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ABSTRACT 
We study the representation, derivation and utilization of a special 
kind of constraints in multidatabase systems. A major challenge is 
when component database schemas are schematic discrepant from 
each other, i.e., data values of one database correspond to schema 
labels of another. We propose “qualified functional dependencies” 
(or qualified FDs), an extension to conventional FDs to formalize 
integrity constraints in multidatabase systems. We first give 
inference rules to derive qualified FDs in fixed schemas, then 
study the derivation of qualified FDs during the transformations 
between schematic discrepant schemas. Propagation rules are 
given to derive qualified FDs of transformed schemas from 
qualified FDs of original schemas. Our work can be used in 
different stages of building and accessing a multidatabase system, 
e.g., to detect and resolve value inconsistency in schema 
integration, to verify lossless schema transformations, to 
normalize integrated schemas, to verify the integrity of data, and 
to optimize queries at an integration level. In particular, as an 
application of our theory, we will use FDs to check the validity of 
SchemaSQL views (SchemaSQL is a powerful multidatabase 
language).   

Categories and Subject Descriptors 
H.2.0 [Database Management]: General - Integrity 

General Terms 
Theory 

Keywords 
Functional dependency, Schematic discrepancy, Schema 
integration, Multidatabase. 

1. INTRODUCTION 
Schema integration [3, 4, 14] is the activity to integrate the 
schemas of existing or proposed databases into a global, unified 
schema. It is regarded as an important work to build a 
heterogeneous database system [18, 22] (also called 

multidatabase system or federated database system), to integrate 
data in a data warehouse, or to integrate user views in database 
design. Schema transformation is the process to transform 
heterogeneous schemas into unified ones (In this paper, we’ll blur 
the difference on “integration” and “transformation”, and treat 
schema integration as a special kind of schema transformation). 
Existing works focused on presenting an integrated view of data 
available at component schemas. People have developed some 
methods to resolve naming conflicts (i.e., homonyms or 
synonyms), structural conflicts (using different schema constructs 
to model the same concept), and schematic discrepancy in schema 
integration. A less studied area is on the constraint issues, i.e., 
how to describe, derive and utilize constraints in a multidatabase 
environment. In a (individual or heterogeneous) database system, 
constraints should be enforced to ensure the integrity of data in 
the operations of insertion, deletion and update. Furthermore, 
constraints provide semantics which could be used to optimize 
queries, or to detect redundancy and data inconsistency.  

Example 1.1: Suppose we want to integrate two bookstore 
databases with the same schema: BS1(isbn, title, price) and 
BS2(isbn, title, price). Can we just integrate them into a schema as 
BS1 or BS2? The answer would be negative if we have the 
constraint: a book with an isbn number has the same title but not 
necessary the same price in the two bookstores, as value 
inconsistency would occur on the price attribute. Actually, the FD 
isbn→title is a “global” FD holding in the union of the two 
relations BS1 and BS2, while the FD isbn→price only holds in 
individual relations. It would be better to distinguish a book’s 
prices of different bookstores in the integrated schema, e.g., 
Book(isbn, title, BS1_price, BS2_price) or Book(isbn, title, store, 
price). □ 

In individual databases, the issue of inferring view dependencies 
has been introduced in [1, 7]. However, the representation and 
derivation of constraints in a multidatabase system would be 
harder than in an individual database system, because a 
multidatabase system is usually distributed (i.e., data may be 
divided and stored in several databases) and heterogeneous (i.e., 
the similar data may be represented in quite different forms in 
component databases). In particular, the integrated schema of a 
multidatabase system is generated by not only relational algebra, 
but also some other restructuring operators as we will introduce 
later. And therefore, to derive dependencies for an integrated 
schema, the existing inference rules for relational algebra are not 
enough. We also need find rules for those additional restructuring 
operators.  
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In this paper, we’ll study the representation, derivation and 
utilization of an important kind of constraints, FDs, in 
multidatabase systems. To meet the demand of expressivity of 
constraints in a multidatabase environment, we will propose 
qualified FDs which are FDs holding over a set of relations or 
sub-relations. Inference rules will be designed to derive unknown 
qualified FDs from known ones in fixed schemas. We will also 
study the propagation of qualified FDs in schema transformation. 
A major challenge is when the schemas are schematic discrepant 
from each other. The interplay of data and schema labels causes 
schema transformations quite different from classical operations 
such as union, join, etc. We will explore some propagation rules 
of qualified FDs in transformations between schematic discrepant 
schemas. 

In the rest of this section, Section 1.1 shows schematic 
discrepancy and schema transformation by example. Section 1.2 
elaborates on some applications of FDs in multidatabase systems, 
in order to bring out the motivation for our work. Section 1.3 
describes the organization of the paper. 

1.1 Schematic Discrepancy and Schema 
Transformation 
In relational databases, schematic discrepancy occurs when the 
same information is modeled as attribute values, relation names or 
attribute names in different databases. Schematic discrepancy 
arises frequently since names for schema constructs often capture 
some intuitive semantic information. Some scholars argue that 
even within the relational model it is more the rule than the 
exception to find data represented in schema constructs [11]. 
Recently, people have studied how to query data from discrepant 
databases [11, 12, 13] and how to use schematic discrepancy [2, 
19]. We hereby give an example of schematic discrepancy which 
will be used as a running example in this paper. 

Example 1.2:   In Figure 1, we give three databases recording the 
same information: supplying prices of products (identified by p#) 
by suppliers (identified by s#) in different months. However, the 
months are modelled respectively as attribute values, attribute 
names and relation names in DB1, DB2 and DB3. For example, in 
DB2, the months Jan, …, Dec are attribute names whose values 
are prices in those months; in DB3, each relation with a month as 
its name records the supplying information in that month. 

In each database, we assume a product’s price is functionally 
dependent on the product number, the supplier number and the 
month. This constraint is expressed as different FDs in the three 
databases.□ 

To integrate or interoperate with schematic discrepant databases, 
people need to transform discrepant schemas into unified forms. 
We call a transformation between schematic discrepant schemas a 
schematic discrepant transformation. In [12], Lakshmanan et al 
developed four restructuring operators, fold, unfold, unite and 
split (originally introduced in the context of the tabular algebra 
[8]), to implement such transformations. In what follow, we first 
give the formal definition of these operators, then explain them by 
Figure 1. 

Figure 1: Schematic discrepancy: months modeled differently 
in DB1~DB3 

unfold(R, B, C):  Let R be a relation with the schema  
R(A1, …, An, B, C). unfold(R, B, C) transforms R to a relation 
S(A1, …, An, b1, …, bm), where {b1, …, bm} is the set of distinct 
values appearing in column B of R. The content of S is defined 
as:    

S={(a1, …, an, c1, …, cm) | (a1, …, an, bi, ci) ∈R, 1 ≤ i ≤ m}. 

fold(R, B, C):   Let R be a relation with the schema  
R(A1, …, An, b1, …, bm). Suppose b1,…,bm are values from 
dom(B), and all entries appearing in columns b1, …, bm of R are 
from dom(C), for some attribute names B,C ∉ {A1, …, An}. 
fold(R, B, C) transforms R to a relation S(A1, …, An, B, C), 
defined as:    

S = {(a1, …, an, bi, ci) | ∃ t ∈ R: t[A1,…,An]= (a1,…,an) & t[bi]=ci 
}. 

split(R, B):   Let R be a relation with the schema R(A1, …,An, B). 
split(R, B) transforms R to a set of relations bi(A1, …, An), for 
each bi appearing in column B of R. The content of bi is defined 
as:    

bi = {t[A1,…,An]| t ∈ R & t[B]= bi}. 

unite(RRRRB, B):   Let RB={b1,…,bm} be a set of relations in a given 
database, such that each relation name bi (i=1,2,…,m) is an 
element of the domain of some fixed attribute B, and all the 
relations have a common schema bi(A1,…,An). unite(RB, B) 
transforms the relations b1,…,bm to a relation S(B, A1,…,An), 
defined as:    

S = {t| ∃ t’ ∈ bi: t[A1,…,An] = t’[A1,…,An] & t[B]= bi}. 

For example, in Figure 1, these operators are used to implement 
transformations between those discrepant databases, as described 
below: 

{p#, s#}→{Jan, …, Dec} 

unfold(Supply, month, price)

unite({Jan,…,Dec}, month)

DB1: 
Supply 

p# s# month price 
p1 s1 Jan 105 
p1 s1 Dec 110 
p1 s2 Jan 97 
p1 s2 Dec 99 
… … … … 

DB2: 
Supply 

p# s# Jan … Dec 
p1 s1 105 … 110 
p1 s2 97 … 99 

split(Supply, month) 

DB3:     
Jan    Dec   

p# s# price … p# s# price 
p1 s1 105  p1 s1 110 
p1 s2 97  p1 s2 99 

{p#, s#, month}→price 

fold(Supply, month, price) 

{p#, s#}→price holds in each 
relation of Jan, …, Dec 
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● The unfold operator transforms the Supply relation of DB1 
into the relation of DB2. It takes the original relation name 
and two attribute names as its parameters.  

● The fold operation with the similar parameters is a converse 
transformation of unfold. Note the original relation name 
Supply refers to the relation of DB2 now. We suppose we 
know in advance that the attribute names Jan, …, Dec in the 
original relation of DB2 are values of some attribute month, 
and their values are from the domain of another attribute 
price. 

● The split operator transforms the relation of DB1 into the set 
of relations of DB3. It takes the original relation name and an 
attribute name as its parameters.  

● The unite operation with the set of original relation names and 
an attribute as its parameters is a converse transformation of 
split. Again, we know in advance that the relation names Jan, 
…, Dec of DB3 are values of some attribute month. 

To focus our work, in this paper, we study the derivation of 
qualified FDs in a schematic discrepant transformation that is a 
sequence of restructuring operators. In the future, we’ll extend our 
work to more general transformations which include both 
restructuring operators and relational algebra (union, natural join, 
etc). 

1.2 Applications of FDs in Multidatabase 
Systems 
As a special kind of integrity constraints, FDs play important roles 
in relational databases. Although the inference and applications of 
FDs in individual database systems have been studied for decades, 
the same issue in multidatabase systems is less studied. It is not 
trivial to derive the (qualified) FDs on an integrated schema from 
the (qualified) FDs on component schemas, especially in the 
presence of schematic discrepancies, as we’ll show in this paper. 
The issue is interesting as FDs are useful not only in enforcing the 
integrity of data, but also in different stages of building and 
accessing a multidatabase system. In what follows, we’ll identify 
some applications of FDs in schema transformation, schema 
normalization and query processing. A more special application of 
our theoretical work in multidatabase interoperability will be 
introduced in Section 4 below.  

● Verifying Lossless Transformations. As mentioned, schema 
transformation plays an important role in building a multidatabase 
system. In practice, one is mostly interested in semantic-
preserving transformations. A set of relations can be losslessly 
converted into another set of relations, and conversely, hence the 
name of lossless transformation. In other words, a lossless 
transformation defines a one to one mapping from the instance set 
of the original relations onto the instance set of the transformed 
relations. FDs can be used to verify not only “lossless join 
decomposition”, but also lossless schematic discrepant 
transformation, as shown in the following example. 

Example 1.3: Given a relation with the schema R(A, b1, b2), 
suppose the attribute names b1, b2 are values of a fixed attribute 
B, and the values of the attributes b1, b2 (i.e., c1, c2, etc) are from 
the domain of another attribute C. By applying the operation 
fold(R, B, C), we can transform either of the two instances I1, I2 
of R (Figure 2) into the same relation instance of S. That is, the 
mapping from the instances of R onto the instances of S is many 

to one, which makes the recovering impossible. So the fold 
operation is lossy (non-lossless). On the other hand, if the FD 
A→{b1, b2} held in R, the transformation would be lossless. □ 
 

R (I1) 
A b1 b2 
a1 c1 c2 
a1 c3 c4  

R (I2) 
A b1 b2 
a1 c1 c4 
a1 c3 c2  

⇓                   ⇓  

S 
A B C 
a1 b1 c1 
a1 b2 c2 
a1 b1 c3 
a1 b2 c4 

Figure 2: A “lossy” (non-lossless) fold transformation 

● Normalizing Integrated Schemas.   Consolidating data into a 
single physical store has been the most effective approach to 
provide fast, highly available, and integrated access to related 
information. The applications include coalescing all the required 
data for a new e-business application for online transactions, and 
enabling sophisticated data mining of warehoused historical data. 
In classical relational theory, FDs are used to detect redundancy 
and normalize relations. Deriving FDs for integrated schemas 
becomes important, as schematic discrepant transformation would 
introduce redundancy. 

For example, in Example 1.1, the integrated schema Book(isbn, 
title, store, price) is not in 2nd normal form, as the FDs 
isbn→title and {isbn, store}→price hold in the relation (the 
method to derive the two FDs will be introduced in Section 3). 
We can normalize it to two relations: Book(isbn, title) and 
BookPrice(isbn, store, price). 

● Semantic Query Optimization. In a multidatabase system, 
FDs and other constraints on integrated schemas could be used to 
optimize queries against the integrated view [10, 16], to eliminate 
subqueries which are known to yield empty results, and to 
validate update transactions at the integration level [21]. 

For example, in Example 1.1, given the integrated schema 
Book(isbn, title, store, price), a query retrieves books with the 
same isbn number but different titles in the two bookstores. Such 
a query will return empty results as the FD isbn→title holds in the 
integrated Book relation.  

1.3 Paper Overview  
The main contributions of this paper are in Section 2 ~ 4. In 
Section 2, we extend conventional FDs to qualified FDs, to 
express FD-like constraints in multidatabase systems. Inference 
rules of qualified FDs are also given in this section. Then in 
Section 3, we study the propagation of qualified FDs in schematic 
discrepant transformations. In Section 4, we show a special 
application of our theoretical work in multidatabase 
interoperability, i.e., use FDs to check the validity of SchemaSQL 
views. In Section 5, we compare our work with some related 
work. Section 6 is for the conclusion and future work, in which 
we introduce some preliminary study on the inference and 
application of FDs on XML data. 
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Notations: In this paper, capital letters near the beginning of the 
alphabet, A, B, C, stand for single attributes. Capital letters near 
the end of the alphabet, U, X, Y, Z, stand for sets of attributes. 
Lower case letters stand for attribute values, which may be 
modeled as attribute or relation names in discrepant schemas 
however. The notation dom(A) stands for the domain of an 
attribute A. 

2. QUALIFIED FD 
In this section, we introduce qualified FD, an extension to 
conventional FD, to facilitate the expression and inference of 
some constraints in multidatabase systems. We first give the 
formal definition of qualified FDs in Section 2.1. Then in Section 
2.2, we’ll give some inference rules of qualified FDs in fixed 
schemas. 

2.1 Definition of Qualified FD 
We first give an example to show the motivation of our proposal. 

Example 2.1:   Suppose in DB3 of Figure 1,  

Jan    Dec   
p# s# price … p# s# price 

 
the following constraint holds: in the first quater, each product is 
supplied with the same price by suppliers s1 and s2, independent 
of months. We’ll express this constraint as:  

{Jan, Feb, Mar}(s#σ={s1, s2}, p#→price). 
Jan, Feb and Mar are relation names from DB3. The beginning 
part “{Jan, Feb, Mar}” restricts the set of relations, and 
“s#σ={s1,s2}” restricts the values of the attribute s# within which the 
constraint should be enforced. Formally, let  

R = ∪mi∈{Jan, Feb, Mar}(σs# ∈ {s1, s2}mi) 
the FD p#→price holds in R.□ 

The definition below formalizes the above representation of 
qualified FDs.  

Definition 2.1 (Qualified FD):   In general, given a set of 
relations S  with the same set of attributes U, we can represent a 
qualified FD as:  

R (A1 σ= 1S , A2 σ= 2S , …, An σ= nS , X→ Y). 
Syntax of the qualified FD:  

(1) R  ⊆ S represents the set of relations over which the 
qualified FD holds.  

(2) Ai σ= iS , for each i=1, …, n, satisfies Ai ∈ U and Si ⊆ 
dom(Ai), indicating the restriction of attribute values 
within which the qualified FD holds. For easy to reference, 
we call each Ai σ= iS  a qualification attribute from U. 

(3) X ⊆ U and Y ⊆ U are two sets of regular attributes.  

Semantics of the qualified FD:  

We call the given qualified FD holds over R , if the following 
holds for any two tuples t1, t2 from the relations of R  (t1, t2 may 
come from one or two relations):  

If  t1.Ai ∈ Si and t2.Ai ∈ Si, for each i = 1, …, n, and  t1.Xj= t2.Xj, 
for each attribute Xj ∈ X, then  t1.Yk = t2.Yk, for each attribute  
Yk ∈ Y. This completes the definition of qualified FD. □ 

In general, if a qualified FD  

{R1, …, Rm}(A1 σ= 1S , …, An σ= nS , X→Y) 
holds, let R = ∪i=1,…,m(σ 1A ∈ 1S , …, nA ∈ nS Ri), then the FD X→Y 
holds in R. If a qualified FD only contains regular attributes and 
holds in a single relation, then it is just a conventional FD.  

2.2 Reasoning about Qualified FDs in Fixed 
Schemas 
In general, let F be a set of qualified FDs for a set of relation 
schemas R , and let f be a qualified FD also for R. We say F 
logically implies f, if every instance of R  that satisfies the 
dependencies in F also satisfies f. We define F+, the closure of F 
for R , to be the set of qualified FDs for R  that are logically 
implied by F.  

To understand logical implications among qualified FDs in fixed 
schemas, we provide a complete set of inference rules, meaning 
that from a given set of qualified FDs F for R, the rules allow us 
to deduce all the true qualified FDs for R, i.e., those in F+. 
Without causing confusion, in the next section, we’ll give another 
kind of rules (called propagation rules) which allow us to infer 
qualified FDs of transformed relations from qualified FDs of 
original relations in a schema transformation. 

Some of the inference rules are given below (a complete set of 
inference rules are given in Appendix A). We assume for each 
qualification attribute Aσ=S, the domain of A is a finite and fixed 
set. 

Inference rules of qualified FDs:   Given a set of relation 
schemas S  with the same set of attributes U, and a set of qualified 
FDs F for S, let X  be a mixed set of regular and qualification 
attributes from U ( X  may comprise only regular or qualification 
attributes) 1; let Y ⊆ U and Z ⊆ U be two sets of regular attributes; 
let attribute A∈U; let R1 ⊆ R  ⊆ S, S1 ⊆ S ⊆ dom(A), we have the 
following inference rules: 

(A1) Partition on the relation set. If R ( X →Y) holds, then  
R1 ( X →Y) holds.  

(A2) Partition on the qualification. If R (Aσ=S, X →Y) holds, 
then R (Aσ=S1, X →Y) holds. 

(A3) Disassembly. R ( X , A→Y) holds iff  R (Aσ={a}, X →Y) 
holds for each a ∈ dom(A). 

(A4) Reflexivity. If Y ⊆ X , then R ( X →Y) holds.  
(A5) Augmentation. If R ( X →Y) holds,  then  

R ( X , Z→Y, Z) holds. 
(A6) Transitivity. If R ( X →Y) and R ( X1 , Y→Z) hold, where 

X1  is a set (possibly an empty set) of some qualification 
attributes of X , then R ( X →Z) holds. □ 

Rule A1 and A2 are trivial. Rule A3 is a derived rule from the 
rules in Appendix A, which is useful in the rest of the paper. We 
hereby explain this rule through an example: 

Example 2.2:   In DB1 of Figure 1, given the FD  
{month, p#, s#}→ price 

                                                                 
1 This convention will be followed in the rest of the paper. 
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we can infer a set of qualified FDs in the same relation by the 
disassembly rule, i.e., 

Supply(monthσ={mi}, p#, s#→ price) 
for each mi ∈ {Jan, …, Dec}. That is, the FD {p#, s#}→price 
holds in each sub-relation σmonth=mi Supply of DB1. □ 

Rules A4, A5 and A6 extend Armstrong’s Axioms [20], the 
inference rules of FDs. Note in Rule A6, the inferred qualified FD 
inherits all the qualification attributes of the given qualified FDs. 
A sound and complete set of inference rules is given in Appendix 
A, stated as follows: 

Theorem 2.1: The inference rules in Appendix A are sound and 
complete. □ 

We can prove this by showing that if F is the given set of 
qualified FDs holding in S, and f is a qualified FD which cannot 
be proved by the inference rules, then there must be an instance of 
S in which the dependencies of F all hold but f does not; that is, F 
does not logically imply f. For the detailed proof and more 
information on qualified FDs (e.g., the computation of attribute 
closure with respect to a set of qualified FDs, and the implication 
algorithm), please refer to the full paper [9]. 

3. PROPAGATION OF QUALIFIED FDS IN 
SCHEMA TRANSFORMATION 
In this section, the implication of qualified FDs extends to 
transforming schemas. In general, given a schema transformation 
T, let R  and S  be the sets of original and transformed relations of 
T; let F be a set of qualified FDs for the schemas of R , and f be a 
qualified FD for the schemas of S ; let r  be any instance of R   
satisfying the dependencies of F, and s  be the instance of S  
transformed from r  by T. We say F (logically) implies f, if s  
satisfies f.  

Note unlike the implication of qualified FDs in fixed schemas, 
now the given set of dependencies F and the implied one f hold in 
different schemas. To understand logical implications among 
qualified FDs in transforming schemas, we provide a set of 
propagation rules, meaning that from a given set of qualified FDs 
F for the set of original relations R, the rules allow us to deduce 
the qualified FDs for the set of transformed relations S. 

In this section, we first give the propagation rules for split/unite 
and unfold/fold operations in a pairwise way, by which we can 
compute qualified FDs on transformed relations from qualified 
FDs on original relations in application of those operators. Then 
we propose a method to infer qualified FDs in a schematic 
discrepant transformation (i.e., a sequence of restructuring 
operators) using the inference rules (Appendix A) and 
propagation rules.  

3.1 Propagation Rules 
We first give the propagation rules for split/unite operators then 
for unfold/fold. The soundness of these rules are proven in [9]. 

Propagation of qualified FDs in application of a split/unite 
operator:   Let R(A1, …, An, B) be an original relation with  
dom(B) = {b1, …, bm}, and bi(A1, …, An), i = 1, …, m, be the 
transformed relations using split(R, B), i.e., the distinct values of 
B in R, {b1, …, bm}, become the relation names of the transformed 
relations. Let X  be a mixed set of regular and qualification 

attributes from {A1, …, An}, and Y ⊆ {A1, …, An} be a set of 
regular attributes; let RB ⊆ {b1, …, bm} be a set of relation names. 
We have the following rule: 

(P1)   R (Bσ= BR , X →Y) holds iff RB ( X →Y) holds. 

The same rule holds for the unite operator, when {b1, …, bm} are 
the original relations, and R is the transformed relation using 
unite({b1,…, bm}, B).□ 

Rule P1 means that in application of a split operator, the 
restriction on the values of attribute B in the given qualified FD 
becomes the restriction on the relation set over which the inferred 
qualified FD holds, as B values become relation names in the 
transformed schemas. We hereby give an example to apply this 
rule: 

Example 3.1: In Figure 1, given the FD in the relation Supply of 
DB1: {p#, s#, month}→price which is equivalent to a set of 
qualified FDs in the same relation (by the disassembly rule A3): 
Supply(monthσ={mi}, p#, s#→price) for each mi ∈ {Jan, …, Dec}, 
we can derive a FD for each relation of DB3 by applying the 
propagation rule P1 to each of the qualified FDs in DB1, i.e., 

mi(p#, s#→ price) 
for each relation name mi ∈ {Jan, …, Dec} in DB3.□ 

Although unite is a qualified-FD preserving transformation, split 
is not. Given the same conditions as those in Rule P1, a qualified 
FD R( X →B) will be lost in application of split, as the values of 
B become relation names in the transformed schemas. 

In what follows, we’ll give the propagation rules of qualified FDs 
in application of a set of unfold/fold operators. We study based on 
a set of unfold/fold operators instead of individual ones because 
some qualified FDs would hold over a set of relations (which are 
transformed together by unfold/fold operations). 

Propagation of qualified FDs in application of a set of 
unfold/fold operators:   Let Ri(A1, …, An, B, C), i = 1,…,l, be a 
set of original relations, and Si(A1, …, An, b1, …, bm), i=1,…,l, be 
the set of transformed relations by performing unfold(Ri, B, C) on 
each relation of Ri. That is, the values of B in Ri, {b1, …, bm}, 
become attribute names in Si, and the values of C in Ri become the 
values of the attributes b1, …, bm in Si. Let X  be a mixed set of 
regular and qualification attributes from {A1, …, An}, and Y ⊆ 
{A1, …, An} be a set of regular attributes. Let R ={Ri1, …, Rij} be a 
subset of {R1, …, Rl}, and S ={Si1, …, Sij}, a subset of {S1, …, Sl},  
be the transformed relations from R. We have the following rules: 

(P2)   R (Bσ={ ib }, X →C) holds iff S ( X →bi) holds. 

(P3)   R (Bσ={ ib }, X , C→Y) holds iff S ( X , bi→Y) holds. 

(P4)   R ( X →Y) holds iff S ( X →Y) holds. 

The three rules also hold for fold operators, when Si, i = 1,…,l, are 
the original relations, and Ri, i=1,…,l, are the transformed 
relations by performing fold(Si, B, C) on each relation of Si. □ 

In application of unfold operators, Rule P2 and P3 mean that the 
restriction on the value of attribute B in the given qualified FD 
becomes the restriction on the attribute name in the inferred 
qualified FD. Rule P4 is trivial as no change happens on the 
attributes involved in the given qualified FD during the 
transformation. Note both fold and unfold operations are not 
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qualified-FD preserving transformations. We hereby give an 
example to apply Rule P2: 

Example 3.2: In Figure 1, given the FD in the relation Supply of 
DB1: {p#, s#, month}→price which is equivalent to a set of 
qualified FDs in the same relation: Supply(monthσ={mi}, p#, 
s#→price) for each mi ∈ {Jan, …, Dec}, we can derive a set of 
FDs in DB2 by applying Rule P2 on each of the qualified FDs in 
DB1, i.e., 

Supply(p#, s#→mi) 
for each attribute name mi ∈ {Jan, …, Dec}. That is, the FD {p#, 
s#}→ {Jan, …, Dec} holds in relation Supply of DB2. □ 

3.2 Inferring Qualified FDs in Schematic 
Discrepant Transformation 
Using the inference rules in Appendix A and the propagation rules 
P1~P4, we can design an algorithm to derive qualified FDs in 
schematic discrepant transformations. A naive idea would be: for 
each step of a schematic discrepant transformation, we first apply 
the inference rules to compute the qualified FD closure on the 
original relations, then apply the propagation rules to get the 
qualified FDs on the transformed relations. However, the 
computation of qualified FD closures takes exponential time at 
least, which makes the method impractical. Instead of applying 
the inference and propagation rules directly, we use some derived 
rules (see Appendix B) to infer qualified FDs in schema 
transformation, without computing qualified FD closures. The 
basic idea of the derived rules is: given a set (not necessary a 
closure) of qualified FDs F on the original relations, we propagate 
not only the dependencies in F, but also those which are not in 
but implied by F, and can be preserved during the schema 
transformation. The general algorithm with proofs is given in [9]. 
We hereby present an example to explain it. 

Example 3.3:   Suppose in Figure 1, we have another database 
DB4 with supplier numbers as the relation names: 
 

DB4:         
s1     sn    
p# Jan … Dec … p# Jan … Dec 

 
Suppose we transform DB3 into DB4 using the following 
sequence of restructuring operators: 

DB3 DB1 DB2

unfold(Supply, month, price)

unite({Jan,...,Dec}, month)

DB4

split(Supply, s#)

 
Given a set of qualified FDs in the relations of DB3:  

mi(p#, s#→price) 
for each relation name mi ∈ {Jan, …, Dec}, we compute the 
qualified FDs in DB4 as follows: 
After applying the unite operator, we get the dependencies in DB1 
(by Rule P1):  

Supply(monthσ={mi}, p#, s#→price) 
for each mi ∈ {Jan, …, Dec}. After applying the unfold operator, 
we get the dependencies in DB2 (by Rule P2): 

Supply(p#, s#→ mi) 

for each mi ∈ {Jan, …, Dec}.  These FDs cannot be transformed 
into any dependencies on DB4 by the propagation rules. However, 
each of the above FDs implies a set of qualified FDs on the same 
relation of DB2 (by Rule A3):  

Supply(s#σ={sj}, p#→ mi) 
for each sj ∈ {s1, …, sn}.   Consequently, after the split operation, 
these qualified FDs become FDs in DB4 (by Rule P1): 

sj(p#→ mi) 
for each relation name sj ∈ {s1, …, sn} and attribute name mi ∈ 
{Jan, …, Dec}. That is, in each relation sj of DB4, the FD 
p#→{Jan, …, Dec} holds.□ 

Before ending this section, we show some results on the 
completeness of our method. The inference rules in Appendix A 
and the propagation rules P1~P4 are not complete to infer all the 
qualified FDs in schematic discrepant transformation. Instead, 
they are complete to infer common dependencies satisfying three 
conditions: 

Definition 3.1: Let S be a set of relations with the same set of 
attributes U in database DB. We call a qualified FD f: R(X→Y) 
reasonable if it satisfies 3 conditions: 

(1) Either R = dom(B) for some attribute B whose values are 
modeled as relation names in S, or R is a single relation 
name from S.  

(2) The qualified FD only has regular attributes.  
(3) For each attribute set Z = {bi | bi ∈U is a value of an 

attribute B, and the values of bi are from the domain of 
another attribute C}, there’s at most one attribute of Z in 
X∪Y. □ 

Without giving proof here (the proof is given in [9]), we have the 
following results on the completeness of our method using the 
propagation rules or derived rules: 

Theorem 3.1: The inference rules in Appendix A and the 
propagation rules P1~P4 are complete to infer reasonable 
qualified FDs in schematic discrepant transformation. □ 

Proposition 3.1: The derived rules in Appendix B are complete to 
infer reasonable qualified FDs in schematic discrepant 
transformation. □ 

4. VERIFYING SCHEMASQL VIEWS 
In this section, we will show an application of our theory in a 
multidatabase query language SchemaSQL [12, 13]. SchemaSQL 
is an extension to SQL for enabling multidatabase 
interoperability. It treats data and schema labels in a uniform 
manner, i.e., variables can range over data and schema labels, 
which facilitates the interoperability among schematic discrepant 
databases. Recently, SchemaSQL has been used to solve a broad 
range of problems [12, 19]. However, a SchemaSQL view 
definition may generate ambiguous results. We call those 
problematic views not “well-defined”. The problem can be 
detected using FDs derived during the processing of SchemaSQL 
views. In this section, we first define “well-defined SchemaSQL 
view” in Section 4.1, then show how to verify well-defined views 
by deriving qualified FDs in Section 4.2. 

4.1 Well-defined SchemaSQL Views 
In this sub-section, we first show an example of problematic 
SchemaSQL view which generates ambiguous results, then give 
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the definition of well-defined views. We consider views for query 
purpose, not for update purpose. 

Though a SQL view defines a mapping from the instances of 
original relations onto the instances of view relations, a 
SchemaSQL view defines a mapping from original relations onto 
view relations including schemas and instances both. That is to 
say, a SchemaSQL view may define on (and generate) relations 
with variable schemas. 

Example 4.1:   In Figure 3, suppose in the relation Supply, a FD 
{product, supplier, month}→ price holds. The SchemaSQL 
statements below define a view SupView: 

create view   SupView(product, T.month) 
select                      T.product, T.price 
from              Supply  T   

Supply    
product supplier month price 
p1 s1 Jan 100 
p1 s1 Feb 105 
p1 s2 Jan 95 
p1 s2 Feb 97 

 
Allocated table 
product Jan Feb 
p1 100 - 
p1 - 105 
p1 95 - 
p1 - 97 

 
SupView(I1) 
product Jan Feb 
p1 100 105 
p1 95 97  

SupView(I2) 
product Jan Feb 
p1 100 97 
p1 95 105  

Figure 3: Ambiguous SchemaSQL view: SupView may have 
one of two instances I1 and I2 

The above statements are similar to a SQL view definition except 
a variable T.month in the “create view” clause. The result view 
schema therefore depends on the instantiation of T.month, i.e., the 
values of the month attribute in the Supply relation. In this case, 
the view has a schema of SupView(product, Jan, Feb). To 
evaluate this view, they will temporarily generate an "allocated 
table" shown in Figure 3. Each tuple in the allocated table comes 
from a tuple of the Supply relation with the values of month 
modeled as attribute names. "-" is used to denote the null value. 
Then they merge the tuples in the allocated table, and get the final 
result. Two tuples are merge-able if for a common attribute, either 
the attribute values of the 2 tuples are the same, or at least one 
value is null. For example, the 1st tuple can be merged with the 
2nd or 4th tuple. Then the result view relation is not unique for 
the different choices of merging tuples. Two possible results are 
SupView(I1) and SupView(I2) in Figure 3. That is, the mapping 
from the original relations onto the view relations is one to many. 
□ 

We call a view definition in Example 4.1 is not well-defined. In 
general, we have: 

Definition 4.1 (Well-defined SchemaSQL view):   Let V be a 
view definition in SchemaSQL. Let S1 = {R | R is an original 

relation (or relation set) on which V is defined}, S2 = {R | R is a 
view relation (or relation set) generated by V}. If the view 
definition V: S1 S2  is a many to one mapping, we call V is 
well-defined. □ 

Intuitively, for a well-defined view V, given a query Q against a 
view relation (or relation set) S∈S2, we have: 

Q(S) = Q(V(R)) = Q ο V (R), for some R∈S1. 
That is, the query Q against S is mapped onto the unique query 
QοV against the original relation (or relation set) R, if V is a many 
to one mapping.  

4.2 Verifying Well-defined SchemaSQL 
Views Using FDs 
In this sub-section, we first give a theorem, then a method to 
verify well-defined SchemaSQL views. The theorem below gives 
a necessary and sufficient condition to check whether a 
SchemaSQL view is well-defined by use of FDs. To simplify the 
expression, the theorem only applies to SchemaSQL views 
generating individual relations without aggregations. The result 
can be extended to general SchemaSQL views readily. 

Theorem 4.1:   A SchemaSQL view is well-defined iff it satisfies 
the following condition: if the output schema declaration through 
the create view statement of the view definition has a form of 
“R(A1, …, An, B)”, where R is the name of the view relation, A1, 
…, An are attribute names, and B is a variable ranging over a set of 
values {b1, …, bm}, then the FDs  

{A1, …, An}→ bi,  i = 1, …, m, hold in R. □ 

In general, when the declaration of a view schema contains a 
variable, the mapping from the original relations onto the view 
relations is many to many. However, if certain FDs hold, we can 
ensure the mapping be many to one. The detailed proof of this 
theorem is given in [9]. 

Note according to the SchemaSQL syntax [13], there’s at most 
one variable in the attribute list of the output schema declaration 
through a create view statement. And Theorem 4.1 implies that if 
a view definition does not contain a variable in the attribute list of 
the output schema declaration, then the view is always well-
defined. That is, Theorem 4.1 could be used to check all the 
SchemaSQL views which generate single relations without 
aggregations.  

According to Theorem 4.1, in order to check whether a 
SchemaSQL view is well-defined, we need to infer FDs holding in 
the view relation. SchemaSQL queries/views can be implemented 
by use of the restructuring operators and relational algebra 
(selection, projection, join, and so on) [12]. Consequently, we 
need develop propagation rules and algorithms to infer qualified 
FDs in application of the relational algebra besides those four 
restructuring operators, which are omitted here. We hereby give 
an example to describe this process. 

Example 4.2:  The view of Example 4.1 can be implemented in 
two steps: (1) project out the supplier column from the Supply 
relation, and get an intermediate relation, say Sup1(product, 
month, price); (2) perform unfold(Sup1, month, price), and get the 
result relation SupView. As Step (1) projects out the supplier 
attribute, the given FD {product, supplier, month}→price is lost 
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after the projection. Consequently, no FD holds in SupView, 
which means the view is not well-defined.  

On the other hand, if the view schema declaration contains the 
attribute supplier, i.e., SupView(product, supplier, Jan, Feb), then 
the view is implemented by performing unfold(Supply, month, 
price). Using Rule A3 and P2, we can derive a FD {product, 
supplier}→{Jan, Feb} in SupView. According to Theorem 4.1, 
the view is well-defined. □ 

5. RELATED WORK 
Most of the existing relational dependencies, such as FDs, 
multivalued dependencies, embedded multivalued dependencies 
etc, are defined on individual relations. They differ from our 
proposal of qualified FDs which are constraints on a set of 
relations or sub-relations. Some unifying frameworks were 
proposed to generalize those existing dependencies. One of the 
most powerful methods is to use tableaux (a table form 
representation) to present constraints, and use “chase” (a 
procedure based on the successive application of constraints to 
tableaux) to analyze implication and construct axiomatization [1]. 
However, the existing tableaux paradigm does not subsume our 
proposal of qualified FDs which have restrictions on attribute 
values and hold over the union of a set of relations. And the 
inference rules developed in the chase paradigm cannot be used to 
infer qualified FDs.  

Another kind of extension to FDs in the database design world are 
FDs partially holding in a relation, in the sense that only some 
tuples, called exceptions, break the dependencies. These 
dependencies include weak FDs [17], afunctional dependencies 
[6] and partial FDs [5]. The difference between those 
dependencies and qualified FDs is that the former ones work over 
instances while the qualified FDs are defined on schemas. Given a 
relation schema, a weak FD (or some other similar dependency) 
predicates that some tuples (but don’t know which tuples) in the 
relation would violate the dependency, while a qualified FD 
indicates exactly what kind of tuples satisfy the dependency. 
Furthermore, we are not aware of any axiomatizations for those 
dependencies. At last, those dependencies are specified on 
individual relations, while qualified FDs can be on a set of 
relations. 

Some work [15, 21, 23] has been done on the derivation of 
constraints in schema integration. Those works are based on 
semantic rich schemas (ER schema or object oriented schema). 
They failed to consider schematic discrepancy in schema 
integration; neither did they prove the completeness of their 
methods. 

6. CONCLUSION AND FUTURE WORK 
In [16], Chen Li introduced some open problems and preliminary 
study on describing and utilizing constraints to answer queries in 
data integration systems. Our work solved some of those 
problems. In particular, we have made three contributions on the 
representation, derivation and utilization of constraints in 
multidatabase systems: (1) We proposed qualified FDs to 
formalize some constraints in multidatabase systems. We gave a 
complete set of inference rules to derive qualified FDs in fixed 
schemas. (2) We gave the propagation rules of qualified FDs in 
application of the restructuring operators, and proposed a method 
to derive qualified FDs in schematic discrepant transformations. 

Our work can be used to verify lossless schema transformations, 
normalize transformed/integrated schemas, optimize queries at the 
integration level and so on in building and accessing a 
multidatabase system. (3) As a special application of our 
theoretical work in multidatabase interoperability, we showed 
how to use FDs to check well-defined SchemaSQL views in 
detail.  

Information integration using XML as a standard to represent and 
exchange data provides a competitive advantage to businesses. 
However, the flexibility of XML also brings great challenge in the 
integration of XML data from different sources. Although our 
work in this paper is based on the relational model, the results 
could be extended to the hierarchical model of XML as well.  We 
are currently studying this problem. In the example below, we 
show some ideas on the application and derivation of FDs in the 
integration of XML schemas. 

Example 6.1:   In Figure 4, we represent XML schemas as tree 
structures in which elements are represented as rectangles and 
attributes as circles (filled circles denote keys of the owning 
elements). The schemas X1, …, Xn model the book information 
of n bookstores with the store names s1, …, sn. We assume a book 
with an isbn number has the same title and authors but not 
necessary the same price in those bookstores. That is, the FD 
isbn→title holds over the union of the instances of X1, …, Xn. 
However, the FD isbn→price only holds in each Xi.  

Guided by these dependencies, we can integrate these schemas by 
transforming the schema labels s1, …, sn into attribute values of a 
new created element store. The integrated schema is also given in 
Figure 4. Note the attribute price is attached to the element store 
now, as its values depend on both isbn numbers and bookstore 
names. Actually, price is an attribute of the relationship type 
between book and store. We can derive the FDs isbn→title and 
{isbn, s_name}→price in the integrated schema.□ 

s1_book

author

isbn

a_name

price

...Schema X1

title

sn_book

author

isbn

a_name

price

Schema Xn

title

book

author

isbn

a_name

title

Integrated Schema

store

s_name price

...

dom(sname)
={s1, ..., sn}

 
Figure 4: Integration of XML schemas. The values of the 

attribute price depend on isbn numbers and bookstore names. 
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APPENDIX  
A.  A Complete Set of Inference Rules to Infer 
Qualified FDs in Fixed Schemas 
Given a set of relation schemas S with the same set of attributes U 
in database DB, and a set of qualified FDs F holding in S, let X  
be a mixed set of regular and restriction attributes from U ( X  
may comprise only regular or restriction attributes), Y ⊆ U and Z 
⊆ U be two sets of regular attributes, and A∈U; let R1  ⊆ R  ⊆ S, 
S1 ⊆ S ⊆ dom(A), we have the following inference rules: 

(1) If R ( X →Y) holds, then R1 ( X →Y) holds.  
(2) If {Ri, Rj}( X →Y) holds for any Ri, Rj ∈ R, then R 

( X →Y) holds. 
(3) If R ( X , Aσ=S→Y) holds, then R ( X , Aσ=S1→Y) holds. 
(4) If R ( X , Aσ={ ia , ja }→Y) holds for any ai, aj ∈ S, then  

R ( X , Aσ=S→Y) holds. 
(5) If ai ∈ dom(A), then R (Aσ={ ia }→A) holds. 

(6) If R (Aσ={ ia }, X →Y) holds for each ai ∈ S, then  

R (Aσ=S, A, X →Y) holds. 
(7) If Y ⊆ X , then R ( X →Y). 
(8) If R ( X →Y) holds, then R ( X , Z→Y, Z). 
(9) If R ( X →Y) and R ( X1 , Y→Z) hold, where X1  is a set 

(possibly an empty set) of some restriction attributes in 
X , then R( X →Z) holds.  

(10) If R ( X →Y) holds and A does not occur in the restriction 
attributes of X , then R ( X , Aσ=dom(A)→Y) holds. 

(11) If R ( X , Aσ=dom(A)→Y) holds, then R ( X →Y) holds. □ 

B.  Derived Rules to Infer Qualified FDs in 
Schema Transformation. 
The rules in each algorithm below are used to infer qualified FDs 
in schematic discrepant transformation. These rules are derived 
from the inference rules in Appendix A and the propagation rules 
P1~P4 in Section 3. These derived rules apply to the qualified 
FDs of original relations, and produce the implied qualified FDs 
of the transformed relations, avoiding the computation of 
qualified FD closures. The rules are complete to compute 
reasonable qualified FDs in schematic discrepant transformation. 
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Algorithm INFER_SPLIT: Inference of qualified FDs for a split 
operation. 

INPUT:  Let R(A1, …, An, B) be an original relation, and bi(A1, 
…, An), i = 1, …, m, be the transformed relations using split(R, 
B). Let F be a set (not necessary a closure) of qualified FDs on 
R. 
OUTPUT: a set of qualified FDs, G, holding in the set of the 
transformed relations {b1, …, bm}. 
METHOD: Let X  and Y  be 2 mixed sets of regular and 
qualification attributes from {A1, …, An}, and A ∈ {A1, …, An}. 
We compute the qualified FDs in G using the following rules: 

(1) If R( X →A) ∈ F, then dom(B)( X →A)∈ G. 
(2) If R( X , B→A) ∈ F, then bi( X →A) ∈ G for each bi ∈ 

dom(B). 
(3) If R( X →B) ∈ F and R(Y , B→A) ∈ F, then 

dom(B)( X , Y →A) ∈ G. □ 

Algorithm INFER_UNITE: Inference of qualified FDs for a 
unite operation. 

INPUT:  Let bi(A1, …, An), i = 1, …, m, be original relations, 
and R(A1, …, An, B) be the transformed relations using 
unite({b1, …, bm}, B). Let F be a set (not necessary a closure) of 
qualified FDs holding in the original relations {b1, …, bm}. 
OUTPUT: a set of qualified FDs, G, holding in the transformed 
relation R. 
METHOD: Let X  be a mixed set of regular and qualification 
attributes from {A1, …, An}, and A ∈{A1, …, An}. We compute 
the qualified FDs in G using the following rules: 

(1) If dom(B)( X →A) ∈ F, then R( X →A) ∈ G. 
(2) If RB( X →A) ∈ F for a set of relations RB ⊂ {b1, …, bm}, 

then R(Bσ= BR , X →A) ∈ G. □ 

Algorithm INFER_UNFOLD: Inference of qualified FDs for a 
set of unfold operations. 

INPUT:  Let Ri(A1, …, An, B, C) (i=1,…,l) be original relations, 
and Si(A1, …, An, b1, …, bm) be the transformed relations using 
unfold(Ri, B, C) for each i=1, …, l. Let F be a set (not necessary 
a closure) of qualified FDs holding in the set of the original 
relations {R1, …, Rl}. 
OUTPUT: a set of qualified FDs, G, holding in the transformed 
relations {S1, …, Sl}. 
METHOD: Let X , Y  and Z  be mixed sets of regular and 
qualification attributes from {A1, …, An}, and A ∈ {A1, …, An}.  

Let R  and S  be subsets of relations of {R1, …, Rl} and {S1, …, 
Sl} respectively; the relations of S  are transformed from the 
relations of R. We compute the qualified FDs in G using the 
following rules: 

(1) If R (Bσ={ ib }, X →C) ∈ F, then S ( X →bi) ∈ G. 
(2) If R (B, X →C) ∈ F or R ( X →C) ∈ F, then  

S ( X →bi) ∈ G for each bi ∈ dom(B). 
(3) If R (Bσ={ ib }, X , C→A) ∈ F, then S ( X , bi→A) ∈ G. 
(4) If R (B, X , C→A) ∈F or R ( X , C→A) ∈F, then  

S ( X , bi→A) ∈ G for each bi ∈ dom(B). 
(5) If R ( X →A) ∈ F, then S ( X →A)  ∈ G. 
(6) If R ( X →B) ∈ F and R (Y , B→A) ∈ F, then  

S ( X , Y →A) ∈ G. 
(7) If R ( X →C) ∈ F and R (Y , C→A) ∈ F, then  

S ( X , Y →A) ∈ G. 
(8) If R ( X →B) ∈ F, R (Y , B→C) ∈ F and R ( Z , C→A) ∈ 

F, then S ( X , Y , Z →A) ∈ G. 
(9) If R ( X →C) ∈ F, R (Y , C→B) ∈ F and R ( Z , B→A) ∈ 

F, then S ( X , Y , Z →A) ∈ G. □ 

Algorithm INFER_FOLD: Inference of qualified FDs for a set 
of fold operations. 

INPUT:  Let Ri(A1, …, An, b1, …, bm) (i=1,…,l) be original 
relations, and Si(A1, …, An, B, C) be the transformed relations 
using fold(Ri, B, C) for each i=1, …, l. Let F be the set of (not 
necessary a closure) qualified FDs holding in the set of the 
original relations {R1, …, Rl}. 
OUTPUT: a set of qualified FDs, G, holding in the transformed 
relations {S1, …, Sl}. 
METHOD: Let X  be a mixed set of regular and qualification 
attributes from {A1, …, An}, and A ∈ {A1, …, An}. Let R  and S  
be subsets of relations of {R1, …, Rl} and {S1, …, Sl} 
respectively; the relations of S  are transformed from the 
relations of R. We compute the qualified FDs in G according to 
the following rules: 

(1) If R ( X →bi) ∈ F then S (Bσ={ ib }, X →C) ∈ G. 
(2) If R ( X , bi→A) ∈ F then S (Bσ={ ib }, X , C→A) ∈ G. 
(3) If R ( X →A) ∈ F then S ( X →A) ∈ G. □ 
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