N
N

N

HAL

open science

A Decision Procedure for the Verification of Security
Protocols with Explicit Destructors

Stéphanie Delaune, Florent Jacquemard

» To cite this version:

Stéphanie Delaune, Florent Jacquemard. A Decision Procedure for the Verification of Security Pro-
tocols with Explicit Destructors. 11th ACM Conference on Computer and Communications Security

(CCS), Oct 2004, Washington D.C., United States. pp.278-287. inria-00579012

HAL 1d: inria-00579012
https://inria.hal.science/inria-00579012

Submitted on 22 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00579012
https://hal.archives-ouvertes.fr

A Decision Procedure for the Verification of Security
Protocols with Explicit Destructors

Extended Abstract f

Stéphanie Delaune
France Télecom R&D
LSV, CNRS UMR 8643, ENS de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex, France

stephanie.delaune@Isv.ens-cachan.fr

ABSTRACT

We present a non-deterministic polynomial time procedure
to decide the problem of insecurity, in the presence of a
bounded number of sessions, for cryptographic protocols
containing explicit destructor symbols, like decryption and
projection. These operators are axiomatized by an arbitrary
convergent rewrite system satisfying some syntactic restric-
tions. This approach, with parameterized semantics, allows
us to weaken the security hypotheses for verification, i.e. to
address a larger class of attacks than for models based on
free algebra. Our procedure is defined by an inference sys-
tem based on basic narrowing techniques for deciding satisfi-
ability of combinations of first-order equations and intruder
deduction constraints.

Categories and Subject Descriptors: C.2.2 Network
Protocols: Protocol verification

General Terms: Security, Theory, Verification.

Keyword: Security Protocols, Formal Methods, Constraint
Solving.

1. INTRODUCTION

Security protocols are paramount in today’s secure trans-
actions through public channels. It is therefore essential to
obtain through formal proofs as much confidence as possi-
ble in their correctness. Many works have been devoted to
the use of formal methods in order to automate the proof of
existence of logical attacks on such protocols.
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This problem is undecidable in general, and the undecid-
ability results from several factors: the ability of agents to
generate fresh random data (nonces), the unlimited size of
terms, the unboundedness of the number of sessions. Re-
moving the last condition is however sufficient for decidabil-
ity (while removing the others is not, see [15, 8, 1]), and sev-
eral decision procedures (at least NP-complete) have been
proposed (under this condition) for different models of at-
tackers [4, 23, 11,9, 6, 7, 24, 27, 12, 26]. In these approaches,
the cryptographic operations like encryption, signature, ap-
plication of one-way functions etc are abstracted into func-
tion symbols and the messages are represented by logical
terms rather than bit-strings. Logical attacks can be char-
acterized by sequences of abstract messages exchanged by
honest agents executing the protocol and a malicious agent
(called the intruder), and searching for such attacks can be
reduced to solving systems of symbolic constraints [4, 23,
9]. Most of the former decision procedures are based on a
symbolic constraint reduction system (i.e. a set of inference
rules) which strongly depends on the capabilities of the in-
truder to analyze messages, and are therefore restricted to
some particular intruder model.

Moreover, in all the approaches cited above the messages
cannot contain symbols representing destructors like decryp-
tion or projection, for which we would have simplification
rules of the form d({z},,y) — =. It means that in these
approaches, decryption of a message with a key succeeds
only if the message was encrypted with the corresponding
key. From a computational point of view, a decryption pro-
cedure satisfying such an assumption needs some kind of
integrity checking [5]. From a formal point of view, it has
been also noticed in [22] that the absence of a decryption
operator masks some possible attacks. Note also that some
analysis tools, such as the NRL analyzer described in [21],
are capable of analyzing protocols that employ decryption
explicitly.

In this paper, we present a non-deterministic polynomial
time procedure to decide the problem of insecurity in pres-
ence of a bounded number of sessions, for cryptographic pro-
tocols containing explicit destructor symbols. We propose
a reduction of this problem to solving sets of equations and
other symbolic constraints called intruder constraints. We
provide a generic narrowing based inference system for the
resolution of such sets of constraints modulo a convergent



rewriting system which defines the semantics of destructor
symbols (including in particular cryptographic primitives for
encryption and decryption).

The advantages of this approach are twofold. On one
hand, we have a generic decision procedure which can be
applied to any model which can be axiomatized by rewrit-
ing systems in our class. Modeling the properties of crypto-
graphic operators (and hence the capabilities of an intruder
to analyze messages) with equational systems was already
the approach of [16] which is often cited as the pioneer paper
in the domain of formal verification of cryptographic proto-
cols. It is also the base of more recent languages for formal
protocol description, like [3]. This approach has also been
investigated later in e.g. [25, 17] for procedures of abstract
interpretation based on tree automata techniques — hence,
not for decision. The class of rewriting systems which are
in the scope of our results contains some relevant theories
such as the standard theory of [16] extended by the fact that
decryption and projections are explicit and the theory of in-
volution which is mentioned in [26]. Moreover, the usage of
our constraint solving procedure, is not limited to the ver-
ification of cryptographic protocols, though the restrictions
were tailored for this application.

On the other hand, our framework allows us to specify
protocols in a language which improves most of those used
in the procedures cited above, both in readability and ex-
pressiveness. First, since we are able to deal with first-order
equations, we can add some equations in protocol specifica-
tions, like in [11], in order to specify explicitly some tests
performed by the participants at some stage of the proto-
col. Second, some destruction operators such as decryption
or projections can be defined by the rewriting system, and
these operators may be used in the protocol specifications,
in order to specify unambiguously the actions taken by the
agents in protocol execution. For instance, if a protocol
specifies that an agent A who knows a symmetric key K
shall receive a ciphertext {N}x (number N encrypted with
K), and answer N, it is often implicitly assumed that A
must check whether this message is indeed a ciphertext and
that it is really encrypted with K before trying to decipher
it and posting the result. In our settings, we can specify
such a protocol in a more general way: A, upon receiving
some message X, replies with d(X, K). If X has the form
{N}k, then A’s reply will be simplified (to N) in the net-
work thanks to the rewrite rule d({z}y,y) — x for the defi-
nition of the decryption operator d. This relaxes the above
implicit hypotheses concerning the verifications of X by A,
and hence enables more attacks.

Related Works

Modeling the behavior of a cryptosystem in terms of rewrite
rules is more expressive than the standard approach which
consist in modeling cryptosystems in terms of free algebras.
Some recent works [22, 19] compare the both approaches,
for the case of the decryption operator, and give syntac-
tic conditions on protocols under which security in the free
algebra implies security in the rewrite rules model. The
main condition, called EV-freeness, expresses that a princi-
pal should not apply an encryption operator to a term unless
it has been able to verify that that term has some kind of
structure. It is shown in [22, 19] that for protocols which
verifying the conditions, using of an explicit decryption op-
erator does not enable any new attacks. Hence, in this case,

formal cryptographic protocol analysis can be made in the
convenient free algebra model. However, although the EV-
freeness condition is generally considered as a good practice
to design cryptographic protocols, it cannot be assumed in
any cases, as we shall see below with the analysis of the
Denning-Sacco key distribution protocol presented in Sec-
tion 2. Note also that EV-freeness is related to the problem
of integrity checking mentioned above. In this paper, we
show that the verification of protocol insecurity in models
with rewrite rules for explicit destructors has the same the-
oretical complexity as in free algebras models.

In [10], the authors prove the decidability of the deducibil-
ity by intruder for a class of equational theories. However
this class is incomparable with ours. Indeed, for example
they allow the homomorphism property but not the idem-
potence property. In [2], it is shown that the problems of
deducibility and indistinguishability (static equivalence) are
both decidable in PTIME in a model with explicit destruc-
tors and equational theories slightly more general than those
considered here. Note that these two works are limited to a
passive attacker, who can only listen to messages (i.e. the
procedures only deals with constraints without variables),
whereas we treat both cases of passive (PTIME decision
procedure) and active attackers, who can send messages to
the network (we solve systems of constraints with variables).

Chevalier et al. present a framework which is quite gen-
eral in the sense that different intruder’s deduction capabil-
ities can be captured by the concept of the so-called oracle
rules. Oracle rules are deduction rules that satisfy certain
high-level conditions which allow to bound the length of
derivations and substitutions of an attack and also allow
to replace a subterm composed by the intruder by a smaller
message. We retrieve some similar conditions in the proof of
completeness of our decision procedure. However, we do not
know whether the deduction relation studied in this paper
could be defined with oracle rules.

After some motivating examples (Section 2) and prelimi-
nary definitions of our framework (Section 3), we show first
how to convert the insecurity problem into a constraint solv-
ing problem (Section 4). Then, we investigate in Section 5
the verification of ground constraints with a locality lemma
from which it follows that this problem can be decided in
polynomial time. Finally, we introduce our inference system
for constraint solving (Section 6) and prove its correctness,
completeness and termination, and show that it provides a
non-deterministic polynomial algorithm for the decision of
constraint satisfiability.

2. MOTIVATIONS

Consider the following protocol for a symmetric key ex-
change in an asymmetric cryptosystem. This is a simplifi-
cation of the Denning-Sacco key distribution protocol [13],
omitting certificates and timestamps.

0. A — B: (A{Kau}pua-1tpus)
1. B — A: {secret}y,,

In the first message, the agent A sends to B a freshly cho-
sen symmetric key K, for further secure communications.
This key is encrypted using an asymmetric encryption func-
tion (denoted by {_}%) and the secret key of A, pub(A)~!.
The result of this encryption is later encrypted with B’s



public key pub(B) so that only B shall be able to learn Kgp.
Moreover, A appends its name at the beginning of the mes-
sage (using the pairing function denoted (_,_)) so that the
receiver B knows which public key to use in order to obtain
Kap. Then, B can extract the symmetric key K, and use it
to encrypt (with a symmetric encryption function denoted
{-}°) a secret code secret he wants to communicate to A
(message 1).

It is well-known that the above common syntax used to
describe cryptographic protocols is ambiguous, and the pro-
cedures for formal verification of protocols are usually rather
based on specifications as sequences of programs, one for
each agent. In our running example, the program of B can
be specified as follows:

Bsrole:  recv((za, {{z K Fpurea) -1 Hpub(ep)))s (1)

send ({secret}i,,)

This version of the Denning-Sacco protocol is flawed: there
exists an attack involving two sessions of the protocol and
an intruder. In the first session, an honest and naive agent a
playing A’s role initiates voluntarily a communication with
the intruder (without knowing he is an intruder). The in-
truder thus learns a, {{ Kab}y,(a)-1}pun(r), Where pub(l) is
the intruder’s public key. Hence, the intruder is able to ex-
tract the signed key {Kab};ub(a)*l and the key K itself (we
assume that he knows the public key of a). Thereafter, the
intruder can fool an honest agent b playing B’s role (in an-
other session) by sending him a, {{Kab }},(a)-1 } pus(s)> Which
makes b believe that he has received a symmetric key Kgp
from a. The secret in b’s answer is thus not secure, because
the intruder knows Kgp.

As noted in the introduction, in the above program (1),
we implicitly assume that the agent B checks that the sec-
ond component of the received message is a ciphertext, with
an encryption with the private key of x4 (the first com-
ponent of the received tuple) and an encryption with his
public key (the value of the variable zp is the name of the
agent B in the above program). We may want to specify
a more lax agent B which is not capable of such a check,
and blindly applies the decryption algorithm twice to any
received message. Such an agent B can be specified by
the following program, which makes use of an asymmetric
decryption function (denoted ad(-,-)) and left- and right-
projection operators (resp. 71 (=) and m2(-)):

B’srole:  recv(x); (2)

send ({secret} oy ad(ny (2) pub(a )~ 1) pub(rs (2))))

The answer of B in the above program shall be simplified
by rewrite rules defining ad and 1, w2 presented later in
Section 3.2. There are no ambiguities or implicit checks in
program (2) and its verification is performed under security
properties which are strictly more general (weaker) than for
program (1). Indeed, there exists an attack of program (2)
involving only one session, where the intruder does not need
to wait for an honest agent to initiate a communication with
him.

Moreover, we can also use equations in programs to ex-
press explicitly some checks performed by the agent B. Con-
sider for instance a patched version of the above Denning-

Sacco protocol:

0. A = B: A{{({4,B), Kab)}tyua)-1}pus(s)
1. B = A: {secret}y,,

Some redundancy has been added on purpose in the first
message in order to prevent the above first attack. In our
setting, the program for B’s role can be specified as follows:

recv(x);

vp = ma(mi(ad(ad(m(z), pub(zs) "), pub(mi(2)))));
m1(x) = mi(mi (ad(ad(m2(z), pub(zs)~"), pub(mi(x)))));
send ({secret} ai(ad(m (2) pub(a )~ 1) pub(r (2))))

With the first equation, B verifies whether he finds his name
rp at the second position of the ciphertext, and with the
second equation he checks whether both occurrences of the
name of agent A (before and inside the ciphertext) are the
same.

The use of explicit destructors and equations allows also to
address a broader class of protocols than the ones described
in the standard role’s model. For instance, the following
protocol (see [28]) can not be expressed in the standard role’s
model.

0. A —- B: {(M,B)}%
1. B - A: B
2. A - B: K
3. B - A: M

The message {(M, B)}k is seen as a variable x by the agent
B who does not know the decryption key K, and one can not
express that x must be decomposed after the reception of K
in message 2 without the explicit use of a function symbol
for symmetric decryption sd. In our approach B’s role can
be specified as follows:

B’s role recv(x);send(zg);

recv(y); ma(sd(x,y)) = xp;send(m1 (sd(x,y)))
3. PRELIMINARIES

We now introduce some notations and basic definitions
for terms and term rewriting systems (the reader may refer
to [14] for a comprehensive survey on term rewriting sys-
tems), and then proceed with the definition of the so-called
intruder constraints.

3.1 Terms, Substitutions

We assume given a signature F and an infinite set of vari-
ables X. The set F is partitioned into a subset PF of pri-
vate functions symbols, and a subset VF of visible or public
functions symbols. The set of terms built with F and X
is denoted T (F,X) and its subset of ground terms (terms
without variables) 7 (F). We note vars(t) the set of vari-
ables occurring in a term ¢ € T (F, X), and head(t) the root
symbol of . The positions in a term ¢ are represented as se-
quence of positive integers (A denotes the empty sequence)
and are denoted by Pos(t). If p € Pos(t), the subterm of ¢
at position p, denoted ¢|,, is defined recursively by: t|a =t
and f(t1,...,tn)|ip = ti|]p if 1 < i < n and ip is the concate-
nation of i at the beginning of the sequence p. The term
obtained by replacing t|, by the term s is denoted ¢[s],. We
note st(t) the set of subterms of ¢ and sst(t) = st(t)\ {¢t} the
set of strict subterms of t. These notations are extended as
expected to sets of terms and term rewriting systems.

A substitution is the term morphism extension of a finite
mapping {1 + t1,...,Tn — t,} where x1,...,x, € X and



ti,...tn € T(F,X). If t1,...t, € T(F), the substitution
is called ground. As usual, the application of a substitution
o to a term t and the composition of substitutions o1 by
o9 are written in postfix notation, respectively to and o102.
A substitution o is grounding for t if to € T(F). Given
two terms uw and v the replacement of u by v, denoted by
[u — v], maps every term t to the term ¢[u — v] which is
obtained by replacing all occurrences of u in t by v. Note
that the result of such replacement is uniquely determined.
In the paper, |S| denotes the cardinal of the set S. The
size ||t|| of a term ¢ is the number of positions in ¢. For
convenience we extend this notation to a set of terms T as
the sum of the size of each term in 7. The dag-size ||T||q
of a set of terms T is the number of distinct subterms of T'
(i.e. it is the number of nodes in a representation of T as
a dag with maximal sharing). More details about the dag
representations of terms can be found in [26].

3.2 Term Rewriting Systems

A term rewriting system (TRS) is a finite set of rewrite
rules | — r where | € T(F,X) and r € T(F,vars(l)).
A term t € T(F,X) rewrites to s by a TRS R, denoted
t —x s if there is a rewrite rule | — r in R, a position p
of t and a substitution ¢ such that t|, = lo and s = t[ro]p.

If p = A, we write ¢ Ahz s. We write = for the reflex-
ive and transitive closure of =% and <sx for its reflexive,
transitive and symmetric closure. A R-unifier of two terms
s,t € T(F,X) (also called R-solution of the equation s = t)
is a substitution ¢ such that so <% to. If R = ), we simply
call o a unifier. It is well-known that unifiable terms have a
most general unifier (mgu), i.e. a substitution ¢ such that
o < 7 (there exists p such that op = 7) for every other
unifier 7 of s and t.

A TRS R is terminating if there are no infinite chains
ti >R ta =R ..., confluent if for all tg, t1, t2 such that
t1 <R to SR ta, there exists t3 such that ¢; SRty &r ta,
and convergent if it is both terminating and confluent. A
term ¢ is in R-normal form if there is no term s with ¢t =% s
and the set of R-normal forms is denoted NFr. If t 53z s
and s € NFgr then we say that s is a R-normal form of ¢,
and write s = t |g. The application of the operator |z
is extended to set of terms as expected. A substitution o
is called R-normal if for every variable z € dom(o), zo €
NFg.

DEFINITION 1. A TRSR is called public-collapsing if ev-
ery rule { — r € R satisfies the two following conditions:

1. r € vars(€) orr € NFr NT(VF) and r # ¢,

2. if £ = f(la,...,ln) with f € VF, then for all strict
subterms of € of the form g(t1,...,tm) with g € VF,
either g(t1,...,tm) € NFr NT(VF), or there exists
j < m such that t; = r.

Now, we are going to illustrate this definition by giving
several equational theories, relevant to cryptographic proto-
cols verification, which fall in the class of convergent public-
collapsing TRS (see also [3]). Let VF = {{_}*, sd(,-),{-}*,
ad(-,-), (), m(2), m2(-), pU'b(—)}7 and PF = {—71}' The
meaning of these functions is described in Section 2.

Dolev-Yao theory. The following TRS corresponds to the
theory of [16] for public key encryption. This theory has

been studied in many works but, as noted in Section 2, the
use of explicit decryption and projections symbols and equa-
tions in protocol specifications permits to generalize other
approaches.

sa(fzlyy) e, ad({a)y™) =
T oo, ad({z}y-1,y) = =,

m((azl,xg)) — T (Z = 1,2)

Inverse-key theory. The three following rules extend the
Dolev-Yao theory:

{sd(z,y)}ty — =, {ad(z,y)};-1 — =, {ad(z,y 1)}s — .
They are useful when we assume that decryption is just an
encryption with the inverse key like for the cryptosystem
RSA.

Theory of involution. It is mentioned in [26] and can also
be encoded by a convergent public-collapsing TRS by adding
the following rules to the standard theory: {{z}y};-1 —
z,{{z};-1}y — =. This approach improves the model of [26]
since we consider cases where the rules are applied every-
where in terms and not only at the top of messages.
Probabilistic encryption. We can consider function sym-
bols pe(-,-,-) and pd(_,-) for probabilistic encryption and
decryption [18], and rules such as: pd(pe(m,k,r), k) — m,
where the function pe takes a message m, an encryption key
k and a random input r.

The following trivial lemma shall be used later while rea-
soning on public-collapsing systems.

LEMMA 1. Let R be a public-collapsing TRS and let s
S1y-+.y8n € T(F) be in R-normal form. We have s =

f(siy.oysn) dr iff s = f(s1,...,8n) or f(s1,...
3.3 Intruder Deductions and Constraints

We assume from now on given a convergent public-collapsing
TRS R. We assume given a linear well-founded ordering <
on 7 (F) and a special term denoted by 0 such that 0 € NFr
and is minimal w.r.t. <. We shall use a linear extension <
of < to multisets of ground terms. We are studying below
the saturation of sets of ground terms under the application
of visible function symbols of VF and rewrite rules of R (R
is supposed to define the semantics of the symbols of F).

Given a set of ground terms T" C T (F), the intruder set
Ir(T) is the smallest, w.r.t. inclusion, subset of 7 (F) con-

taining T', closed under <i>7a, and such that for all ¢1,...,t, €
Ir(T) and all f € VF of arity n, f(t1,...,tn) € Ir(T).
This aims, in the context of protocol verification, at mod-
eling an intruder who is able to deduce messages from the
ones collected on the insecure network.

An intruder constraint is a tuple written t1,...,t, IF 7
where t1,...,tn,r € T(F,X). The terms ti,...,t, are
called the hypotheses of the intruder constraint and r is
called its target. An intruder constraint is said to be ba-
sic when r € X. Since the order of the hypotheses does
not matter, we shall sometimes write an intruder constraint
T Ik 7 where T is the finite set {t1,...,tn}. A R-solution of
an intruder constraint 7" I r is a grounding substitution o
such that ro € Zr(To).

REMARK. An intruder constraint ¢i,...,¢, IF r may be
understood as a restricted kind of second-order equation
z(t1,...,tn) =t where t1, ..., tn,t are first order terms and
x is a second order variable which can take its values in
contexts made of public operators of V.F.

A
,Sn) —R S.



DEFINITION 2. A finite set of intruder constraints C 1is
well-formed if its elements can be ordered as To I+ ro,...,
Ti Ik 71 such that the following conditions hold:

1. 0 € Ty and st(R)N NFrNT(VF) C To,
2. fOT all i < l, T; g Ti+1,

3. for all i <1, for all x € vars(T;), there exists j < @
such that x € vars(r;).

The definitions of constraints and solutions and the above
restrictions have been validated by the application to the
verification of protocols presented in Section 4. Intuitively,
T Ik r is true if, knowing all the terms in 7', an intruder
is able to construct . The condition 7 imposes that some
terms are in the hypotheses of all the intruder constraints.
However it is not really a restriction since these terms, built
with public symbols, can always be constructed by the in-
truder. Condition 2 captures the fact that the intruder
never forgets information (every message read by the in-
truder is added to its knowledge) and Condition 3 says that
every variable of C appears for the first time in the target
of a constraint. Indeed, in our application in Section 4, ev-
ery variable of C corresponds to a message received by an
agent following the protocol, and the intruder must be able
to send such a message.

The conditions of Definition 2 are invariant (under some
conditions) under the application of a substitution and nor-
malization with R:

LEMMA 2. Given a finite well-formed set of intruder con-
straints C = {To IF ro,..., Ty Ik 1} and a substitution o, Co
ts well-formed and if moreover for each it <, ric € NFg,
then Co |r is well-formed.

Note that the hypothesis r;0 € NFx is crucial. Indeed, let
us consider for instance the well-formed C = {T' IF sd({a}3, y)
T,z Ik b}, and the substitution o = {& — y}. The system
Co r= {T Fa; T,z I+ b} does not fulfill Condition 3 of
Definition 2 but sd({a}z,y)o = sd({a};,y) ¢ NFr.

3.4 Proof Trees

We find convenient for the proofs of the next sections to
represent the intruder deductions leading to a term of Zg (T)
by a proof tree describing the deduction steps.

DEFINITION 3. Given a finite set T C T(F) and u €
T(F), a proof P of T bFr w is a tree labeled by terms of
T(F) such that:

o cvery leaf of P is labeled with v | & for some v € T,

e cvery internal node of P with n sons P1,...,P, whose
roots are respectively labeled with vi,...,v, is labeled
by f(vi,...,vn) Ir for some f € VF,

e the root of P is labeled with u {r, this label is denoted
root(P).
The size of a proof P is the number of its nodes.
Note that with this definition, every label of a proof is in
NFgr. A proof P of T Fr u (not reduced to a leaf) is
called a composition proof if its direct subtrees Pi,..., P,
are such that root(P) = f(root(P1),...,root(Py)) for some

f € VF. Otherwise, it is called a decomposition proof and,
by Lemma 1, it means that there exists f € VF such that

f(root(Py),. .., root(Py)) . root(P).

)

ExAMPLE 1. T = {{mi}x, k,m2}, R = {d({z}y,y) — z}.
Trr {mie Thrk
Thr d({mi}e, k) Ir=m
Trrme TkErk
T Fr d(ma, k)

is a decomposition
proof.

(deVF)

is a composition
proof.

(deVF)

LEMMA 3. Given a finite set T C T(F) and u € T(F),
u € Ir(T) iff there exists a proof of T Fr w.

4. VERIFICATION OF CRYPTOGRAPHIC
PROTOCOLS

In this section, we show how the problem of insecurity
of cryptographic protocols, assuming a bounded number of
sessions, can be reduced to solving systems of intruder con-
straints and equations. An effective solving procedure is
presented in the next sections. We shall describe first our
model for cryptographic protocols and their execution (Sec-
tion 4.1), second the security properties that we shall con-
sider (Section 4.2), and then the construction of a constraint
system given a protocol and a security problem (Section 4.3).

4.1 Protocol Semantics

We consider a simple representation of cryptographic pro-
tocols and their execution by agents which should fit with
most of the formalisms in use.

A protocol is a finite set of programs, each program being a
finite sequence of instructions of the form recv(x); £; send(s)
with z € X, s € T(F,X) and £ is a set (possibly empty) of
equations on terms of T (F, X).

EXAMPLE 2. The first version of the Denning-Sacco pro-
tocol described in Section 2 is made of two programs:

A’s role:  recv(xd); ) = 0;
send((x%, {{xg{ab};ub(:p%)*l }Zub(z%)»;
recv(z?); send(0)

B’s role : recv(x(l));

13s
5end ({25 }(ad (o (o) wub(ad) ~1).pubes (23)))

The symbols x, 29, 2% ... are all distinct variables of X.
The second instruction of program A implements only the
reception of the last message by A.

Given a protocol P, an agent executing a program p of P
is represented by a process (p, o) where o is a ground substi-
tution. A configuration is a pair (S, N) where S is a finite set
of processes whose programs have disjoint sets of variables,
and N is a set of ground terms representing the network
controlled by an intruder. We define small step semantics
for the execution of processes. Each step changes the run-
ning configuration ({(p,o)}US, N) to ({(p',¢")}US, N') by
the execution of the instruction instr := recv(z); £; send(s)
if p = instr;p’ and there exists a R-solution 6 of the equa-
tions in £o such that zof € Ir(N), o' = o6 (execution of
recv(z), control of the conditions in £, and update of o) and
N’ = N U{so’} (execution of send(s)).

We shall assume that for every execution step as above,
the term sent so’ is ground. It means that the agent is
able to construct the term s to be sent with the substi-
tution in its initial process (its initial knowledge) or with



the messages received from other agents. This is ensured
by the following condition: we call an initial configuration
({(po,00),- .-, (Pm,om)}, No) of a protocol P runnable iff
for each ¢ < m, such that the program p; is a sequence
(recv(zi,;); & 55 end(si,5))j<n, for each j < n, for each z €
vars(si,;),  is in the domain of o; or there exists k& < j such
that = z; 1.

EXAMPLE 3. Any initial configuration with set of pro-
cesses {(po,ao)7 (pl,al)}, where po and p1 are respectively
the programs A’s role and B’s role of Example 2 and oo
and o1 are described below, is runnable for the protocol of
Ezxample 2 (a, b, k, s are constants):

= {x% —a, 2% - b, 1% b—)k} o1 = {:C]lg — b, x5 >—>s}

4.2 Security Properties

Let So = {(po,ao)7 e (pm,am)}. An interleaving of Sp
is a finite sequence I, without repetition, of pairs of integers
(4,7) where 0 < i < m (¢ is the index of a process of Sp)
and 0 < j < |ps| (J is the index of an instruction of p;),
which satisfies the following ordering condition: for each i
with 0 < i < m, the subsequence of I of pairs with first
component ¢ has the form (¢,0),...,(i,n), with n < |p;|.
This condition expresses that I describes a partial linear
execution of the respective programs of the processes, up to
some point.

We say that a configuration (S, V) is reached from (So, No)
via an interleaving I, denoted (So, No) —1 (S, V) if there is
a finite sequence of configurations (So, No), ..., (S1}, Nj1]) =
(S, N) such that for each k < |I|, (Sk, Ni) changes to
(Sk+1, Ng+1) by execution of the jth instruction of the ith
process of Sy, where (i, j) is the kth element of the sequence
I. We are interested here in the following problem:

Protocol Insecurity (PI): given a protocol P,
a runnable initial configuration (So, No) of P, an
interleaving I of So, and a ground term s, does
there exist (S, N) such that (So, No) —; (S, N)
and s € N?

We can express several trace properties of protocols as in-
stances of PI. This typically the case of authentication fail-
ure (where one process p completes the protocol presumably
with an interlocutor process p’ whereas p’ did not even start
to run, and therefore p has been fooled in communicating
only with the intruder), or of secrecy violation with some
interleaving. Concerning the later problem, we shall also
remark that the following problem of secrecy for any inter-
leaving is reducible to PI since the number of interleaving is
finite:

Weak Secrecy (WS): given a protocol P, a
runnable initial configuration (So, No) of P, and
a ground term s, does there exists an interleaving
I of Sp and (S, N) such that (So, No) =1 (S, N)
and s € N?

4.3 \Verification via Constraint Solving

Given some input (So, No) (with Sp as above), I and s
of PI, let us construct the set C containing, for each k& <
|I| such that (i,7) is the k-th element of the sequence I,
and recv(z; ;); £, j;send(s;,5) is the j-th instruction of the
program p;:

o the basic intruder constraint T} IF x;,;, where T1 = Ny
and Tk+1 =T, U {siyjai}

e the equations of &; jo;.

Moreover, C contains the additional basic intruder constraint
Tij Ik x (2 is a fresh variable) and the equation 2 = s, which
means that the secret is revealed.

Note that the subset of intruder constraints of C is well-
formed. We can show that the R-solvability of C is equiv-
alent to PI. We shall present here the construction of C on
our running example.

EXAMPLE 4. As announced in Section 2, there is an at-
tack on the protocol of Example 2, starting with the ini-
tial configuration (So, No) with So given in Example 3, and
No ={0,a,b, pub(a), pub(b)}, when R is the standard Dolev-
Yao theory of Section 3.2. In this attack, an intruder, claim-
ing to be a (process po) sends to b (process p1) the “message”
(a,{0}punny)- The answer of b is then:

{8} ad(ad(ma((a. 032, ) pub(B) = 1) pub(mr ((@.0}2,,,))) R
{8}ad(0,pub(a)) and s is revealed since the encryption key
ad (0, pub(a)) belongs to Ir(No). The interleaving describ-
ing the trace of the attack is the sequence of length one
((1,0)) (it consists in a single instruction O of process p1),
and the (well-formed) set of basic intruder constraints and
equations C associated to this interleaving is:

1
{No I 20; No, {8} adad(ms (o8 pub(s)=1) pus(m ey IF @32 = 8}

The first intruder constraint expresses that the process po
is able to receive the expected message xp, i.e. that the in-
truder can construct it from its initial knowledge No (x(l) €
Ir(No)). The second intruder constraint expresses that from
Po’s answer and Ny, the intruder is able to deduce x. Fi-
nally, the last equation expresses that x is the secret. We
can check that o = o1 U {z§ (a,{0}pupp))» T = s} is a
R-solution.

We shall give in the next two sections a resolution procedure
for the problem of the satisfiability of a well-formed set of
constraints. This will allow us to prove the main result of
this paper.

THEOREM 1. PI is decidable in non-deterministic poly-
nomial time.

COROLLARY 1. WS is decidable in non-deterministic poly-
nomial time.

PrOOF. The maximal length of an interleaving of Sy is
polynomial (in the size of Sp). [

5. CHECKING GROUND CONSTRAINTS

In this section, we show how to solve intruder constraints
without variables, i.e. how to decide, given a finite set T' C
T(F) such that st(R)NNFrRNT(VF) C T, 0 € T and
given a term u € T (F), whether u € Zg(T) holds or not.
Following the approach of [9], we show first that u € T (T)
ensures the existence of a local proof, i.e. a proof which only
involves terms in st(T g U{w |=}). Then, we show that
using this result, we can determine in polynomial time in
the size of T' and u, whether u € T (T).

LEMMA 4 (LOCALITY). LetT be a finite subset of T (F)
such that st(R)YNNFrNT(VF) CT and 0 € T, and let a



term u € T(F). Every minimal size proof P of T Fr w is
labeled by terms in st(T {r U{u J=r}) and if moreover P is a
decomposition proof then it is labeled by terms in st(T Lr).

PROOF. (sketch, see full version). We prove the two re-
sults simultaneously by induction on the proof P. The only
difficult case is when we have to take into account a rewrit-
ing step after the application of a visible function symbol,
i.e when P is a decomposition proof. Clearly, root(P) is a
subterm of one of the direct subproof of P, however it re-
mains to show that the root of the direct subproofs of P are
labeled with subterms of T'. It is treated by case analysis
on the condition verified by the rewrite rule involved in the
reduction. [

Now, using this locality Lemma 4, we show that we can
decide in polynomial time whether u € Zg (7).

PROPOSITION 1. Given a finite set T C T(F) such that
st(RYNNFrNT(VF) CT and0 € T, and a termu € T (F),
whether w € Ir(T) can be decided in polynomial time in
1T U {u}la-

PROOF. By Lemmas 3 and 4, if u € Zr(T') then there
exists a proof P of T kg wu labeled only with terms in
st(T Ir U{u |r}). To decide the existence of such a proof
tree, we construct (following [20]) the set S of ground Horn
clauses containing:

e cvery = P(s)s.t. s€T |g,

e every P(s1),...,P(sn) = P(f(s1,...,8n) Ir) s.t.
S1yvySny (81,000, 8n) IRE st(T Ir U{u lr}) and
feVF

° P(u \I/R) = .

The clauses of S of two first kind above implement a mark-
ing of every ground subterm ¢ € st(T |= U{u | = }) such that
there exists a proof of T' Fx t. Therefore, the existence of
a proof of T Fr u is equivalent to the HORN-SAT problem
for S, which size is polynomial in ||T"U {u}||la (the degree
of the polynomial is the maximum of the arities of symbols
of VF). Hence, u € Ir(T) can be decided in polynomial
time. [

6. SATISFIABILITY OF WELL-FORMED
SETS OF INTRUDER CONSTRAINTS

We shall lift the decision result of Section 5 with a non-
deterministic polynomial time procedure to decide the sat-
isfiability w.r.t. R of well-formed sets of basic intruder con-
straints (with variables) and equations.

6.1 Constraints Transformation Rules

We present in Figure 1 a set of transformation rules which
operate on tuples of the form (P,C,S), called constraints
systems where:

e P is a set of equations and basic intruder constraints,
e C is a set of intruder constraints,

e S is a set of equations in solved form representing bind-
ings in the solution, i.e. & = {z1 = t1,...,2n = tn}
where each x; € X and has only one occurrence in S.

We may associate a substitution {z1 > t1,...,2n > tn}
to the third component S of a system. Below, we shall make
no distinction between S and its associated substitution.

DEFINITION 4. A R-solution of a system (P;C;S) is a
grounding substitution o such that o is a R-solution of each
intruder constraint in PUC, o is a R-solution of each equa-
tion in P, and o is a unifier of each equation in S.

Given an initial system of the form (BUE, 0, (), where B is a
finite well-formed set of basic intruder constraints and £ is a
finite set of equations, the repeated non-deterministic appli-
cation of the rules of Figure 1 shall terminate (Section 6.2)
and produce (in at least one derivation branch) a system in
solved form (0,0, S) (such systems always have a R-solution)
iff (BUE, D, D) has a R-solution (Sections 6.3 and 6.4). This
gives a non-deterministic polynomial time procedure for the
decision of the satisfiability which is shown NP-hard in Sec-
tion 7.

From now on, we shall note =y, =>y,. .. the binary re-
lation defined by the application respectively of the above
rule (N), (U)..., = denotes the union of all these rela-
tions and =T and =" are the respective transitive and
reflexive-transitive closures of =>.

6.2 Termination

PROPOSITION 2 (TERMINATION). The relation =
is strongly terminating. Moreover, given a system (Po; 0;0),
for every transformation sequence (Po;0;0) = (P1;C1;81)
= ... = (Pn;Cn;Sn), the length n, the number of suc-
cessors of every (P;,Ci,S;) with => and the value ||P;|| +
IC; USilla are polynomial in ||Po|| and ||R]|.

PROOF. (sketch, see full version for details). Let the com-
plexity of system (P; C; S) be the tuple (|P|, nb(P), nbv(C), |C|)
ordered lexicographically where: nb(P) is the number of
terms in st(P) which are unifiable with a left member of a
rule of R, and nbv(C) is the number of distinct variables
in C. We can show that each rule of Figure 1 reduces the
complexity, hence that = terminates. [

6.3 Correctness

The following proposition shows that the constraint solv-
ing system defined in Figure 1 is correct.

PROPOSITION 3 (CORRECTNESS). For every system
(P;0;0), if (P;0;0) =" (0;0;S) then (P;0;0) has a
R-solution.

PROOF. (sketch, see full version for details). By induc-
tion on the length of the derivation, we show for every rule
(R), that if (P1;C1;81) =>r (P2;C2;S2) and the second
system (P2;C2;S2) has a R-solution o, then o is also a R-
solution of (P1;C1;S1). O

6.4 Completeness

We show now the completeness of the constraint solving
system of Figure 1 (Proposition 4). We shall first prove
three technical lemmas: Lemma 5 and Lemma 6 are used in
the proof of Lemma 7, which is the key in the proof of the
Proposition 4 — it establishes the completeness of the rule
(VE).

LEMMA 5. Let T C NFx be such that st(R) N NFr N
TWVF) CT, letuw € NFr, v € st(u) such that v ¢ st(T),
and let P be a proof of T b w. There exists a composition
proof of T Fr v.



PuU{eul}; C; S
P U {e[r]}; Cn; SnUn

Narrowing
e is an equation or an intruder constraint, v ¢ X, [ — r is a fresh
variant (a copy in which all the variables have been renamed) of

a rule of R, n = mgu(lS, uS), root(l) = root(u).

pU{h:tz}; C; S U
P; Cn; SnUn

PU{c} C; S
P; CU{cS}; S

P, C; S
P; C{z —t}; S{th}U{th}(

P; CU{TIFu}; S
P; C; S

Blocking
¢ is an intruder constraint.

Ground
if all the terms in T" and u are ground
and u € Zr(T).

Syntactic Unification
n = mgu(t1S, t2S).

Variable Elimination
VE) x € vars(C),t € st(C) \ vars(C),
there is no occurrence of x in t.

Figure 1: Constraint Transformation Rules

PRrROOF. We assume that P is a minimal proof of T'Fx w.
If P contains a node labeled with v, then it is the root of
a proof of T Fr v as expected. This proof is indeed a
composition proof: otherwise, by Lemma 4, we would have
v € st(T'), which contradicts the hypotheses.

We show now that P necessarily contains one node labeled
with v, by contradiction. Assume that P contains no such
node. We shall construct recursively a path in P, from the
root up to one leaf, every node of which is labeled with a
term ¢ such that v € sst(t), and we shall show in parallel
that the existence of such a path leads to a contradiction.
By hypothesis, v is a subterm of the label v of the root of
P. Assume that this condition is also true for all the nodes
of a path (so,...,sk) in P, labeled respectively with to = u,
ti, ..., tr (hence v € sst(to), ..., v € sst(tx)) and let us
consider the sons of the last node s of the path.

If sy is a leaf, then ¢, € T by Definition 3 and v € sst(tx).
It contradicts the hypothesis that v ¢ st(T').

If s, has nsons Pi, ..., P,, then we have (by Definition 3)
te = f(root(Py),...,r00t(P,)) {r for some f € VF, and
thanks to Lemma 1, there are only two cases to consider:
0 or 1 step of rewriting. In both case, we show (see full
version) that we can set the next node si4+1 of the path as
the root of one of the P;, 1 <n. O

The following technical lemma allows to apply replacements
on proof tree labels.

LEMMA 6. Letv = g(v1,...,vx) € NFr\(st(R)NNFrN
T(VF)), with g € VF, let § be the replacement § = {v — 0}
and let ui,...,un € NFr and u = f(ui,...,un) Ir with
fEVF. Ifu#v,v1,...,0k, then ud = f(u1d,...,und) Ir.

PrOOF. By Lemma 1 we have to consider only two cases:
1. u= f(u1,...,un). In this case, we have: ud =
flut, ... un)d = f(ud, ..., u,d) since v # f(ui,..., un).

2. f(ut, ..., un) ihz u, with a rewrite rule f(li,...,ln) —
r € R. We denotes by Pos, the set of all occurrences of

v in the term f(u1,...,un). If A € Pos,, then v € NFg
which contradicts the hypothesis. If for all p € Pos,, there
exists p' a prefix of p such that f(l1,...,l,)|p" € X then

flud, ... und) A% ué with the same rule as before. Oth-
erwise there exists p € Pos, such that f(l1,....ln)|p & X.
We have p # A, let p = i.p’. The case where l;|p’ € X is
impossible due to the choice of p, l;|p’ € PF is impossible
since head(v) € VF. Lastly, if l;|p' € VF then either there
exists j such that l;|p’.j = r and u is equal to v; which
contradicts the hypotheses, or I;|p’ € st(R)NNFrNT(VF)
which means that v € st(R) N NFrNT(VF), and it is a
contradiction. [

Given two substitutions o1 and o2, we write o1 K o2 iff
{zo1| x € dom(o1)} K {wo2| v € dom(o2)}.

LEMMA 7. Let o be a minimal (w.r.t. <) R-solution of
a well-formed set C of intruder constraints such that all the
terms in Co are in NFr. For all x € vars(C), there exists
t € st(C) \ vars(C) such that to = zo.

PROOF. (sketch, see full version for technical details). Let
(C1,...,C) be a sequence of the constraints of C ordered as
in Definition 2, and for each i < ¢, let S; and r; be respec-
tively the set of hypotheses and target of C;, and C;o be
the (ground) constraint obtained from C; by instantiating
all the terms in its hypotheses and target with . We rea-
son by contradiction. Assume that there exists x € vars(C)
such that for all ¢ € st(C) \ vars(C), to # zo, and let §
be the replacement {zo + 0}. We show that ¢’ = o4 is
also a R-solution of C, and it contradicts the minimality of
o. Note first that for each i < ¢, and each s € S; U {r;},
s(0d) = (so)d.

Let m = min{i | zo € st(Cio)}. By the above hypothesis,
there exists y € vars(Cy,) such that zo € st(yo). Otherwise,
there would exist ¢ € st(Cm) \ vars(Cm) such that to = zo.
Moreover, each such variable y occurs in 7, and not in the
hypotheses S,,. Otherwise, since C is well-formed, there



would exists ¢ < m such that y € wvars(r;), hence zo €
St(CZ'O') .

For each i < m, zo ¢ st(C;o), hence Cio’ = (C;0)d = Cio
and ¢’ is a R-solution of C;.

Let ¢ > m and let P; be a proof of S;oc Fr rioc. By
Lemma 3, there exists a proof P,, of Smo Fr rmo on which
we can apply Lemma 5 in order to obtain a composition
proof P, of S;no Fr xo. We construct a proof P}’ of S;0’ Fr
r;o’, by transformation on the proof tree P;, using subproofs
of P,. Roughly, if we let zo = f(u1,...,un), we replace in
P; every subtree whose root is labeled by some u; by the jth
direct subtree of P, (which is indeed a proof of S0 Fr uj),
and we replace in P; every subtree whose root is labeled by
ro with a leaf labeled by 0. Finally, we apply § to all the
other nodes of P; and, using Lemma 6, we can show that
the tree P;’ obtained is indeed a proof of S;o’ Fr 7;0’, and
hence that ¢’ is a R-solution of C; by Lemma 3. [

PROPOSITION 4
formed set of basic intruder constraints, £ a finite set of first-
order equations. If (BUE;D;0) has a R-solution, then there
erists a sequence of reductions of the form (BUE,D,0) —*
(0,0,8).

PROOF. (sketch, see full version). We show, by induction
on the complexity of systems, the more general result that if
there exists a R-normal solution ¢ of a system (P,C,S’) such
that the set of intruder constraints in PS’ |z UC is well-
formed, and the terms in Co are in NF g, then there exists
a sequence of reductions of the form (P,C,S") =* (0,0, S).

The base case (0,0, S’) is trivial. For the induction step,
we assume that o is a minimal (w.r.t. <) R-normal solu-
tion as above, and we show that for each (P,C,S’), we can
apply one of the constraint transformation rules of Figure 1,
and that the system obtained has a R-normal solution o’
of the above form. The difficult case is the application of
the rule (VE). It is treated by using Lemma 7. To con-
clude, we observe that the above result can be applied to

(BUé&;0;0). O

Using the above Propositions, we deduce a NP decision pro-
cedure for the decision of satisfiability.

THEOREM 2. Given a convergent public-collapsing TRS
R, a finite well-formed set B of basic intruder constraints
and a finite set £ of equations, the existence of R-solution
of BU €& is decidable in non-deterministic polynomial time.

PrOOF. By Proposition 2, the repeated application of the
rules of Figure 1 to the system (BUZE; ;) gives a finite de-
duction tree whose nodes are labeled by constraints systems
and every node is obtained from its parent node by applica-
tion of a rule of Figure 1. According to Propositions 4 and 3,
B U € is satisfiable (w.r.t. R) if and only if there exists a
leaf with a label of the form (0;0;S) in the deduction tree.

By Proposition 2, both the depth d and the maximal
branching degree b of this deduction tree is polynomial in
|[BUE| and ||R||. The non-deterministic polynomial time
algorithm consists in choosing a path p in the deduction
tree, i.e. a sequence of length at most d of natural numbers
smaller or equal to b, and checking that the path p leads to
a leaf labeled by (0;0;S) in the deduction tree. It can be
done in polynomial time by the iterative application of the
instances of rules of Figure 1 corresponding to the compo-
nents of p. The application of every instance of rule takes a

(COMPLETENESS). Let B be a finite well-

polynomial time. It is obvious for (N), (U), (B) and (VE).
For (G), it is a consequence of Proposition 1 and the bound
of Proposition 2 for the system-dag-size of the labels of the
deduction tree. [

7. NP-HARDNESS

We show now that PT and WS are NP-hard for polynomial
time reductions by reduction of 3-SAT. The proof is inspired
from the one given by [26]. However, the protocol built from
the given instance of 3-SAT is reduced to a minimum thanks
to the flexibility of our formalism concerning the choice of a
rewriting system.

Let Xi,..., X, be propositional variables and let us con-
sider the following instance of 3-SAT:

m
AN XL v Xais v Xals)
i=1

where a; ; € 1.n and €; ; € {0,1} and u' (resp. u°) denotes
u (resp. —w) for any term w.

We use a signature made of VF = {0,1,71(),...,m (),
(5., and PF ={_A__V_ —_ secret}, where () has
arity n. Let R be a convergent public collapsing TRS which
defines the truth tables of A, V, = with 0A0 — 0 etc (0 is false
and 1 is true) and the projections with ; ((xl, ... ,:cn>) -z
fori=1,...,n.

We construct a protocol P with only one program made
up of one instruction:

recv(x); fi(x) A ... A fm(x) = 1;send(secret)

where, for all i < n, fi(z) = ma,, (€)% V Ta, ,(x)2 V
Ta; 5 (%)% (we omit the parenthesis in the expressions with
A and V) . Finally, let Sy contains one process (po, 0o) with
oo = @ and N() = {0, 1}

We can show that PI for P, (So, No), secret and the in-
terleaving ((0,0)) has a solution iff the above instance of 3-
SAT has a solution represented by = = (Xi,...,X,) (each
X; is 0 or 1) and this term x is in Zg(Ng). Note that the
choice of the interleaving is limited to ((0,0)) (or the empty
sequence), hence the reduction is also valid to show the NP-
hardness of WS. By Theorem 1 and Corollary 1, we deduce
that PI and WS are NP-complete and, with the construction
of Section 4.3, it implies that the problem of solvability of
well-formed sets of basic intruder constraints and equations
(Theorem 2) is also NP-complete.

8. CONCLUSION

We have defined a complete inference system for solving
equations and intruder constraints modulo convergent and
public-collapsing TRS, and we have shown how it provides
a generic non-deterministic polynomial time procedure for
the verification of the security of cryptographic protocols in
presence of a finite number of sessions, and with the addition
of operators whose semantics are defined by a convergent
public-collapsing TRS.

A natural extension to this work is the search of public-
collapsing theories other than those described in Section 3.2,
for the weakening of security hypotheses. For instance, one
may want to consider dictionary attacks [12]. An exclusive
or operator + can be axiomatized by the rewrite rules z +
r—0,24+0 — 2z, 4+ x+y — y with associativity and
commutativity (AC) of +. The three first rules fulfill our



public-collapsing condition. Hence, we should consider to
extend our solving procedure to a procedure modulo AC in
order to deal with xor, like [6, 9].

We could also study the generalization of the class of con-
vergent TRS handled. An application could be for instance
to model honest protocol transitions by rewrite rules, mak-
ing the guess of an interleaving in the proof of Corollary 1
unnecessary.

At last, and this is a more difficult task, we could try
to extend our result to the decision of static equivalence
(following [2]). A solution could be to extend the class of
constraints under consideration. As noted in Section 3.3,
intruder constraints correspond to second order equations
(modulo a convergent TRS) of the form z(t1,...,tn) = t.
Being able to deal with equations of the form z(t1,...,t,) =
z(81,...,8n) could permit us to study properties related to
observation equivalence, hence to consider some properties
more general than the weak secrecy.
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