

Behavioral Reactivity and Real Time Programming in XML
Functional Programming meets SMIL Animation

Peter King
Department of Computer Science

University of Manitoba
Winnipeg, MB, Canada

prking@cs.UManitoba.ca

Patrick Schmitz

Ludicrum Enterprises
San Francisco, CA, USA
cogit@ludicrum.org

Simon Thompson
Computing Laboratory

University of Kent
Canterbury, Kent, UK

S.J.Thompson@kent.ac.uk

ABSTRACT
XML and its associated languages are emerging as powerful
authoring tools for multimedia and hypermedia web content.
Furthermore, intelligent presentation generation engines have
begun to appear, as have models and platforms for adaptive
presentations. However, XML-based models are limited by their
lack of expressiveness in presentation and animation. As a result,
authors of dynamic, adaptive web content must often use
considerable amounts of script or code. The use of such script or
code has two serious drawbacks. First, such code undermines the
declarative description possible in the original presentation
language, and second, the scripting/coding approach does not
readily lend itself to authoring by non-programmers. In this paper
we describe a set of XML language extensions, inspired by
features from the functional programming world, which are
designed to widen the class of reactive systems which could be
described in languages such as SMIL. The features which we
discuss extend the power of declarative modeling for the web by
allowing the introduction of web media items which may
dynamically react to continuously varying inputs, both in a
continuous way and by triggering discrete, user-defined, events.
The two extensions described herein are discussed in the context
of SMIL Animation and SVG, but could be applied to many
XML-based languages.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentation]: Multimedia
Information Systems – Animations, I.3.6 [Computer Graphics]:
Methodology and Techniques – languages, standards.

General Terms
Design, Standardization, Languages, Theory, Verification.

Keywords
Animation, declarative, continuous, events, functional
programming, expressions, modeling, behaviors, SMIL, SVG,
time, XML, DOM.

1. INTRODUCTION
Web authors are turning more to W3C language standards as
powerful yet simple to use authoring tools. These languages are
declarative, providing a domain-level description of both content
and presentation. However, when authors need additional
capabilities not provided in the language, they are forced to work
in an imperative scripting or programming language, such as
ECMAScript [6] or Java. Since most content authors are not
programmers, this use of script is often awkward. Moreover,
modern presentation generation systems, such as [18], rely on the
structure and semantics of declarative languages, and often cannot
easily integrate imperative content extensions. Similarly, the use
of script or code is problematic in data-driven content models
based upon XML and associated tools.

In this paper we will motivate and describe a set of XML [9]
language extensions that will enhance these language standards.
The extensions capture certain run-time dynamic behavior in the
XML declarative dictum, and make provision for presentation
dynamism in response to continuously-varying (or ‘fluid’) user
input. Thus the behavior of the artifact being specified may
change in response to some other behavior. Such dynamic
behavior change occurs in two related forms. The first form may
be termed event-based, and consists of a discrete presentation
state change occurring when a particular property becomes true.
For example, one might switch audio sources when the signal
strength of one has become less than the strength of the other, or
one might notify an investor when a stock value has reached a
certain level. The second class of application, termed continuous
dependence, permits fluid output to change in a continuous
fashion in response to a dynamic input. To give two simple
examples, the position of an image may track the mouse position,
or a continuous meter or slider may follow the volume of an audio
signal. In general terms, in this type of application, the output
behavior is a continuous function of some other dynamic behavior
While it would be possible for an XML user to achieve the effects
just described by making use of, say, ECMAScript, our intent is to
integrate these added capabilities into the existing XML
languages. In this way authors may make use of these features
while remaining within the familiar XML programming style. In
order to provide this added functionality, we propose two
extensions, both inspired by constructions to be found in
declarative, functional programming languages, namely:

• attribute values defined as dynamically evaluated
expressions,

• custom (or ‘author defined’) events based on predicate
expressions.

The paper outlines these proposed extensions and discusses how
they may be integrated into existing XML based languages and
implementations. We have chosen to illustrate the effect of these
extensions by examples based on SMIL animation, XHTML and
SVG graphics, but the extensions could be applied to other XML-
based languages.
The remainder of the paper is organized as follows. Section 2
contrasts the paradigms of declarative authoring and functional
programming. Section 3 discusses in more detail the sort of
reactive dynamism we have in mind, and contrasts our notions
with more traditional event driven reactivity. We support the
discussion with a number of use-case scenarios. Sections 4 5 and
6 detail the extensions to XML which we are proposing in order to
support this new notion of behavior-driven reactivity. Section 7
discusses our implementation experience and describes
approaches towards both a prototype and a production-level
implementation. Section 8 presents a number of case studies that
illustrate our extensions and their utility to authors in extending
the declarative authoring paradigm. Section 9 presents our ideas
for future work in the direction of adding functional features to
XML languages, and concludes.

2. DECLARATIVE AUTHORING AND
PROGRAMMING

In this section we will review both the W3C XML-based and the
functional language-based approaches to authoring, and we will

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00

Simon Thompson ! 3/8/04 8:59 PM

Simon Thompson ! 3/8/04 8:56 PM

Simon Thompson ! 3/8/04 9:04 PM

Deleted: [8]

Deleted: [5]

Deleted: [11

then outline in general terms what we feel the former can gain
from the latter.

2.1 Authoring in W3C language standards
Many W3C language standards promote a declarative approach to
defining complex document manipulations. These languages
include standards for XML document transformation [23], styling
and presentation [6, 10] as well as languages to describe complex
multimedia elements such as 2D graphics [15], and timing,
synchronization and animation [18]. A declarative language
permits the author to create a high-level description that explains
what is to happen rather than how the effect is to be achieved.
This low-level realisation is the responsibility of the platform in
which the artifact is rendered.
 In the XML paradigm, the high-level description is a structure or
element containing sub-elements and values of various parameters
(or attributes). Consider a simple example written in SVG and
SMIL Animation:

<circle cx="20" cy="20" r="100" fill="red">
<animateMotion dur="5s" from="0,0" to="50,50"/>

</circle>

This fragment defines a red circle and a motion animation,
moving the circle down and right over the course of 5 seconds.
The circle is described by a circle element with values for
various key attributes: its position, radius and colour; a component
element describes how the element is animated.

The SMIL 2.0 Animation module provides a small domain-
specific language (DSL) for describing the animation of
properties in a document. The language contains certain primitive
constructs (elements) for functions such as changing a property
over time or moving a target object along a path, and provides a
model for composing multiple animations on a given property.
Details of the animation (such as the duration and the property
values to interpolate) are specified as attribute values (dur, from
and to in the example). The DSL approach has the advantage
over the use of script or code that document semantics are
machine independent while at the same time machine
understandable. Thus, documents can be interchanged among
authoring tools and rendered consistently across a range of
presentation implementations.

The XHTML+SMIL integration [22] has provided additional
experience with animation and adaptation, especially with the
flow layout model provided in HTML/CSS. Because the size and
position of elements can often be determined only at presentation
time (and can vary depending on user preferences), it is often
impossible to specify associated values for animation at authoring
time. A more flexible definition of animation values is needed;
with current technology this dynamic animation can only be
achieved using script- or code-based extensions.

SVG integrated and extended SMIL Animation to support
dynamism for vector graphics. While this was an important early
integration, the model was intentionally simple, and as a result,
many animations can be described only with the use of script.

2.2 Authoring in a programming language
An alternative approach to multimedia authoring consists in
making use of a programming language [1,2]. Of its nature, a
general purpose programming language provides the author with
sufficient power to implement virtually anything, but the costs of
complexity, lack of portability, and the overhead associated with
the implementation of such a language are such that it is by no

means clear that use of a programming language is a preferable
approach to authoring. Moreover, multimedia authors and
designers are generally not programmers. Nevertheless, functional
programming languages like Haskell [19] have been shown to
provide a suitable substrate for embedding DSLs of various kinds
[12], including the Fran [7] system, and the more recent Yampa
system [4] for Functional Reactive Programming and Animation.
These models provide a powerful and flexible programming
environment, but require a level of sophistication well beyond the
authoring model of SMIL. Moreover, it is well nigh impossible to
integrate programmed models into current authoring tools.
Other approaches to multimedia description can be found in [14]
and a comprehensive overview of timing issues in multimedia and
computer graphics is given in [16], which, inter alia discusses the
tension between authoring and programming in the Tbag model.

2.3 Functional Programming
Before continuing the discussion of authoring we give a brief
overview of functional programming, since this inspires the
extensions we propose below. Functional programming embodies
a declarative approach to programming, and so extends the
declarative authoring model of the XML-based languages.
A functional program consists of a number of definitions. A
program is executed by evaluation: an expression, built up using
the definitions from the program together with built in functions
and values, is evaluated to give its result. Given the definitions
(using the syntax of the Haskell [19] language)

width = 42; height = 27

perimeter x y = x*2 + y*2

evaluation of the expression
perimeter width height

gives the result 138. Evaluation proceeds by expanding out
definitions and applying primitive operations; the evaluation can
be written step by step thus:

perimeter width height

 = perimeter 42 27

 = 42*2 + 27*2

 = 84 + 54

 = 138

Thus, in a pure functional language such as Haskell evaluation is
without side-effects: at each stage equals are replaced by equals.
An expression simply stands for its value. For example, the
expression perimeter width height describes the
perimeter of a rectangle with height 27 units and width 42. Thus,
expressions are declarative. (It is important to realise that in most
imperative languages, evaluation of expressions can and usually
does change the state of the underlying system; in other words
evaluation has side effects: this is not the case here).
Such functional languages can form an effective basis for
multimedia authoring, as discussed in [2]. In particular, Fran [7]
and Yampa [4] are two Haskell-based programming systems in
which reactive multimedia artifacts may be created using the
concepts of Functional Reactive Programming (FRP) [21].

2.4 When the DSL is not enough
The declarative DSL approach to multimedia authoring provides a
number of benefits. A user is presented with a clear model of what
can and cannot be achieved. SMIL animation, for example, allows
movement along spline paths, but does not allow the motion to be

Simon Thompson ! 3/8/04 9:07 PM

Simon Thompson ! 3/8/04 9:03 PM

Simon Thompson ! 3/8/04 8:57 PM

Simon Thompson ! 3/8/04 9:15 PM

Simon Thompson ! 3/8/04 8:55 PM

Simon Thompson ! 3/8/04 9:02 PM

Simon Thompson ! 3/8/04 9:01 PM

Simon Thompson ! 3/8/04 9:05 PM

Simon Thompson ! 3/8/04 9:09 PM

Simon Thompson ! 3/8/04 9:04 PM

Simon Thompson ! 3/8/04 9:05 PM

Simon Thompson ! 3/8/04 9:14 PM

Simon Thompson ! 3/8/04 8:57 PM

Simon Thompson ! 3/8/04 8:55 PM

Simon Thompson ! 3/8/04 9:14 PM

Deleted: [15

Deleted: [10

Deleted: [6]

Deleted: [17

Deleted: [18]

Deleted: [5

Deleted: 9

Deleted: [12

Deleted: [14

Deleted: [11

Deleted: [13

Deleted: [16

Deleted: [6]

Deleted: [18]

Deleted: [20

determined by, say, the current mouse position. The motion is
expressed in the language of the author, using terms such as
duration and extent, rather than at the level of the implementation
engine, which draws images in particular places at particular
times.

Here's the problem, though. The language is, by its very nature,
limited, and authors will want to express things that the DSL itself
cannot. In the case of SMIL animation one might want to

• animate motion from the current position of the mouse
to the layout position of some element

• begin an animated figure when it is scrolled into view
• switch between a pair of audio sources based on relative

signal strength

An ECMAScript or Java program could be used to generate or
modify SMIL content, but the code is non-trivial to write.
Moreover, once one works outside the DSL all its nice properties
are lost: document structure and presentation is defined by low-
level imperative instructions from which it is difficult to
reconstruct a declarative description of the intended behavior.
Scripting is for programmers, whereas the DSL can be used by a
much wider group of authors whose only requirement is
knowledge of the domain itself. Furthermore, authoring tools can
read and write (“round-trip”) a DSL, and can exchange DSL
documents between tools, but there is no way tools can reasonably
interpret or present an animation description defined in script;
authors must become programmers to be effective.

There are two approaches to tackling the DSL/scripting mismatch.
The first is to embed the DSL in a higher-level language, as
discussed in Section 2.2. The second approach is to extend the
DSL is various ways, consistent with the declarative approach.
This approach preserves the ability of domain authors to work in
the language whilst extending its expressiveness. In this paper, we
adopt the second approach. Specifically, we add two notions,
calculation, and event-predicates. In the case of SMIL these
extended features will support the use cases mentioned earlier in
this section, as well as many others. Furthermore, these features
can provide a general model for the extension of other XML-
based languages.

It is worth noting that SMIL Animation was designed specifically
to support extension, and that the SVG integration itself includes
extensions to support SVG-specific functionality (e.g., the
<animateTransform> element). Our approach is aligned with
the spirit of these standards.

3. REACTIVE SYSTEMS -- EVENTS AND
BEHAVIORS
The traditional view of a reactive system models reaction to
occurrences of discrete events. For example, each time the `left
button press' event occurs, a certain action may take place. This
view pertains to the XML language family as well; in SMIL, for
example, begin and active end times can be specified to be
relative to events that are raised in the document playback
environment, including user events such as mouse clicks. The
reactivity can be two-way, so that the system can also initiate
event occurrences. SMIL makes provision for events raised by
media players like a mediaComplete event, and events raised by
the presentation engine itself such as a repeat event. Thus events
can also be used inside a system to achieve temporal coordination
between its various components.

We propose in this paper that systems should be able to react to
continuous behaviors, that is, behaviors which evolve
continuously in time. Such behaviors can come in many forms,
including audio and video feeds, as well as information from
sensors or behaviors exported by other reactive systems. We
distinguish two types of reactivity which we wish our XML
extensions to support, (a) dynamism in response to dynamic
events, and (b) continuous real-time dependence on a
continuously varying behavior. We now discuss and illustrate
both of these situations in turn.

3.1 Dynamic Events.
A dynamically evolving behavior may generate a sequence of
events. These events are dynamic but discrete. Some simple
examples include:

• Thresholds and turning points: A number of useful case-
studies are derived by considering turning points and
threshold values in, say, a continuously varying real-valued
signal.
o We may detect when a real-valued behavior passes a

certain threshold: when a temperature exceeds 25
Celsius, for instance

o We may detect the turning points in a real-valued
behavior: representing a stock market average; when it
starts to go down, we can present an alert to the user.

o We may detect the turning point in a behavior derived
from an external behavior. For instance, from an audio
feed (an external behavior) we could derive the
volume of the audio signal, which need not be an
explicit part of the external behavior. We might then
detect crescendi or other sorts of musical features from
this derived volume information.

These case studies are further discussed in section 8, where the
code for examples such as these in our extended XML is given.

• Begin-when-viewed scenario: Consider a long scrolling
document with figures that are animated to illustrate
concepts in the accompanying text. Each animation is to
begin only when the particular figure is scrolled into view
(either directly with scrolling UI, or indirectly via hyperlink
scrolling, etc.).

• Multiple dependence The event in question may depend on
more than one input behavior. Thus we might wish to
detect when one of a pair of behaviors exceeds the other: at
the point when the overall brightness of video feed A
exceeds that of feed B we might wish to switch between
feeds.

The final example here illustrates an important point. The event of
one volume exceeding another is not a property of either of the
inputs in isolation; it can only be raised in the presentation –
which has access to the two inputs – and not in the systems which
produce the inputs.

3.2 Continuous real-time dependence.
In this more powerful case a dynamic property p, say, of some
item A, say, is a function of (depends upon) the value of a
dynamic property (or values of a set of dynamic properties) of
some other item(s). Thus the property p must be continuously re-
evaluated, and A redisplayed in accordance with the continuously
changing p-values. Some simple examples include

• The background colour of a webpage may be a function of,
say, temperature as measured by some sensor; the hotter
the temperature the redder the background;

• The position of an image on the screen may follow a mouse
position;

• Extending the stock exchange example given earlier, in
addition to the threshold events, we may also display a set
of sliders each tracing the value of a particular stock

• Many instances arise in video games, and although games
are not the primary content on the web, they are a very
common application of animation tools, and serve as a
measure of the expressiveness of an animation model.
Consider a game-like scenario in which a projectile is fired
at a moving target. Unlike the course of an arrow, which is
fixed when the arrow is fired, a guided missile must track
the changing course of its target in flight.

• Several other examples of real-time dependence, complete
with the corresponding extended XML code, appear in
section 8 of this paper.

3.3 Continuously-varying values: behaviors
These examples illustrate the usefulness of what we have termed
behavioral reactivity. In order to extend XML to incorporate
these features we need two separate classes of language extension,
an event mechanism and the ability to evaluate expressions. We
need an extended event mechanism in order to handle the
condition within the artifact, so that the artifact may properly react
to the condition which has arisen. We need the ability to evaluate
expressions of various types, both in order to determine when a
condition such as those we have described arises, and so that the
dynamic properties of behaviors can be appropriately evaluated.
The discussion in Section 2 gave an overview of declarative
authoring and programming. Expressions were shown to denote
values. It is not difficult to generalize this model to values which
vary continuously with time. If the value mouseY gives the
vertical coordinate of the mouse, then the expression
 mouseY + offset

will itself vary with time. At each point in time, the value will be
calculated by adding the (instantaneous) values of mouseY and
offset, if indeed the latter varies in time also. Formally + is
overloaded to work over time varying values as well as over
simple numbers. We assume that such properties (DOM-only, or
attribute values) are exposed on some element, and may be
changed, either by targeted server updates, by some plug-in
extension – such as a web-services client – which has access to
and manipulates the property. These continuously varying values
we term behaviors and behaviors and the expressions denoting
them form the basis of our proposals. We discuss these two
extensions, expressions and events, in the next sections of the
paper.

4. EXPRESSIONS
An expression language forms the basis for our dynamic attribute
values and our event predicates. In the above example of the
background colour, we calculate, say, the (R,G,B) values based
upon the numerical value of temperature, whereas in the above
turning point scenario we define an event predicate as a Boolean
expression which uses the values of the volume from the external
audio feeds. The first case makes use of a simple arithmetic
expression, while the second instance demonstrates a more
complex Boolean combination of simpler expressions, and
illustrates the value of a fully featured expression language.

The syntax for the expression language follows the syntax
adopted for timing expressions in SMIL 2, combining property
references of the form {element}.{property} with arithmetic
operators and constants. SMIL 2 defines this syntax to allow
timing values to be defined relative to other timing values and
events, and so it is a natural extension for us to use this syntax to
define animation values in terms of other animated values and
object model properties.

We considered an XPath syntax for property references, but
rejected it for several reasons:

• As defined, XPath allows references to XML attributes, but
not to object model properties (e.g. CSS-OM values).

• Use of XPath would be inconsistent with SMIL 2

• Authors transitioning from script or code-based animation
to our declarative syntax will be more familiar with the
proposed syntax; choosing XPath could hinder learning and
adoption.

A complete definition of the current form of our expression
language is to be found at the following URL:
http://www.cs.kent.ac.uk/~sjt/PDXML/Expr.html; here we
concentrate on some of its more significant features and omit most
details of syntax.

4.1 The typing mechanism
The expression language provides three types: numeric, string and
Boolean types. The expression language is typed: if an operator is
applied to an operand of an incorrect type, then the value
undefined is returned. Moreover it is strongly typed: all types can
be computed and verified prior to presentation. Furthermore,
while there are explicit type conversion functions, such as those
included in the lists appearing in section 3.2.3 below, there are no
automatic type conversions (coercions) between types in the
model, and in particular, therefore, there is no automatic
conversion between the numeric and Boolean types in our model.
This is consistent with SMIL Animation, which requires
animation values to be legal values for the animated property, and
with DOM and CSS-OM, which define strongly typed interfaces.
We believe that most authors will find such a type safe model
more natural and less error prone: in the following fragment in
which ‘-’ has been mistyped as ‘<’, the author would prefer to
have the expression yield the value undefined (causing the
animation to have no effect), rather than to have a Boolean quietly
coerced to 0, causing the animation to behave in a subtly incorrect
manner:
<animate from="calc(a+b)" to="calc(a<b)" …/>

4.2 Types and operators
4.2.1 Data types
Our choice of data types is motivated to a very large degree by the
application domain, and is developed from concepts found in
functional programming languages adapted to the declarative
model found in XML. Floating point numbers are needed as they
are widely used when computing the evolution of animated
values. Booleans (true and false) are needed for use within
events and predicates. Strings are used to convey information,
and in a dynamic context it will be necessary to compute strings,
(or at least to choose from among alternatives). For example, a
different string might be generated according to the position of an
object on a web page (‘top’ or ‘bottom’). String literals are
enclosed between single quotes (since double quotes are used to
delimit XML attribute values).

4.2.2 Operators
While SMIL timing expressions allow only + and – operators, our
set of operators is extended to be consistent with the tradition of
functional expression languages, and includes the typical unary
and binary, arithmetic, relational and Boolean operators. The
Boolean operators for conjunction and disjunction are lazy: if
their first argument evaluates to false (respectively true) then
this value is returned without evaluating the second argument. In
addition, we have provided a C-style ternary conditional operator,
denoted “?:”. If b is true then b?e:f yields e as the result;
otherwise f is the result.

4.2.3 Language Functions
We provide a repertoire of numeric functions to supplement the
basic arithmetic operators. The functions are of four types:

 simple numeric functions: abs, max, min, floor, etc.
 functions that return Boolean values: <, <=, etc.
 mathematical and geometrical functions: cos, tan, etc.
 environment functions: current time, etc.

The choice of functions given here represents a core of general
functionality likely to be required across all application areas. The
choice is not intended to be definitive or closed; language
designers who integrate this module may extend the language to
include functions relevant to their particular domain. We expect
that implementation techniques will extend to these domain
specific elements in a straightforward way.
Our model provides no facility for author-defined functions. This
important constraint greatly simplifies the authoring model, and
also provides a measure of ‘safety’ for the implementation
(ensuring, for example, that expressions used with animation can
be quickly evaluated at each animation sample). Our goal was to
provide flexible expressions, not a programming language.1

4.2.4 Domain-specific values
In addition to the broadly applicable interfaces for attribute or
property reference in DOM, CSS-OM et al., each language
integration defines a specific or extended domain. The SVG
DOM, for example, defines a set of properties and the rules for
animating these. Each domain using our expression extensions
will include a set of properties that expose OM (Object Model)
values in a manner convenient for use in expressions. For example
in SMIL Timing integrations, properties such as the current
simple time or a Boolean isActive would likely be provided.
Another example is the ad hoc extensions to the HTML DOM in
wide usage by authors. Although not (yet) standardized, a shared
subset of extensions is supported by major commercial browsers,
and provides crucial application-dependent values such as
clientWidth and scrollTop.

One set of properties we see as common to many applications
exposes the mouse position in a simple manner. We describe
mouseX and mouseY properties, exposed on all elements that can
raise a mousemove event. The actual values follow the definition
given in [5] for mousemove events, returning the position of the
mouse relative to the container (which in turn is language
specific). Expressions can reference these mouseX/Y properties
on the root layout element (e.g. “body.mouseY”) to get “global”

1 The decision to impose this constraint was based in part upon

private discussions we had with the MSIE development team
regarding issues with their “dynamic property” functionality.

mouse positions, or on a particular target element to get “local”
mouse positions.

In our formal syntax, all domain specific properties must be
defined in the DOM for the integrating language. We expect the
inclusion of expression functionality to motivate richer DOM
interfaces of this sort.

5. CALCULATION
We apply the expression functionality to animation attributes,
allowing the values that describe the animation function to be
expressed as calculated expressions. This approach provides more
expressive power to authors, greatly increasing the range of
animation use-cases that can be expressed, and also allows
dynamic documents to be adaptive, in that animation function
values can be defined in terms of other document properties that
are computed or may change in response to user actions.

Expressions may be applied to any of the attributes used to
describe the animation function values. This includes from, to,
by, and values, as well as path for <animateMotion>. The
expressions are called out for the parser with a reserved prefix
(‘calc’) and enclosing parentheses, similar to CSS functional
notations, and to SMIL timing expressions like ‘wallclock()’.
A calc() expression may also specify calculation frequency; we
return to this point in section 4.1.2 below. As in SMIL Timing, the
reserved prefix can be escaped for unusual authoring cases.
For example, to ‘zoom’ a box from the current size up to 80% of
the main container width, we specify:
<animate attributeName="width" dur="5s"

to="calc(main.width*0.8)" .../>

For target attributes that take simple scalar values, the result of the
calculated expression must be a legal value for the specified
attribute. Vector-valued attributes (e.g. position or transforms) are
supported using the vector syntax of the attributeType
domain, but allowing calc-values for each constituent of the
vector value, as in the following example. To ‘fly’ an object from
the right edge of a button to the position of a content container, we
specify:
<animateMotion dur="5s"

from="calc(btn.x+btn.width),calc(btn.y)"
 to="calc(content.x),calc(content.y)" …/>

An interactive example (using XHTML+SMIL) tracks ‘tooltip’
text with the mouse, and sets the tip string to indicate whether the
mouse is on the upper or lower half of the main container:
<p>
 <t:set attributeName="left"

 to="calc(main.mouseX+20)"/>
 <t:set attributeName="top"

 to="calc(main.mouseY-5)"/>
 <t:set attributeName="innerHtml"
 to="calc((main.mouseY>(main.height/2))?

 ‘Lower’:‘Upper’)"/>
</p>
5.1 Computation model
In its simplest form, the computation of expressions is performed
using a stack calculator with a few built-in functions and value
references. However, the resolution of the references to Object
Model values introduces two key questions:

• Which value for a property should be used?

Simon Thompson ! 3/8/04 8:56 PM
Deleted: [4]

• When should the referenced value be sampled? That is,
when and how often should we re-calculate the expression?

5.1.1 Resolving OM value references
There are three possibilities for the type of values to use in value
references:
1. the author-specified value,
2. the computed value (e.g. CSS OM computed-style property

values),
3. the animated value (e.g. SVGAnimatedNumber animVal

values).
We conducted a number of experiments and considered a broad
range of use-case scenarios. We concluded that specified values
are rarely useful in practice and could be ambiguous for things
like CSS properties in which the value could be specified in many
different ways. We note that the use of computed values may be
appropriate in applications outside animation, e.g. for property
values in CSS or XSL stylesheets. In our application domain
however, where the values are used in the specification of
animation functions, we concluded that the use of animated values
would make the most sense to authors. Thus, when a referenced
property is the target of animation(s), the animated value is used
in the expression; when the property is not animated, the
calculated value is used.

5.1.2 Expression calculation frequency
We describe the sampling rate for referenced values as the
calculation frequency of the expression, and have identified four
distinct models of when evaluation takes place:

1. once at parse time, for values that are effectively constants
(e.g. user-agent window size),

2. after layout is complete, for values that depend upon styling
and layout (e.g. position of an inline element),

3. each time an animation begins,
4. each time an animation is sampled.

For applications to other domains such as CSS and XSL property
specification, only cases 1 and 2 apply. However, even in these
domains there is the issue of handling changes to the referenced
values (e.g. if script changes a value, or if user interaction forces a
re-layout). Such changes should cause the engine to re-compute
the expression that uses the values. But in the context of
animation, the question then arises of whether the author wants an
animation to update midstream, or prefers that it use the value it
‘saw’ when the animation began. To illustrate this dichotomy,
consider these two variations of the ‘arrow/missile’ scenario:
Launching an arrow at a moving target. When the arrow is
launched, it is aimed at the current position of the target. But once
launched, it cannot change its course; further motion of the target
has no effect upon the arrow.

Launching a guided missile at a moving target. A guided
missile is aimed just as the arrow would be, but it also tracks the
target as it flies, and adjusts its motion accordingly.
Both use-cases could be expressed using syntax like:
<animateMotion to="calc(target.x),
 calc(target.y)" …/>

In the first case we need to specify that once calculated, the to
value should remain fixed, while in the second case the to value
should be re-calculated on each sample.

In order to efficiently re-compute dependent expressions when a
given value changes, we model references to other values using
dependency-relation graphs (this can be compared to cache
maintenance). For a sampled animation, there is no point in re-
calculating more often than the animation is sampled, and so a
change to a referenced value just marks all dependent expressions
as out-of-date; the animation engine then re-calculates the
expression at the next sample2.
When we reconsider calculation frequency assuming the
dependency graph model is also in place, we can collapse the
cases for frequency models 1, 2 and 4 into one case; for this, we
re-compute an expression every time we sample the animation
graph, but if (and only if) a referenced value has changed. Cases 1
and 2 will change infrequently, but are covered by this simple
rule. Case 3 is then distinct in that it ignores changes to referenced
values once an animation has begun.
To provide authoring control over this behavior, calc()
expressions may explicitly specify the desired calculation
frequency as a second parameter. Allowed values are always and
atStart; always is the default3 and has been used in all the
illustrations thus far. The arrow use-case is specified as follows:
<animateMotion to="calc(target.x, atStart),
 calc(target.x, atStart)"…/>

The guided missile case could either specify always or just use
the default semantics.

6. EVENTS AND PREDICATES
In many animation use-cases, we need to know when a certain
condition is true, and to take action in response. Object models
typically provide a set of events to indicate a range of interaction
conditions (e.g., mouse events) as well as document conditions
(e.g., media download and mutation events). These can be used
declaratively to bind actions to the events - e.g., in SMIL, to begin
or end an animation when an event occurs. However, there is no
means for the author to declare and name new events specific to
the document content. Authors are forced to resort to code, and
the implementation of conditional events is non-trivial even for
programmers.
High-level languages for simulation, games and concurrent
programming support the definition of conditions and associated
events, albeit programmatically – outside the domain of XML

2 Dependency graphs can chain, as expressions reference values

that are animated in turn by animations defined with
expressions. As a dependent value marked "out-of-date", it in
turn marks any expression "out-of-date" that references the
animation target value. Naturally, cycles in the graph must be
detected and broken (just as for SMIL Timing references).
There are further optimizations that take into account the
semantics of animation composition. Also, the traversal order of
the animation tree may generate forward references to animated
values, and so update of the "cached" expression values is
slightly more complex than described. Nevertheless, these
principles of optimized computation (cache maintenance) still
apply.

3 In other applications domains where timing does not play a
central role (e.g. for property definition in CSS or XSL
stylesheets), the distinction is meaningless and so this syntax
option need not be supported - the default behavior of "always"
will correctly apply.

authors. Early drafts of the event syntax of XML [9] included a
step in this direction, supporting declaration of a new event based
upon existing events, with timing constraints when integrated with
SMIL. This functionality was removed in later drafts.

We define an XML syntax that leverages our expression support
to model author-declared events. Events are generated from
Boolean expressions; when this expression (or predicate)
evaluates to true, an event is raised on a target element (following
the model of [5]). This is inspired by the Fran event model [7].
For example, an author could define an ‘enterView’ event that
indicates when an image appears in the current user agent window
(e.g., to note when a user scrolls a figure into view). In an
XHTML integration, the following code would declare the event
and would specify the condition on which the event is raised or
fired (for simplicity here, we leave namespace issues to the
language integrator):
<event target="img1" type="enterView"
 predicate="(img1.top + img1.height) <=
 (main.scrollTop + main.scrollHeight)" />

The target attribute indicates (as an ID-REF) the element on
which to raise the event; type declares the event type for binding
references; predicate is an expression as defined in section 3.
The event will fire once as soon as the condition is true (or as
soon as the document loads when the condition is initially true). It
will not fire again unless the predicate is reset, either because:

• the predicate changes to false.

• the event element itself resets, e.g., in integration with
SMIL Timing when the element restarts.

To react to the event, an animation can be defined to begin or end
in response to the enterView event, using SMIL 2.0 syntax.

Note that the calculation frequency for event predicate
expressions is fixed — by definition — to be always. We
considered an additional attribute to preclude an event being
raised more than once. In integration with SMIL, this may be
unnecessary as a similar semantic is provided by SMIL Timing. If
the integrating language allows the <event> element to support
SMIL timing, events are only raised when the element is active
(between the begin and end times); the author can then leverage
the SMIL restart attribute to ensure that the event is raised at
most once.
Some common use-case scenarios for event predicates include
collision events, limit-conditions (when a property goes above or
below a certain threshold) and state modeling (relating the values
of a set of properties).

7. IMPLEMENTATION EXPERIENCE
Three different approaches to the implementation of our XML
extensions, each with differing goals, are being pursued, and in
this section we outline these methods; a full discussion of
implementation details is beyond the scope of this paper.

7.1 A prototype for expressions
We developed a prototype implementation for our expressions,
leveraging the MS Internet Explorer 6 support for
XHTML+SMIL. The extensions were developed using the IE
behavior mechanism. Our behavior located calc() expressions
in the attribute values for animation elements, and then evaluated
the expressions using the JScript engine (since our syntax can be
easily mapped to a subset of ECMAScript). The animation
attributes were then set via DOM interfaces to the resulting

expression values, replacing the “calc()” strings. This works in
part because the “calc()” strings are illegal values for the
animation attributes, which causes the animations to have no
effect (until the behavior provides legal expression result values).
This first version was not unlike the support in IE for dynamic
CSS properties (an inspiration for our extension), but applied to
animation attribute values.
The next step was to refine the behavior to parse the expressions
in the behavior, implementing a stack calculator and modeling the
dependency graphs using property mutation events (provided in
the DOM). Unfortunately, the IE implementation does not raise
property change (i.e. mutation) events for animated CSS
properties. We added a brute force work-around to get
notifications, but the propagation of changes through dependent
expressions sometimes lags by one sample. A native
implementation would resolve this.

Since we cannot inject our behavior code into the animation
sampling traversal in IE, we cannot always optimize expression
calculation (cache maintenance) to only recalculate once per
sample. Also, without access to the animation composition
engine, we are not able to optimize the dependency graph (e.g.,
ignoring dependent expression changes for an animation element
A when a higher priority, non-additive animation B cancels or
overrides the effect of A). A more robust and better-optimized
version of this code could be developed in an open-source
implementation, such as the Batik implementation of SVG. We
are currently exploring this approach.

7.2 Implementation by transformation
Our second implementation approach, still to a certain extent a
prototype, is to transform a document written in our extended
XML into an equivalent program in a language which provides all
of the timing semantics which we need and for which a
reasonably robust processor (interpreter or compiler) exists. The
particular language we have chosen in this respect is Yampa [4],
which, as mentioned earlier, is a Haskell-based domain-specific
embedded language that uses the concepts of Functional Reactive
Programming (FRP). Since Yampa embodies a fully-fledged
programming language, Haskell, expression evaluation is, of
course, given. Additionally, Yampa supports dynamic behaviors
of the type discussed in section 3.3, and provides for the dynamic
creation of discrete events, as discussed in section 6. Therefore,
although XML and Haskell/Yampa differ considerably in their
syntactic form, at the semantic level all of the timing and
reactivity that is found in, say, SMIL and all of the additional
event and behavior mechanisms discussed in this paper, can be
readily expressed in Yampa. Thus, this approach to
implementation requires two activities:

1. specification of the semantics of our extended XML,
notably the timing and the reactive aspects, in their Yampa
equivalent; this paper exercise has been completed;

2. provision of a transformation from extended XMl to
Yampa,

Since a document written in our extended form of XML is valid
XML, the transformation to Yampa syntax may be specified in
XSLT and an existing XSLT processor used to effect the
transformation. It should be emphasized that this transformation
need address only syntax; the transformation considers the source
document in extended XML and the target document in Yampa as
character strings with no inherent semantics. It is only when the
target string is processed by the Yampa interpreter that the

Simon Thompson ! 3/8/04 8:58 PM

Simon Thompson ! 3/8/04 8:56 PM

Simon Thompson ! 3/8/04 8:57 PM

Simon Thompson ! 3/8/04 8:55 PM

Deleted: [7]

Deleted: [4]

Deleted: [6]

Deleted: [18]

semantics of the constructions within that target string become
significant.

The advantage of this approach is that it is a relatively simple one
to implement, and will be of great use as a prototype and as our
extended XML is further developed. Its major drawback is one of
efficiency, and in particular the lack of optimization of animated
attribute value references.

7.3 Towards a production-level
implementation
The experience we gained building our prototypes leads us to
believe that high quality, efficient implementations of our
proposed functionality are entirely feasible. The approach we
intend to take towards a production-level implementation will
leverage open source browser projects, such as Mozilla and Batik,
to which would be added the appropriate timing semantics. This
represents future work.

It is interesting to compare the second and third implementation
approaches. In the transformation approach, the timing and other
semantics are free in the sense that they are provided by the
semantics of the target language and by its processor; we need to
deal with (just) the syntax of extended XML. In the third
approach the syntax is free, and the problem is one of temporal
semantics, which will naturally involve considerably more effort.
However, the model for dependency graph maintenance is quite
similar to that for timing references in SMIL Timing; we expect
that much design – if not code – can be borrowed from this. The
most complex aspect of the implementation will, once again, be to
optimize animated value references.

8. CASE STUDIES
In order to further illustrate the various aspects of our approach,
we detail several of the use-cases introduced above. We omit
unrelated syntax details to concentrate on our extensions. We
have chosen examples which could currently only be implemented
by means of scripting in order to reinforce the point that our work
makes the work of authors substantially easier allowing them to
express complex ideas within a completely declarative
framework.

8.1 Thresholds in a real-time stock-watcher
Two common features for a stock watch application are a clear
indication of the daily price change and an alert to the user when
the current price passes a specified threshold. In our example, a
web page has been generated for a user portfolio (e.g. by
transforming XML describing the stocks into an XHTML+SMIL
presentation). In addition, a small agent connects to a web service
to receive real-time quotes for the portfolio stocks, and stores the
values in an XML data-island within the page. In the first example
of a threshold event, the page defines events for Sell-Alerts when
the price for a stock falls below the configured threshold:
<event target="stock1" type="belowSellPrice"
 predicate="stock1.price <= stock1.sellPrice" />
<div id="Alert1" begin="stock1.belowSellPrice">
 …{author-defined content for alert}… </div>

A related threshold function allows the display of the price to
emphasize the movement from the previous close with color:
<t:set attributeName="color"
 to="calc((stock1.price < stock1.prevClose)?

 ‘red’:‘green’)"/>

The significant point here is that an agent can update real-time
information and the presentation can respond. An authoring tool

can provide simple tools to bind a palette of threshold behaviors
to actions, animations, etc.

8.2 Threshold/turning points for an audio
application
In this example, a music player application manages a playlist of
music as well as an audio feed from a VOIP intercom object. The
intercom audio is quiet except when someone is buzzing the user.
We want to switch from the music to the intercom when someone
is trying to contact us. Leveraging SMIL timing syntax for
interrupt semantics, we can say:
<event target="voipObj" type="buzz"
 predicate="voipObj.currLevel > .1" />
…
<t:excl>
 <t:priorityClass peers="pause">
 <t:audio id="music" begin="0"
 src="{playlist}" />
 <t:audio begin="voipObj.buzz" src="…" />
 </t:priorityClass>
</t:excl>

A complete implementation would define additional events to
switch back to the music, etc.

8.3 Continuous real-time dependence 1.
A common feature in audio UI is a level meter to indicate the
intensity of the audio being played. Leveraging a current level
property on the audio player from our previous example, we could
define a simple meter that tracks the music continuously and uses
color to indicate peaks:
<div id="VU">
 …
 <t:set attributeName="width"
 to="calc(music.currLevel*100)" />
 <t:set attributeName="backgroundColor"
 to="calc((music.currLevel < 0.9)?
 ‘green’:‘red’)"/>
<div/>

This continuous dependence can be extended, making the (RGB
values of) the color depend continuously on
music.currLevel, or indeed on the relationship of the levels
of a number of different audio sources.

8.4 Symphony with microphone placement.
This example allows music students to explore the different
instruments that make up a symphony orchestra, as a piece of
music is played. The example assumes an image of the orchestra,
an image of a microphone that the user can drag around (it could
also be animated) and individual music tracks for each section or
even for each instrument. The audio elements are assigned a
spatial position corresponding to the image and as the microphone
moves, the volume of each audio track is adjusted as a function of
the distance from the microphone to the audio position.

 <t:set attributeName="left" dur="indefinite"
 to="calc(orch.mouseX)" …/>
 <t:set attributeName="top" dur="indefinite"
 to="calc(orch.mouseY)" …/>

<t:par>
 <!-- Violins are at 100, 250 -->
 <t:audio src="violins.mp3"
 volume="calc(min(15,
 (100-sqrt(pow((mic.x-100),2)
 +pow((mic.y-250),2)))))…/>

 <!-- Woodwinds are at 200, 75 -->
 <t:audio src="woodwinds.mp3"
 volume="calc(min(15,
 (100-sqrt(pow((mic.x-200),2)
 +pow((mic.y- 75),2)))))…/>

 <!—And so on for additional instruments… -->
4

</par>

In the example, audio elements play at a minimum volume of 15
(on a 0 to 100 scale), and up to 100 as the microphone position
approaches the instrument audio position. The distance is
computed using standard library methods for power and square-
root functions, and a minimum function is applied to preclude the
complete muting of instrument audio. In the same spirit, it would
be possible to highlight the score for the closest instrument in a
filmstrip view of the full score, scrolling in synchronization with
the music.

9. FUTURE WORK AND CONCLUSIONS
Our future work will proceed in three related directions: one
concerned with widening our experience with the authoring
implications of our extensions, a second concerned with further
integration with W3C language standards, and the third with more
basic XML extensions to accommodate the scoped ID model.

9.1 Authoring and implementation issues
All of the experience we have to date with use of these proposed
language extensions has been with hand authoring of a limited set
of use cases. While we do contend that the use cases in the paper
are varied and complex enough to justify the utility of these
extensions, we nonetheless need to explore further to demonstrate
that the extended DSL lends itself to reasonable authoring. We
have outlined in section 7 our plans for proceeding from our
current prototype implementation(s) towards a full-scale
production quality implementation; we are naturally anxious to
complete our exploration of such further case studies and the
further XML extensions that they may motivate before proceeding
towards this level of implementation.

9.2 Language integration and extensions
9.2.1 Integration with SMIL Timing
The currently proposed extensions are deliberately all orthogonal
to the timing model. This simplification is appropriate as a first
approach, but at the same time we intend to consider whether we
can apply calc() values to timing attributes so that timing can be
computed. What timing attributes would be appropriate? What
issues arise with this additional dynamism in the SMIL timing
model? What further interesting examples would timing
computations allow?

9.2.2 Extensions relating to expressions
Our current extensions allow expressions in the animation
attributes from, to, by, values and animateMotion::path.
We wish to investigate the question of how limited is this in
practice, and in particular, what other items would it be useful or
feasible to animate?

4 Some XML-based languages, including SVG, allow user-
defined templates, which are a form of function definition. We
have also examined the possibility of adding a more general form
of functions to these languages, as reported in [17].

We have also been experimenting with a simple type model,
analogous to templates in SVG, in which all types are simple
types. We intend to explore the question of how useful would it
be to introduce structured values such as tuples and sequences.
We wish to investigate whether structured types could be added
without going too far away from the declarative XML approach,
and too far towards a 'full' programming language.

9.3 Related work and conclusions
The extensions presented in this paper are based upon
programming language constructs that have proved their utility in
multimedia authoring. We have presented a range of diverse use
cases, and we have demonstrated how these extensions can be
added to W3C standard languages while remaining entirely within
the style and character of XML and still being capable of being
processed by existing XML parsers. We have experimented with
our extended version of SMIL Animation with many examples,
and in each case the extensions have made the coding of the
example easier to achieve and simpler to understand than using,
say, script or some other notation external to the DSL.
We believe that our work represents the first approach towards
integrating functional language concepts within XML, that is
towards extending XML in this fashion. Other work [20,11] on
integrating XML and FP consists of embedding XML structures
and types within existing functional programming languages:
XML almost becomes a domain specific language, almost the dual
of our approach.

Our extensions maintain to a large degree the desirable separation
of data from presentation details, advocated by the XML
approach. Our extensions all retain an entirely declarative idiom.
In point of fact, we are adopting a view of data that mirrors that
found in such well-trodden linguistic ground as objects and
abstract data types, where a data type comprises both its set of
values and a set of operations applicable to that type. Thus, we
consider an event, say hits-wall and an expression, say
compute-trajectory, as properties of the type flying-
object, just as its shape, color, position, etc. are.
Furthermore, our main target is animation, in which temporal
attributes such as those we have incorporated, are properly to be
included among this set of properties.
In this regard, our work differs from that described in [13]. which
makes use a constraint-based approach to implement a system
with somewhat similar goals. However, in [13], the authors are
concerned with issues of static adaptation whereas our approach
permits dynamic re-evaluation, as values are input or changed
during the presentation. Our approach is deterministic, the
constraints of [13] are non-deterministic;.
We concentrated on integration with SMIL Animation, using
XHTML+SMIL and SVG; nevertheless, as we explored the
model, we came to see the utility of these tools for a broad range
of applications, including expressions for CSS/XSL style
properties, custom event declaration to complement the binding
facilities in XMLEvents.
The extensions provide considerable power for authoring, but we
have resisted all temptation to provide a full-scale programming
language, recognizing that skilled multimedia authors are not
necessarily (and should not have to become) programmers. Our
experience with the prototype implementations has provided
valuable insights, and raises additional interesting questions and
issues to explore.

prking ! 21/7/04 9:23 AM

prking ! 21/7/04 9:32 AM

prking ! 21/7/04 9:32 AM

prking ! 21/7/04 9:32 AM

Simon Thompson ! 3/8/04 9:03 PM

Simon Thompson ! 3/8/04 8:28 PM

Simon Thompson ! 3/8/04 9:03 PM

Simon Thompson ! 3/8/04 9:08 PM

Deleted: C

Deleted: demonstrated

Deleted: how

Deleted: y

Deleted: [21

Deleted: I

Deleted: [21

Deleted: [19

Acknowledgements
Dr. King is supported by a research grant from the NSERC of
Canada. We wish to thank Lynda Hardman and Lloyd Rutledge
for encouragement, feedback and support of this work.

10. REFERENCES
[1] M.C. Buchanan and P.T. Zellweger, Automatic temporal
mechanisms, Proc. Multimedia’93, ACM Press, 1993.
[2] H. A. Cameron, P.R. King and S.J. Thompson, Modeling
Reactive Multimedia: Events and Behaviors, Multimedia Tools
and Applications, Vol 19, issue 1, January 2003
[3] Cascading Style Sheets, level 2, W3C Recommendation 12
May 1998. Available at http://www.w3.org/TR/REC-CSS2.
[4] Antony Courtney, Henrik Nilsson and John Peterson, The
Yampa Arcade, ACM SIGPLAN Haskell Workshop 2003, p 7-18
[5] Document Object Model (DOM) Level 2 Events Specification,
W3C. Available at http://www.w3.org/TR/DOM-Level-2-Events/.

[6] ECMAScript, third edition, 1999,
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM)
[7] C. Elliott. and P. Hudak. Functional Reactive Animation,
ICFP97, ACM Press.
[8] An Events Syntax for XML, W3C Working Draft 12 August
2002. Available at http://www.w3.org/TR/xml-events/.
[9] Extensible Markup Language (XML) 1.0 (Second Edition),
W3C. Available at http://www.w3.org/TR/REC-xml
[10] Extensible Stylesheet Language (XSL) Version 1.0. W3C.
Available at http://www.w3.org/TR/xsl/

[11] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed
XML processing language. ACM Transactions on Internet
Technology, 3(2):117-148, 2003.

[12] Paul Hudak, “Building Domain-Specific Embedded
Languages”, ACM Computing Surveys 28A(4),1996.
[13] K. Marriott, B. Meyer, and L. Tardif. Fast and efficient
client-side adaptivity for SVG. WWW 2002 May 2002.

[14] Jacco van Ossenbruggen, et al., "Towards Second and Third
Generation Web-Based Multimedia", WWW10, May 1-5, 2001.
Available at http://www10.org/cdrom/papers/423/.
[15] Scalable Vector Graphics (SVG) 1.0 Specification, W3C.
Available at http://www.w3.org/TR/SVG/.

[16] Patrick Schmitz, Multimedia Meets Computer Graphics in
SMIL2.0: A Time Model for the Web, WWW2002, May 7-11,
2002. Available at http://www2002.org/CDROM/refereed/382/
[17] P. Schmitz, S. Thompson and P King, Presentation
Dynamism in XML Poster Session, WWW2003, Budapest.

[18] Synchronized Multimedia Integration Language (SMIL
2.0),W3C. Available at http://www.w3.org/TR/smil20/.

[19] S. Thompson. Haskell, The Craft of Functional
Programming, Second Edition, Addison-Wesley, 1999
[20] M. Wallace, C. Runciman, Haskell and XML: Generic
Combinators or Type-Based Translation? International
Conference on Functional Programming, 1999, ACM Press.
[21] Zhanyong Wan, Walid Taha and Paul Hudak, Event-Driven
FRP, PADL'02, 2002

[22] XHTML+SMIL Profile, W3C Note 31 January 2002,
Available at http://www.w3.org/TR/XHTMLplusSMIL/
[23] XSL Transformations (XSLT) Version 1.0, W3C. Available
at http://www.w3.org/TR/xslt

Simon Thompson ! 3/8/04 9:14 PM

Simon Thompson ! 3/8/04 8:32 PM

Simon Thompson ! 3/8/04 8:32 PM

Simon Thompson ! 3/8/04 9:15 PM

Simon Thompson ! 3/8/04 8:33 PM

Simon Thompson ! 3/8/04 8:33 PM

Simon Thompson ! 3/8/04 9:15 PM

Simon Thompson ! 3/8/04 8:58 PM

prking ! 21/7/04 9:22 AM

Simon Thompson ! 3/8/04 9:02 PM

Simon Thompson ! 3/8/04 8:33 PM

Simon Thompson ! 3/8/04 8:33 PM

Simon Thompson ! 3/8/04 8:33 PM

Simon Thompson ! 3/8/04 8:53 PM

Simon Thompson ! 3/8/04 8:55 PM

Simon Thompson ! 3/8/04 8:28 PM

Simon Thompson ! 3/8/04 8:56 PM

Simon Thompson ! 3/8/04 8:57 PM

Simon Thompson ! 3/8/04 8:58 PM

Simon Thompson ! 3/8/04 9:05 PM

Simon Thompson ! 3/8/04 8:59 PM

Simon Thompson ! 3/8/04 9:06 PM

Simon Thompson ! 3/8/04 9:04 PM

Simon Thompson ! 3/8/04 9:04 PM

Simon Thompson ! 3/8/04 9:08 PM

Deleted: 16

Deleted: The work of

Deleted: Natural Sciences and Engineering
Research Council

Deleted: 17

Deleted: The authors

Deleted: wish to

Deleted:
[18] Antony Courtney, Henrik Nilsson and
John Peterson, The Yampa Arcade, ACM
SIGPLAN Haskell Workshop 2003, p 7-18
[19] P. Schmitz, S. Thompson and P King,
Presentation Dynamism in XML Poster
Session, WWW2003, Budapest.
[20] Zhanyong Wan, Walid Taha and Paul
Hudak, Event-Driven FRP, PADL'02, 2002
[21] K. Marriott, B. Meyer, and L. Tardif.
Fast and efficient client-side adaptivity for
SVG. WWW 2002 May 2002.

Inserted:
[21] K. Marriott, B. Meyer, and L. Tardif.
Fast and efficient client-side adaptivity for
SVG. WWW 2002 May 2002.Deleted:

Deleted: providing

Deleted: for

Deleted: , pp 53-77

Deleted: 4

Deleted: "

Deleted: 5

Deleted: 6

Deleted: 7

Deleted: 8

Deleted: 9

Deleted: 10

Deleted: 11

Deleted: 2

Deleted: 3

Deleted: 4

Deleted: 5

... [1]

... [2]

