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ABSTRACT
We present congestion puzzles (CP), a new countermeasure
to bandwidth-exhaustion attacks. Like other defenses based
on client puzzles, CP attempts to force attackers to in-
vest vast resources in order to effectively perform denial-
of-service attacks. Unlike previous puzzle-based approaches,
however, ours is the first designed for the bandwidth-exhaustion
attacks that are common at the network (IP) layer. At the
core of CP is an elegant distributed puzzle mechanism that
permits routers to cooperatively impose and check puzzles.
We demonstrate through analysis and simulation that CP
can effectively defend networks from flooding attacks with-
out relying on the formulation of attack signatures to filter
traffic. Moreover, as many such attacks are conducted by
“zombie” computers that have been silently commandeered
without the knowledge of their owners, the overheads that
CP imposes on heavily engaged zombies can increase the
likelihood that the computer’s owner detects the compro-
mise and takes action to remedy it.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection; C.2.6 [Computer-Communication
Networks]: Internetworking—routers

General Terms
Security
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client puzzle, denial of service

1. INTRODUCTION
Current Internet sites continue to suffer from a range

of distributed denial-of-service (DDoS) attacks, especially
bandwidth-exhaustion attacks. In a bandwidth-exhaustion
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attack, adversaries employ DDoS tools to capture a fleet of
“zombie” computers, from which they collectively generate
a huge volume of traffic to overwhelm the bandwidth of the
target network. As in many other types of denial-of-service
attacks, bandwidth exhaustion attacks can be mounted with
little cost to each zombie and its adjacent network, while in
aggregate imposing significant burden on the target.

In this paper, we present congestion puzzles (CP), a new
countermeasure to bandwidth-exhaustion attacks. A typical
puzzle is composed of a moderately-hard function; solving
the puzzle requires a brute-force search in the solution space.
Once a link adjacent to a router implementing the CP mech-
anism (a puzzle router) is congested, the router requires the
traffic flow to be accompanied by a corresponding computa-
tion flow, i.e., a continuous flow of puzzle solutions, thereby
imposing a computational burden on clients who transmit
via this router. The rate of the computation flow (average
number of searching steps per second) is tied to the band-
width consumed (bytes per second) by a puzzle-based rate
limiter (PRL) implemented in the router. As a result, this
coarsely requires from clients a computation flow commen-
surate with their bandwidth usage on the congested link,
thereby impairing their ability to sustain a flooding attack.
The consumption of CPU cycles in zombie computers may
additionally alert the unwitting owners of those computers
to their contribution to the attack, and motivate them to
repair their computers.

While the CP mechanism can be somewhat effective when
implemented by each router in isolation, our approach ad-
ditionally extends to a distributed puzzle mechanism (DPM)
through which a router can ask its upstream1 routers to help
control the attack flows before converging to the congested
link. DPM enables multiple routers to efficiently coordinate
with each other to generate and distribute puzzles and to
check puzzle solutions. On the other hand, DPM also has
routers work independently, and so is robust to attacks from
corrupted routers.

CP offers many other advantages among approaches for
defending against flooding attacks. First, unlike many pro-
posals for deploying defenses in the network (e.g., [25, 21,
39]), CP does not require the formulation of accurate at-
tack signatures by which routers detect or filter attack traf-
fic. Second, congestion puzzles support incremental deploy-
ment; our simulation results suggest that the bandwidth-
exhaustion attacks can be greatly mitigated with only a
small fraction of routers implementing CP. Third, we demon-
strate that CP permits lightweight implementation within

1Throughout the paper, we call the direction of attack flows
(from zombies to the victim) the “downstream” direction
and the reverse direction the “upstream” direction.
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routers. Fourth, since we apply puzzles at the network
(IP) layer, CP might assist in defending against higher-level
denial-of-service attacks, as well.

2. RELATED WORK

2.1 Countermeasures to bandwidth-exhaustion
attacks

Mechanisms to counter bandwidth-exhaustion attacks in-
clude aggregate-based congestion control [25, 21, 40], trace-
back [11, 8, 31, 34, 13, 4, 33] and filtering [17, 24, 36, 32,
22, 39].

Aggregate-based congestion control (ACC) has been pro-
posed by Mahajan et al. [25] and implemented by Ioannidis
and Bellovin [21]. This mechanism extends traditional flow-
based congestion controls [15, 35, 18, 26] so as to manage
packet flows at a finer granularity. An aggregate is defined
as a collection of packets that share some property (signa-
ture). ACC provides mechanisms for detecting and control-
ling aggregates at a router using an attack signature, and
a pushback mechanism to propagate aggregate control re-
quests (and the attack signature) to upstream routers. ACC
critically depends on the mechanism by which attacks are
detected and an attack signature is formulated, and this can
be a source of difficulty against an intelligent adversary that
varies its traffic characteristics over time. A goal of CP is
to avoid the need to formulate attack signatures.

A related congestion control mechanism is level-k max-
min fair router throttles [40]. The mechanism differs from
ACC in that a congested server is responsible for issuing
congestion-control requests to routers k hops away (denote
the set of these routers by R(k)) to help maximize the band-
width allocated to those receiving the smallest allocation
(max-min fairness). This approach does not depend on for-
mulating attack signatures, but offers fairness only to the
extent that the routers in R(k) can provide it. With a low
deployment depth (small k), it is possible that legitimate
clients’ flows may aggregate to a relatively high bandwidth
flow before reaching a router in R(k), thus being subjected
to rate limiting. Another limitation of the mechanism is
the assumption that all routers are trusted, which makes it
vulnerable to attacks from compromised routers.

Several methods focus primarily on filtering or tracing
spoofed traffic, such as ingress filtering [17], SAVE [24],
Centertrack [36], hop-count filtering [22], Pi [39] and nu-
merous works on traceback (e.g., [11, 8, 31, 34, 13, 4, 33]).
These approaches are of less utility against non-spoofed traf-
fic, and thus permit DDoS attacks from zombies using their
real source addresses. In addition, many of these schemes
rely upon some way of distinguishing attack packets from
legitimate ones, thereby again raising the difficulties of gen-
erating attack signatures. Finally, some filtering schemes
consider coordination among routers. For example, Shnack-
enberg et al. present an approach to express the interactions
between routers for blocking malicious traffic [32]. Our ap-
proach also supports such coordination within the context
of the CP mechanism.

Recently, Morein et al. propose an approach that uses
overlay network to protect web servers from congestion-
based DDoS attacks [27]. An overlay network is composed
of a set of nodes across the Internet. The routers around the
protected web server admit HTTP traffic from only trusted
locations known to overlay nodes. A client who wants to

connect to the web server has to first pass a reverse Tur-
ing test posed by an overlay node, which then tunnels the
client’s connection to an approved location so as to reach
the web server. This approach, however, does not solve the
general bandwidth-exhaustion problem: First, adversaries
might still be able to use other protocols (e.g., UDP) or the
traffic addressed to a less sensitive server to congest routers
on paths to the web server. Second, this solution is tailored
to protocols driven by human users, who can be called upon
to pass a reverse Turing test. Third, once adversaries have
implanted zombies at overlay nodes or routers, they might
circumvent the defense mechanism.

2.2 Client puzzles
Client puzzles have been proposed to defend against denial-

of-service attacks in the context of TCP (e.g., [23, 38]), au-
thentication protocols (e.g., [5]), and TLS (e.g., [14]), to
name a few. To our knowledge, no puzzle protocol has
been proposed to defend against DDoS attacks on the IP
layer. Feng has argued the importance of implementing
puzzles at the IP layer, because otherwise, any upper-level
puzzle protection is still vulnerable to the DDoS attacks
at this layer [16]. Feng further discussed desirable proper-
ties for IP puzzles, including efficiency; resistance to misuse
and circumvention; fairness (in the sense that misbehav-
ior should be punished); fine-grained control; and a simple
and incentive-compatible path for deployment. We believe
our proposal is satisfies many of these desiderata. Further-
more, our mechanism is compatible with existing network
protocols and can operate in a decentralized way, so that
multiple upstream routers can cooperate to defend against
a bandwidth-exhaustion attack.

Whereas most puzzle proposals impose a number of com-
putational steps to generate a solution, there exist other
types of puzzles. Abadi et al. propose a “memory bound”
puzzle that imposes memory accesses upon clients in an ef-
fort to impose similar puzzle solving delay even on differ-
ent hardware [3]. Gligor presents an attractive approach
that utilizes reverse Turing tests as puzzles to prevent auto-
mated flooding in network protocols that should be driven
by humans [20]. A similar approach also appears in [27].
Gligor also offers insightful comments on the weaknesses
of computation-based puzzles in providing guaranteed ac-
cess for end-to-end services during DDoS attacks. At the
IP layer, however, service is characterized by “best effort”
delivery, with the goal of max-min fairness in bandwidth al-
location [9]. Computation-based puzzles do have the poten-
tial to achieve this goal coarsely, and offer various pragmatic
benefits: such puzzles are easier to generate and require less
state in comparison to other types of puzzles.

3. ATTACK MODEL
We assume that adversaries can modify at most a small

fraction of the legitimate packets destined for the target
server or network. Attackers capable of tampering with
these packets on a large scale do not need to flood the tar-
get’s bandwidth. Instead, they can launch a DDoS attack by
simply destroying these packets. However, our mechanism
still works well when attackers have a limited capability to
interfere the communication between the legitimate clients
and the target server or network.

We also assume that adversaries cannot eavesdrop on most
legitimate clients’ flows. In practice, monitoring a large frac-
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tion of legitimate clients’ flows is difficult in wide area net-
works. This assumption allows us to employ very lightweight
authentication schemes using sequence numbers or authen-
tication “cookies”.

We allow adversaries to forge any information in the pack-
ets they send, to coordinate their zombies perfectly, and
to compromise some routers. Adversaries capable of spoof-
ing packet information can simulate legitimate clients’ traf-
fic. With perfect coordination, adversaries might manage to
reuse puzzle solutions through different routing paths to the
target, in the hopes of circumventing the puzzle checking
mechanisms distributed over multiple upstream routers.

4. CONGESTION PUZZLES (CP)

4.1 Overview of the CP mechanism
Before presenting the mechanism, we begin by adopting

a particular puzzle type. Here we employ a puzzle similar
to that of [5], consisting of a server nonce Ns created by
the congested router and a client nonce Nc created by the
client. A solution to this puzzle is a string X such that
the first d bits of h(Ns, Nc, X) are zeros, where h is a pub-
lic one-way hash function. We call d the puzzle difficulty.
We presume that generating candidate values for X is of
negligible computational cost, and so treat the verification
of a candidate X (i.e., an application of h) as the cost of
a trial. This puzzle construction has the property that a
congested router needs to generate a server nonce only once
for clients to solve multiple puzzles. On the other hand, to
avoid keeping too many client nonces for filtering duplicate
puzzle solutions, the router will have to update its server
nonce periodically. We call such a period the nonce period.

In order to transmit packets on a congested route, a client
should install a puzzle client program. This is an appli-
cation program that interacts with the operating system
only through the standard application programming inter-
face (API). This greatly enhances its ease of deployment:
e.g., it could be automatically installed from trusted web
sites. A client would have incentives to install this program
because it increases the client’s likelihood to get her pack-
ets through during network congestion. In the rest of this
paper, we refer to a client with the puzzle client software
installed as a “puzzle client”.

The CP mechanism is mainly implemented in routers. A
puzzle router will trigger the CP mechanism when an out-
bound link experiences sustained severe congestion, which
can be detected by standard methods (e.g., [25]). For in-
stance, a router may monitor the loss rate on the link: If
the loss rate exceeds a threshold for several seconds, the
router activates the puzzle mechanism.

Once activated, the CP mechanism distributes puzzle pa-
rameters (such as a server nonce and difficulty level) to
clients, requiring computation flows (puzzle solutions) for
traffic traversing the congested link. The manner in which
these parameters are sent to the appropriate clients is de-
tailed in Section 4.2. At a puzzle router’s interface, a puzzle-
based rate limiter (PRL) controls the rate of the inbound bit
flows on the basis of the computation flows. We describe this
mechanism in Section 4.3.

During a bandwidth-exhaustion attack, a single router
usually cannot protect its bandwidth alone. Our solution
lets the router push congestion control requests to its up-
stream routers, which can help prevent the attack flows from

converging to the congested router. This is achieved using
a distributed puzzle mechanism that allows puzzle routers to
generate and distribute puzzles and to validate puzzle solu-
tions in a distributed way. We present this mechanism in
Section 4.4.

4.2 Puzzle distribution algorithms
A congested router needs to propagate a congestion notifi-

cation and puzzle parameters to the sources (puzzle clients)
of the responsible traffic. Moreover, it needs to periodically
update its server nonce at these puzzle clients. Here, we
present an algorithm that achieves these goals efficiently.

Our algorithm is based on ICMP messages [28]. ICMP
is a set of control protocols that provide feedback about
problems in Internet communication. An example is PING
in which a client sends an echo request to a server to test
whether it is reachable; upon receiving the echo, the server
replies with the request message. The ICMP header starts
with an 8-bit type field that determines the rest of the header;
so far, 41 of the 255 available type values have been used by
various protocols [6]. The PING echo request (ICMP type
8) also has a 16-bit identifier field and a 16-bit sequence
number field to aid in matching echos and replies.

Our approach defines two new types of ICMP messages, a
probe packet and a puzzle-solution packet, by which a puzzle
client communicates with a congested router. These mes-
sages are constructed similar to PING messages, except that
they are identified through new type values. A puzzle client
uses probe packets to solicit a congestion notification and
initial puzzle parameters from a congested router. A puzzle
client uses a puzzle solution packet to deliver puzzle solu-
tions to the router. A puzzle client further takes advantage
of puzzle solution packets to solicit updated puzzle param-
eters. So as to permit seamless transition between puzzle
parameter updates, routers permit overlapping nonce peri-
ods so that both old and new puzzle parameters are allowed
for use during a transition period. We denote this transition
period by T .

Upon issuing one of these message types, the puzzle client
generates and includes a random string called an authenti-
cation cookie in the message payload. Using this cookie, any
router receiving the message can include this cookie in any
response to the client, to authenticate itself to the client.2

In addition to an authentication cookie, a probe message
contains a payload of blank space, of length equal to that
needed to store puzzle parameters (the difficulty level and
server nonce). A puzzle-solution packet contains puzzle pa-
rameters, a puzzle solution and blank space for updating
puzzle parameters. How routers process these messages is
described below.

Puzzle distribution

Monitoring
Each puzzle client monitors network activity of its lo-
cal system. Whenever the client system visits an IP
address, the puzzle client sends probe messages to that
address periodically. If there is no congestion, these
messages are silently dropped by either the destina-
tion host or the router directly connected to that host.

2Recall that adversaries are assumed to have only limited ca-
pability to eavesdrop and intercept legitimate clients’ pack-
ets. Other authentication mechanisms, once deployed, also
can be used in our approach.
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Distributing congestion notifications
Once a puzzle router detects congestion on one of its
outbound links, it generates a server nonce, activates
a puzzle-based rate limiter (Section 4.3) and admits a
constant flow of probe messages to the congested link
from each of its inbound interfaces. For every probe
message received, the router inserts the server nonce
and puzzle difficulty into its payload (in addition to
the authentication cookie), and changes the type of
the message to PING echo request. This message will
therefore elicit a PING reply to the client containing
these parameters.

Updating puzzle parameters

1. Upon receiving a PING reply, the puzzle client
first checks the reply with the authentication cookie
it contains. If correct, the client stops probing
and starts sending puzzle solution packets to the
IP address it is visiting (Section 4.3).

2. Upon receiving a puzzle solution packet, the con-
gested router utilizes the puzzle in a rate lim-
iting algorithm; see Section 4.3. If the router
has updated its server nonce and/or requested
difficulty level, it places these new values into
the packet payload (along with the authentica-
tion cookie), sets the packet type to PING echo
request, and forwards it. This message will thus
elicit a PING reply from the destination host to
inform the client of the new puzzle parameters.

3. If a puzzle client does not receive any PING replies
within a period T , it stops sending puzzle solution
packets and starts sending probe messages.

The cost of puzzle distribution is modest. The extra traf-
fic caused by probe messages takes only a small portion of
bandwidth because a probe packet will typically be much
smaller than the packets in a communication flow. To add
or update puzzle parameters in a packet, a router only needs
to overwrite existing payload fields.

4.3 Puzzle-based rate limiter (PRL)
During a bandwidth-exhaustion attack, every puzzle client

sending packets through a congested link is supposed to gen-
erate a virtual “computation flow”. The average rate of this
computation flow rc (average number of hash operations per
second) is tied to the rate of the client’s bit flow rb (bytes
per second) through a public control function F :

rb ≤ F (rc, d) (1)

where d is the difficulty level of puzzles. F is an increasing
function of rc and a decreasing function of d.

We assume the hash function of our puzzle is a random
function (i.e., random oracle [7]). That is, for each input, the
hash function independently and randomly (with uniform
distribution) maps it to an output in its range. The only
restriction is that the same input always yields the same
output. In practice, a good candidate for random oracle
is MD5 with its output truncated [7]. The random oracle
model gives us a geometric random variable for the steps
used to solve a puzzle. Specifically, to solve a puzzle with
initial d (or more) zero bits, a hash step can be viewed as a
Bernoulli experiment with a probability of 2−d to succeed.
Therefore, the average number of hash operations for finding

a solution is 2d. With this model, a simple construction of
the control function is as follows:

F (rc, d) = α2−drc (2)

where α is a parameter called control ratio measured by
bytes per hash operation. The control ratio describes the
relation between bit flow and computation flow. For exam-
ple, α = 10, 000 means that to sustain a bit flow of a rate
rb = 10, 000 bytes/second, the client is expected to perform
2d hash operations/second, equivalent to solving at least one
puzzle no easier than d per second on the average.

A puzzle router uses the control function to limit the rate
of congestion flows (flows heading toward the congested link)
at its network interfaces. This mechanism is called puzzle-
based rate limiting (PRL). Without direct observation of
computation flow, PRL estimates rc as rp2

d, where rp is
the rate of puzzle solutions no easier than d. Specifically,
PRL implements a token bucket and a virtual waiting queue
at each network interface. For every inbound puzzle-solution
packet carrying a correct puzzle solution, PRL adds α tokens
to the token bucket at its inbound interface. An inbound
packet will be forwarded toward the congested link by re-
moving number of tokens equal to the packet size from the
token bucket. When the tokens are depleted, PRL decides
on the fate of the packet according to the virtual waiting
queue. If there is sufficient room for queuing the packet,
PRL forwards it. Otherwise, PRL discards it. We illustrate
the mechanism in Figure 1.

Computation flow:
Puzzle solutions Validate puzzle 

solutions

Token available?

Y: remove tokens
and forwardBit flow:

Packets

Token bucket

Virtual waiting queue

Figure 1: Puzzle-based Rate Limiter

If a puzzle router needs to forward puzzle-solution packets
to the next hop (Section 4.4), these packets also need to be
rate limited by the token bucket because they also belong to
the congestion flows, even though the puzzle solutions they
carry are part of computation flows. This prevents adver-
saries from using puzzle packets to aggravate the congestion.

The CP mechanism may control the high-bandwidth flows
by tuning puzzle difficulty d. PRL has two thresholds: th2 >
th1. If the loss rate of rl bits/s at the congested link exceeds
th2, PRL raises d until the loss rate drops just below th2

but above th1. If rl < th1, PRL starts to reduce d. PRL
may raise d quickly to suppress attack flows, while lower-
ing d slowly and carefully to prevent intermittent attacks.
A problem here is that the puzzle difficulty d only gives a
very coarse control of the congestion flows, suppressing rb

exponentially. This can be complemented by fine-tuning the
control rate α to maximize the bandwidth utilization.

The idea of PRL is to constrain the upper bound of rb with
rc and d. For this purpose, it is not important for a puzzle
router to determine whether a particular puzzle solution is
correct or not, as long as the router can make a good estimate
of rc. Therefore, the router only needs to randomly sample
some of the puzzle-solution packets to estimate the ratio of
wrong solutions. We will elaborate on this in Section 5.
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The basic PRL mechanism does not differentiate between
congestion flows according to their source IPs: As long as
they arrive on the same network interface and are destined
to the same congestion IP (the destination IP or IP prefix to
which a significant fraction of traffic is destined3 ), they are
all controlled by the same token bucket. This gives adver-
saries opportunities to “free ride” on legitimate clients’ puz-
zle solutions, i.e., if their attack traffic arrives on the same
interface as the legitimate clients’. This problem would be
mitigated with the wide deployment of puzzle routers, since
they can better separate the bit flows from different sources
based on inbound interfaces. However, when only a few
routers have implemented puzzles, free riding could be sig-
nificant.

Here, we design a simple algorithm to mitigate this prob-
lem, called IP caching. For each interface, a puzzle router
randomly caches a small set of source IPs or IP prefixes from
the incoming puzzle-solution packets. For each IP or IP pre-
fix cached, PRL employs a separate token bucket (called IP
bucket) to control its bit flow. The rest of the congestion
flows are handled by a main bucket in the same manner as
the basic PRL. PRL updates its IP cache with a least fre-
quently used (LFU) algorithm: When the cache is full, the
IP whose bucket has the fewest tokens added within some
period will be merged into the main bucket, to make room
for another IP bucket. A more detailed description of the
algorithm will be presented in the full version of this paper.

Although adversaries may use spoofed source addresses,
without the ability to deploy zombies arbitrarily or to eaves-
drop globally (Section 3), they will be unable to free ride on
the vast majority of legitimate clients’ flows. The adver-
saries may also try to use randomly generated source IPs
to fill a puzzle router’s cache. This attempt can be dis-
couraged with the LFU algorithm: If the adversaries cannot
solve a sufficient number of puzzles for these IPs, they will
be quickly removed from the cache. In our experiments (Sec-
tion 7.2), we found that the effectiveness of PRL improved
greatly with only a small set of IPs cached in the puzzle
routers.

4.4 Distributed puzzle mechanism (DPM)
During a bandwidth-exhaustion attack, a router usually

cannot protect itself alone. A cooperative solution, which
involves upstream routers to help throttle the attack flows,
could offer better defense [19]. At a high level, a con-
gested puzzle router may pass a congestion notification in-
cluding congestion IPs and its puzzle parameters to up-
stream routers, requesting that they activate PRL to pre-
vent attack flows from converging. This, however, may not
work well if adversaries manage to send duplicate puzzle
solutions through different paths to the victim. Since indi-
vidual routers do not have a global view, they cannot de-
termine whether a puzzle solution has already been used on
another routing path, and thus are unable to prevent the
attack flows from reaching the congested router. In this
section, we present a distributed puzzle mechanism (DPM)
to counter this attack.

Our distributed puzzle mechanism requests individual puz-
zle routers on the puzzle distribution paths to generate their
own path nonces and attach them to the congestion notifi-
cation during the puzzle distribution phase. On the path

3This IP adress or IP prefix can be obtained using an ap-
proach proposed in [25].

from the congested router to a client, we denote the path
nonce of the ith router (starting from the first router up-
stream of the congested router) by Ni. We call the sequence
Ns|N1|N2 · · · |Ni−1|Ni router i receives from its downstream
routers4 (including itself) the nonce sequence.

For two nonce sequences L1 and L2, we denote by L2 ∈ L1

if L2 is a prefix of L1; we also denote the part remaining af-
ter deleting the contiguous sequence L2 from L1 by L1−L2.

Distributed Puzzle Mechanism (for puzzle router i)

Upon receiving a congestion notification M on interface I

1. Randomly generate a path nonce Ni, append it to
M and save the nonce sequence Li = Ns|N1| · · · |Ni

and the congestion IPs.

2. Forward M to the upstream neighbors from which
packets with congestion IPs come.

3. Activate PRL on all inbound interfaces except I
to control the flow with congestion IPs.

Upon receiving a probe packet
Process as a normal probe packet, using Li as the
server nonce.

Upon receiving a puzzle-solution packet with a nonce se-
quence L = Ns|N1| · · · |Nk|Nc

1. if (Li �∈ L) then drop the packet and return.

2. if (L− Li appeared before) then drop the packet
and return.

3. Validate the puzzle solution (Section 5.1) and then
save L− Li for checking repeated puzzles.

4. Forward the puzzle-solution packet to the next
hop.

For solving puzzles or validating solutions, nonce sequences
are treated as server nonces. Each router i also takes the
sequence of path nonces starting from its upstream neighbor
to the puzzle client (i.e., L− Li) as the client nonce, which
we call the client nonce sequence. Figure 2 illustrates the
mechanism.

0 1 2 cn
Ns

Ns|…Nc|X Ns|N1|…Nc|X Ns|…Nn |Nc|X

Ns|N1 Ns|N1…|Nn

Congested 
router

Puzzle distribution

Puzzle solutions

Puzzle
clients

client nonce sequence

0’s nonce sequence 1’s nonce sequence n’s nonce sequence

client nonce sequence client nonce sequenceTo other
clients

Figure 2: Distributed Puzzle Mechanism. X represents the
puzzle solution.

By using path nonces, DPM gives different responders
different puzzles (nonce sequences), thus preventing the ad-
versary from replaying the solutions via different paths.

DPM can also be used to mitigate multiple congested links
occurring simultaneously on a routing path. In this case,
individual congested routers need to specify their own puzzle
difficulty levels, while sharing the same nonce sequence. A
puzzle client then has to solve the puzzle with the highest
difficult level according to these routers’ specifications.

4Recall Ns is the nonce of the congested router.
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5. IMPLEMENTATION COSTS
In this section, we show that with a proper management,

the overheads of the CP mechanism (in terms of both com-
putation and memory) can be easily afforded by a modern
router.

5.1 Probabilistic validation of puzzle solutions
Essentially, our puzzle-based rate limiting controls the

rate of bit flow rb according to the rate of computation flow
rc. This implies that a puzzle router does not need to know
whether a particular puzzle solution is correct, as long as it
can reasonably estimate rc. Probabilistic validation (PV) is
based on this idea. Specifically, a puzzle router employs a
sampling probability pc to determine whether to validate an
inbound puzzle-solution packet; if the packet goes without
being validated, the router tosses another coin biased to a
false probability pe (see below) to decide whether to add to-
kens into the token bucket or not. This process is illustrated
in Figure 3.

Filter duplicate
client nonce Check solution?

Add tokens?

Check 
solution

Save 
nonce

Add to 
token bucket

Yes: pc

No: 1- pc

Yes: 1-pe

No: pe

Correct solutions

Figure 3: Probabilistic Validation. “A:p” refers to an event
A (Yes or No) that happens with a probability p.

The false probability pe represents the ratio of false puzzle
solutions contained in the current computation flow, which
is estimated from puzzle solutions sampled in the recent
past. This raises two research questions, however: (1) how
to choose the sampling probability pc and (2) how to esti-
mate the false probability pe.

Intuitively, one can use a constant pc, that is, sample ev-
ery puzzle-solution packet with the same probability. This
treatment, however, does not work well due to the varia-
tion in the arrival rate of these packets that the router must
accommodate. In particular, an adversary may produce a
large volume of such packets in an effort to depleting a puz-
zle router’s CPU resources. Therefore, we employ a dynamic
sampling probability such that when the arrival rate is within
a puzzle router’s processing capability, most puzzle solutions
will be validated. When the arrival rate grows, the router
reduces the number of samples to protect its CPU resources.

We design a very simple dynamic sampling method. At
time t, a puzzle router first estimates the packet arrival
rate of puzzle-solution packets rt

a with a typical exponential-
averaging rate estimator [35]. Then, the router compares rt

a

with a sampling index η, which roughly indicates the average
number of hash (e.g., MD5) computations the router is will-
ing to perform in one second for every interface, to compute
the sample probability at time t as pt

c = min{ η
rt

a
, 1}. This

sampling probability changes dynamically with the packet
arrival rate of puzzle-solution packets.

A follow-up question is how to estimate the false probabil-
ity pe. Since every sample has been chosen with a different
probability, a simple averaging over all the validation results
gives a biased estimate of the ratio of false puzzle solutions.

Here, we present two simple estimators which works well
with dynamic sampling: weighted averaging (WA) and ex-
ponential averaging (EA).

At time t, WA averages the validation outcomes of the
sampled puzzle solutions, weighted by the inverse of the
sample distribution over all puzzle-solution packets received
before t. In other words, it gives the samples drawn with
small pc heavy weights and these with large pc light weights.5

Specifically, WA works as follows. The router keeps the
total number of puzzle-solution packets received before t:
Θt and the sum of all the sampling probabilities before t:

Wt =
�

t′≤t pt′
c . On validating a puzzle solution at time t,

the router increases the total number of samples: n← n+1
and updates a value V . If the puzzle solution is correct,
V ← (1 − 1

n
)V ; otherwise, V ← (1 − 1

n
)V + 1

npt
c
. Then

the estimate of the false probability pt
e can be computed as:

pt
e = min{WtV

Θt
, 1}. The router can reset all the parameters

whenever the congested router changes the puzzle difficulty.
Sometimes, adversaries may change their strategy during

a DDoS attack. For example, they could honestly solve puz-
zles initially, and then suddenly produce large numbers of
false solutions. In this case, an estimator that can quickly
adapt to the adversary’s behavior is desired. One such esti-
mator that works well in practice is exponential averaging.
EA is as simple as follows: If the router samples a correct
puzzle solution at time t, then pe ← (1 − λ)pe; otherwise,
pe ← (1 − λ)pe + λ, where 0 < λ < 1 is a small constant.
The idea of EA is to bias the false probability towards the
most recent observations. Therefore, it reflects the adver-
saries’ recent strategy. It does not even need to compensate
for the dynamic sampling, given that an appropriate λ is
chosen to give a weight to the new sample. In our experi-
ments, we have observed that EA achieved a slightly better
performance than WA.

Both EA and WA make a good estimate of rc with a very
small number of samples. Our experiments show that during
a bandwidth-exhaustion attack, a router sampling no more
than 80 puzzles per second (80 MD5 operations6/second)
controlled congestion flows effectively. Such computing loads
would effect a modern router negligibly. For example, a
route-switch processor (RSP) of Cisco 7500 series router [2]
has a MIPS 4600 CPU with a clock speed ranging from
100Mhz to 250Mhz. In his paper on MD5 performance [37],
Touch shows the performance of optimized MD5 on a com-
parable CPU MIPS 4400 (with a clock speed 150Mhz) can
achieve a rate of about 51.2Mbps. A puzzle-solution packet
usually does not exceed 100 bytes. Therefore, performing
100 MD5 operations per second takes only about 0.16% of
the router’s CPU time. From router CPU usage graphs
posted on the Web7, we conclude that routers generally

5Essentially, WA and dynamic sampling are similar to the
importance sampling in statistics, which concentrates sam-
pling on the important part of a dataset. The difference is
that in a DDoS attack, it is hard to tell which part of a com-
putation flow is important: Adversaries with perfect coordi-
nation among their zombies can manipulate the flow. Here,
the dynamic sampling just serves for protecting routers from
exhausting its computing resources.
6MD5 operation here refers to the operation of computing
an MD5 hash function with the puzzle parameters as input.
7For example, http://supervisor.etsi.org/mrtg/
routers/212.234.161.57.9.html, http://www.net.fiu.
edu/mrtg/cpu/fiulrcpu.html.
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would have plenty of available compute cycles to handle this
load.

5.2 Minimizing the memory for storing client
nonces

In order to prevent adversaries from reusing puzzle so-
lutions, a puzzle router is expected to keep all client nonce
sequences (except those in invalid puzzle solutions) through-
out a nonce period. This may constitute a considerable
memory expense. In this section, we show how to use a
space-efficient data structure called Bloom filter [10] to com-
press the required storage to a size acceptable to a modern
router.

A Bloom filter is implemented using a large bit vector
with m bits. The bit vector initialized to zeros. For every
new puzzle-solution packet, the Bloom filter employs k in-
dependent uniform hash functions to map the client nonce
sequence to k bits in the vector and then sets each of these
bits to 1. Bits can be set multiple times.

A duplicate client nonce sequence can be easily detected
by computing the k bits with k hash functions. If any one of
these bits is zero, the client nonce sequence has not appeared
before within the current nonce period. If all bits have been
set, it is highly likely that the puzzle solution is duplicate.
It is possible that some unused nonce happens to collide
with these stored in the Bloom filter, thereby causing a false
positive. However, the probability of the false positives can
be controlled.

The hash functions implemented in the Bloom filter can
be very light-weight, e.g., much more efficient than MD5,
since no cryptographic strength is required for these hash
functions. Specifically, it does not have to be difficult to
find the preimage given a hash image. Previous research
presents promising candidates, e.g., the salted CRC-32 [33],
which can perform at link speed.

One prominent property of a Bloom filter is that there
is an explicit tradeoff between the size of the filter and the
probability of false positive. Let n be the maximal number
of nonces a puzzle router plans to store. After the Bloom
filter is full, the probability of a false positive is: P = (1−
(1 − 1

m
)kn)k ≈ (1 − e

−kn
m )k. For example, with m = 16n

and k = 8, the false positive probability is about 0.00058.
This gives legitimate clients 25 hops away a mistaken reject
rate less than 0.015.

Modern routers could afford the memory for implement-
ing a Bloom filter. Snoeren et al. even suggest to use this
method to record the trace of every packet traversing a core
router [33]. Their research further shows that mere soft-
ware support is sufficient for slow-to-medium speed routers
(up to OC-12). With proper hardware support, it works
for fast routers (OC-48 and faster) [30]. Our approach only
records the trace of nonces in a nonce period and thus re-
quires smaller memory in general.

For example, a Cisco 7500 series router has a packet switch
capability up to 2.2M packets/second.8 Given a (m/n) ra-
tio of 16, if all these packets are puzzle solutions, a puz-
zle router needs 88MB memory to keep all the client nonce
sequences within a nonce period of 20 seconds. On the
other hand, even the memory on a single RSP can be ex-
tended to 256MB or more [2]. Actually, this throughput of
puzzle-solution packets is unreasonable because these pack-

8The length of the packet is usually set to 1000 bits.

ets are used to reserve the bandwidth. Let rp be the rate
of the puzzle-solution packets. Since the puzzle router es-
timates the rate of computation flow as rp2

d, this packet
rate can reserve a bandwidth up to rpα (see (2)). This
suggests that rp (packets/second) should not exceed 1

α
of

the total bandwidth (bytes/second) too much. For exam-
ple, given α = 10, 000, a puzzle-solution packet rate of 1M
packets/second does not make sense on a 1Gbps link be-
cause this puzzle flow attempts to reserve a bandwidth up
to 80Gbps, far beyond the link’s capacity. Therefore, a puz-
zle router can use some standard rate limiter [25] to limit
the arrival rate of puzzle-solution packets to an appropri-
ate ratio of its switch/forward capability, before the puzzle
flow is processed by PRL. Here we take a ratio of κ

α
, where

0 < κ ≤ α is a constant. With κ = 1 α = 10, 000, the size
of the Bloom filter is reduced to 1.1MB, which can be easily
built into modern routers.

6. SECURITY ANALYSIS

6.1 Fairness in bandwidth allocation
An important goal for the current best-effort Internet is to

fairly allocate available bandwidth among competing users.
The classic principle of fairness is max-min fairness [9]. For-
mally, let {1, · · · , U} be the set of sources competing for a
link with a capacity C. Let Z = (x1

b , · · · , xU
b ) be the vec-

tor of bit rates these sources demand. Let (r1
b , · · · , rU

b ) be
the rate allocation to these sources. An allocation is feasi-
ble if

�
i∈Z ri

b ≤ C. A feasible allocation is max-min fair

when it is impossible to increase a source i’s allocation ri
b

given ri
b < xi

b, without losing feasibility or reducing the rate

of another source i′ with an allocation ri′
b ≤ ri

b. Roughly
speaking, this principle says that an allocation should give
the largest possible share of the bandwidth to those sources
with the lowest demands for bandwidth, while at the same
time not wasting any bandwidth. In bandwidth-exhaustion
attacks, adversaries strive to violate this principle, obtaining
an unfair share of bandwidth.

Here, we discuss how congestion puzzles help achieve a
“weighted max-min fairness”, allocating the bandwidth fairly
with regard to individual clients’ computation efforts. For
simplicity, we analyze the CP mechanism over a simplified
model of deployment: If a puzzle router’s shortest path to
the congested router is composed of other puzzle routers,
we say it belongs to a “core”. On the boundary of the
core, puzzle routers are linked to legacy routers not sup-
porting puzzles through their network interfaces. We call
these puzzle routers “boundary routers”. The core can clas-
sify all the packets heading towards the congested link into
multiple “flows” according to buckets (IP buckets or main
buckets), inbound interfaces and the boundary routers from
which they enter the core. In other words, each flow can
be characterized by the attribute vector (bucket, interface,
boundary router), which we refer to as a virtual “port”; de-
note these ports 1, · · · , U . Let x1

b , · · · , xU
b be the bit rates

these ports demand, let r1
c , · · · , rU

c be the rates of computa-
tion flows on these ports, and let r1

b , · · · , rU
b denote the bit

rates allocated to each port.
Upon tuning the control parameters (including the puzzle

difficulty d and control ratio α) to the level such that the
bandwidth of the congested link has been just allocated,
the bandwidth allocation of the congested link (r1

b , · · · , rU
b )
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will become a “weighted max-min fair” allocation, in the
following sense: for each port i, any increase in ri

b given ri
b <

xi
b will cause a decrease in the rate ri′

b for some other port

i′ satisfying ri′
b /ri′

c ≤ ri
b/ri

c. Intuitively, this holds because
a port i with a low demand and a high computation flow
rate such that xi

b/ri
c ≤ α2−d will get all the bandwidth it

asks for, i.e, ri
b = xi

b; otherwise, the port will get a fair share
of bandwidth proportional to the rate of its computation
flow ri

b = α2−dri
c. Therefore, to obtain a large share of

bandwidth, an adversary must generate computation flows
with sufficiently high rates to sustain their demand.

6.2 Robustness against thwarted routers and
other misuses

An important security feature of the CP mechanism is
that a malicious upstream router can only affect the clients
sending packets through it, not any other clients, because
its downstream neighbor will control its flow. Some other
mechanisms, such as the level-k max-min throttle [40], do
not have this feature.

Authentication cookies prevent the adversary from cheat-
ing clients into solving puzzles by using false replies to probe
packets. Even in the case that adversaries have captured a
router, they still cannot force puzzle clients without traffic
going through the compromised router to solve puzzles.

Recently, Price has reported an attack on puzzle proto-
cols [29] in general, in which (in our context) a thwarted
router may claim a false congestion and pass the puzzles is-
sued by a congested router to the puzzle clients whose bit
flows go though the malicious router. In this way, the ad-
versary may recruit some clients to unwittingly solve puzzles
for him.

This problem can be addressed by routers requiring the IP
address that a puzzle client is visiting to be a part of its client
nonce, and discarding puzzle-solution packets that do not
satisfy this constraint. Then, unless the puzzle client does
have packets through the congested link (and thus should be
solving puzzles anyway), the malicious router cannot utilize
solutions generated by such puzzle clients.

This treatment, however, still cannot prevent adversaries
from coaxing clients into solving puzzles by using other pro-
tocols. For example, they may host a music sharing web-
site to ask each visitor to solve a puzzle before downloading
songs [29]. Such a threat becomes credible only when the
adversary is able to field a service so attractive that a large
number of clients are willing to burn their CPU cycles in
exchange. Even if the adversary can do so, the expense to
maintain the service may also be considerable. Essentially,
this is analogous to paying someone money for solving puz-
zles. Although the adversary may avoid computation costs,
he has to pay for the attack in the other way.

7. EXPERIMENTS
In this section, we evaluate the performance of congestion

puzzles under bandwidth-exhaustion attacks. Our experi-
ment is based on NS-2 [1], the most widely used network
simulator, and CAIDA’s Skitter map [12], a traceroute map
of real Internet topologies. Due to the limitations of NS-2,
we had to keep the scale of our simulation within thousands
of nodes. However, we also limited the bandwidth of con-
gested link to only 20Mbps. We believe that a realistic net-
work with higher bandwidth (eg., 1Gbps) could withstand
larger scale attacks by using our techniques.

From the skitter map, we randomly selected 1,500 paths.
Each path ends with an end host. We randomly chose 500
hosts as legitimate clients. The number of zombies was set
to 100, 300, 500, 800 and 1,000. Their locations were also
randomly drawn from the end hosts.

On the basis of the 1,500 paths, we constructed a network
with NS-2. A congested link which was the adversaries’ tar-
get connected a web server to the network. The bandwidth
of the congested link was set to 20Mbps and every other
link to 30Mbps. Each legitimate client simulated traffic
for browsing web pages withthe NS-2 web traffic generator.
Each adversary produced UDP packets at a constant rate of
300Kbps to target the congested link. The minimum rate
of the attack traffic (with 100 adversaries) was 30Mbps and
the maximum rate (with 1,000 adversaries) was 300Mbps.

The congested router has a nonce period of 20 seconds.
Each end host installed a puzzle-client agent. On receiving
congestion notification, each puzzle client started to contin-
uously solve puzzles of the difficulty level d given by the
congested router. We set the time to perform one MD5 op-
eration to 10 microseconds. Each puzzle client determined
the number of MD5 steps n for finding a puzzle solution ac-
cording to a geometric random variable with a distribution
(1 − 2−d)n−12−d. This realistically simulated the puzzle-
solving delay. After solving a puzzle, the puzzle client sent
a puzzle-solution packet to the congested router.

7.1 Puzzle difficulty
We first evaluated the performance of congestion puzzles

using different levels of puzzle difficulty. Figure 4 top de-
picts the impact of puzzle difficulty (x-axis) on the legiti-
mate clients’ packet acceptance rate (the number of packets
sent vs. the number of packets received by the web server).
Here, difficulty level 0 represents the case without congestion
puzzles. We note that the sending rates of both attackers
and legitimate clients are unaffected by the puzzle solving
difficulty, as puzzle solving (by puzzle clients) is decoupled
from application traffic, though obviously difficulty impacts
this traffic reaching the target.

Without puzzles, legitimate clients stood little chance to
connect to the web server. The situation improved with
increase of the puzzle difficulty. When there were less than
300 zombies, the peak of the acceptance rate arrived with
d = 18, more than 90%. In the presence of more zombies,
more difficult puzzles were expected for choking the attack
flows. Especially, in the case that the number of zombies
exceeded that of the legitimate clients, we needed d = 20 to
secure an acceptance rate above 85%. Higher difficulty levels
were unnecessary and adversely affected legitimate clients’
packet acceptance rates.

Adversaries’ traffic was substantially controlled with the
increase of puzzle difficulty. This is presented in Figure 4
bottom. This experiment suggests that by tuning puzzle
difficulty appropriately, congestion puzzles can effectively
contain a bandwidth-exhaustion attack.

7.2 Partial deployment
In this experiment, we investigated the performance of

congestion puzzles when puzzle routers were only partially
deployed. In these experiments, we randomly chose some
percentage of routers out of the network as legacy (non-
puzzle) routers. However, we fixed the routers close to the
congested router (within five hops) to be puzzle routers; de-
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Figure 4: Impact of puzzle difficulty on the packet accep-
tance rate. Up: Legitimate clients, Bottom: Adversaries

ployment was “partial” only further away. We believe this
setup will reflect a situation that might occur in practice
were congestion puzzles adopted, in which puzzle routers
are deployed in clusters to defend important stub networks.
Note that these routers are included in the calculation of the
percentage of legacy routers. In this context, we tested con-
gestion puzzles with and without IP caching, which helps
achieve a fine-grained control of the inbound flows when
adversaries attempt to free ride on legitimate clients’ com-
putation flows.

We present the experimental results in Figure 5, in which
the x-axis represents the percentage of legacy routers out of
all the routers in the network, and the y-axis is the accep-
tance rate of legitimate clients’ packets. In the cases that the
number of zombies did not exceed that of legitimate clients,
we set the puzzle difficulty d = 19, otherwise, we set d = 20.

The figure on the top describes the experiment without IP
caching. Legitimate clients’ acceptance rate decreased with
the increase of the percentage of legacy routers. Until the
legacy routers took 50% of the whole network, the accep-
tance rate kept above 60% even with 1,000 zombies. The
mechanism also performed well with a small number of zom-
bies. For example, with 90% legacy routers and 100 zombies,
near 70% acceptance rate was achieved. However, a mini-
mal deployment (90% legacy routers) plus a large number of
zombies (1000) intensified the free riding problem, thereby
reducing the acceptance rate to about half.
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Figure 5: Legitimate client acceptance rate for partial dis-
tribution. Top: Without IP caching, Bottom: With IP
caching

The free-riding problem could be effectively suppressed
with IP caching. In the figure on the bottom, we show the
results of the experiment in which each puzzle router ran-
domly cached 10 IPs/port. This treatment made the mech-
anism perform well even when only a very small fraction
of routers supported puzzles: With 1000 zombies and 90%
legacy routers, more than 70% of legitimate clients’ pack-
ets were still able to reach the web server in spite of the
bandwidth-exhaustion attack.

7.3 Performance of probabilistic validation
In this experiment, we empirically studied the idea of

probabilistic validation when zombies generated false puz-
zle “solutions”.

We considered the adversaries with two strategies. With a
stationary strategy, each zombie decided on whether to gen-
erate a false puzzle solution according to a fixed probability
p drawn uniformly at random. With a dynamic strategy,
a zombie randomly chose two probabilities p1 < p2 and a
switching time 0 < t < 20, and generated false puzzle solu-
tions with p1 before t and then switched to p2.

We evaluated PV with dynamic sampling and either the
weighted averaging (WA) or exponential averaging (EA). To
protect routers from spending computation on a flow con-
taining hardly any correct puzzle solutions, we set a policy
that once a router made more than 300 samples from a puz-
zle solution flow and found its false probability always above
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0.95, the router would stop checking the flow and drop all
the packets.
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Figure 6: Legitimate client acceptance rate for probabilis-
tic validation. Top: Stationary strategy, Bottom: Dynamic
strategy

In Figure 6, we present the experimental results. In the
experiment, we fixed the number of zombies to 1,000 and set
the puzzle difficulty to 20. The x-axis in the figures gives the
sampling index, a rough indication of the maximal number
of MD5 operations each router was willing to perform per
network interface every second. The top figure shows the
case with stationary adversaries. WA was pretty sensitive
to the sampling index. It performed well after the index ex-
ceeded 20. In contrast, EA behaved in a more stable fashion,
only varying a little (about 5%) while the index increasing
from 5 to 30. Both estimators helped the CP mechanism
achieve more than 85% acceptance rate with large index.

Surprisingly, adversaries gained nothing from the dynamic
strategy. Actually, both WA and EA performed better
there. Two factors might have contributed to this result.
First, both estimators (especially EA) might be quite capa-
ble of catching up to the adversaries’ strategy. Second, since
we measured the acceptance rate over the packets transmit-
ted in the whole nonce period, the adversaries’ relatively
honest behavior (before switching time t) might help to im-
prove the final result.

In both experiments, routers made few samples. The
maximal MD5 rate was lower than 80 per second for the
most heavily-loaded router; the average rate was lower than

10 per second. Such computation load is very affordable for
a modern router.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented congestion puzzles (CP), a

new countermeasure to bandwidth-exhaustion attacks. Our
approach is a first attempt to integrate client puzzle de-
fense mechanisms at the network (IP) layer. The CP mech-
anism can effectively suppress attack flows in a bandwidth-
exhaustion attack. It further encourages the owners of zom-
bies to stop attacks and thus mitigates DDoS attacks in-
volving large numbers of zombies. The CP mechanism can
achieve a weighted max-min fairness in allocating band-
width, without depending on the detection of attack sig-
natures, which may be difficult to obtain in the presence of
intelligent adversaries. That said, if attack signatures are
available, this would support an extension of our approach
in which routers give different puzzle difficulties to different
flows; we hope to explore this in future work.

In this work we have employed puzzles based on com-
putation, which have the advantages of simplicity and im-
plementation ease. However, they can cause unfairness in
puzzle-solving time over different hardware platforms. In
future work, we intend to consider the use of memory-bound
puzzles [3] at the IP layer. We also intend to explore the
effectiveness of this technique for managing flash crowds, in
which a large number of legitimate clients visit an Internet
site at the same time, causing network congestion.
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