deviation ( );  is then given by

 

 being the similarity map at time t. The computed  
threshold is stable and empirically close to manually chosen  
thresholds.

Bg x y,( )
t 1+ α x y,( )

t Im x y,( )
t⋅ 1 α x y,( )

t–( ) Bg x y,( )
t⋅+=

α x y,( )
t

Fig. 1. Segmentation example using the CED metric.
Background model (a), current frame (b), similarity
map (c). The map is noisy but insensitive to lighting
and shadows, and provides high-resolution contours.
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Shape filtering
Shape filtering for fingertip detection (as introduced in [4])  
is a method that scales to any number of fingers with no  
performance hit because it processes the input image as a  
whole. The idea behind shape filtering is to use simple  
geometric criteria that characterize the searched object, and  
verify these criteria for each pixel in the (binary) image.

Formally, a geometric model can be presented as a set of  
binary characteristics,

where 0 stands for “the pixel doesn’t match” and 1 for “the  
pixel possibly matches the model”. The ck are independent,  
and ordered according to both their performance (low cost  
characteristics first) and the number of pixel they reject  
(characteristics that reject many pixels first). Once this is  
defined, the filter algorithm is trivial; we call its instances  
Fast Rejection Filters (FRFs):

for each pixel (x,y):
for each k:
if ck(x,y) = 0, skip pixel;

mark (x,y) as a candidate;
return the map of candidates.

A simple geometric model for the finger is a long rectangle  
ended by a half disc which size can vary between the  
smallest and the largest possible visible finger size ( 9 to  
20 mm). This model is illustrated by figure 2. Using the FRF  
formalism, we propose and implement a set of character-
istics inspired by [4] and [6] but improved by the use of a  
circle instead of a bounding rectangle. This way, we insure  
that our filter is not sensitive to finger orientation. Our filter  
characteristics are:

– c1: the pixel p is classified as foreground in the binary map;
– c2: p is within a region of connected pixels that is large  

enough to be a hand (20 sq. cm);
– c3: p is surrounded by a fully segmented disc ( 9 mm);
– c4: while scanning the contour C ( 20 mm) around p,  

exactly one connected component is encountered;
– c5: the distance AB is coherent with the size of a finger.

The successive rejection of pixels is illustrated on figure 3.  
The pixels that are not rejected by the filter are then  

clustered into groups of connected pixels. The output of the  
FRF is the list of (x,y) coordinates of the vertical and  
horizontal medians of these clusters. The algorithm  
parameters can be determined using only the view scale. In  
particular the perspective deformation of the camera view  
does not significantly hinder the filter.

Association
The output of the FRF has to be translated into events for the  
client application. The difficulty is to identify the fingers so  
that the same ID parameter is provided with the appear,  
motion and disappear events that concern one particular  
finger. We implement a very simple closest neighbor  
algorithm detailed in [1]. After receiving the FRF result, the  
algorithm executes the two following steps:
– each detected fingertip at frame t is matched to the closest  

memorized finger at frame t-1. If there is no memorized  
finger or the closest one is further than the distance  
threshold , we generate an appear event with a new finger  
ID. Otherwise, if the matched finger has moved of more  
than a fixed motion threshold, we generate a motion event.  
The motion threshold is introduced in order to satisfy the  
stability requirement of the tracker’s output.

– memorized fingers that were not matched to any fingertips  
in the previous step are forgotten and disappear events are  
generated with their IDs.

Since the speed of fingertips is typically under 2.5 m/s, we  
choose the distance threshold as the maximum finger  
movement per frame: for quarter-PAL frames at 25 Hz, we  
use 40 image pixels as the threshold. We actually add a  
50 ms. time window before generating an appear event and  
a 200 ms. time window before disappear events in order to  
add tolerance to false alarms and misdetections. The  
200 ms. time window allow the system to successfully track  
finger that are momentarily hidden to the camera by an  
occluding object.

Our system has no way to detect the contact of a finger with  
the surface corresponding to a mouse button event. We add a  
spatiotemporal filter on top of the association component of  
the system. This filter detects pauses in finger trajectories  
and reports a button event when a pause lasts more than  
300 ms.

c1 …cn,{ } ck x y,( ) 0 1,{ }∈

A

BC

p

Fig. 2. A simple geometric model of the fingertip,
used in our Fast Rejection Filter. (gray): the observed
finger; (dashed) the smallest and largest finger
models; (full circle) the scanned contour.
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Fig. 3. Typical output of our Fast Rejection Filter.
(right) rejection map: grey pixels where rejected by c1
or c2, black by c3, pink by c4, blue by c5. The detected
pixel clusters are white, their centers are represented
by red circles on the left image.
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All events are complemented by the (x,y) location of the  
finger at the time of the event, in display coordinates. The  
conversion between camera and display coordinates is  
achieved using an off-line, automatic calibration process. A  
set of 9 bright disks is projected on the surface at known  
coordinates. Their location is easily recovered in the camera  
image using automatic thresholding and connected  
component analysis, and the set of corresponding points is  
used to compute the projective transformation between  
camera and projector image [2].

EVALUATION SUMMARY
We evaluated the performances of the system as well as its  
usability during one formal (Fitts-like) and one informal  
user experiment. The following is a summary of the results  
of the evaluations.

Autonomy. When used in a stable, controlled lighting  
environment, the system is almost autonomous thanks to the  
automatic thresholding and camera-projector calibration  
algorithms. The only parameter is the view scale, which has  
to be determined manually.

Resolution and Stability. The PAL video stream is processed  
at quarter definition (388x284). While the output of the  
shape filter has sub-pixel accuracy, the instability of the  
video signal forces us to set a 1.6 pixel motion threshold  
before reporting a motion event. In our setup, the camera  
view is set to encompass the 100 cm x 75 cm surface. The  
resolution is thus approximately 4 mm which, with a  
1024x768 display, translates to 4 display pixels.

Latency. On a 1.4 Ghz PowerPC G4 machine, we measure  
an average latency of 80 ms with a standard deviation of  
18 ms. This is not ideal when considering the 50 ms  
requirement expressed in [7] but it is close to ideal.

Robustness. The typical robustness failures are taken care  
of by the system:
– Occlusions, as caused by the body or a limb, are rare in our  

setup (users are sitting around the table). On the other hand  
occlusions between different users’ hands are frequent. We  
compensate this problem by allowing a 200 ms time  
window before considering that a finger has actually  
“disappeared”.

– In spite of the simplicity of the “association” algorithm  
presented above, finger aliasing rarely occurs during  
tracking. This allows unconstrained user movements  
(except extremely fast ballistic gestures).

– Finally, the performance of the system doesn’t degrade  
when the number of tracked fingers increases.

Usability. During the formal experiment, we observed that  
our finger tracker supports target acquisition tasks with an  
efficiency that is in the same range as with a mouse. In the  
informal experiment, subjects were asked to spatially  
reorganize a set of photographs. Users easily interacted with  
the system. Bi-manual interaction was natural and  
frequently used. The main problem was to detach a finger  
from a photograph: the finger had to be hidden from the  
system. It seems suitable to introduce a 300 ms. pause for  
detaching (i.e. the same as for attaching).

CONCLUSION
Our finger tracker mostly satisfies the requirements of  
Human-Computer Interaction. It provides the location of  
more than 20 fingers at 25 Hz with 80 ms average latency,  
using commodity hardware. The output is stable and the  
tracker is robust to typical usage in a controlled lighting  
environment. User experiment shows that the system  
support efficient interaction. Our contributions include the  
modeling of two families of vision algorithms that are key to  
finger tracking, and a set of design choices for their instan-
tiation. Our Image Differencing Segmentation (IDS) is  
insensitive to shadows and our Fast Rejection Filter (FRF) is  
insensitive to finger orientation. 

This work can be improved in many ways. Its robustness  
should be maintained in a less controlled environment such  
as a train station or an airport hall. Also, providing more  
information (such as finger orientations and connection to  
the hand) will increase the design space of client developers.
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