
On Computational Aspects of
Least Squares Problems

ACHIYA DAX

Hydrological Service, Jerusalem

Bounded Linear

The paper describes numerical experiments with active set methods for solving bounded linear

least squares problems It concentrates on two problems that arise in the implementation of the

active set method. One problem is the choice of a good starting point, The second problem is how

to move out of a “dead point. ” The paper investigates the use of simple iterative methods to

solve these problems, The results of our experiments indicate that the use of Gauss-Seidel

iterations to obtain a starting point is likely to provide large gains m efficiency. Another

interesting conclusion is that dropping one constraint at a time is advantageous to dropping

several constraints at a time.

Categories and Subject Descriptors: G. 1.6 [Numerical Analysis]: Optimization— least squares

methods

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Active set methods, bounded least squares, dead points,

numerical experiments, starting point

1. INTRODUCTION

This paper considers bounded linear least squares problems of the form

minimize F(x) =;\/ Ax- bl/2
(1.1)

subject to ISx <u,

where x e R n is the vector of unknowns, A is a m x n matrix and b e R‘.

The vectors 1 and u belong to R” and denote the corresponding lower and

upper bounds. A straightforward approach to solve this problem is to use the

active set method. (For a general description of this method, see, for exam-

ples, Gill et al. [4] or Fletcher [2].) This is an iterative method whose kth

iteration starts with xc~) and ends with x (h+ 1, such that F(x(~ + 1)) < F(x(~~).

In our case the kth iteration is composed of the following four steps.

Step 1. Compute a search direction. Let r(k) = b – Ax(k) denote the cur-
rent residuals vector and let P(k) = diag{ pl, . . ., p.} denote the projection

Author’s Address: A. Dax, Hydrological Service, P. O.B. 6381, Jerusalem 91060, Israel,

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1991 ACM 0098-3500/91/0300-0064 $01.50

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991, Pages 64-73,

http://crossmark.crossref.org/dialog/?doi=10.1145%2F103147.103155&domain=pdf&date_stamp=1991-03-01

On Computational Aspects of Bounded Linear Least Square Problems . 65

matrix that corresponds to x(k). The elements of P(k) are defined by the

following rule: If 1, < x$}) < u, then p, = 1, otherwise p, = O. Then the

search direction, y,

Step 2. Compute

3. Otherwise set

;S ob~ained by solving the problem J

minimize II Ay - r(k)[\2

subject to Py = y.
(1.2)

a step length. If F(xtk) + y) = F(x(~)) then skip to Step

x(k+U = x(k) ~ ~y (1.3)

where X is the largest number in the interval [0, 11 that keeps X(k + 1) feasible.

Then start the next iteration. (If A = 1 then the next iteration should start in

Step 3.)

Step 3. Test ,&r optimality. Let the vector g(k) = (g~~), g~h))T denote

the gradient of F(x) at x(k), i.e., g(k)= –ATr(k). Let the vector & =

(ii,. ... g~)T be obtained from g(k) by the following rule: If ~~~) = lj and

(k) K O set gj = O, otherwise set g] =(k) > () set gj = O, if xj
LTj – ~k~ = u~ and gj —

g(k). The vector g enables us to test whether the Kuhn-Tucker optimality

c~nditions hold at x ‘k). If g = O, then these conditions hold and the algorithm

terminates.

Step 4. Dropping active constraints. Compute a new point, X(k+ 1), such

that F(x(k+l)) <: F(x(k)).

The primary problem in the implementation of the above method is the

solution of (1.2’). This can be done by updating the QR factorization of the

matrix that corresponds to “free” variables. (The jth variable is said to be

“free” at x(k) if 1, < XJ3) < Uj, otherwise it is called “bounded”.) The factor-

ization scheme is related to the question of how to choose y when the solution

of (1.2) is not unique. These problems are, however, outside of the scope of

this paper. The solution of these problems is discussed by Fletcher and

Jackson [31, Lawson and Hanson [61, Schittkowski [81 and others.

This paper considers two secondary problems of the above method. The

first one is how to choose the initial point, x(l), The second one is how to

implement Step) 4. The idea which is tested here is to solve these problems by

using a simple iterative scheme such as the Gauss –Siedel method or the

Projected-Gradient method. A brief description of these methods is given in

the next two :sections. The iterations of these methods need no matrix

factorization arid therefore are likely to need less computational effort. The

use of a few simple iterations at the preliminary stage is likely to generate a

better starting point for the active set method. This has two potential

advantages: The overall computational effort might be reduced while the

accuracy of the solution is likely to improve since there is less updating and

downdating.
The active set strategies which are investigated by Fletcher and Jackson

[31 interchange one active ccmstraint at a time. On the other hand, the use of

ACM ‘Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.

66 ● Achlya Dax

simple iterations in Step 4 allows the interchanging of several active con-

straints at one step. The use of active set strategies that allow the dropping

of many constraints was suggested by Goldfarb [51 in the context of convex

quadratic programming. Later Lenard [71 compared the two approaches in

the context of nonlinear programming with linear constraints. The results of

Lenard indicate that in most cases a strategy which keeps the number of

active constraints as small as possible is computationally most efficient. This

observation suggests the use of similar strategies in the solution of (1.1). The

present paper compares, therefore, the relative efficiency of the two ap-

proaches.

The main disadvantage in using simple methods is the lack of the finite

termination property and the fact that the method may converge very slowly.

Thus the main problem of incorporating simple iterations into the active set

method is to decide at what stage one should stop the simple iterations. This

problem is discussed in Section 4 where a simple switching rule is derived.

The rest of the paper attempts to answer the question of how the above

ideas work in practice. For this purpose, we have conducted extensive numer-

ical experiments with several variants of the active set method. The results

of our experiments are quite interesting. The Gauss-Seidel (GS) iterations
seem to have a clear advantage over the Projected-Gradient (PG) iterations,

while the dropping of several constraints seems to have no advantage over

the dropping of one constraint. The idea of using GS iterations to generate a

better starting point has been proved very useful. It is shown that in many

cases this technique results in a dramatic reduction of the computational

effort.

2. THE PROJECTED-GRADIENT METHOD FOR SOLVING (1.1)

The kth iteration of this method, k = 1,2,3,..., goes as follows. Compute g

as in Step 3 of the active set method. If g = O then x(k) solves (1.1) and the

algorithm terminates. Otherwise set

~(k+l) = x(k) – Ag (2.1)

where A is the largest number in the interval [0, IIg II2 / II A g II2] that keeps

X(k+l) feasible.

3. THE GAUSS – SEIDEL METHOD FOR SOLVING (1,1)

The basic iteration of this method is composed of n steps. At the jth step,

j= l,..., n, Xj alone is changed in an attempt to reduce the value of F(x) as
much as possible. Let x = (xl, . . ., x ~)T denote the current point and let

r = Ax – b denote the corresponding residuals vector. Then 2J, the new

value of x~, is defined as

xl — ~a~r/ la, II2 (3.1)

ACM Transactions on Mathematical Software, Vol. 17, No, 1, March 1991

On Computational Aspects of Bounded Linear Least Square Problems . 67

where aj denotes the jth column of A and h is the largest number in the

interval [0, 11 that keeps 27 feasible.

4. A SWITCHING RULE

The motivation behind the use of simple iterations is based on two assump-

tions. One assumption is that simple iterations need less computational effort

than active set iterations. The second assumption is that simple iterations

are helpful in identifying the “final” active set. In other words, the simple

iterations are an efficient tool for reaching a point x(k) that has the same free

variables as the solution point. Hence the use of simple iterations may save

unnecessary updating and downdating of the factorization scheme and, conse-

quently, improve the accuracy of the computed solution. On the other hand,

once the final active set is found, there is no advantage in continuing the

simple iterations since the active set method reaches the minimizer of (1.1) in

one iteration. The last observation forms the basis of the proposed switching

rule: The switch takes place as soon as the number of free variables remains

unchanged during a fixed number, say p, of simple iterations. In addition, it

is reasonable to bound the number of successive simple iterations by n. Of

course, the value of p which is used in the computation of x ‘1) should be

larger than that which is used in Step 4. The algorithms which are described

in the next section use p = 4 for the first purpose and ~ = 2 for the second

one.

5. THE TESTED ALGORITHMS

The effects of simple iterations were studied by testing the following varia-

tions of the active set method.

Algorithm A. This algorithm uses PG iterations to compute x(l) in the

preliminary stage and to compute X(k+ 1) in Step 4.

Algorithm EL This algorithm uses GS iterations to compute x(l) in the

preliminary stage and to compute X(k + l) in Step 4.

Algorithm C. Here, no simple iterations are used to generate a better

starting point, while Step 4 is carried out with – g as a search direction, that

is, by using one PG iteration. (Consequently, if X(k) is a vertex then x~k+ 1, is

obtained by a F’G iteration.)

Algorithm II. This algorithm is the same as C, except that here Step 4 is

carried out by one GS iteration.

Algorithm E,. This algorithm does not use simple iterations. The computa-

tion of X(k+ 1) in Step 4 is done by using – sign(g~)e ~ as a search direction,

where

lE,l=max{ lEJl, j=l,..., n}
and e ~ denotes the sth column of n x n unit matrix.

Algorithm F. This algorithm uses GS iterations to compute x(l) in the

preliminary stage, while Step 4 is carried out as in E.

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.

68 ● Achiya Dax

Algorithm G. This algorithm starts by calculating x*, a solution of the

unconstrained least squares problem. Then X(l) is obtained from x* by
“pruning” the components of x* that violate their bound. Step 4 is carried

out as in E.

6. THE TEST PROBLEMS

We have used in our experiments four types of test problems.

Random Test Problems

This type of test problem has the form (1.1). The elements of A are random

numbers from the interval [– 1, 1]. The vector b is defined as b = Aii where ~

is a n-vector whose elements are random numbers from the interval [– T, y].

(The random number generator is of uniform distribution.) The lower bounds

are 1 = – e and the upper bounds are u = e where eT = (1, 1, . ., 1). The role

of y is to control the ratio between free and bounded variables at the solution

point. Clearly, -y should be greater than 1, and as its value increases the

number of free variables reduces. We have tested this problem using the

starting points x(o) = O = (O, 0, . . ., O)T and x(o) = e.

Hilbert Test Problems

This type also has the form (1.1). Here aLj = l/(i + j – 1)while b, 1, u and

x ‘0) are defined as in Random test problems.

Random and Flat Polytopes

The “polytope” test problems have the form

minimize llAx-G1\12

subject to X20
(5.1)

where ~ is a (m + 1) x n matrix whose first row is eT = (1, 1, . ., 1) and El

is the first column of the (m + 1) x (m + 1)unit matrix,

Let A denote the m x n matrix which is composed of the last m rows of ~.

Then the set

{Y IY=AX, X>O and e’x=l}

is a polytope in R ~. Let y* denote the point on this polytope that has the

smallest Euclidean norm. Then it is possible to obtain y* by solving (5.1) (see

Dax, [1]). The “Random” and the “Flat” polytope problems were designed by

Wolfe [9] to test an algorithm for computing y*. The difference between the
two types of problems lies in the definition of A.

In Random polytope problems the elements of A are defined as follows:

Let y e R n be a vector whose elements are random numbers from the interval

[– 2, 2]. Then the elements in the ith row of A, i = 1, ..., m, are random
numbers from the interval [y, – 1, y, + 1].

In Flat polytopes the elements in the first row of A are random numbers

from the interval [0. 995, 1.005] while the other elements of A are random

numbers from the interval [– 1, 1].

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.

On Computational Aspects of Bounded Linear Least Square Problems = 69

Table I. Random test problems with n = 20 and ~ = 2

Starting Point
~(o) = o ~(o) = ~ ~(o) = X*

ABC DEFAB CDEFG

?n=lo

Simple iterations 15.4 10.0 0,9 0.9 0.0 8.8 14.0 13.1 3.5 2.9 0.0 10.7 0.0
Active set iterations 4,4 3.7 15.9 16.0 16.1 3.7 7.0 4.4 15.9 9.9 15.8 4.9 15.8

Dropping iterations 0.1 0.4 0,9 0.9 1.3 0.4 0.7 0.7 3,5 2.9 162 1.1 3.1

Free variables 8.0 7.8 7.5 7.5 7.5 7.8 8.8 8.8 8.4 8.4 7.9 8.4 7.4

9n =20

Simple iterations 14.8 8.1 0.2 0.2 0.0 7.8 14.9 8.2 3.0 2.3 0.0 8.2 0.0
Active set iterations 2.2 1.6 11,8 11.8 11,9 1.6 1.4 1.2 10.9 7.0 13.6 1.2 9.7
Dropping iterations 0.1 0.1 0.2 0.2 0.3 0.1 0.0 0.0 3,0 2.3 15,6 0.0 2.4

Free variables 9.7 9,7 9.7 9.7 9.7 9.7 8.7 8.7 8.7 8.7 8.7 8.7 9.7
m=30

Simple iterations 15.1 7.3 0.2 0.2 0.0 7.3 13.8 7.6 2.7 2.0 0.0 7.6 0.0
Active set iterations 1.2 1.0 11.9 11.9 12.0 1.0 1.2 1.0 9.5 6.3 13.9 1.0 8.5

Dropping iterations 0.0 0.0 0.2 0.2 0,3 0.0 0.1 0.0 2.7 2.0 16.2 0.0 1.1

Free variables 9.6 9.6 9.6 9.6 9.6 9.6 9.1 9.1 9.1 9,1 9.1 9.1 9.6

We have tested these problems on two starting points: x(o) = O and x(o) =

e/n= (l/n, l/n,n)T)T.

7. NUMERICAL RESULTS

The performance of the tested algorithms was measured by recording the

following data:

(1)

(2)

(3)

(4)

The number of simple iterations that were executed in the preliminary

stage and in Step 4.

The number of active set iterations, i.e., iterations at which problem (1 .2)

was solved.

The number of iterations at which Step 4 was executed (“dropping

iterations”).

The number of free variables at the solution point. (This information

gives us a further insight into the nature of the test problems,)

The results of our experiments are presented in Tables I-VIII. The values

of n, m, y and x ‘0) were chosen to give a wide spectrum of test problems. For

each combination of these parameters we have generated ten different test

problems. The figures in these tables are, therefore, average numbers that

have been obtained by solving ten different problems of the same type, size

and starting pc)int.

ments is

The stopping condition which was used in these experi -

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991

70 * Achiya Dax

Table II. Random test problems with n = 20 and -y = 5

Starting Point
~(o) = () ~(o) = ~ ~(o) = X*

ABC DEFAB CDEFG

~=lo

Simple iterations 19.5 6.9 1.4 1.1 0.0 6.9 13.6 7.4 2,8 2,4 0,0 7.4 0.0
Active set iterations 1.3 1.1 20,8 20.4 21.0 1.1 2,0 1.4 12.8 5.3 7.2 1.4 18.2
Dropping iterations 0.0 0.0 1,4 1.1 2.2 0.0 0,0 00 2.8 2.4 13.6 0.0 1.8
Free variables 3.0 3.7 3.7 3.7 3.7 3.7 4.7 4.7 4.7 4.7 4.7 47 3.1

~.zo

Simple iterations 20.0 5.8 0,4 0.4 0.0 5.8 133 6,3 2.1 1.9 0.0 6.3 0.0
Active set iterations 0.9 0.9 177 17.7 17.7 0.9 0,9 08 10.9 3.2 4.3 0.8 160
Dropping iterations 0.0 0.0 0.4 0.4 0,4 0.0 0.0 0.0 2,1 1.9 12.7 0,0 0.4
Free variables 4.0 4,0 4.0 4.0 4,0 4,0 4.4 4.4 4,4 4.4 4,4 4.4 29

?n =30
Simple iterations 20.4 6.2 02 0.2 0.0 6.2 14,9 5.9 1.6 1.7 0.0 5.9 0.0
Active set iterations 1.0 0,8 17.8 17.8 17,8 0.8 1.0 1.0 11.0 3.1 4.7 1.0 14,4
Dropping iterations 0.0 0,0 0.2 0.2 02 0.0 0.0 0.0 1,6 1.7 13.5 00 0.4
Free variables 3.5 3.5 3.5 35 3.5 3.5 3.8 38 3.8 3.8 38 3.8 3.9

Table III. Hilbert test problems with n = 20 and ~ = 2

Starting Point
~(o) = () ~(o) = ~ ~(o) = X*

A13CDEF ABC DEFG

~=l(j

Simple iterations 54.228.6 7.3 7,8 0,0 6.457 .133.5 9.3 10.5 0.0 7,2

Active set iterations 79.257 .864.960,128328.9 76086 .577.6 100021726.2

Dropping iterations 6.6 7.2 73 7.8 5.7 6.8 6.5 8.2 9.3 10.5 19,0 7.2

Free variables 2.8 3.0 2.8 2.6 2.7 2,7 3.5 2.6 2.8 3.5 2.7 2.8

m=20

Simple iterations 42.926.9 7.5 66 00 7.270542.8 12.7 16,4 0,0 10.5

Active set iterations 52.548 .465.253,627.7 27.293 .487.799.0116,9 30,333.4

Dropping iterations 4.3 6.2 7,5 6.6 6.2 6,6 8.0101 12.7 16.423.7 9.9

Free variables 3.5 3.5 3.5 3.5 3.2 3.2 2.9 29 2.8 3.7 2.9 29

m=30
Simple iterations 55.327.6 9,6 8.2 0.0 6.468,535 .911.2 12.4 0.011.1

Active set iterations 79.351 .785,266.331.8 28990 .261.289.6 98.131 .231,2

Dropping iterations 6.6 68 9.6 8.2 8.3 7.3 7.7 7.811.2 12.426 .010,6

Free variables 3,9 3.1 3.0 3.0 3.0 2.9 2.9 2.8 2.7 2.7 2.7 2.7

0.0

28.7

7.1
2.7

0.0

27.8
7.5
3.0

0.0

292

8.0
3.1

8. DISCUSSION AND CONCLUSIONS

The comparison of Algorithm A to B and Algorithm C to D indicates that GS

iterations have a clear advantage over PG iterations. The reason is, probably,

the ability of the GS iterations to add many active constraints at one

iteration. This, and the fact that GS iterations need less computational effort,

seems to exclude the use of PG iterations.

The comparison of Algorithm E with C and D indicates that there is no

gain in using simple iterations at Step 4. In Hilbert test problems, the simple

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991

On Computational Aspects of Bounded Linear Least Square Problems . 71

‘Table IV. Hilbert test problems with n = 20 and 7 = 5

Starting Point
~(o) ~ () ~(o) = ~ ~(o) ~ @

ABC DE FABC DEFG

~=lo

Simple iterations

Active set iterations

Dropping iterations

Free variables

m=20

Simple iterations

Active set iterations

Dropping iterations

Free variables
~=30

Simple iterations

Active set iterations

Dropping iterations

Free variables
—

33.2 17.7 6.3 5.6 0.0 9.1 35.7 14.7 7,4 4.6 0.0 6.8 0.0

32.319 .553.345.728.2 13.335 .319.559.332.9 9.9 8.2 23.2
2.9 2.8 6.3 5.6 8.2 3.4 3.1 2.6 7.4 4.6 13.0 3,0 7.8
1.2 1.2 1.2 1.2 1.2 1.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8

34.221.3 6.2 5.7 0.011 .733.224.4 8,9 10.3 0.0 11.6 0.0
33.722 .957.544.728.6 11.134 .130.467.078.5 14.1 12.8 24.7

2.7 3.0 6,2 5.7 8.5 2.6 3.0 4.3 8.910.3 16.9 3.8 8.3
1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.4

44.723.4 5.6 5.3 0.0 7.435 .523.1 10.1 7.9 0.0 9.6 0.0
52.438 .353.245.327.4 19.040 .735.875.762.3 12.915.8 26.4

4.4 4.9 5.6 5.3 7.2 5.1 3.8 4.2 10.1 7.9 16.2 3.9 9.6
1.8 1.8 1,8 1.8 1.7 1.7 1.5 1.5 1.5 1.5 1.5 1.5 1.5

Table V. Random Polytope test problems with n = 20

Starting Point
~(o) = o ~(o) = f7J ~(o) = X*

AB CD EFABCDE FG

m=10

Simple iterations 20.3 9.5 1.2 1.7 0.0 9.5 19.8 9.8 0.5 0.5 0.0 9.5 0.0

Active set iterations 2.7 1.4 18.3 3.6 3.4 1.4 2.5 2.0 18.5 18.5 18.5 2.0 6.3

Dropping iterations 0.0 0.0 1.2 1.7 4.1 0.0 0.0 0.1 0.5 0.5 0.5 0.1 3.5

Free variables 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

m=20

Simple iterations 18.6 11.1 1.22.2 0.0 10.2 19.9 12.1 0.1 0.1 0.0 11.1 0.0

Active set iterations 3.7 1.9 16.74 .85.0 1.9 2.7 2.3 17.2 17.2 17.2 2.4 7.9

Dropping iterations 0.0 0.3 1.2 2.2 5.4 0.3 0.0 0.3 0.1 0.1 0.1 0.4 4.1

Free variables 4.7 4.7 4.74.74.7 4.7 4.0 4.0 4.0 4.0 4.0 4.0 4.7
m=30

Simple iterations 18.6 10.2 1.1 2.3 0.0 9.3 17.5 12.8 0.0 0.0 0.0 12.2 0.0

Active eet iterations 3.3 2.0 16.0 5.2 5.3 2.0 2.6 2.3 15.5 15.5 15.5 2.3 8.9

Dropping iterations 0.0 0.3 1.1 2.3 5.8 0.3 0.0 0.2 0.0 0.0 0.0 0.2 4.7

Free variables 5.2 5.2 5.2 5.2 5.2 5.2 5.5 5.5 5.5 5.5 5.5 5.5 5.2

iterations free almost all the bounded variables and this doubles the amount

of work. A further disadvantage of using simple iterations at Step 4 lies in

the complication of the matrix factorization scheme. Hence the traditional

strategy of removing one constraint at a time seems to be a superior

approach.
On the other lhand, the use of GS iterations to provide a better starting

point seems to be a useful idea. For well-conditioned problems, such as

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.

72 . Achiya Dax

Table VI, Flat Polytope test problems with n = 20

Starting Point
~(o) = o ~(o) = e ~(o) = X*

ABC DE FABC DEFG

m=lo

Simple iterations 13.016.0 3.3 5.3 0,011.8 12.2 14.9 2.6 2.7 0,0 8.6 0.0

Active set iterations 16.8 8.2 19.8 14.8 15.1 8.8 16.310 .321,721220,5 10.0 12.3

Dropping iterations 1.6 1.3 3.3 5.3 12.9 2.1 1.5 1.8 2,6 2,7 4.5 2.4 7.2

Free variables 9.7 9.7 9.7 9,7 9.7 9.7 9.5 9.5 9.5 9.5 9,5 9.5 9.7
~=zo

Simple iterations 7.5 10.3 1.4 3.0 0.0 9.7 10.1 105 0.8 0.8 0.0 9,6 0.0

Active set iterations 5.6 3.1 8.4 7.7 15.7 3.0 4.7 2.7 8,7 8,7 8.7 2,7 6,1

Dropping iterations 0.0 0.2 1.4 3.015.1 0.2 0.2 0.3 0.8 0.8 0.8 0,3 3.9

Free variables 13.5 13.5 135 13.5 13.5 13.5 13.913,9 13.9 13,9 13.9139 13.5
~=30

Simple iterations 6.6 10,1 1.0 2.8 0.0 9.9 9.7 9.8 0.0 0.0 0.0 9.8 0,0

Active set iterations 4,1 1,8 54 6.4 17.0 1.9 2.4 1,7 5.6 5.6 5.6 17 7.3

Dropping iterations 0,0 0,1 1,0 2.8 16.8 0.1 0.0 0,0 0.0 0.0 0.0 0,0 4.1

Free variables 15.6 15,6 15,6 15.6 15.6 15,6 15,4 15.415 .415.415,4 15.4 15,6

Table VII. Random Polytope test problems with n = 40

m=10

Simple iterations

Active set iterations

Dropping iterations

Free variables
~=z(l

Simple iterations

Active set iterations

Dropping Iterations

Free variables

m=30

Simple iterations

Active set iterations

Dropping iterations

Free variables

Starting Point
~(o) = () ~(o) = ~ ~(o = X*

AB CD EFABCDE FG

38.8 10.2 1.5 2.1 0.0 9.3 39,3 12.4 0.7 06 0.0 11,5 0.0

3.2 2.7 38.9 6.4 4.2 2.7 2.5 1.8 39.1 38.8 39.0 1.8 7.8

0.0 0.3 1.5 2.1 4.5 0.3 0.0 0.3 0.7 0.6 0.9 0.3 4.2

3.7 3.7 3.7 3.7 3.7 3.7 3.8 3.8 3.8 38 3.8 3.8 4.1

38.0 14.0 1.2 2,1 0.0 13,4 38.7 13,0 0.5 0.5 0,0 12.7 0.0

3.3 2,2 36,5 6,9 5.9 2.2 3.6 2,0 37.7 37.6 37,8 2.0 8.3

0.0 0.2 1.2 2.1 6.0 0.2 0,0 0.1 0.5 0.5 06 0.1 4.3

5.0 50 5.05.050 5.0 44 4.4 4.4 4.4 44 4.4 44

39,6 13.4 1.3 2.7 0.0 12.2 36.5 15.3 0.4 0,4 0.0 14.1 0.0

3.4 2.3 36.1 7.3 6.4 2.3 3.9 2.0 35.3 35.3 35.4 2.0 10.1

0.1 0.4 1,3 2,7 6.7 0.4 0.0 0.4 0.4 0.4 0.5 0.4 5.4

5.7 5,7 5.7 5.7 5.7 5.7 6,6 6.6 6.6 6.6 6.6 6,6 5.8

Random test problems or Polytope test problems, Algorithm F has a clear
advantage over Algorithm E. In Hilbert test problems the GS iterations are

less successful because of their slow rate of convergence. Another exception

occurs in cases when only few interchanges of active constraints are needed

to reach the solution point. Nevertheless, inspection of these exceptions

shows that even in these cases the use of GS iterations does not cause a

significant waste of efforts. It is possible therefore to conclude that the use of

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991

On Computational Aspects of Bounded Linear Least Square Problems . 73

Table VIII. Flat polytope test problems with n = 40

Starting Point
~(o) = o ~(o) = e ~(o) = X*

ABC DE FABC DEFG

7n=lo

Simple iterations
Active set iterations
Dropping iterations

Free variables

m=20
Simple iterations

Active set iterations

Dropping iterations
Free variables

m=30

Simple iterations
Active set iterations

Dropping iterations
Free variables

20.925.4 3.7 7.1 0.016.6 8.723.4 2.7 2.7’ 0.014.5 0.0

41.824 .450.939.027.0 22.736 .126.454.747.3 43.024.9 26.7

2.3 2.5 3.7 7.1 19.0 4.7 1.1 2.6 2.7 2.7 6.0 3.8 13.7

10.0 10.0 10.0 10.010.0 10.0 10.0 10.010.0 10.0 10.0 10.0 9.9

26.626.6 5.5 6.5 0.014 .332.222.1 46 4.5 0.013.4 0.0

31.625 .749.330.436.4 22.526 .920.052.647.6 46.1 18.0 27.4

3.1 3.6 5.5 6.528.2 7.2 2.6 2.7 4.6 4.512.1 4.9 15.9

19.019 .019.019.019.0 19.019.1 19.1 19.1 19.1 19.1 19.1 19.2

18.2 14.2 3.9 3.7 0.012 .620.416.7 3.1 2.8 0.014.6 0.0

14.5 5.631.1 14.630.1 5.910.2 4.731 .929.536.2 5.1 20.3

1.0 0.5 3.9 3.727.5 0.8 0.7 0.7 3.1 2.8 9.6 1.1 12.8

23.923 .923.923.923.9 23.924 .024.024.024.0 24.024.0 23.7

(%3 iterations to provide a better starting point is likely to cause a significant

saving of computational effort.

REFERENCES

1.
2.

3.

4.

5.

6.

7.

8.

9.

DAX, A. The smallest point of a polytope. J. Optimization Theory Appl. 64 (1990), 419-422.

FLETCHER, R. Practical Methods of Optimization. Vol. 2, Constrained optimization. Wiley,

New York, 1981

FLETCHER, R., AND JACKSON, M. P. Minimization of a quadratic function of many variables

subject only to upper and lower bounds. J. Inst. Math. Appl. 14 (1974), 159-174.

GILL, P. E., MURRAY, W., AND WRIGHT, M. H. Practical Optimization. Academic Press,
London, 1981.

GOLDFARB, D. Extensions of Newton’s method and simplex methods for solving quadratic

programs. In Numerical Methods for Nonlinear Optimization, F. A. Lootsma, Ed. Academic

Press, 1972, pp. 239-254.

LAWSON, C. L., .4ND HANSON, R. J. Solving Least Squares Problems. Prentice-Hall, Engle -

wood Cliffs, N. J., 1974.

LENARD, M. L. A computational study of active set strategies in nonlinear programming

with linear constraints. Math. Program. 16 (1979), 81-97.

SCHITTKOWSKI, K. The numerical solution of constraints linear least-squares problems. IMA

J. Numer. Anal. 3 (1983), 11-36.

WOLFE, P. Algorithm for a least-distance programming problem. Math. Program. Stud. 1

(1974), 190-205

Received June 1986; revised January 1989; accepted January 1990

ACM Transactions on Mathematical Software, Vol. 17, No. 1, March 1991.

