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The algorithms used by the IBM Israel Scientltic Center for the elementary mathematical

library using the IEEE standard for binary floating point arithmetic are described. The algo-

rithms are based on the “accurate tables method. ” This methodology achieves high performance

and produces very accurate results. It overcomes one of the main problems encountered in

elementary mathematical functions computations: achieving last bit accuracy. The results

obtained are correctly rounded for almost all argument values.

Our main idea in the accurate tables method is to use “nonstandard tables,” which are

different from the natural tables of equally spaced points in which the rounding error prevents

obtaining last bit accuracy. In order to achieve a small error we use the following idea: Perturb

the original, equally spaced, points in such a way that the table value (or tables values in case

we need several tables) will be very close to numbers which can be exactly represented by the

computer (much closer than the usual double precision representation). Thus we were able to

control the error introduced by the computer representation of real numbers and extended the

accuracy without actually using extended precision arithmetic.

Categories and Subject Descriptors: G. 1.0 [Numerical Analysis]: General—computer aru%rnetw,

error analyszs, numer~cal algor~thms; G. 1.2[Numerical Analysis]: Approximation— elementary

function approximation; G.4 [Mathematics of Computing]: Mathematical Software –algor&m
analysis

General Terms: Algorithms

Additional Key Words and Phrases: Accurate tables method, IEEE arithmetic, last bit accuracy

1. INTRODUCTION

The algorithms used by the IBM Israel Scientific Center for the elementary

mathematical library using the IEEE standard for binary floating point

arithmetic [7] are described. The algorithms are based on methodology devel-

oped by Gal [5], called the accurate tables method, which achieves high

performance and produces very accurate results. It overcomes one of the

main problems encountered in elementary mathematical functions computa-

tions achieving last bit accuracy. The results that we obtain are correctly

rounded for almost all argument values. This methodology appears as a
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An Accurate Elementary Mathemahcal Library . 27

remedy to the situation expressed by Black et al. [31. “The data (results of

tests of elementary function from several computer companies) demonstrate

that the industry does not satisfy the needs of those who require accurate and

efficient mathematical software. ”

Our method is based on three steps: Range reduction for the argument, a

table lookup, and a minimax polynomial approximation of the function near

the table value. The range reduction is somewhat similar to the standard

one, but the second step is quite different, A priori, we determine a set S of L

points: Xl < Xz < . . . XL in the interval [A, B], where X,+l – X, s d, d

being a predetermined constant. In order to calculate f(x) for z in [ A, B] we

find a point X, in S which is “close enough” to ~ and then calculate f(x)

using a table value (or some table values) associated with f( Xi), and a

polynomial in ,x – X,. To clarify the idea we present two such examples.

Example 1. In order to calculate sin(y) (or COS(y)), we first make a range

reduction (discussed in Section 2.3.1) so that the reduced argument y lies in

[O, m/4). Then one can find an X, with –d /2 s y – Xi < d/2 and use the
identity

sin(y) = Si?z(x,) x Cos(h) + COS(XJ x sin(h), (1)

where h = y – X,. The values of sirz( X,) and COS(X,) can be extracted from a

table, prepared in advance, while COS(h) and sin(h) can be approximated by

minimax polynomials in [ –d /2, d/2].

Example 2. In order to calculate the exponent function exp( y), first make

a (standard) range reduction into the range O s y < 1 and then use the

identity

exp(y) = exp(X,) x exp(h), (2)

where h = I y – X, \ s d/2. The value of exp( XL) can be extracted from a

table, while exp( h) can be approximated by a minimax polynomial p(x) in

[-d/2, d/21.
The distance d is determined as a compromise between the two contradic-

tory goals: (1) As d gets smaller, so does the degree of the rninimax polyno-

mial p(x) needed to achieve the required accuracy. Thus the subroutine

performance (speed) is improved. Working with a small d has the additional

advantage from the accuracy point of view, as is seen later in the accuracy

analysis. (2) O-n the other hand, the overall size of the tables is limited by the

space allocated to them in the computer memory and thus d cannot be too

small. A practical value for d used is usually 1/256.

The main idea in the accurate tables method is to use “nonstandard

tables,” different from the natural tables of equally spaced points, in which

the rounding error prevents obtaining last bit accuracy. In order to achieve a

small error we use the following idea: Perturb the original, equally spaced,

points in such a way that the table value (or tables values in case we need

several tables) will be very close to numbers which can be exactly repre -
sented by the computer (much closer than the usual double precision repre -

sentation). Thus, we are able to control the error introduced by the computer
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28 . S. Gal and B. Bachells

representation of real numbers and to extend the accuracy without actually

using extended precision arithmetic. The detailed analysis of the method

appears in Gal [5, Sec. 41.

The accurate tables method was implemented several years ago for 370-type

machines. (See [1, 2, 61.) The purpose of the present work has been to adopt

this method to the IEEE Standard for Binary Floating Point Arithmetic and

to implement the algorithms for the RT-PC. (The details of the IEEE

standard are described in [71.)

The algorithms described in this report were devised for the following

elementary functions: sin, cos, tan, cotan, arctan, arctan 2, exp, in, loglo,

sinh, and cosh. They were chosen because most of them are frequently used

in engineering and scientific computations. (The functions sinh and cosh are

used less frequently than the others, but they can be obtained with little

investment once the exp routine is written, so we decided to write it as an

“extra”.)

Accuracy of the Results. Using the accurate tables method, the result of

the subroutines is an expression of the following type:

r= f,+b, (3)

which is rounded according to the required rounding mode; where f, is an

accurate table value and b is usually smaller than ~, x 2 – 9. Thus f, contains

at least K (implicit) zeros after bit 53 of the mantissa of f, (where K is an

arbitrary number determined by the table builder). In our routines K > 11, so

the relative error induced by the tables is smaller than 2- ‘3. The relative

error induced by the polynomial approximation in our routines is usually

smaller than 2 -‘2. Since the relative error of the term b in (3), induced by

calculating b and by its 53-bit representation, is usually about 2-53-9 = 2 -‘2,

it follows that usually the dominant error of the result is the error induced by

the arithmetic, that is, about 2 -‘2. The implication of such an error on the

proportion (%) of incorrectly rounded results is analyzed in Gal [5]. In this

work it was demonstrated that distant bits of any elementary function,

computed for a floating point argument, are approximately uniformly dis-
tributed. Using this fact, it was shown that [5, pp. 9, 14-161

pr < 2-(62-53) = 2-9< ().()()3,

so the percent of arguments with correctly rounded results is greater than

99.7 percent. Our experiments with random choice of x have demonstrated

that, on the average, the last bit accuracy is 99.8-99.9+ percent. The
detailed results are presented in Appendix A. Obviously, the result never

deviates from the correct result by more than 1 unit in the last place (Ulp).

Last Bit Accuracy. An inaccurate result may be expected only if the

computed value of b from (3) has one of the following two configurations for

the last 9 bits: 100000000 or 011111111. Thus it is possible to know for sure

whether r has the last bit correctly rounded or the last bit is uncertain. The

proportion of uncertain cases is 2-8 with half of them resulting in an

incorrect last bit. We may thus consider the following procedure. If the last
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9 bits of b do nck have a “dangerous” configuration, then the computation of

r gives the correctly rounded last bit. If b has a “dangerous” configuration,

then the result obtained from (3) is uncertain and we apply an independent

routine which makes computations with much higher precision (say, in 137

bits). The same analysis will show whether the result from this procedure is

certain or uncertain. Based on our probability estimates we conjecture that

this procedure will assure last bit accuracy of the computed function for all

argument values. This follows from the following facts:

(1) Working with 137-bit accuracy we are not able to determine the correct

double precision rounding point only when the configuration of the 85 bits in

the places 53-137 of the mantissa of f’(x) is 01111 . . . or 1000 . . . (denoted as

the dangerous configurations).

(2) The set of the fractional parts [f(x) x 253] where x varies over all the

double precision numbers, is approximately uniformly distributed in the unit

interval. (See [5, p. 161.)

Since the number of double precision arguments does not exceed 2”, the

likelihood that a dangerous configuration will appear in computing ~(x) for

any machine argument x is roughly 264 x 2-84 = 2-20, which is less than 1

in a million. (Incidentally, the exponent for the short precision exponent of

the IBM elementary mathematical library [6, p. 17] produces last bit accu-

racy by calling the double precision exponent in the uncertain case. An

exhaustive testing of all the short precision argument values has shown that

double precision is sufficient to guarantee correct rounding for single preci-

sion. This evidence strengthens our conjecture. )

Probably the above approach will always produce correctly rounded results,

while the overhead of applying extended precision procedures is very small

since the probability of applying them is very small (less than 0.3 percent).

However, the task of actually proving that the above method will really

produce last bit accuracy for all argument values seems formidable.

Monotonicity. The elementary functions considered are monotonic, except

around the extreme points of the sine and cosine. Thus it is interesting to

know whether the functions computed by our algorithms preserve this prop-

erty. In general., the methodology produces monotonic results. This is due to

the fact that around each table point X, the computed function is a polyno-

mial in the argument h = x – X,, where I h I is small and this polynomial is

always monotonic in the relevant range of h. The only place where a lack of

monotonicity of at most 1 Ulp can arise is in the links between the adjacent

intervals. Assume, for convenience, that the elementary function is monoton-

ically increasing. Then this problem can be handled either by adding a

restriction to the minimax polynomial so that it will always have a negative

truncation error at the right side of the interval or by introducing a small

perturbation to one of the coefficients of the minimax polynomial.

Remark. Since the IEEE standard does not deal with elementary func-

tions, we defined our routines for “exceptional” arguments and results, that
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is, for infinity and NaN’s (where NaN indicates not a number) in a

“natural” way (e. g., exp(1000) = infinity, ln( –1) = NaN). A list of these

cases is presented in Appendix C.

2. DESCRIPTION OF THE ALGORITHMS

2.1 Exponential Function

Let X, be an “accurate table value. ” Thus exp( Xi), written as an infinite

binary fraction, contains at least K zeros (or at least K ones) after bit 53 of the

binary fraction. We chose K = 12 in our routine. Denote

XL= i/512 – e,, i = –177, . .. ,177 (~, < l/million)

L = ew(x,).

if computed in extended precision,

fL = 1. Xxxx . . Xxxoooooooooooooo Xxxx . . .
l-52~l\+K =12- I

(X denoting an arbitrary binary digit)

Thus, although f, contains only a 53-bit mantissa, the relative (implicit)

accuracy of f, is 2-(52+’) = 2-64. (The same table is also used for the

hyperbolic functions. For their computation we use 1/ f,. Thus we built the

table so that X_, = – X, and so that 1/f, s f_, will also be accurate.)

The exponential function exp( X) is computed as follows:

Write exp( x) as

exp(x) = 2x/z”(2J = 2’ X exp(y)

where n = ZNT( x / in(2)) ( INT( x) is defined as the integer which is nearest

to x) and y = x – n x in(2). Note that –1023 s n s 1023<210, I y I s 0.5

x in(2) <0.35.

Denote z = lNT(y x 512), I i I s 177.

Let z = y – i/512 + ~,. Then

exp(x) = 2’ xfi x exp(z).

In our computations exp( z) is approximated (in the minimax sense) by a

precomputed fourth-degree polynomial, with a leading coefficient 1, 1 + p(z),
in the interval —1/1024 s z s 1/1024. The maximal error of this approxima-

tion is smaller than 6.5 E – 19.

The exponential function is thus calculated as

exp(x) =2n X (fL+f, Xp(z)). (4)

The computation of y = x – n x bz(2) has to be very accurate; for this

purpose, in(2) is expressed as a sum of lrz(2)o + hz(2)l, where ln(2)o has 10

least significant digits in its mantissa equal to O. This guarantees that the
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multiplication n x ln(2)o will be exact for all n: –1023 s n s 1023. Assum-

ing that divide is an expensive operation, we keep a constant Iln 2 = 1/ ln(2)0.

Thus y is computed as follows:

n = INT(X x Hn2),

where INT ( x ) is defined as the integer nearest to x,

‘y = x – n x 142)0,

and we keep separately the correction term

dely = n x ln(2)l.

The term dely has an order of magnitude of at most 2- 32. The impact of dely

is taken into account according to the following modification of (4):

exp(x) = 2“ x (fi + fi x p(z)) x exp(–dely)

G2n x (fi+fix (p(z) - dely - delyx p(z))). (5)

Accuracy. Practical testing of a 300,000 argument values uniformly dis-

tributed in the interval ( –170, 170) demonstrated last bit accuracy of about

99.8 percent.

2.2 Logarithmic Function

We use a table of triplets:

Xi, I’i, Gi, i=o, . . ..l9l

where Xi = 0.75 + i/256 + 1/512 + ei, F, = ln(X,), and GZ = I/ X,. Using

the accurate tables method the numbers Xi were chosen in such a way that

bits 49 to 62 of fi and bits 53 to 62 of G, are all O.

The logarithmic function is calculated as follows:

Write x = y x 2”, where n is an integer and 0.75 s y <1.5. Then in(x) =

ln( y) + n x in(2). To calculate ln( y) we use the following expression:

in(y) = ln(X, X ~/Xi) = ln(Xi)

+h(l + (~ – Xi) X l/xt)=ln(XL) + ln(l + .Z), (6)

where z = (y – XJ x l/Xi. (Note that –1/384 < z < 1/384, and if y is close

to 1, then –1/512 = z s 1/512).

In order to calculate ln(l + z) we use a sixth-degree polynomial approxi-

mation on – 1 /;384 s z % 1/384 with maximal absolute error less than 3.1 E
— 21. The usual Homer’s form of this polynomial,

p=((((z xB6+B5)xz+B4) XZ+B3)XZ+B2)XZ2+Z,

requires 6 multiplications and 5 additions. However, there exists a method,

denoted by Knuth [9, p. 4321 as “adaptation of coefficients,” which saves
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multiplications. We used a variant of this method for calculating p by only 5

multiplications and 5 additions (see [5, Sec. 5B]).

The polynomial p is calculated as follows:

Zz=zxz

p=zzx((B6x zz+A)x(zz+ Bxz+c)+D) +Z,

where A, B, C, and D are precomputed constants. If x is near 1(127/128 s x

s 129/128), then we use an eighth-degee minimax polynomial approximat-

ing ln( x), with relative error smaller than 2.3 E – 20, without using the

table lookup:

P=((((((z xD6+D5)xz+D4)xz +D3)xz+D2)

X+ D1)XZ+DO)XZ2+Z.

Instead of using Homer’s form, which requires 8 multiplications and 7

additions, we calculate the polynomial p using the following method of

adaptation of coefficients (see [5, Sec. 5B]), which requires only 6 multiplica-

tions and 7 additions:

ZZ=zxz

p=zzx((((z +a)x(zz+ b)+c)x((zz+d)xz+e) +f)+g)+z,

where a, b, c, d, e, f, and g are precomputed constants.

The final step is to calculate n x lrz(2), where lrL(2) is represented as a sum

of two numbers H and h (H = 3FE6 2 E42 FEFA 3800 and h = 3D2 E F357

93 C7 6730 (in hexadecimal representation)).

If I n I >25, then the result is obtained (add from left to right) as follows:

oxz2+nxh+z+F, +nxH.

If 1< I n I <25, then, in order to maintain the high accuracy of adding
n x 1TZ(2),we use the following scheme: n x in(2) is presented as a sum of two

terms, H. + h.. In order to maintain high accuracy we calculated a correc-

tion term COR, using the method described by Dekker [4], as follows:

The result is obtained as follows:

oxz2+hn+z+COR+R,

The Algorithm for loglo( X). We use the routine for ln( X) until the last

stage and then we obtain the result as a sum U + u, where U has 32 zeros at

the “tail” and I UI <2-19 x I u!.

Let loglo( e) = L + 1, where L is the 29 high order bits and 1 is the low

part. Then the result is given as u x 1 + u x L + U x 1 + U x L.
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Accuracy. Statistical testing of 300,000 argument values, logarithmically

distributed in (e- 170, e170) demonstrate last bit accuracy of about 99.9

percent for both in and loglo.

2.3 Sine and Cosine

2.3.1 Range Reduction. Our trigonometric routines are based on calcula-

tion of functions in a reduced range [0, r/4]. The range reduction is subtrac-

tion of n x T/2 from the argument x so that the reduced argument y = x –

n x m/2 lies in [.–m /4, m /4]. Thus the problem of computing sin(x) (respec-

tively COS(x]) is reduced to computing sin(y) (respectively, COS(y)) for an

even n and COS(y) (respectively, sin(y)) for an odd n. The range reduction

scheme is constructed in such a way that it will have the required high

accuracy in the range ( –2 27, 227) (about the present validity range in the

RT-PC). It is built in such a way that, on one hand, the range reduction will

be fast for the most common argument ranges but, on the other hand, it will

be very accurate all over the validity range. Thus it should never lose too

many bits due to cancellation for difficult arguments which require many bits

in the (?XpaIISiOnl of m. (The detailed analysis is presented in Appendix B.)

In order to find the maximal number of bits needed in the expansion of m,

we wrote a program that finds the most difficult argument, from the point of

view of range reduction, in the valid range. This argument was found as

follows. Among the numbers n x m/2, n = 1, . ...227, considered as infinite

binary expansions, the number with the longest pattern of consecutive O’s, or

consecutive 1’s, starting from the 54th bit, is denoted by Xhard. For the

machine number which is obtained by rounding Xhard to the nearest, the

bit cancellation in the argument reduction is maximal. Our program found

that the mantissa of Xhard = 1. B951 F1572 lU3A5 (in hexadecimal

notation).

This number is very close to 294600672 x T /2, which contains 30 zeros

after bit 53 in its infinite binary expansion. The number of bits canceled in

the range reduction of Xhard is 53 + 30 = 83. Thus, in order to have last bit

accuracy in its range reduction, we need at least 83 + 54 bits of T (and about

9 bits more in order to maintain 99.8-percent last bit accuracy). However, the

arguments for which we need this extra accuracy in the range reduction are

very rare and the range reduction for most arguments is fast, Thus the extra

work carried out for the difficult arguments does not degrade the average

performance.

Our range reduction was constructed so that it will maintain last bit

accuracy for X hlard and, obviously, for all the other argument values in the

valid range.

We distinguish the following argument ranges:

If I x I < T /4, no range reduction is required.

If m/4 < I x I s T, then an extra fast range reduction is performed.

For I x I > ir, x is reduced by k x m/2, where k = ZiVT(x x 2/7r) (using

103 bits in the expansion of m) in order to get an argument in the range [0,

m/4]. (If the result is very small, then extra bits of m are taken into account).
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If I x I > T /4, then the result of the range reduction is an argument u,
0< ~ ~ ~/4 p]US a Small correction term du.

2.3.2 Calculating sin(y), O s y s 7r/4. (1) For y < 41.5/256, calculate

U2 = U2 and then use a ninth-degree odd minimax polynomial (plus a correc-

tion term): result = (((CQ x U2 + CT) x U2 + CJ x U2 + CJ x U2 x u + du

+ u.

(The relative error of this approximation <7.8 E - 19).

(2) For y > 41.5/256, use the following formula:

sin(y) = sirz(xL + z) = Sirz( x,) x Cos(.z) + COS(XJ x sin(z).

where
X, = i/256 + e,, i=16,. ..,2Ol. (8)

F, = sin( X,); G’i = COS(X,), where both F, and G, contain 11 implicit zeros

after bit 53.

We now calculate sin(y) as follows:

i = IAL!’(256 x y)

z=(u– XJ+du –1/512 s Z s 1/512

22 = ,#

GZ=GLXZ.
Then

sin(y) = ((D5 x 22 +1)3) x GZ+ (D4 x 22 –D2) x F,) x 22+ GZ+ F,.

(Using polynomial approximations to sin(z) and COS(Z) in [ -1/512, 1/5121,

sin(z) s z + D3 x Z3 + D5 x Z5 with absolute error < 6.4E – 25 and COS(Z)

=1+ D2XZ2+D4XZ4— with absolute error <8.2 E – 21. )

If x <0 (or x = –O), then sin(x) = –sin(–x).

Accuracy. Testing 300,000 argument values uniformly distributed in ( –n-,

m) demonstrated last bit accuracy of about 99.9 percent. A similar testing

carried out by using a logarithmic distribution for large argument values

demonstrated last bit accuracy exceeding 99.9 percent.

It should also be noted that according to the trigonometric routines specifi-

cation for the R T–PC, the argument in the trigonometric subroutine (sin,

COS, tan, and cotan) has to be smaller, in absolute value, than 227; otherwise,

there will be a loss of accuracy in the range reduction.

2.3.3 Calculating cos(y), O s u s n/4. (1) For y < 31.5/256, we use an
eighth-degree even polynomial approximation. Let U2 = U2, then

cos(y)= ((( C8xu2+C6)x U2+C1)XU2–.5)XU2– uxdu+l

with relative error <1.8 E – 18.

(2) For y > 31.5/256, we use the following identity:

cos(y) = cos(XL + z) = cos(X,) X cos(z) – sin(XL) x sin(z)

where X,, Fi, and G, were defined by (8).
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We now calculate COS(y) as follows:

i = 1NT(256 X y)

,z=(u-x, )+ch –1/512 s z s 1/512

22 = ,Z’2

,P’z= I’i x z.

Then

COS(~)= (–(~bXZ2+~3)X~Z+(~4XZ2–~z) xG,) xz2– F’Z-t Gl

for-x <:0 Cos(x) = Cos(-x).

Accuracy. Testing 300,000 argument values uniformly distributed in ( –x,

T) demonstrated last bit accuracy of about 99.9 percent. A similar testing

carried out by using a logarithmic distribution for large argument values

demonstrated last bit accuracy exceeding 99.9 percent.

2.4 Tangent and Cotangent

The first step is a range reduction similar to the sin/ cos routine. Using this

range reduction we obtain an argument y = x – n x T/2 in the range O s y

s T/4. Thus thle problem of computing tan(x) (respectively, cotczn( x)) is
reduced to computing tan(y) (respectively, cotarz( y)) for an even n and

cotan( y) (respectively, tcm( y)) for an odd n. If x > m/4, then the reduced

argument y is given as u + du, where du is a small correction term.

2.4.1 Computing tan(y), O ~ y ~ T /4. We distinguish the two following

cases.

Case 1. If O :s y s 15.5/256, then we use an eleventh-degree odd polyno-

mial (with leading coefficient 1) which approximates tan(y), in the minimax

sense, in (O, 15.5/256) (with relative error <6 E – 20).

dllxy13+ dllxy9+. ..+d2xy3+ y. (9)

Case 2. If 15.5/256 < y ~ T /4, then we use the following scheme:

Let tan( X,) = F, and cotan( X,) = G,(G, E l/~), where X, = i/256 + c,,
i=16 , . ...201, such that F, contains 11 zeros after bit 53 and G, contains 11

zeros after bit 53.

Let z = y – X,; then

tan(y) = tan(Xi + z) = (tan(Xi) + tan(z)) /(1 – tan(XL) x tan(z))

= (~+ tan(z)) /(1 - F, x tan(z))

where –1/512 s z s 1/512.

It follows that

tan(y) = FL + tan(z) x (1 + F~)/(1 - F, x tan(z))

= Fi + tan(z) x (Gl + F,)/(G, - tan(z)).
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The function tarz( z) is approximated, in ( –1/512, 1/512), by an odd fifth-

degree odd polynomial with leading coefficient 1, p, in z (with absolute error

<1.5E – 22),

Thus, tczn( y) is calculated by the expression

F, +P x (G, + F,)/(G, ‘P).

2.4.2 Computing cotan(y), O < y ~ Ir4. We distinguish the two following

cases.

Case 1. 0< y < 15.5/256. In this case we calculate tan(y) using expres-

sion (9) as a sum of two terms f + g, where f has 21 trailing zeros in its

mantissa and g < f x 2-31. Then 1/tan(y) is approximated by 1/( ~ + g),

which is approximated using the following scheme:

Get UO = 1/f using a machine divide.

Express UO as U1 + u2, where U1 is the 21 leading bits of UO and U2 is the

low part of uO.

Approximate 1/( f + g) using a Newton iteration on uO, that is,

Uo+uox(–uo xg+((l–ulxf) –u2x f)).

Case 2. 15.5/256 < y ~ ir/4. Here cotan(y) = (1

where F, and p are defined in Case 2. Using the fact

result is approximated by the following expression:

G,-p x (F, + G,)/(F, +P).

– F, x P)/(F, + P),

that 1/F, = G,, the

For x <0 (or x = –O), arctan( x) = –arctan( –x) and cotan( –x) =

-cotan(x).

Accuracy. Testing 300,000 argument values uniformly distributed in

( -n /2, m/2) demonstrated last bit accuracy exceeding 99.7 percent for both

tan and cotan. A similar testing carried out by using a logarithmic distribu-

tion for large argument values demonstrated last bit accuracy exceeding 99.9

percent.

2.5 Arctangent

The arctan( x) algorithm is based on the following variant of the accurate

tables method:

Let p,(x) be a fifth-degree minimax polynomial approximating arctan( x)
in the interval [ i /256 — 1/512, i /256 + 1/512]. Then pL( X) can be repre-

sented as

J=5
p,(x) = ~ CL, x (x– X1)J.

j=o

(lo)

The polynomial p, can be represented in many forms and its actual

representation depends on the number X,, which can be chosen arbitrarily.

Obviously, the accuracy of evaluation of (10) depends on the accuracy of the
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presentation of the coefficients C,J as machine numbers. Since the values of

these coefficients depend on X,, it is desirable to choose these numbers so

that CZJwill be accurately presented as machine numbers. In our implemen-

tation the numbers x – X, are small. Thus C,O and Cil are the coefficients

that have the maximal influence on the accuracy of the evaluation. Accord-

ingly, for each interval (i /256 – 1/512, i /256 + 1/512), we chose the num-

ber X, by adding a small perturbation to the number i /256 in such a way

that pi( Xi), which is equal to Cio, considered as an infinite binary fraction,

contains 12 zeros after bit 53. (Since we also needed an accurate presentation

of m/2 – C,., we also required that bits 49–53 of its presentation all be equal

to zero.) Also, we required that p; ( Xi), which is equal to C,l, contain at least

7 zeros after bit 53 of its mantissa.

(In practice, the p,(x) were first obtained as ~~~~ d,, x x’, and then the

“special points” Xi, which satisfy the above conditions on pz( X,) and p: ( XL),

were found by a random sampling. All the above calculations were performed

by using an extended precision arithmetic).

Our tables conkain { Xi, C,o, . . . . C,G}, i = 16, , .. ,256. (For i = 17, . ...256

they correspond to minimax polynomials in [i /256 – 1/512, i /256 + 1/512],

but XIG, CIG,O, . . ., CIG,S correspond to the interval [1/16, 1/16 + 1/512 ].)

2.5.1 Computing arctan( x). The function of arctan( x) is computed as

follows:

If O ~ x < 1/16, then we use the following minimax polynomial (which

approximates arctan( x) in (O, 1/16) with relative error <6.2 E – 20):

d13xx13+ dllxxll+. ..+d3xx3 +x. (11)

If x > 1/16, then the index i = DVT(256 x x) and we extract Xi and C,O,

CL1,..., C,5 from the table plus the number Xi. The coefficients are used to

calculate expression (10) using Homer’s formula with the argument z = x –

xi.

If x >1, then we use the formula

arctan(x) = 7r/2 – arctan(l/x). (12)

Thus, we first calculate y = 1/x with extra precision as follows:

Let yO = the result of 1/x in double precision. Then using one Newton

iteration to obtain a more accurate result y;

y=yo+yl,

where yl is obtained using an extra precision multiplication, denoted by

@ x , as follows:

yl=yox(l–yo@ xx).

Let T/2 be given as the sum of two double precision numbers 7’ + t where

T represents the high part of T/2 and t the low part of it.
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Then we proceed as before except that

z= (yo–xz) +yl.

]=5
arctan(x) = t – ~ C,J x ZJ + (T– C,O).

j=l

If x >16, then we have to subtract expression (11) from T + t. In order to

maintain high accuracy we use the following expression:

j=6

arckm(x) = t – ~ d2J+1 x y02J+1 – yl – COR + D,
J=l

where D= T–y Oand COR= D–T+yO.

If x > (hex) 434 D02967C31CDB5 (s 1.63E – 16), then arctcm(x) = 7r/2

(rounded according to the required rounding mode).

For x <0 (or x = –O) cmctan( x) = –arctan( –x).

Accuracy. Testing 300,000 argument values uniformly distributed in (O,

10) demonstrated last bit accuracy exceeding 99.9 percent. A similar testing

carried out by using a logarithmic distribution for large argument values

demonstrated last bit accuracy exceeding 99.9 percent.

2.5.2 Computing arctan2(y, x). The function arctan 2( y, x) is defined as

1
arctan( y/z), forx>O

arctan 2(y, x) = m + arctan( y/x), forx<Oandy>O

–m + arctan(x/y), forx<Oandy <O.

Thus, it is sufficient to describe the algorithm for x >0 and y >0. Since y/x

is usually not an exact machine number, we need to obtain y / x in extra

precision in order to maintain last bit accuracy.

We distinguish the following cases:

Case 1. If y < x, then we obtain y/x as a sum, u + du, where u is

obtained by a division operation and du = (y – x x u)/ x.

(a) If O < u = 1/16, then we use the following minimax polynomial (which

approximates arctan( z) in (O, 1/16)):

C& x ZL13+ Cill x Zfll +.. .+d3xu3+u+du. (13)

(b) If u > 1/16, then the index i = HVT(256 x u) corresponds to the six

coefficients c,o, CLI, . . , c,~ extracted from the table used for the arctan
routine and are used to calculate (10) using Homer’s formula with the

argument z = u – X, + du.

Case 2. If y > x, then we obtain x/y as a sum, u + du, where u is

obtained by a division operation and du = (x – y x u)/ y.
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Let T/2 be given as the sum of two double precision numbers T + t, where

T represents the high part of w/2 and t the low part of it. Then we proceed

as in Case 1, but we use the following formula for u > 1/16:

J=5

a7-ctan(x/y) = t – ~ cLJ x z~+ (2’– cio).
J=l

If u < 1/16, then we have to subtract expression (13) from

to maintain high accuracy we use the following expression:

jzG

T + t. In order

arctan 2(3J, x) = t – ~ d2J+1 x y02~+l – yl – du – COR + D.
J=l

where D= T–uand COR =D– T+u.

Accuracy. Testing 300,000 argument values for y uniformly distributed

in (O, 10), with x = 1, demonstrated last bit accuracy exceeding 99.9 percent.

A similar testing carried out by using a logarithmic distribution for large y

values and x = 1 demonstrated last bit accuracy exceeding 99.9 percent.

2.6 The Hyperbolic Sine and Cosine

2.6.1 Computing sinh(x). By its definition, the hyperbolic sine is equal to

sinh(x) = 0.5 X (exp(x) – exp(–x)).

In order to calculate sinh( x) we distinguish the following cases:

Case 1. If I x I <0.16, we use a (minimax) ninth-degree odd polynomial

approximation (relative error <8.1 E – 19),

x+a8Xx3+. ..+ag Xx9.

Case 2. For [ x I >0.16, we start with the usual algorithm for calculating

the exponential function except that the upper bound is larger. (Another

small difference is that in the range 0.16 < I x I <0.65 we use a fifth- rather

than fourth-degree polynomial which approximates exp(y) in (– 1 /1024,

1/1024) with absolute error < 6.7E – 23).

In the following description we assume for convenience that x >0.

It follows from (4) in the exponent algorithm that exp( x) s 2 N x (p(z) x

F1 + F1), where p(z) is a polynomial in a small argument z and F1 is an

accurate table value.

Let FP = F1 x p(z); then

exp(–x) = (2-N) x (G + DG)

where G = 1/( F1 + W) truncated so that its last 12 bits are all O and DG is

a Newton iteration increment for the inverse of F1 + FP starting from the

value G.

Let @ denote an extra precision operation. Then the increment DG is

obtained by

DG=Gx(l@ –G@x F1– GxFP). (14)

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.



40 . S. Gal and B. Bachelis

The final result is obtained by the expression

Sinh(x) = 2(N–1) x (l’ P- (2-2~) x DG - (2-2N) X G+ F’).

Accuracy. Practical testing of a 300,000 argument values uniformly dis-

tributed in the interval ( –90, 90) demonstrated a last bit accuracy of about

99.8 percent.

2.6.2 Computing cosh(x). By its definition, the hyperbolic cosine is equal

to

cosh(x) = 0.5 x (exp(x) + exp(–x)).

Let y = I x 1. In order to calculate cosh( x) we distinguish the two following

cases:

Case 1. If y <0.12, we use a (minimax) eighth-degree even polynomial

approximation (with relative error <4. 5E – 19),

l+c2xy2+. ..+c8xy8

Case 2. If y z 0.12, then we start with the usual procedure for calculat -

ing the function exp( y), except that the upper bound is larger. Thus,

exp(y) s 2Nx (p(z) x F1+F1)

where p(z) is a polynomial in a small argument and F1 is an accurate table

value. Also

exp(–y) = (2-N) x (G + DG)

where G = 1/( F1 + FP) truncated so that its last 12 bits are all O and DG is

a Newton iteration increment for the inverse of F1 + FP starting from the

value G (obtained, as before, by (14)). The final result is obtained by the

following expression:

cosh(x) = 2(N-1) X (P(Z) X F1+ (2-2N) X DG + (2-2N) X G + F1).

Accuracy. Practical testing of a 300,000 argument values uniformly dis-

tributed in the interval ( –90, 90) demonstrated a last bit accuracy of about

99.8 percent.

APPENDIX A. ACCURACY RESULTS

The proportion of correct results for the last bit is given in Table 1. To

demonstrate a last bit accuracy of more than 99.7 percent as indicated by

error analysis, using statistical sampling, we required that the standard

deviation of the sample average would be less than 0.0001. (Thus, for

example, if the observed sample frequency of correctly rounded results is 99.7

percent, then the 95-percent confidence interval for the accuracy of the

subroutine is [99.68 percent, 99.72 percent]. ) In order to achieve this stan-

dard deviation, we used a sample size of 300,000 argument values for each
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Table I. Proportion of Last Bit Correct Results

Round

o 1 2 3

exp(x), where % is uniform on ( –170, 170); EMAX (in Ulps), 0.504

0.99795” 0.99810 0.99804 0.99809

in(x), where x=exp(&)j with ~uniform on(-170, 170); EMAX(in Ulps), O.52O

0.99882 0.99871 0.99870 0.99868

Loglo(x), where x=exp(f), witht uniform on(–170, 170); EMAX(in Ulps),0.514

0.99936 0.99938 0.99938 0.99938

sin(x)

(a) where .x is uniform on ( –T, T); EMAX (in Ulps), 0.515

0.99867 0.99860 0.99875 0.99865

(b) where x = exp(~), with ~ uniform on (bz(m x 2-50), b4227)) = (-33.51, 18); EMAX (in Ulps), 0.511

0.99941 0.99934 0.99933 0.99931

Cos( x)

(a) where z is uniform on ( –m, m); EMAX (in Ulps), 0.509

0.99881 0.99884 0.99866 0.99893

(b) where .x = exp($ ), with ~ uniform on (bz(m x 2- 50), h(227)) = ( -33.51, 18); EMAX (in Ulps), 0.510

0.99937 0.99944 0.99947 0.99944

tan(x)

(a) where .x is uniform on ( -T /2, z /2); EMAX (in Ulps), 0.539

0.99742 0.99724 0.99752 0.99746

(b) where x = exp(g) with ~ uniform on (ln(r x 2 x - 50),ln(227)) = (-33.51, 18.71);

EMAX (in Ulps), 0.542

0.99878 0.99895 0.99893 0.99896

Cotarz( x)

(a) where x is uniform on ( -x /2, pi /2); EMAX (in Ulps), 0.543

0.99751 0.99794 0.99766 0.99774

(b) where x = eixp(g ) with $ uniform on (ln(~ x 2-50), bz(227)) = (-33.51, 18.7); EMAX (in U@s), 0.541

0.99876 0.99869 0.99869 0,99875

ardan( x)

(a) where x is uniform on (O, 10); EMAX (in Ulps), 0.521

0.99924 0.99931 0.99910 0.99931

(b) where x = exp(~) with f uniform on (bz(l E - 10),bz(l E20)) = (-23.02, 46.05); EMAX (in Ulps), 0.523

0.99984 0.99980 0.99982 0.99980

arctan2(y, x)

(a) where y is uniform on (O, 10) and x = 1; EMAX (in Ulps), 0.528

0.99923 0.99931 0.99905 0.99931
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Table I— Continued

o 1 2 3

(b) where y = exp(q) and x = 1, with ~ uniform on (ln(l E - 1O),1TZ(1E20)) = (-23.02, 46.05);

EMAX (in Ulps), 0.513

0.99982 099979 0.99984 0.99979

sznh( x), where x is uniform on ( –90, 90); EMAX (in Ulps), 0,507

0.99803 0,99801 0.99801 0.99793

cosh( x), where x M uniform on ( –90, 90); EMAX (in Ulps), 0.505

0.99800 099801 099807 0.99795

* Numbers represent proportion of results in which the last bit was correct.

test run. Our results were compared to the extended precision routines of VS

Fortran Rel. 3.0. (For the trigonometric functions the existing extended

precision routines are not sufficiently accurate for large arguments. Thus we

introduced an accurate extended precision range reduction. ) The statistical

distribution of the argument values depend on the function to be computed

and is indicated below. The accuracy was tested for all the rounding modes:

O: round to the nearest;

1: round to zero;

2: round to plus INF;

3: round to minus INF,

We also present the maximal error observed in the tests, EMAX, for

rounding to the nearest. ( EMAX is the maximal distance between the exact

function value and the computed value, measured in units in the last place

(Ulps).) The theory described in the introduction indicates 0.5 Ulp plus a

small fraction of a unit (about 1/256). In practice, we observe a larger error

which originates from the fact that our implementation usually uses only

double precision arithmetic. (For example, if we compute sin(y) near 1/6,

then the result is given by a ninth-degree odd polynomial. Calculating this

polynomial, using a double precision representation for yz increases the

maximal error from 0.504 Ulps to O.515 Ulps). Actually, the maximal error

can always be reduced to 0.504 Ulps by using a more accurate arithmetic in a
few operations.

We also used an independent test program to confirm our results. Such a

program was provided by Liu [8]. This test performed 1000 function evalua-

tions per subregion for each elementary function. (Such a choice corresponds

to 32,000 function evaluations of sin(x), 32,000 COS(x), 208,000 exp( x),

832,000 arctan( x) and 224,000 ln( x)). No monotonicity failure was detected

in this test, but the maximal error was sometimes greater than EMAX. The

largest error, 0.62 Ulps, was detected in ln( x) near x = 0.984. This error can

be reduced to 0.504 by an improved arithmetic implementation of (6) (e. g., in
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order to avoid a cancellation error, one can use negative z, –1/192 s z s O

fory <land positive z, 0<zsl/192fory> l).

APPENDIX B. ERROR ANALYSIS OF THE TRIGONOMETRIC RANGE
REDIJCTIOIN

Assume that 7r/2 is approximated by a J bit number P,

P= P1+P2+, ..+ PL.1+PL,

where PI, . . ., PL have (at least) 28 zeros at the end. Denote the approxi-

mated reduced argument by AR:

AR=(. ..((NXP1)lNXP 2)2) –.. .)– IV XPLO<N <227

The multiplication operations are exact. Thus the error in AR originates

only from the fact that only J bits were used in the representation of r/2.

The size of the absolute error is thus smaller than N x 2- ‘J+ l).

The exact reduced argument is R = X – N x ~/2. VVe are interested in

the relative error

RE = absolute error/R = I AR - R~/R s (N/R) x 2-( J+l). (15)

Since J is fixed, we should find the maximal value of N/R in the range

I x I <227 denoted as the worst case. We actually found the worst case in the

‘i> This can be done as follows: Let XN = N x m/2, whererange IxIS2 .

T/2 is represented by, say, two extended precision words and rounded to the

nearest machine number. Assume that

XN= (2’XP) x m= (2”P) x (1. U1, U2,. ... U,,, U,,)...) (16)

where 1 s m < 2. Let R(N) = (2( ’XP–52)) x r7tiTt((. IV53, . . . ),(1 – .U53, . . . )).

We are looking for the maximal N/R(N) for N = 1, 2,...,228.

N/R(N) = (XN/(m/2))/R(N)

= ((2’”P) x m/(7r/2))/(2?@’p-5q

x Trzin((. u53,. ..),(l - .U53,. ..)). (17)

Let k be the nlumber of consecutive O’s or 1’s starting from U53. Then

expression (17) is smaller than

4/T x 2(52+ k), (18)

Thus, in order to have a relative error smaller than, say, 2-”, it is sufficient

by (15) and (18),, that the number of bits J in the representation of T/2 will

satisfy

4/7r x 2(52+k) x 2-(J+l) <2-64.

In order for the above inequality to hold it is sufficient that J >116 -i- k.

Since the maximal k over all the relevant range was found to be k = 30, it

follows that 146 bits are sufficient to obtain the desired accuracy.

APPENDIX C. INIFINITY AND AkUV RESULTS

In all our routines an NaN argument always produces an NaN result, so we

do not indicate this fact separately for each routine. We denote infinity by

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.



44 . S Gal and B Bachehs

INF and use the notation of Appendix A for the rounding modes:

O: round to the nearest;

1: round to zero;

2: round to plus INF

3: round to minus INF.

C. 1 Exceptional Results

C. 1.1 exp( x). If x = LVF, then the result is always lNF.

If x = –INF, then the result is always O.

If x > ( hex)40862 E42 FEFA39 EF, then the result is INF for rounding

mode O and 2, and HUGE for rounding modes 1 and 3.

If x < (hex) – 4087491OD52 D3052, then the result is O for rounding

modes O, 1, and 3, and TINY for rounding mode 2.

C.1.2 Log(x) and Loglo(x). If x is negative (or –O), then the result is

always NaN. (The decision to define log( –O) as NaN follows from the fact

that –O can be obtained from a negative underflow.)

If x = O, then the result is always –INF.

If x = INF, then the result is always INF.

C.I.3 Trigonometric Routines (sin, COS, tan, cotan). If I x I > 22V, then

the result is NaN.

The only possibility of getting an INF or a HUGE result is in the cotan

routine in the case that the argument is either zero or in the gradual

underflow range. In the case of a gradual underflow: if x is positive, then we

get either INF (in rounding modes O and 2) or HUGE (in rounding modes 1

and 3); and if x is negative, then the corresponding results are –INF (for

rounding modes O and 3) and –HUGE (for rounding modes 1 and 2).

cotan(0) is always INF.

cotan( –O) is always –ZNF.

C. 1.4 arctan( x). arctan( INF) = x/2 rounded according to the appropri-

ate rounding mode.

arctan( –INF) = – r /2 rounded according to the appropriate rounding

mode.

C. 1.5 arctan 2( y, x). The exceptional results are obtained according to

Table H.

Remark. The decision to define arctan(O, O) as NaN follows from the fact

that this situation is similar to 0/0, which is defined as NaN in the IEEE

standard. This choice may create a problem when transforming the origin

from rectangular to polar coordinates. In order to avoid this problem it is

possible to define arctan(O, O) as any fixed number in [ –n, x].

C. 1.6 sinh. If x = INF, then the result is always INF.

If x = –INF, then the result is always –INF.
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Table II. Exceptional Results for arckm 2( y, x)

Y x Result

o 0 NaN (see remark in Appendix C. 1.5)

INF or –INF INF or –INF NaN

o <0 T

–o <0 —T

o >0 0

–o >0 –o

>0 –INF Ir

<o –INF —T

>0 +INF o

<0 +INF –o

>0 0 or –O r/2

<o 0 or –O –7 /2

+INF any n’ /2

–INF any –T /2

If x > (hex) 408633 CE8FB93’87D, then the result is INF for rounding

mode O and 2, and HUGE for rounding modes 1 and 3.

If x < (hex) - 408633CE8 FB9F879, then the result is –INF for rounding

modes O and 3, and –HUGE for rounding modes 1 and 2.

C’.1.7 cosh. If x = INF or –INF, then the result is always INF.

If x > (hex) 408633 CE8FB9F87D or x < (hex) – 408633 CE8FB9F879,

then the result is INF for rounding modes O and 2, and HUGE for rounding

modes 1 and 3.
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