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ABSTRACTWe present a non-deterministi
 polynomial time pro
edureto de
ide the problem of inse
urity, in the presen
e of abounded number of sessions, for 
ryptographi
 proto
ols
ontaining expli
it destru
tor symbols, like de
ryption andproje
tion. These operators are axiomatized by an arbitrary
onvergent rewrite system satisfying some synta
ti
 restri
-tions. This approa
h, with parameterized semanti
s, allowsus to weaken the se
urity hypotheses for veri�
ation, i.e. toaddress a larger 
lass of atta
ks than for models based onfree algebra. Our pro
edure is de�ned by an inferen
e sys-tem based on basi
 narrowing te
hniques for de
iding satis�-ability of 
ombinations of �rst-order equations and intruderdedu
tion 
onstraints.Categories and Subje
t Des
riptors: C.2.2 NetworkProto
ols: Proto
ol veri�
ationGeneral Terms: Se
urity, Theory, Veri�
ation.Keyword: Se
urity Proto
ols, Formal Methods, ConstraintSolving.
1. INTRODUCTIONSe
urity proto
ols are paramount in today's se
ure trans-a
tions through publi
 
hannels. It is therefore essential toobtain through formal proofs as mu
h 
on�den
e as possi-ble in their 
orre
tness. Many works have been devoted tothe use of formal methods in order to automate the proof ofexisten
e of logi
al atta
ks on su
h proto
ols.�This work has been partly supported by the RNTL proje
tPROUV�E 03V360 and the ACI-SI Rossignol.yA full version of this paper is available as the LSV Re-sear
h Report LSV-04-8 at http://www.lsv.ens-
a
han.fr/Publis/RAPPORTS LSV/rr-lsv-2004-8.rr.ps
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04, October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

This problem is unde
idable in general, and the unde
id-ability results from several fa
tors: the ability of agents togenerate fresh random data (non
es), the unlimited size ofterms, the unboundedness of the number of sessions. Re-moving the last 
ondition is however suÆ
ient for de
idabil-ity (while removing the others is not, see [15, 8, 1℄), and sev-eral de
ision pro
edures (at least NP-
omplete) have beenproposed (under this 
ondition) for di�erent models of at-ta
kers [4, 23, 11, 9, 6, 7, 24, 27, 12, 26℄. In these approa
hes,the 
ryptographi
 operations like en
ryption, signature, ap-pli
ation of one-way fun
tions et
 are abstra
ted into fun
-tion symbols and the messages are represented by logi
alterms rather than bit-strings. Logi
al atta
ks 
an be 
har-a
terized by sequen
es of abstra
t messages ex
hanged byhonest agents exe
uting the proto
ol and a mali
ious agent(
alled the intruder), and sear
hing for su
h atta
ks 
an beredu
ed to solving systems of symboli
 
onstraints [4, 23,9℄. Most of the former de
ision pro
edures are based on asymboli
 
onstraint redu
tion system (i.e. a set of inferen
erules) whi
h strongly depends on the 
apabilities of the in-truder to analyze messages, and are therefore restri
ted tosome parti
ular intruder model.Moreover, in all the approa
hes 
ited above the messages
annot 
ontain symbols representing destru
tors like de
ryp-tion or proje
tion, for whi
h we would have simpli�
ationrules of the form d(fxgy; y) ! x. It means that in theseapproa
hes, de
ryption of a message with a key su

eedsonly if the message was en
rypted with the 
orrespondingkey. From a 
omputational point of view, a de
ryption pro-
edure satisfying su
h an assumption needs some kind ofintegrity 
he
king [5℄. From a formal point of view, it hasbeen also noti
ed in [22℄ that the absen
e of a de
ryptionoperator masks some possible atta
ks. Note also that someanalysis tools, su
h as the NRL analyzer des
ribed in [21℄,are 
apable of analyzing proto
ols that employ de
ryptionexpli
itly.In this paper, we present a non-deterministi
 polynomialtime pro
edure to de
ide the problem of inse
urity in pres-en
e of a bounded number of sessions, for 
ryptographi
 pro-to
ols 
ontaining expli
it destru
tor symbols. We proposea redu
tion of this problem to solving sets of equations andother symboli
 
onstraints 
alled intruder 
onstraints. Weprovide a generi
 narrowing based inferen
e system for theresolution of su
h sets of 
onstraints modulo a 
onvergent



rewriting system whi
h de�nes the semanti
s of destru
torsymbols (in
luding in parti
ular 
ryptographi
 primitives foren
ryption and de
ryption).The advantages of this approa
h are twofold. On onehand, we have a generi
 de
ision pro
edure whi
h 
an beapplied to any model whi
h 
an be axiomatized by rewrit-ing systems in our 
lass. Modeling the properties of 
rypto-graphi
 operators (and hen
e the 
apabilities of an intruderto analyze messages) with equational systems was alreadythe approa
h of [16℄ whi
h is often 
ited as the pioneer paperin the domain of formal veri�
ation of 
ryptographi
 proto-
ols. It is also the base of more re
ent languages for formalproto
ol des
ription, like [3℄. This approa
h has also beeninvestigated later in e.g. [25, 17℄ for pro
edures of abstra
tinterpretation based on tree automata te
hniques { hen
e,not for de
ision. The 
lass of rewriting systems whi
h arein the s
ope of our results 
ontains some relevant theoriessu
h as the standard theory of [16℄ extended by the fa
t thatde
ryption and proje
tions are expli
it and the theory of in-volution whi
h is mentioned in [26℄. Moreover, the usage ofour 
onstraint solving pro
edure, is not limited to the ver-i�
ation of 
ryptographi
 proto
ols, though the restri
tionswere tailored for this appli
ation.On the other hand, our framework allows us to spe
ifyproto
ols in a language whi
h improves most of those usedin the pro
edures 
ited above, both in readability and ex-pressiveness. First, sin
e we are able to deal with �rst-orderequations, we 
an add some equations in proto
ol spe
i�
a-tions, like in [11℄, in order to spe
ify expli
itly some testsperformed by the parti
ipants at some stage of the proto-
ol. Se
ond, some destru
tion operators su
h as de
ryptionor proje
tions 
an be de�ned by the rewriting system, andthese operators may be used in the proto
ol spe
i�
ations,in order to spe
ify unambiguously the a
tions taken by theagents in proto
ol exe
ution. For instan
e, if a proto
olspe
i�es that an agent A who knows a symmetri
 key Kshall re
eive a 
iphertext fNgK (number N en
rypted withK), and answer N , it is often impli
itly assumed that Amust 
he
k whether this message is indeed a 
iphertext andthat it is really en
rypted with K before trying to de
ipherit and posting the result. In our settings, we 
an spe
ifysu
h a proto
ol in a more general way: A, upon re
eivingsome message X, replies with d(X;K). If X has the formfNgK , then A's reply will be simpli�ed (to N) in the net-work thanks to the rewrite rule d(fxgy; y)! x for the de�-nition of the de
ryption operator d. This relaxes the aboveimpli
it hypotheses 
on
erning the veri�
ations of X by A,and hen
e enables more atta
ks.
Related WorksModeling the behavior of a 
ryptosystem in terms of rewriterules is more expressive than the standard approa
h whi
h
onsist in modeling 
ryptosystems in terms of free algebras.Some re
ent works [22, 19℄ 
ompare the both approa
hes,for the 
ase of the de
ryption operator, and give synta
-ti
 
onditions on proto
ols under whi
h se
urity in the freealgebra implies se
urity in the rewrite rules model. Themain 
ondition, 
alled EV-freeness, expresses that a prin
i-pal should not apply an en
ryption operator to a term unlessit has been able to verify that that term has some kind ofstru
ture. It is shown in [22, 19℄ that for proto
ols whi
hverifying the 
onditions, using of an expli
it de
ryption op-erator does not enable any new atta
ks. Hen
e, in this 
ase,

formal 
ryptographi
 proto
ol analysis 
an be made in the
onvenient free algebra model. However, although the EV-freeness 
ondition is generally 
onsidered as a good pra
ti
eto design 
ryptographi
 proto
ols, it 
annot be assumed inany 
ases, as we shall see below with the analysis of theDenning-Sa

o key distribution proto
ol presented in Se
-tion 2. Note also that EV-freeness is related to the problemof integrity 
he
king mentioned above. In this paper, weshow that the veri�
ation of proto
ol inse
urity in modelswith rewrite rules for expli
it destru
tors has the same the-oreti
al 
omplexity as in free algebras models.In [10℄, the authors prove the de
idability of the dedu
ibil-ity by intruder for a 
lass of equational theories. Howeverthis 
lass is in
omparable with ours. Indeed, for examplethey allow the homomorphism property but not the idem-poten
e property. In [2℄, it is shown that the problems ofdedu
ibility and indistinguishability (stati
 equivalen
e) areboth de
idable in PTIME in a model with expli
it destru
-tors and equational theories slightly more general than those
onsidered here. Note that these two works are limited to apassive atta
ker, who 
an only listen to messages (i.e. thepro
edures only deals with 
onstraints without variables),whereas we treat both 
ases of passive (PTIME de
isionpro
edure) and a
tive atta
kers, who 
an send messages tothe network (we solve systems of 
onstraints with variables).Chevalier et al. present a framework whi
h is quite gen-eral in the sense that di�erent intruder's dedu
tion 
apabil-ities 
an be 
aptured by the 
on
ept of the so-
alled ora
lerules. Ora
le rules are dedu
tion rules that satisfy 
ertainhigh-level 
onditions whi
h allow to bound the length ofderivations and substitutions of an atta
k and also allowto repla
e a subterm 
omposed by the intruder by a smallermessage. We retrieve some similar 
onditions in the proof of
ompleteness of our de
ision pro
edure. However, we do notknow whether the dedu
tion relation studied in this paper
ould be de�ned with ora
le rules.After some motivating examples (Se
tion 2) and prelimi-nary de�nitions of our framework (Se
tion 3), we show �rsthow to 
onvert the inse
urity problem into a 
onstraint solv-ing problem (Se
tion 4). Then, we investigate in Se
tion 5the veri�
ation of ground 
onstraints with a lo
ality lemmafrom whi
h it follows that this problem 
an be de
ided inpolynomial time. Finally, we introdu
e our inferen
e systemfor 
onstraint solving (Se
tion 6) and prove its 
orre
tness,
ompleteness and termination, and show that it provides anon-deterministi
 polynomial algorithm for the de
ision of
onstraint satis�ability.
2. MOTIVATIONSConsider the following proto
ol for a symmetri
 key ex-
hange in an asymmetri
 
ryptosystem. This is a simpli�-
ation of the Denning-Sa

o key distribution proto
ol [13℄,omitting 
erti�
ates and timestamps.0: A ! B : 
A; ffKabgapub(A)�1gapub(B)�1: B ! A : fse
retgsKabIn the �rst message, the agent A sends to B a freshly 
ho-sen symmetri
 key Kab for further se
ure 
ommuni
ations.This key is en
rypted using an asymmetri
 en
ryption fun
-tion (denoted by f ga) and the se
ret key of A, pub(A)�1.The result of this en
ryption is later en
rypted with B's



publi
 key pub(B) so that only B shall be able to learn Kab.Moreover, A appends its name at the beginning of the mes-sage (using the pairing fun
tion denoted h ; i) so that there
eiver B knows whi
h publi
 key to use in order to obtainKab. Then, B 
an extra
t the symmetri
 key Kab and use itto en
rypt (with a symmetri
 en
ryption fun
tion denotedf gs) a se
ret 
ode se
ret he wants to 
ommuni
ate to A(message 1).It is well-known that the above 
ommon syntax used todes
ribe 
ryptographi
 proto
ols is ambiguous, and the pro-
edures for formal veri�
ation of proto
ols are usually ratherbased on spe
i�
ations as sequen
es of programs, one forea
h agent. In our running example, the program of B 
anbe spe
i�ed as follows:B's role: re
v�hxA; ffxKabgapub(xA)�1gapub(xB)i�; (1)send�fse
retgsKab�This version of the Denning-Sa

o proto
ol is 
awed: thereexists an atta
k involving two sessions of the proto
ol andan intruder. In the �rst session, an honest and naive agent aplaying A's role initiates voluntarily a 
ommuni
ation withthe intruder (without knowing he is an intruder). The in-truder thus learns a; ffKabgapub(a)�1gapub(I), where pub(I) isthe intruder's publi
 key. Hen
e, the intruder is able to ex-tra
t the signed key fKabgapub(a)�1 and the key Kab itself (weassume that he knows the publi
 key of a). Thereafter, theintruder 
an fool an honest agent b playing B's role (in an-other session) by sending him a; ffKabgapub(a)�1gapub(b), whi
hmakes b believe that he has re
eived a symmetri
 key Kabfrom a. The se
ret in b's answer is thus not se
ure, be
ausethe intruder knows Kab.As noted in the introdu
tion, in the above program (1),we impli
itly assume that the agent B 
he
ks that the se
-ond 
omponent of the re
eived message is a 
iphertext, withan en
ryption with the private key of xA (the �rst 
om-ponent of the re
eived tuple) and an en
ryption with hispubli
 key (the value of the variable xB is the name of theagent B in the above program). We may want to spe
ifya more lax agent B whi
h is not 
apable of su
h a 
he
k,and blindly applies the de
ryption algorithm twi
e to anyre
eived message. Su
h an agent B 
an be spe
i�ed bythe following program, whi
h makes use of an asymmetri
de
ryption fun
tion (denoted ad( ; )) and left- and right-proje
tion operators (resp. �1( ) and �2( )):B's role: re
v(x); (2)send�fse
retgsad(ad(�2(x);pub(xB)�1);pub(�1(x)))�The answer of B in the above program shall be simpli�edby rewrite rules de�ning ad and �1, �2 presented later inSe
tion 3.2. There are no ambiguities or impli
it 
he
ks inprogram (2) and its veri�
ation is performed under se
urityproperties whi
h are stri
tly more general (weaker) than forprogram (1). Indeed, there exists an atta
k of program (2)involving only one session, where the intruder does not needto wait for an honest agent to initiate a 
ommuni
ation withhim.Moreover, we 
an also use equations in programs to ex-press expli
itly some 
he
ks performed by the agent B. Con-sider for instan
e a pat
hed version of the above Denning-

Sa

o proto
ol:0: A ! B : A; ffhhA;Bi; Kabigapub(A)�1gapub(B)1: B ! A : fse
retgsKabSome redundan
y has been added on purpose in the �rstmessage in order to prevent the above �rst atta
k. In oursetting, the program for B's role 
an be spe
i�ed as follows:re
v(x);xB = �2(�1(ad(ad(�2(x); pub(xB)�1); pub(�1(x)))));�1(x) = �1(�1(ad(ad(�2(x); pub(xB)�1); pub(�1(x)))));send�fse
retgad(ad(�2(x);pub(xB)�1);pub(�1(x)))�With the �rst equation, B veri�es whether he �nds his namexB at the se
ond position of the 
iphertext, and with these
ond equation he 
he
ks whether both o

urren
es of thename of agent A (before and inside the 
iphertext) are thesame.The use of expli
it destru
tors and equations allows also toaddress a broader 
lass of proto
ols than the ones des
ribedin the standard role's model. For instan
e, the followingproto
ol (see [28℄) 
an not be expressed in the standard role'smodel. 0: A ! B : fhM;BigsK1: B ! A : B2: A ! B : K3: B ! A : MThe message fhM;BigK is seen as a variable x by the agentB who does not know the de
ryption keyK, and one 
an notexpress that x must be de
omposed after the re
eption of Kin message 2 without the expli
it use of a fun
tion symbolfor symmetri
 de
ryption sd . In our approa
h B's role 
anbe spe
i�ed as follows:B's role re
v(x); send(xB);re
v(y);�2(sd(x; y)) = xB ; send(�1(sd(x; y)))
3. PRELIMINARIESWe now introdu
e some notations and basi
 de�nitionsfor terms and term rewriting systems (the reader may referto [14℄ for a 
omprehensive survey on term rewriting sys-tems), and then pro
eed with the de�nition of the so-
alledintruder 
onstraints.
3.1 Terms, SubstitutionsWe assume given a signature F and an in�nite set of vari-ables X . The set F is partitioned into a subset PF of pri-vate fun
tions symbols, and a subset VF of visible or publi
fun
tions symbols. The set of terms built with F and Xis denoted T (F ;X ) and its subset of ground terms (termswithout variables) T (F). We note vars(t) the set of vari-ables o

urring in a term t 2 T (F ;X ), and head(t) the rootsymbol of t. The positions in a term t are represented as se-quen
e of positive integers (� denotes the empty sequen
e)and are denoted by Pos(t). If p 2 Pos(t), the subterm of tat position p, denoted tjp, is de�ned re
ursively by: tj� = tand f(t1; : : : ; tn)jip = tijp if 1 � i � n and ip is the 
on
ate-nation of i at the beginning of the sequen
e p. The termobtained by repla
ing tjp by the term s is denoted t[s℄p. Wenote st(t) the set of subterms of t and sst(t) = st(t)nftg theset of stri
t subterms of t. These notations are extended asexpe
ted to sets of terms and term rewriting systems.A substitution is the term morphism extension of a �nitemapping fx1 7! t1; : : : ; xn 7! tng where x1; : : : ; xn 2 X and



t1; : : : tn 2 T (F ;X ). If t1; : : : tn 2 T (F), the substitutionis 
alled ground. As usual, the appli
ation of a substitution� to a term t and the 
omposition of substitutions �1 by�2 are written in post�x notation, respe
tively t� and �1�2.A substitution � is grounding for t if t� 2 T (F). Giventwo terms u and v the repla
ement of u by v, denoted by[u 7! v℄, maps every term t to the term t[u 7! v℄ whi
h isobtained by repla
ing all o

urren
es of u in t by v. Notethat the result of su
h repla
ement is uniquely determined.In the paper, jSj denotes the 
ardinal of the set S. Thesize ktk of a term t is the number of positions in t. For
onvenien
e we extend this notation to a set of terms T asthe sum of the size of ea
h term in T . The dag-size kTkdof a set of terms T is the number of distin
t subterms of T(i.e. it is the number of nodes in a representation of T asa dag with maximal sharing). More details about the dagrepresentations of terms 
an be found in [26℄.
3.2 Term Rewriting SystemsA term rewriting system (TRS) is a �nite set of rewriterules l ! r where l 2 T (F ;X ) and r 2 T (F ; vars(l)).A term t 2 T (F ;X ) rewrites to s by a TRS R, denotedt !R s if there is a rewrite rule l ! r in R, a position pof t and a substitution � su
h that tjp = l� and s = t[r�℄p.If p = �, we write t ��!R s. We write ��!R for the re
ex-ive and transitive 
losure of !R and � !R for its re
exive,transitive and symmetri
 
losure. A R-uni�er of two termss; t 2 T (F ;X ) (also 
alled R-solution of the equation s = t)is a substitution � su
h that s� � !R t�. If R = ;, we simply
all � a uni�er. It is well-known that uni�able terms have amost general uni�er (mgu), i.e. a substitution � su
h that� � � (there exists � su
h that �� = �) for every otheruni�er � of s and t.A TRS R is terminating if there are no in�nite 
hainst1 !R t2 !R : : :, 
on
uent if for all t0, t1, t2 su
h thatt1 � �R t0 ��!R t2, there exists t3 su
h that t1 ��!R t3 � �R t2,and 
onvergent if it is both terminating and 
on
uent. Aterm t is in R-normal form if there is no term s with t!R sand the set of R-normal forms is denoted NFR. If t ��!R sand s 2 NFR then we say that s is a R-normal form of t,and write s = t #R. The appli
ation of the operator #Ris extended to set of terms as expe
ted. A substitution �is 
alled R-normal if for every variable x 2 dom(�), x� 2NFR.Definition 1. A TRS R is 
alled publi
-
ollapsing if ev-ery rule `! r 2 R satis�es the two following 
onditions:1. r 2 vars(`) or r 2 NFR \ T (VF) and r 6= `,2. if ` = f(l1; : : : ; ln) with f 2 VF , then for all stri
tsubterms of ` of the form g(t1; : : : ; tm) with g 2 VF ,either g(t1; : : : ; tm) 2 NFR \ T (VF), or there existsj � m su
h that tj = r.Now, we are going to illustrate this de�nition by givingseveral equational theories, relevant to 
ryptographi
 proto-
ols veri�
ation, whi
h fall in the 
lass of 
onvergent publi
-
ollapsing TRS (see also [3℄). Let VF = �f gs; sd( ; ); f ga;ad( ; ); h ; i; �1( ); �2( ); pub( )	, and PF = � �1	. Themeaning of these fun
tions is des
ribed in Se
tion 2.Dolev-Yao theory. The following TRS 
orresponds to thetheory of [16℄ for publi
 key en
ryption. This theory has

been studied in many works but, as noted in Se
tion 2, theuse of expli
it de
ryption and proje
tions symbols and equa-tions in proto
ol spe
i�
ations permits to generalize otherapproa
hes.sd(fxgsy; y)! x; ad(fxgay; y�1)! x;x�1�1 ! x; ad(fxgay�1 ; y)! x;�i(hx1; x2i)! xi (i = 1; 2)Inverse-key theory. The three following rules extend theDolev-Yao theory:fsd(x; y)gay ! x, fad(x; y)gay�1 ! x, fad(x; y�1)gay ! x.They are useful when we assume that de
ryption is just anen
ryption with the inverse key like for the 
ryptosystemRSA.Theory of involution. It is mentioned in [26℄ and 
an alsobe en
oded by a 
onvergent publi
-
ollapsing TRS by addingthe following rules to the standard theory: ffxgaygay�1 !x; ffxgay�1gay ! x. This approa
h improves the model of [26℄sin
e we 
onsider 
ases where the rules are applied every-where in terms and not only at the top of messages.Probabilisti
 en
ryption. We 
an 
onsider fun
tion sym-bols pe( ; ; ) and pd( ; ) for probabilisti
 en
ryption andde
ryption [18℄, and rules su
h as: pd(pe(m; k; r); k) ! m,where the fun
tion pe takes a message m, an en
ryption keyk and a random input r.The following trivial lemma shall be used later while rea-soning on publi
-
ollapsing systems.Lemma 1. Let R be a publi
-
ollapsing TRS and let s;s1; : : : ; sn 2 T (F) be in R-normal form. We have s =f(s1; : : : ; sn) #R i� s = f(s1; : : : ; sn) or f(s1; : : : ; sn) ��!R s.
3.3 Intruder Deductions and ConstraintsWe assume from now on given a 
onvergent publi
-
ollapsingTRS R. We assume given a linear well-founded ordering �on T (F) and a spe
ial term denoted by 0 su
h that 0 2 NFRand is minimal w.r.t. �. We shall use a linear extension �of � to multisets of ground terms. We are studying belowthe saturation of sets of ground terms under the appli
ationof visible fun
tion symbols of VF and rewrite rules of R (Ris supposed to de�ne the semanti
s of the symbols of F).Given a set of ground terms T � T (F), the intruder setIR(T ) is the smallest, w.r.t. in
lusion, subset of T (F) 
on-taining T , 
losed under � !R, and su
h that for all t1; : : : ; tn 2IR(T ) and all f 2 VF of arity n, f(t1; : : : ; tn) 2 IR(T ).This aims, in the 
ontext of proto
ol veri�
ation, at mod-eling an intruder who is able to dedu
e messages from theones 
olle
ted on the inse
ure network.An intruder 
onstraint is a tuple written t1; : : : ; tn 
 rwhere t1; : : : ; tn; r 2 T (F ;X ). The terms t1; : : : ; tn are
alled the hypotheses of the intruder 
onstraint and r is
alled its target. An intruder 
onstraint is said to be ba-si
 when r 2 X . Sin
e the order of the hypotheses doesnot matter, we shall sometimes write an intruder 
onstraintT 
 r where T is the �nite set ft1; : : : ; tng. A R-solution ofan intruder 
onstraint T 
 r is a grounding substitution �su
h that r� 2 IR(T�).remark. An intruder 
onstraint t1; : : : ; tn 
 r may beunderstood as a restri
ted kind of se
ond-order equationx(t1; : : : ; tn) = t where t1; : : : ; tn; t are �rst order terms andx is a se
ond order variable whi
h 
an take its values in
ontexts made of publi
 operators of VF .



Definition 2. A �nite set of intruder 
onstraints C iswell-formed if its elements 
an be ordered as T0 
 r0; : : : ;Tl 
 rl su
h that the following 
onditions hold:1. 0 2 T0 and st(R) \ NFR \ T (VF) � T0,2. for all i < l, Ti � Ti+1,3. for all i � l, for all x 2 vars(Ti), there exists j < isu
h that x 2 vars(rj).The de�nitions of 
onstraints and solutions and the aboverestri
tions have been validated by the appli
ation to theveri�
ation of proto
ols presented in Se
tion 4. Intuitively,T 
 r is true if, knowing all the terms in T , an intruderis able to 
onstru
t r. The 
ondition 1 imposes that someterms are in the hypotheses of all the intruder 
onstraints.However it is not really a restri
tion sin
e these terms, builtwith publi
 symbols, 
an always be 
onstru
ted by the in-truder. Condition 2 
aptures the fa
t that the intrudernever forgets information (every message read by the in-truder is added to its knowledge) and Condition 3 says thatevery variable of C appears for the �rst time in the targetof a 
onstraint. Indeed, in our appli
ation in Se
tion 4, ev-ery variable of C 
orresponds to a message re
eived by anagent following the proto
ol, and the intruder must be ableto send su
h a message.The 
onditions of De�nition 2 are invariant (under some
onditions) under the appli
ation of a substitution and nor-malization with R:Lemma 2. Given a �nite well-formed set of intruder 
on-straints C = fT0 
 r0; : : : ; Tl 
 rlg and a substitution �, C�is well-formed and if moreover for ea
h i � l, ri� 2 NFR,then C� #R is well-formed.Note that the hypothesis ri� 2 NFR is 
ru
ial. Indeed, letus 
onsider for instan
e the well-formed C = �T 
 sd(fagsx; y);T; x 
 b	, and the substitution � = fx 7! yg. The systemC� #R= �T 
 a;T; x 
 b	 does not ful�ll Condition 3 ofDe�nition 2 but sd(fagsx; y)� = sd(fagsy; y) =2 NFR.
3.4 Proof TreesWe �nd 
onvenient for the proofs of the next se
tions torepresent the intruder dedu
tions leading to a term of IR(T )by a proof tree des
ribing the dedu
tion steps.Definition 3. Given a �nite set T � T (F) and u 2T (F), a proof P of T `R u is a tree labeled by terms ofT (F) su
h that:� every leaf of P is labeled with v #R for some v 2 T ,� every internal node of P with n sons P1,. . . ,Pn whoseroots are respe
tively labeled with v1,. . . ,vn is labeledby f(v1; : : : ; vn) #R for some f 2 VF ,� the root of P is labeled with u #R, this label is denotedroot(P ).The size of a proof P is the number of its nodes.Note that with this de�nition, every label of a proof is inNFR. A proof P of T `R u (not redu
ed to a leaf) is
alled a 
omposition proof if its dire
t subtrees P1,. . . , Pnare su
h that root(P ) = f(root(P1); : : : ; root(Pn)) for somef 2 VF . Otherwise, it is 
alled a de
omposition proof and,by Lemma 1, it means that there exists f 2 VF su
h thatf(root(P1); : : : ; root(Pn)) ��!R root(P ).

Example 1. T = ffm1gk; k;m2g, R = fd(fxgy; y)! xg.T `R fm1gk T `R k (d 2 VF)T `R d(fm1gk; k) #R= m1 is a de
ompositionproof.T `R m2 T `R k (d 2 VF)T `R d(m2; k) is a 
ompositionproof.Lemma 3. Given a �nite set T � T (F) and u 2 T (F),u 2 IR(T ) i� there exists a proof of T `R u.
4. VERIFICATION OF CRYPTOGRAPHIC

PROTOCOLSIn this se
tion, we show how the problem of inse
urityof 
ryptographi
 proto
ols, assuming a bounded number ofsessions, 
an be redu
ed to solving systems of intruder 
on-straints and equations. An e�e
tive solving pro
edure ispresented in the next se
tions. We shall des
ribe �rst ourmodel for 
ryptographi
 proto
ols and their exe
ution (Se
-tion 4.1), se
ond the se
urity properties that we shall 
on-sider (Se
tion 4.2), and then the 
onstru
tion of a 
onstraintsystem given a proto
ol and a se
urity problem (Se
tion 4.3).
4.1 Protocol SemanticsWe 
onsider a simple representation of 
ryptographi
 pro-to
ols and their exe
ution by agents whi
h should �t withmost of the formalisms in use.A proto
ol is a �nite set of programs, ea
h program being a�nite sequen
e of instru
tions of the form re
v(x); E ; send(s)with x 2 X , s 2 T (F ;X ) and E is a set (possibly empty) ofequations on terms of T (F ;X ).Example 2. The �rst version of the Denning-Sa

o pro-to
ol des
ribed in Se
tion 2 is made of two programs:A's role : re
v(x00);x00 = 0;send�hx0A; ffx0Kabgapub(x0A)�1gapub(x0B)i�;re
v�x01); send(0)B's role : re
v�x10�;send�fx1Sgsad(ad(�2(x10);pub(x1B)�1);pub(�1(x10)))�The symbols x00; x01; x0A : : : are all distin
t variables of X .The se
ond instru
tion of program A implements only there
eption of the last message by A.Given a proto
ol P, an agent exe
uting a program p of Pis represented by a pro
ess (p; �) where � is a ground substi-tution. A 
on�guration is a pair (S;N) where S is a �nite setof pro
esses whose programs have disjoint sets of variables,and N is a set of ground terms representing the network
ontrolled by an intruder. We de�ne small step semanti
sfor the exe
ution of pro
esses. Ea
h step 
hanges the run-ning 
on�guration �f(p; �)g[S;N� to �f(p0; �0)g[S;N 0� bythe exe
ution of the instru
tion instr := re
v(x); E ; send(s)if p = instr; p0 and there exists a R-solution � of the equa-tions in E� su
h that x�� 2 IR(N), �0 = �� (exe
ution ofre
v(x), 
ontrol of the 
onditions in E , and update of �) andN 0 = N [ fs�0g (exe
ution of send(s)).We shall assume that for every exe
ution step as above,the term sent s�0 is ground. It means that the agent isable to 
onstru
t the term s to be sent with the substi-tution in its initial pro
ess (its initial knowledge) or with



the messages re
eived from other agents. This is ensuredby the following 
ondition: we 
all an initial 
on�guration�f(p0; �0); : : : ; (pm; �m)g;N0� of a proto
ol P runnable i�for ea
h i � m, su
h that the program pi is a sequen
e(re
v(xi;j); Ei;j ; send(si;j))j�n, for ea
h j � n, for ea
h x 2vars(si;j), x is in the domain of �i or there exists k � j su
hthat x = xi;k.Example 3. Any initial 
on�guration with set of pro-
esses �(p0; �0); (p1; �1)	, where p0 and p1 are respe
tivelythe programs A's role and B's role of Example 2 and �0and �1 are des
ribed below, is runnable for the proto
ol ofExample 2 (a, b, k, s are 
onstants):�0 = �x0A 7! a; x0B 7! b; x0Kab 7! k	 �1 = �x1B 7! b; x1S 7! s	
4.2 Security PropertiesLet S0 = �(p0; �0); : : : ; (pm; �m)	. An interleaving of S0is a �nite sequen
e I, without repetition, of pairs of integers(i; j) where 0 � i � m (i is the index of a pro
ess of S0)and 0 � j < jpij (j is the index of an instru
tion of pi),whi
h satis�es the following ordering 
ondition: for ea
h iwith 0 � i � m, the subsequen
e of I of pairs with �rst
omponent i has the form (i; 0); : : : ; (i; n), with n < jpij.This 
ondition expresses that I des
ribes a partial linearexe
ution of the respe
tive programs of the pro
esses, up tosome point.We say that a 
on�guration (S;N) is rea
hed from (S0; N0)via an interleaving I, denoted (S0; N0) �!I (S;N) if there isa �nite sequen
e of 
on�gurations (S0; N0); : : : ; (SjIj; NjIj) =(S;N) su
h that for ea
h k < jIj, (Sk; Nk) 
hanges to(Sk+1; Nk+1) by exe
ution of the jth instru
tion of the ithpro
ess of S0, where (i; j) is the kth element of the sequen
eI. We are interested here in the following problem:Proto
ol Inse
urity (PI): given a proto
ol P,a runnable initial 
on�guration (S0; N0) of P, aninterleaving I of S0, and a ground term s, doesthere exist (S;N) su
h that (S0; N0) �!I (S;N)and s 2 N?We 
an express several tra
e properties of proto
ols as in-stan
es of PI. This typi
ally the 
ase of authenti
ation fail-ure (where one pro
ess p 
ompletes the proto
ol presumablywith an interlo
utor pro
ess p0 whereas p0 did not even startto run, and therefore p has been fooled in 
ommuni
atingonly with the intruder), or of se
re
y violation with someinterleaving. Con
erning the later problem, we shall alsoremark that the following problem of se
re
y for any inter-leaving is redu
ible to PI sin
e the number of interleaving is�nite:Weak Se
re
y (WS): given a proto
ol P, arunnable initial 
on�guration (S0; N0) of P, anda ground term s, does there exists an interleavingI of S0 and (S;N) su
h that (S0; N0) �!I (S;N)and s 2 N?
4.3 Verification via Constraint SolvingGiven some input (S0; N0) (with S0 as above), I and sof PI, let us 
onstru
t the set C 
ontaining, for ea
h k �jIj su
h that (i; j) is the k-th element of the sequen
e I,and re
v(xi;j); Ei;j ; send(si;j) is the j-th instru
tion of theprogram pi:

� the basi
 intruder 
onstraint Tk 
 xi;j , where T1 = N0and Tk+1 := Tk [ fsi;j�ig� the equations of Ei;j�i.Moreover, C 
ontains the additional basi
 intruder 
onstraintTjIj 
 x (x is a fresh variable) and the equation x = s, whi
hmeans that the se
ret is revealed.Note that the subset of intruder 
onstraints of C is well-formed. We 
an show that the R-solvability of C is equiv-alent to PI. We shall present here the 
onstru
tion of C onour running example.Example 4. As announ
ed in Se
tion 2, there is an at-ta
k on the proto
ol of Example 2, starting with the ini-tial 
on�guration (S0; N0) with S0 given in Example 3, andN0 = f0; a; b; pub(a); pub(b)g, when R is the standard Dolev-Yao theory of Se
tion 3.2. In this atta
k, an intruder, 
laim-ing to be a (pro
ess p0) sends to b (pro
ess p1) the \message"ha; f0gapub(b)i. The answer of b is then:fsgad(ad(�2(ha;f0gapub(b)i);pub(b)�1);pub(�1(ha;f0gapub(b)i))) ��!Rfsgsad(0;pub(a)) and s is revealed sin
e the en
ryption keyad(0; pub(a)) belongs to IR(N0). The interleaving des
rib-ing the tra
e of the atta
k is the sequen
e of length one((1; 0)) (it 
onsists in a single instru
tion 0 of pro
ess p1),and the (well-formed) set of basi
 intruder 
onstraints andequations C asso
iated to this interleaving is:�N0 
 x10;N0; fsgad(ad(�2(x10);pub(b)�1);pub(�1(x10))) 
 x;x = s	The �rst intruder 
onstraint expresses that the pro
ess p0is able to re
eive the expe
ted message x10, i.e. that the in-truder 
an 
onstru
t it from its initial knowledge N0 (x10 2IR(N0)). The se
ond intruder 
onstraint expresses that fromp0's answer and N0, the intruder is able to dedu
e x. Fi-nally, the last equation expresses that x is the se
ret. We
an 
he
k that � = �1 [ fx10 7! ha; f0gapub(b)i; x 7! sg is aR-solution.We shall give in the next two se
tions a resolution pro
edurefor the problem of the satis�ability of a well-formed set of
onstraints. This will allow us to prove the main result ofthis paper.Theorem 1. PI is de
idable in non-deterministi
 poly-nomial time.Corollary 1. WS is de
idable in non-deterministi
 poly-nomial time.Proof. The maximal length of an interleaving of S0 ispolynomial (in the size of S0).
5. CHECKING GROUND CONSTRAINTSIn this se
tion, we show how to solve intruder 
onstraintswithout variables, i.e. how to de
ide, given a �nite set T �T (F) su
h that st(R) \ NFR \ T (VF) � T , 0 2 T andgiven a term u 2 T (F), whether u 2 IR(T ) holds or not.Following the approa
h of [9℄, we show �rst that u 2 IR(T )ensures the existen
e of a lo
al proof, i.e. a proof whi
h onlyinvolves terms in st(T #R [fu #Rg). Then, we show thatusing this result, we 
an determine in polynomial time inthe size of T and u, whether u 2 IR(T ).Lemma 4 (lo
ality). Let T be a �nite subset of T (F)su
h that st(R) \ NFR \ T (VF) � T and 0 2 T , and let a



term u 2 T (F). Every minimal size proof P of T `R u islabeled by terms in st(T #R [fu #Rg) and if moreover P is ade
omposition proof then it is labeled by terms in st(T #R).Proof. (sket
h, see full version). We prove the two re-sults simultaneously by indu
tion on the proof P . The onlydiÆ
ult 
ase is when we have to take into a

ount a rewrit-ing step after the appli
ation of a visible fun
tion symbol,i.e when P is a de
omposition proof. Clearly, root(P ) is asubterm of one of the dire
t subproof of P , however it re-mains to show that the root of the dire
t subproofs of P arelabeled with subterms of T . It is treated by 
ase analysison the 
ondition veri�ed by the rewrite rule involved in theredu
tion.Now, using this lo
ality Lemma 4, we show that we 
ande
ide in polynomial time whether u 2 IR(T ).Proposition 1. Given a �nite set T � T (F) su
h thatst(R)\NFR\T (VF) � T and 0 2 T , and a term u 2 T (F),whether u 2 IR(T ) 
an be de
ided in polynomial time inkT [ fugkd.Proof. By Lemmas 3 and 4, if u 2 IR(T ) then thereexists a proof P of T `R u labeled only with terms inst(T #R [fu #Rg). To de
ide the existen
e of su
h a prooftree, we 
onstru
t (following [20℄) the set S of ground Horn
lauses 
ontaining:� every ) P (s) s.t. s 2 T #R,� every P (s1); : : : ; P (sn)) P (f(s1; : : : ; sn) #R) s.t.s1; : : : ; sn; f(s1; : : : ; sn) #R2 st(T #R [fu #Rg) andf 2 VF� P (u #R)) .The 
lauses of S of two �rst kind above implement a mark-ing of every ground subterm t 2 st(T #R [fu #Rg) su
h thatthere exists a proof of T `R t. Therefore, the existen
e ofa proof of T `R u is equivalent to the HORN-SAT problemfor S, whi
h size is polynomial in kT [ fugkd (the degreeof the polynomial is the maximum of the arities of symbolsof VF). Hen
e, u 2 IR(T ) 
an be de
ided in polynomialtime.
6. SATISFIABILITY OF WELL-FORMED

SETS OF INTRUDER CONSTRAINTSWe shall lift the de
ision result of Se
tion 5 with a non-deterministi
 polynomial time pro
edure to de
ide the sat-is�ability w.r.t. R of well-formed sets of basi
 intruder 
on-straints (with variables) and equations.
6.1 Constraints Transformation RulesWe present in Figure 1 a set of transformation rules whi
hoperate on tuples of the form (P; C;S), 
alled 
onstraintssystems where:� P is a set of equations and basi
 intruder 
onstraints,� C is a set of intruder 
onstraints,� S is a set of equations in solved form representing bind-ings in the solution, i.e. S = fx1 = t1; :::; xn = tngwhere ea
h xi 2 X and has only one o

urren
e in S.We may asso
iate a substitution fx1 7! t1; :::; xn 7! tngto the third 
omponent S of a system. Below, we shall makeno distin
tion between S and its asso
iated substitution.

Definition 4. A R-solution of a system (P; C;S) is agrounding substitution � su
h that � is a R-solution of ea
hintruder 
onstraint in P [C, � is a R-solution of ea
h equa-tion in P, and � is a uni�er of ea
h equation in S.Given an initial system of the form (B[E ; ;; ;), where B is a�nite well-formed set of basi
 intruder 
onstraints and E is a�nite set of equations, the repeated non-deterministi
 appli-
ation of the rules of Figure 1 shall terminate (Se
tion 6.2)and produ
e (in at least one derivation bran
h) a system insolved form (;; ;;S) (su
h systems always have aR-solution)i� (B[E ; ;; ;) has a R-solution (Se
tions 6.3 and 6.4). Thisgives a non-deterministi
 polynomial time pro
edure for thede
ision of the satis�ability whi
h is shown NP-hard in Se
-tion 7.From now on, we shall note =)N, =)U,. . . the binary re-lation de�ned by the appli
ation respe
tively of the aboverule (N), (U). . . , =) denotes the union of all these rela-tions and =)+ and =)� are the respe
tive transitive andre
exive-transitive 
losures of =).
6.2 TerminationProposition 2 (Termination). The relation =)is strongly terminating. Moreover, given a system (P0; ;; ;),for every transformation sequen
e (P0; ;; ;) =) (P1; C1;S1)=) : : : =) (Pn; Cn;Sn), the length n, the number of su
-
essors of every (Pi; Ci;Si) with =) and the value kPik +kCi [ Sikd are polynomial in kP0k and kRk.Proof. (sket
h, see full version for details). Let the 
om-plexity of system (P; C;S) be the tuple (jPj;nb(P); nbv(C); jCj)ordered lexi
ographi
ally where: nb(P) is the number ofterms in st(P) whi
h are uni�able with a left member of arule of R, and nbv(C) is the number of distin
t variablesin C. We 
an show that ea
h rule of Figure 1 redu
es the
omplexity, hen
e that =) terminates.
6.3 CorrectnessThe following proposition shows that the 
onstraint solv-ing system de�ned in Figure 1 is 
orre
t.Proposition 3 (Corre
tness). For every system(P; ;; ;), if (P; ;; ;) =)� (;; ;;S) then (P; ;; ;) has aR-solution.Proof. (sket
h, see full version for details). By indu
-tion on the length of the derivation, we show for every rule(R), that if (P1; C1;S1) =)R (P2; C2;S2) and the se
ondsystem (P2; C2;S2) has a R-solution �, then � is also a R-solution of (P1; C1;S1).
6.4 CompletenessWe show now the 
ompleteness of the 
onstraint solvingsystem of Figure 1 (Proposition 4). We shall �rst provethree te
hni
al lemmas: Lemma 5 and Lemma 6 are used inthe proof of Lemma 7, whi
h is the key in the proof of theProposition 4 { it establishes the 
ompleteness of the rule(VE).Lemma 5. Let T � NFR be su
h that st(R) \ NFR \T (VF) � T , let u 2 NFR, v 2 st(u) su
h that v =2 st(T ),and let P be a proof of T `R u. There exists a 
ompositionproof of T `R v.



P [ fe[u℄g; C; S (N)P [ fe[r℄g; C�; S� [ � Narrowinge is an equation or an intruder 
onstraint, u =2 X , l! r is a freshvariant (a 
opy in whi
h all the variables have been renamed) ofa rule of R, � = mgu(lS; uS), root(l) = root(u).P [ ft1 = t2g; C; S (U)P; C�; S� [ � Synta
ti
 Uni�
ation� = mgu(t1S; t2S).
P [ f
g; C; S (B)P; C [ f
Sg; S Blo
king
 is an intruder 
onstraint.
P; C; S (VE)P; Cfx 7! tg; Sfx 7! tg [ fx 7! tg Variable Eliminationx 2 vars(C); t 2 st(C) n vars(C),there is no o

urren
e of x in t.

P; C [ fT 
 ug; S (G)P; C; S Groundif all the terms in T and u are groundand u 2 IR(T ).Figure 1: Constraint Transformation RulesProof. We assume that P is a minimal proof of T `R u.If P 
ontains a node labeled with v, then it is the root ofa proof of T `R v as expe
ted. This proof is indeed a
omposition proof: otherwise, by Lemma 4, we would havev 2 st(T ), whi
h 
ontradi
ts the hypotheses.We show now that P ne
essarily 
ontains one node labeledwith v, by 
ontradi
tion. Assume that P 
ontains no su
hnode. We shall 
onstru
t re
ursively a path in P , from theroot up to one leaf, every node of whi
h is labeled with aterm t su
h that v 2 sst(t), and we shall show in parallelthat the existen
e of su
h a path leads to a 
ontradi
tion.By hypothesis, v is a subterm of the label u of the root ofP . Assume that this 
ondition is also true for all the nodesof a path (s0; : : : ; sk) in P , labeled respe
tively with t0 = u,t1, . . . , tk (hen
e v 2 sst(t0), . . . , v 2 sst(tk)) and let us
onsider the sons of the last node sk of the path.If sk is a leaf, then tk 2 T by De�nition 3 and v 2 sst(tk).It 
ontradi
ts the hypothesis that v =2 st(T ).If sk has n sons P1; : : : ; Pn, then we have (by De�nition 3)tk = f(root(P1); : : : ; root(Pn)) #R for some f 2 VF , andthanks to Lemma 1, there are only two 
ases to 
onsider:0 or 1 step of rewriting. In both 
ase, we show (see fullversion) that we 
an set the next node sk+1 of the path asthe root of one of the Pi, i � n.The following te
hni
al lemma allows to apply repla
ementson proof tree labels.Lemma 6. Let v = g(v1; : : : ; vk) 2 NFRn(st(R)\NFR\T (VF)), with g 2 VF , let Æ be the repla
ement Æ = fv 7! 0gand let u1; : : : ; un 2 NFR and u = f(u1; : : : ; un) #R withf 2 VF . If u 6= v; v1; : : : ; vk, then uÆ = f(u1Æ; : : : ; unÆ) #R.Proof. By Lemma 1 we have to 
onsider only two 
ases:1. u = f(u1; : : : ; un). In this 
ase, we have: uÆ =f(u1; : : : ; un)Æ = f(u1Æ; : : : ; unÆ) sin
e v 6= f(u1; : : : ; un).2. f(u1; : : : ; un) ��!R u, with a rewrite rule f(l1; :::; ln) !r 2 R. We denotes by Posv the set of all o

urren
es of

v in the term f(u1; : : : ; un). If � 2 Posv, then v 62 NFRwhi
h 
ontradi
ts the hypothesis. If for all p 2 Posv, thereexists p0 a pre�x of p su
h that f(l1; :::; ln)jp0 2 X thenf(u1Æ; : : : ; unÆ) ��!R uÆ with the same rule as before. Oth-erwise there exists p 2 Posv su
h that f(l1; :::; ln)jp 62 X .We have p 6= �, let p = i:p0. The 
ase where lijp0 2 X isimpossible due to the 
hoi
e of p, lijp0 2 PF is impossiblesin
e head(v) 2 VF . Lastly, if lijp0 2 VF then either thereexists j su
h that lijp0:j = r and u is equal to vj whi
h
ontradi
ts the hypotheses, or lijp0 2 st(R)\NFR \T (VF)whi
h means that v 2 st(R) \ NFR \ T (VF), and it is a
ontradi
tion.Given two substitutions �1 and �2, we write �1 � �2 i�fx�1j x 2 dom(�1)g � fx�2j x 2 dom(�2)g.Lemma 7. Let � be a minimal (w.r.t. �) R-solution ofa well-formed set C of intruder 
onstraints su
h that all theterms in C� are in NFR. For all x 2 vars(C), there existst 2 st(C) n vars(C) su
h that t� = x�.Proof. (sket
h, see full version for te
hni
al details). Let(C1; : : : ; C`) be a sequen
e of the 
onstraints of C ordered asin De�nition 2, and for ea
h i � `, let Si and ri be respe
-tively the set of hypotheses and target of Ci, and Ci� bethe (ground) 
onstraint obtained from Ci by instantiatingall the terms in its hypotheses and target with �. We rea-son by 
ontradi
tion. Assume that there exists x 2 vars(C)su
h that for all t 2 st(C) n vars(C), t� 6= x�, and let Æbe the repla
ement fx� 7! 0g. We show that �0 = �Æ isalso a R-solution of C, and it 
ontradi
ts the minimality of�. Note �rst that for ea
h i � `, and ea
h s 2 Si [ frig,s(�Æ) = (s�)Æ.Letm = minfi �� x� 2 st(Ci�)g. By the above hypothesis,there exists y 2 vars(Cm) su
h that x� 2 st(y�). Otherwise,there would exist t 2 st(Cm) n vars(Cm) su
h that t� = x�.Moreover, ea
h su
h variable y o

urs in rm and not in thehypotheses Sm. Otherwise, sin
e C is well-formed, there



would exists i < m su
h that y 2 vars(ri), hen
e x� 2st(Ci�).For ea
h i < m, x� =2 st(Ci�), hen
e Ci�0 = (Ci�)Æ = Ci�and �0 is a R-solution of Ci.Let i � m and let Pi be a proof of Si� `R ri�. ByLemma 3, there exists a proof Pm of Sm� `R rm� on whi
hwe 
an apply Lemma 5 in order to obtain a 
ompositionproof Px of Sm� `R x�. We 
onstru
t a proof P 00i of Si�0 `Rri�0, by transformation on the proof tree Pi, using subproofsof Px. Roughly, if we let x� = f(u1; : : : ; un), we repla
e inPi every subtree whose root is labeled by some uj by the jthdire
t subtree of Px (whi
h is indeed a proof of Sm� `R uj),and we repla
e in Pi every subtree whose root is labeled byx� with a leaf labeled by 0. Finally, we apply Æ to all theother nodes of Pi and, using Lemma 6, we 
an show thatthe tree P 00i obtained is indeed a proof of Si�0 `R ri�0, andhen
e that �0 is a R-solution of Ci by Lemma 3.Proposition 4 (Completeness). Let B be a �nite well-formed set of basi
 intruder 
onstraints, E a �nite set of �rst-order equations. If (B[E ; ;; ;) has a R-solution, then thereexists a sequen
e of redu
tions of the form (B[E ; ;; ;) =)�(;; ;;S).Proof. (sket
h, see full version).We show, by indu
tionon the 
omplexity of systems, the more general result that ifthere exists aR-normal solution � of a system (P; C;S 0) su
hthat the set of intruder 
onstraints in PS 0 #R [C is well-formed, and the terms in C� are in NFR, then there existsa sequen
e of redu
tions of the form (P; C;S 0) =)� (;; ;;S).The base 
ase (;; ;;S 0) is trivial. For the indu
tion step,we assume that � is a minimal (w.r.t. �) R-normal solu-tion as above, and we show that for ea
h (P; C;S 0), we 
anapply one of the 
onstraint transformation rules of Figure 1,and that the system obtained has a R-normal solution �0of the above form. The diÆ
ult 
ase is the appli
ation ofthe rule (VE). It is treated by using Lemma 7. To 
on-
lude, we observe that the above result 
an be applied to(B [ E ; ;; ;).Using the above Propositions, we dedu
e a NP de
ision pro-
edure for the de
ision of satis�ability.Theorem 2. Given a 
onvergent publi
-
ollapsing TRSR, a �nite well-formed set B of basi
 intruder 
onstraintsand a �nite set E of equations, the existen
e of R-solutionof B [ E is de
idable in non-deterministi
 polynomial time.Proof. By Proposition 2, the repeated appli
ation of therules of Figure 1 to the system (B[E ; ;; ;) gives a �nite de-du
tion tree whose nodes are labeled by 
onstraints systemsand every node is obtained from its parent node by appli
a-tion of a rule of Figure 1. A

ording to Propositions 4 and 3,B [ E is satis�able (w.r.t. R) if and only if there exists aleaf with a label of the form (;; ;;S) in the dedu
tion tree.By Proposition 2, both the depth d and the maximalbran
hing degree b of this dedu
tion tree is polynomial inkB [ Ek and kRk. The non-deterministi
 polynomial timealgorithm 
onsists in 
hoosing a path p in the dedu
tiontree, i.e. a sequen
e of length at most d of natural numberssmaller or equal to b, and 
he
king that the path p leads toa leaf labeled by (;; ;;S) in the dedu
tion tree. It 
an bedone in polynomial time by the iterative appli
ation of theinstan
es of rules of Figure 1 
orresponding to the 
ompo-nents of p. The appli
ation of every instan
e of rule takes a

polynomial time. It is obvious for (N), (U), (B) and (VE).For (G), it is a 
onsequen
e of Proposition 1 and the boundof Proposition 2 for the system-dag-size of the labels of thededu
tion tree.
7. NP-HARDNESSWe show now that PI and WS are NP-hard for polynomialtime redu
tions by redu
tion of 3-SAT. The proof is inspiredfrom the one given by [26℄. However, the proto
ol built fromthe given instan
e of 3-SAT is redu
ed to a minimum thanksto the 
exibility of our formalism 
on
erning the 
hoi
e of arewriting system.Let X1; :::;Xn be propositional variables and let us 
on-sider the following instan
e of 3-SAT:m̂i=1(X�i;1�i;1 _X�i;2�i;2 _X�i;3�i;3)where �i;j 2 1::n and �i;j 2 f0; 1g and u1 (resp. u0) denotesu (resp. :u) for any term u.We use a signature made of VF = f0; 1; �1( ); : : : ; �n( );h ; : : : ; ig and PF = f ^ ; _ ;: ; se
retg, where h i hasarity n. Let R be a 
onvergent publi
 
ollapsing TRS whi
hde�nes the truth tables of ^, _, : with 0^0! 0 et
 (0 is falseand 1 is true) and the proje
tions with �i�hx1; : : : ; xni�! xifor i = 1; : : : ; n.We 
onstru
t a proto
ol P with only one program madeup of one instru
tion:re
v(x); f1(x) ^ : : : ^ fm(x) = 1; send(se
ret)where, for all i � n, fi(x) = ��i;1(x)�i;1 _ ��i;2(x)�i;2 _��i;3(x)�i;3 (we omit the parenthesis in the expressions with^ and _) . Finally, let S0 
ontains one pro
ess (p0; �0) with�0 = ; and N0 = f0; 1g.We 
an show that PI for P, (S0; N0), se
ret and the in-terleaving ((0; 0)) has a solution i� the above instan
e of 3-SAT has a solution represented by x = hX1; : : : ;Xni (ea
hXi is 0 or 1) and this term x is in IR(N0). Note that the
hoi
e of the interleaving is limited to ((0; 0)) (or the emptysequen
e), hen
e the redu
tion is also valid to show the NP-hardness of WS. By Theorem 1 and Corollary 1, we dedu
ethat PI and WS are NP-
omplete and, with the 
onstru
tionof Se
tion 4.3, it implies that the problem of solvability ofwell-formed sets of basi
 intruder 
onstraints and equations(Theorem 2) is also NP-
omplete.
8. CONCLUSIONWe have de�ned a 
omplete inferen
e system for solvingequations and intruder 
onstraints modulo 
onvergent andpubli
-
ollapsing TRS, and we have shown how it providesa generi
 non-deterministi
 polynomial time pro
edure forthe veri�
ation of the se
urity of 
ryptographi
 proto
ols inpresen
e of a �nite number of sessions, and with the additionof operators whose semanti
s are de�ned by a 
onvergentpubli
-
ollapsing TRS.A natural extension to this work is the sear
h of publi
-
ollapsing theories other than those des
ribed in Se
tion 3.2,for the weakening of se
urity hypotheses. For instan
e, onemay want to 
onsider di
tionary atta
ks [12℄. An ex
lusiveor operator + 
an be axiomatized by the rewrite rules x +x ! 0, x + 0 ! x, x + x + y ! y with asso
iativity and
ommutativity (AC) of +. The three �rst rules ful�ll our



publi
-
ollapsing 
ondition. Hen
e, we should 
onsider toextend our solving pro
edure to a pro
edure modulo AC inorder to deal with xor, like [6, 9℄.We 
ould also study the generalization of the 
lass of 
on-vergent TRS handled. An appli
ation 
ould be for instan
eto model honest proto
ol transitions by rewrite rules, mak-ing the guess of an interleaving in the proof of Corollary 1unne
essary.At last, and this is a more diÆ
ult task, we 
ould tryto extend our result to the de
ision of stati
 equivalen
e(following [2℄). A solution 
ould be to extend the 
lass of
onstraints under 
onsideration. As noted in Se
tion 3.3,intruder 
onstraints 
orrespond to se
ond order equations(modulo a 
onvergent TRS) of the form x(t1; : : : ; tn) = t.Being able to deal with equations of the form x(t1; : : : ; tn) =x(s1; : : : ; sn) 
ould permit us to study properties related toobservation equivalen
e, hen
e to 
onsider some propertiesmore general than the weak se
re
y.
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